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I would like to first cerebrate Professor Copas for his thought-provoking contribu-
tions to statistical sciences. We all know of his deep and pioneering work on shrink-
age estimators and publication bias and so on. Professor Copas’ paper is on four 
topics (shrinkage of predictions, non-random samples, model sensitivity, and publi-
cation bias). Although the topics are broad, they all have one thing in common: they 
all extracted statistical problems from specific applications and developed meth-
odologies and/or theories to solve problems that cannot be solved directly by the 
application of standard methods. I believe that this kind of research is an ideal way 
to advance both statistical theory and applications in the field of empirical science. 
Here, I will briefly comment on each of the four topics.

1  Shrinkage of predictions

Copas (1983) revealed that E[y|ŷ] gives a shrinkage predictor:

where F is Fisher’s F statistic for the regression model. More importantly, Copas 
(1983) and Houwelingen and Le Cessie (1990) also showed that this shrinkage pre-
dictor KxT𝛽  minimizes the mean squared prediction error,

E[y|ŷ] = Kŷ = KxT𝛽, K = 1 −
1
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where Ŷ(c) = cxT𝛽  and c is a constant. The shrinkage coefficient K can be used to 
quantify overfitting and one can use the coefficient to calibrate the model for future 
data. This kind of idea (shrinkage and penalization) had a large impact on the practi-
cal modeling strategies (Harrell, 2015). For example, Greenland (2000) discussed 
that traditional variable selection procedures such as stepwise selection on con-
founders leave important confounders uncontrolled and shrinkage methods are supe-
rior to variable selection for both confounding control and prediction purposes.

Although the shrinkage predictor has very good properties, it is biased toward 
the null and a trade-off exists (see Fig. 1). The shrinkage predictor has smaller MSE 
but biased. On the other hand, a maximum likelihood estimator (MLE) has larger 
MSE but asymptotically unbiased. Thus, we should cautiously select an appropriate 
method depending on the objectives (e.g., prediction, estimation, and testing). Here 
is an example on the sparse modeling. On the regression problem with high-dimen-
sional covariates, we often use the Lasso (Tibshirani, 1996). The Lasso estimator of 
the regression coefficients β is defined as the minimizer of the following objective 
function:

MSE(c) = E[(y − ŷ(c))2],

||Y − X�||2
2
+ �||�||1

Fig. 1  A comparison between maximum likelihood estimator (MLE), the James–Stein estimator (a 
shrinkage estimator), and the true batting averages of eighteen baseball players in 1970 (Efron amd 
Hastie, 2016). Computer Age Statistical Inference. Cambridge University Press.). MLE is batting average 
in first 90 at bats and the true is average in remainder of 1970 season. It is clearly seen that the James–
Stein estimator shrinks toward the grand mean (0.254) on each MLE value. It is also evident that the 
James–Stein estimator over-shrinks the data compared to the truth
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where Y denotes a vector of the outcome variables and X is a design matrix. Usually 
the regularization parameter λ is selected to minimize the prediction error by cross-
validation. However, if our objective is to select important covariates or risk factors, 
then λ could be selected to keep the false discovery rate at a level (Huang, 2017). If 
our objective is to select confounding factors and estimate a treatment effect, then 
we should also consider the association of potential confounders and a treatment to 
choose an appropriate λ (Koch et al., 2018).

2  Non‑random samples

The non-random sample selection (selection bias) is an important problem to ana-
lyze an observational study data. Professor Copas considered the two extreme 
models:

Model A: sample selection is random and E[y|x] decreases over x.
Model B: sample selection is non-random and E[y|x] does not depend on x.

As he noted in the paper, the treatment allocations were determined by the doc-
tors in the real clinical practice so that Model A is unrealistic. Using a simultaneous 
equation model, he showed that under Model B, the non-null association between x 
and y can exist in the selected sample. I think the truth is usually in the middle like 
the following Model C:

Model C: sample selection is non-random and E[y|x] depends on x to some extent.

However, in the case of Model C, identification of the regression coefficients β 
must be difficult without another very strong assumption, because we do not have 
any information on the non-selected sample. Thus in this case, we may study sensi-
tivity of inference to a given selection effect and repeatedly apply this method under 
the multiple possible scenarios (Copas and Li, 1997). I believe this kind of a sensi-
tivity analysis is very important under the presence of non-identifiable parameters 
in a realistic model like Model C. We have proposed similar sensitivity analysis 
methods under the context of the treatment non-compliance and mediation analy-
sis (Taguri and Chiba, 2012, 2015). However, Greenland and Lash (2008) pointed 
out that these approaches may convey unduly pessimistic or conservative picture of 
the uncertainty surrounding results because sensitivity analyses treat all scenarios 
(i.e., range of sensitivity parameters) equally, regardless of plausibility. Thus, if we 
consider relatively broad range of sensitivity parameters, Bayesian probabilistic sen-
sitivity analysis using explicit prior distributions for the sensitivity parameters will 
be useful.



646 M. Taguri 

1 3

3  Robust likelihoods

There is a discrepancy between the accuracy of the fitting in the entire parametric 
model and the accuracy of the estimation of the parameter of interest or the target 
parameter. On the likelihood inference, Copas and Eguchi (2010) considered the 
set of alternative models G as comparative alternatives to the working log-normal 
model. They proposed to use the envelope of family of likelihoods LENV(φ) to con-
duct a statistical inference considering the model uncertainty.

Another possible approach to focus on the target parameter is to use a semipara-
metric (nonparametric) model and estimate the target parameter directly. For exam-
ple, if our objective is to estimate the mean of X, we can use the sample mean as an 
estimator without assuming a parametric model for X. In the field of causal infer-
ence, van der Laan and Rose (2011) proposed a framework or “road map” of infer-
ence. As a first step, we specify the target parameter as a function of the observed 
data (for example, confounders-adjusted mean of X). Then, we construct a semipara-
metric efficient estimator (the targeted MLE) for the parameter. The nuisance func-
tions in the estimator will be estimated by the super learner, an ensemble learning 
algorithm to avoid parametric model assumptions. I wonder that this kind of semipa-
rametric approach is sometimes preferable in terms of robustness to model misspeci-
fications than the approach that looks at robustness to the local misspecification.

4  Publication bias

Publication bias has long been recognized as a major difficulty in systematic reviews 
in medical research and Professor Copas and his colleagues have made tremendous 
contributions to this field. In the paper, he assumed that the selection probability is 
an increasing function of t2:

Given that the effect size is positively associated with the probability of publica-
tion, this assumption seems reasonable. I wonder there should be an identification 
problem for (α, β) because we observe only the data of publication studies. Another 
question is that although in the funnel plot the study estimate was negatively associ-
ated with 1/sd, there might be a possibility that there is a little selection bias but the 
true effect is indeed larger in small studies due to the careful patient selection, etc. 
We may assume this effect in the model for y, but this may lead to identification of 
the model parameters more difficult.
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