Supplementary material to ”On the rate of
convergence of image classifiers based on
convolutional neural networks”

Michael Kohler, Adam Krzyzak and Benjamin Walter

This supplement contains an approximation result for convolutional neural networks in
Section A, a bound on the covering number in Section B, and several auxiliary results
from the literature in Section C. In Section D we provide a proof on the lower minimax
rate described in Remark 6, and in Section E we explain how to design the network archi-
tecture proposed by the theory describe the choice of hyperparameters for the simulation
studies.

A. An approximation result for convolutional neural networks

In this section we describe in Lemma 2 a connection between fully connected neural
networks and convolutional neural networks, which will enbable us to derive in the proof
of Theorem 1 an approximation result for the generalized hierarchical max-pooling model
by the convolutional neural networks. Before we do this we present in Lemma 1 a bound
on the error we make in case that we replace the functions g and g s in a hierarchical
model by some approximations of them.

In the sequel di,d> € N denote the image dimensions and furthermore let [ € N with
2! < min{dy,ds}. Weset I ={0,1,...,2" =1} x {0,1,...,2" — 1} and assume

m : [0’ 1]{1,...,d1}><{1,...,d2} N [07 1]

satisfies a generalized hierarchical max-pooling model of level [ and order ¢ € N with

functions
g:R 10,1 and g\” :R'—[0,1]

forae{1,...,t},kc{l,...,1} and s € {1,...,4*"1}. That is,
m(x) = g(mi(x),...,m(x))
and for all @ € {1,...,t} it holds that

ma(x) = (4,4)€22 (z‘,j)+II£?1},{...,d1}x{1,...,d2} Ja (x(i’j)ﬂ)

where f, satisfy
f a = f l(,(i)

for some f,gas) CR{L-2 P {102") R recursively defined by

f]g?s)(x) = g](;ig(f]ici)174.(5_1)+1(X{l,...,2’“—1}><{1,...,2k—1})7



f;gci)174.(5_1)+2(X{zk—1+1,...,2k}x{l,...,zk—l})7
f;gii)174.(8_1)+3(X{l,...,zkfl}x{2k*1+1,...,2k}),
f;g(i)m.s(X{2k71+1,...,2k}x{2k71+1,...,2k}))
fork=2,...,1,s=1,...,47% and
A (@10, 012, 0,0, 222) = 91 (21,1, 01,2, 02,1, 22.2)

for s = 1,...,471. As already mentioned, we replace the functions g and Jk,s by
approximations of them. Therefore let

m : [0, 1 Hdibx{lenda} R (13)

be a function which satisfies a general hierarchical max-pooling model of level [ and
order ¢t with functions
g:R' >R and g :R'—=R

forac {1,...;t},ke{1,...,1} and s € {1,...,4*71}. Analogous to the above, we also

se{l,... 41}

Lemma 1 Assume that all restrictions g,(c78)|[_272]4 : [=2,2]* = [0,1] and gli_oopr
[—2,2]" — [0,1] are Lipschitz continuous (with respect to the Euclidean distance) with
Lipschitz constant C > 0 for all a € {1,...,t}, k € {1,...,1} and s € {1,...,4~F}.
Furthermore, assume that for alla € {1,...,t}, k€ {1,...,1} and s € {1,...,47F}

7%
Then for any x € [0, 1]{1dibx{Lda} 4t pojds:
[m(x) —m(x)| < V- (2C + 1)

< 2.
2o = 2 (14)

- max {195 = 3N 2. 005 19 = Tl 22100 -
a€{l,.. i€l 1},se{l,. Ay U002 7 e o

Proof. Firstly, we show for any a € {1,...,t} that

o(X) — Mg (%) < (2C + 1)L (@ _ gl 15
Ima(x) — ma(x)] < ( ) jE{L"'71}122?17...741_”Hg o — 955 2,24, (15)

If a1, b1, ..., an, by € R, then

| max a; — max b;| < max |a; — b;l.
i=1,...,n i=1,...n i=1,...,n

Indeed, in case a; = max;—1 ., a; > max;=1 . ,b; (which we can assume w.l.o.g.) we
have

| max a; — max b =a; — max b; <a; —b < max |a; — b;l.
i=1,...,n i=1,....,n i=1,...,n i=1,...,n



Consequently it suffices to show

| fa (XGgy+1) = fa (X(ig)41)]

(4,4)€Z2: (ZJ)HC{L od1x{1,....d2}

< (20 + 1)t max —
= ( ) je{l,...,l},se{l ..... 4l ]} ||g]5 g]S ||[ 22]4

This in turn follows from

200 = F00l < o max ) =gz (10
for all k € {1,...,1}, all s € {1,...,4"%} and all x € [0, 1]{1-2P<{1-2"}  which we
show in the sequel by induction on k.

For k=1 and s € {1,...,4""'} we have

ff:?( ) (as)( )’ = ’9;?3)(951,1,%1,2,962,1,562,2)—gg?s)(%,l,351,2,962,1,362,2)
(a) _ ~(a)
< —
= H91,s L5 1110,174,00

Assume now that (16) holds for some k£ € {1,...,l — 1}. The definition of f,gas) and
inequality (14) imply that

70| <2

for all x € [0, 1]{1-2"1*{12"} and s € {1,...,4""%}. Then, the triangle inequality and
the Lipschitz assumption on g imply

A0 = 2 ()

< ‘gkﬂs(f,gfif(s 1)+1(X{l,...,2’€}><{1,...,2’€})’f]gi;)(s 1)+2(X{2k+1 2k+1}x{1,...,2k})v
f +3(X{1, L2k < {2k 41,.. 2k+1})af;gil)8(X{2k+1,“.,2k+1}x{2k+1,...,2k+1}))
—gi‘i)ls(féai (om0 201,28 (1,28 T2 (K28 41,2841 1,28 )

7(a)
fk4 (s—1 +3(X{l,.,.,2k}><{2’“+1,..,,2k+1})a k4 8(X{2k+1,“.,2k+1}x{2k+1,...,2k+1}))‘

+‘ 16 (o (o (X2 11261 PR (o) 12 (K21 285 {12
;iaz;).(s,l)Jrg,(X{L...,Qk}x{2k+1,...72k+1})a _;g(;;)s(x{2k+1 2k+1}x{2k+1,...,2k+1}))
—9;(;21S(fki;).(s_l)ﬂ(X{1,...,2k}x{1,..,,2k})a 7;5;?4)(5 12 (Rq2ri1, 211,28} )
;iaz;)(s 1)+3(X{1, L2k x {2k 41, 2k+1})a _;gi;)s(X{2k+1,...,2k+1}x{2k+1,...,2k+1}))’

<C- <|fk4(s 1)+1(X{1, 2R} x{1,.. 2’6}) f(a4)( )+1(X{1, L2RIx{1,.. ,Qk})|2

+|fk74.(5_1)+2(X{2k+1,...,2k+1}><{1,...,2’€}) fm (s—1 +2(X{2k+1 2’€+1}><{1,...,2k})‘2

‘1‘|f;gﬁ.(s_l)Jrg(X{L...zk}x{2k+1,...,2k+1}) - fk,4.(5_1)+3(x{1,...,2k}x{2k+1,‘..,2k+1})|2



a ~a 1/2
+|f;§74).8(x{2k+1,“.,2k+1}x{2k+1,...,2k+1}) - fk(;,4)‘s(X{2k+1,...,2k+1}x{2k+1,...,2k+1})‘ )

Hlgs? s = 82 2.2yt 00

<(2-0)- (20 + 1)k L. . 1952 — G5 1,971 00

gk s — 82 a2yt 0

< (20 +1)F - a “@ g
< ) ie{l,...,k+{r]’1,s}€<{1,...,4l*i}ng’s s =221t

for all x € [0, 1}{17~--72’°“}x{l,...,2k+1}.
The definition of the functions ;") and inequality (14) imply that

[Ma(x)] <2

for all x € [0,1]t1-dibx{Ld2} and ¢ € {1,...,t}. Then, the triangle inequality, the
Lipschitz assumption on g and inequality (15) imply

lg(ma(x), ..., mi(x)) = g(ma(x),..
< lglmi(x), ..., my(x)) — g(ma(x ) ( )|
( _

+ ‘g(ml(X), - .,mt

_ 1/2 _
C- (jma(x) — 1 (x >| +---+|mt<x>—mt<x>|2>/ + 119 = ll =227 00
<Vi-C-(2C + : @ _ 50y
f (2C + 1)~ ae{1,...,t},je{glja,}l(},se{l,...Al*j}Hg]’s 9; sli—2.21% 00
+1lg = gll[-2,2 00
<Vt (20 +1)

(a) _ ~(a) =
{195 = g o oo g = gl |

je{1,....1},s€{1,...,.4"7}

for all x € [0, 1]{1-dibx{lodz} O

In the next lemma, we show that a convolutional neural network mye; € F (Inet, k, M)
can mimic a function m, from the definition of m(x) = g(mi(x),...,m(x)) (cf., equa-

(a)

tion (13)) if the functions g, , are standard feedforward neural networks.

Lemma 2 Let a € {1,...,t} and assume that the functions
g R SR

in the definition the of m(x) = g(mi(x),...,m(x)) (cf., equation (13)) are standard
feedforward neural networks (defined as in equation (3)) with Lye; € N hidden layers and
Tnet € N neurons per hidden layer and ReLU activation function for all k € {1,...,1}
and s € {1,...,47%} . Set

4t -1

lnet = Lnet + l)



2.4l 44

ks
3

F et (=1, lnet),

and set
M, = 27() forse{1,... lnet},

where the function m: {1,... ,lpet} — {1,...,1} is defined by

l
m(s) = Z H{szi+zlr_:%7i+1 A Lper}
=1

Then there exists some mper € F (Inet, k, M) such that

M (X) = Mpet(X)

In order to prove Lemma 2 we will use the following auxiliary result.

Lemma 3 Let g : R* — R be a standard feedforward neural network (defined as in
equation (8)) with Lypey € N hidden layers and rpe € N neurons per hidden layer. Let
dy,dy € N with dy,da > 1 and let o(z) = max{z,0} be the ReLU activation function.
We assume that there is a convolutional neural network mpe € F(L,k, M) with L =
1o + Lpet + 1 convolutional layers and k., =t + rner channels in the convolutional layer
r(r=1,...,r0+ Lpet + 1) forro,t € N, and filter sizes M, ..., My 11, ..+1 € N with

Myo+1 = 2F for some k € N with 2F < min{d;, ds}.

The convolutional neural network mye; s given by its weight matriz

W = (w(r)

o 17
Z’]’SI’S2>1§i,j§Mr,s16{1,...,k;T,1},szE{l,...,kr}re{l,...,r0+Lnet+1}’ (17)

and its bias weights

- <r>) . 18
Whias (w” $2€{1,0kp b r€{1,...r0+ Lret+1} (18)
Set 1M = {0,...,2™ — 1} x {0,...2™ — 1} for m € Ng. Furthermore, let fi,..., fa :
[0, 1](1’1)+I(k_1) — R be functions and let sp1,...,5210 € {1,...,t}. Assume that the
given convolutional neural network mye: satisfies the following four conditions for all
(i2,72) € {1,...,d1 — 28 + 1} x {1,...,dy — 2F + 1}:

(T0) (ro) _
Oy ia)sns ~ Qinga)sas = 1 (X(izja)+16-1); (19)
(o) (o) _
(242871 j2),s23 (242871 ja),s20 fQ(X(i2+2k71J2)+1(k_l))’ (20)
(o) (o) _
O(i§7j2+2k71)75275 - O(is,j2+2k71),8276 - f3(x(7j27j2+2k—1)+[(k*1)) (21)



and

(ro) (o)

(i2+2k_1,j2+2k_1),82’7 - 0(i2+2k_1,j2+2k_1)75278 = f4(X(i2+2k71,jg—‘y—?k*l)—‘,—]'(k_l))' (22)
Then we are able to modify the weights (17) and (18)
wg?twhsz,wgg) (s1 €{1,...,t +rnet}) (23)

in layersr € {ro+1,...,r0+Lpet+1} and in channels so € {s29,52,10,t+1, ..., t+Tnet}
such that

(TU+Lnet+1) _ 0(7"0+Ln5t+1)
(i2,52),52,9 (i2,32),52,10

=§(f1( (o) 101 )s J2(X (i 261 )4 1(6-1) ),
f3( (12 ]2+2k 1 +I(k 1)) f4( 12+2k_1,j2+2k_1)+[(’€*1>))
holds for all (ig,j2) € {1,...,dy —2F +1} x {1,...,dy — 2F +1}.

Remark 9. In the proof of Lemma 3 we only modify in layers ro + 1,...,70 + Lypet + 1
the filters and bias weights (23) in channels

t+1,...,t 4+ rpet
and in layer rg + Lyt + 1 the filters and bias weights in channels
52,9, 52,10-

This means that the calculation only takes place in these channels. The filter and bias
weights in the remaining channels can therefore be arbitrary.

Proof. Let (io,jo) € {1,...,d; —2F +1} x {1,...,ds — 2 + 1} be arbitrary. We modify
the weights (23) by using the weights of g. Here we assume that g is given by

Tnet
_ Lne Lne Lne
g(x) = ngz g ‘Qz( J(x) + wg,o g
i=1
for giL””)’s recursively defined by

Tnet

70_ Zwr 1) (7‘ 1)(X)+’w§;)_1)
forie{l,...,mnet}, 7 €{2,..., Lpet}, and
4

0V =0 [ w2 1w | e {1 ).
j=1



In layer ro + 1 we modify the weights (23) in channel ¢ + i by setting

(ro+1) =0
ti,t2,st+i

for all t1,t5 ¢ {1,1+ 27!} and all s ¢ {s21,...,s28} and choose the only nonzero
weights by

(ro+1) _,.(0) (ro+1) _ (0)
11,821,046 — Wils Wit,sgot+i —  Wils
(ro+1) _ (0 (ro+1) _ (0
Wypok=11 g5 t4i — Wi20 142k=1 1 spatbi . Wi20
(ro+1) _ (0 (ro+1) _ (0
114261 sy 5 ¢4 Wi30 Wy gqoh=1 g6 t+i Vi3>
(ro+1) _ (0 (ro+1) _ (0)
142k—1 14261 g9 7t 40 Wig> w1+2k71,1+2k*1732,8,t+i = Wiy
and w0 = 0¥ for i € {1 Tnet}- Then we calculate with the modified weight
t+1 — %0 sy lnets- ghns
and the assumptions (19)—(22)
(ro-+1) ol (ro+1) (r0) (ro-+1)
ro+ _ ro+ 70 ro+
O(i27j2)7t+i =0 Z Z Wiy to,51,t+i 0(i2+t171,j2+t271),31 + Wiy

s1=1 t1,tae{l,....Mpy41}
(t2+t1—1,j2+t2—1)€D

_ (0) (o) (ro)
=0 (wi,l ’ (O(ig,jg),s;l B O(i;j2),82,2)

(0) ¢ (ro) (7o)

T Wi (O(i2+2’“‘17j2)752,3 0(i2+2’“‘17j2)782,4)
(0) (o) _ (ro)

+ Wiz (0(i2,j2+2k*1)782,5 O(iz,j2+2k*1)782,6)

(0) (o) (ro) (0)
t Wia - (0(i2+2’“*1,j2+2k*1),82,7 - O(i2+2k*1,j2+2’“*1),82,8) + wi70>
0 0
=0 (wz(,l)fl (X(ig,jo)+16:-1) + wz(,Q)f2(x(i2+2k—1,j2)+l(k*1))

0 0 0
+ wz(,?))fé(X(ig,j2+2k*1)+l(k*1)) + wz(,zl)f4(x(i2+2k*1,jg+2k*1)+l(k*1)) + w£,0)>

1
:91( ) (fl (X(¢27j2)+[(k—1) )s f2 (X(i2+2k*1,j2)+](k—1) ),

f3 (X(ig,j2+2k_1)+_[(k*1) )7 Ja (X(i2+2k—17j2+2k—1)+1(k—1) ))
(24)

fori € {1,...,mpet}. Inlayers r € {ro+2,...,70 + Lpet } in channel ¢ 4 i we modify the
weights (23) by setting
() 0

Wy, to,st4+i —



for all (t1,t2) # (1,1) and all s € {1,...,t} and choose the only nonzero weights by

r) (r—ro—1) (ry _  (r—ro—1) .
w§,17t+j,t+i =w; 0, Wy =wy (F €A, . Tnet})

for i € {1,...,7pet}. Thus we obtain
o N2, 1) (o) (=1
ro+7) o r—1 ro+r—1 7" 1
O(in,jz) 1+ U(Zw O(iz,2) t45 Tw )
for i € {1,...,rpet} and r € {2,..., Lpet}. Then we get by equation (24) and the

definition of gz-(r) that

0§§§,§§>),t+i :gz'(r) (fl(x(iz,jz)-i-.f(’“*l))’f?( (124281 jp)+ 11 )

f3(x X(ig,jo+2k—1)+1(k— n),; fa(x z2+2’v*1,j2+2k*1)+l(’f—1>))

for i € {1,...,rnet} and 7 € {2,...,Lpet}. Now in layer 79 + Lpet + 1 in channels
s2.9,8210 € {1,...,t} we modify the weights (23) by setting

(""O“I’Lnet“l’l) o (7'0+Lnet+1) _ O
t1,t2,8,829 7 Tti,t2,s,82,10

for all (t1,t2) # (1,1) and all s € {1,...,t} and choose the only nonzero weights by

(TO+Lnet+1) _ (Lnet) (TO+Lnet+1) _ (Lnet)

Llt+isee — Wi o Wilttisao —  Wig o

(ro+Lnet+1) _ , (Lnet) wlrotLnettl) — (Lnet)
wsz,g e _wLO ’ 52 10 " wl,O

for i € {1,...,mnet}. Consequently, we get the following outputs:
net
(7’0+Lnet+1) (Lnet) 7’O+L7Let) ( net)
O(i2,j2),52,9 (Z Wy O(iz,2) t+i T Wi >
= ( (fl(x(zg i)+ 10=1)5 J2 (X qak=1 gy 4 15-1)),

f3(x(z‘2,j2+2k*1)+[(kfl>)7 f4(X(i2+2k—17j2+2k71)+1(k71) )))

and
Tnet
(7‘O+Lnet+1 Lnet T0+Lnet) . (Lnet)
Oiz,g2),s200 7 Z wl Olig jo)t+i — W10
= U( - §(f1(X(i2,j2)+1<k—1)), Ja(X (i b1 )4 15-1)

f3(X(i2,j2+2k—l)+1(k—l))7 f4(X(12+2k—1,j2+2k—1)+[(k—1) ))) .



Finally, we obtain
(7’O+Lnet+1) _ (TO+Lnet+1)

(i2,32),52,9 (i2,42),52,10

= max {g<f1( (32,52)+1 (k= ) f2(X(z2+2k o)1 (k= n);
F3(X iy pan 1)1 ) Fa(X(iy por1 gy pak1y e )> ’ 0}
—max{ _gnet<f1( 12 32)+I(k 1)) fQ(X(zQ—FQk 1 )+I(k 1))

F3(X(iy joror—1) 41—, fa(x 12+2k1,j2+2k1)+f(k’_1)))70}

:gnet<f1( (i9,j2)+ Ik~ 1)) f2( (ig+2k=1 jo)+1(k— 1))

f3(x(i27j2+2k’1)+1(’“*1) ), f4(X(z‘2+2k*1,j2+2k71)+1<k71> )> .

O
Proof of Lemma 2. In the proof we will use the network f;; : R — R defined by

fia(z) = o(x) — o(—x) = max{x,0} — max{—=z,0} =z,

which enables us to save a value computed in layer » — 1 in channel s at position (i, j)
by a difference of the outputs of two neurons in distinct channels s; and so in layer r by

(r) o) (r=1)\ _ _(_ =1\ _ (r—1)

oy = e = 7 (olin) — (= olih) = olin (25)
Once a value has been saved in layer r by the difference of two neurons, it will be
propagated analogously to the next layer r + 1 by calculating
oD k) a(o@. o) ) 0( =00 ) = o) ol L, (26)

(7'7])781 (1/7])732 (7'7])781 (1/7])732 (17]) 7'7])781 (7/7])731 27])752

In case we want to make use of equation (25) or equation (26), we have to choose the
filters (and the bias weights) of the convolutional neural network in layer r in the channels
s1 and s accordingly from the set {—1,0,1}.

With this approach of storing and propagating calculated values, the idea of our proof
is to choose the filters (and the bias weights) such that our convolutional neural network
saves in channels corresponding to position (7, j) the values of z; j, f_175(X(i’j)+I(1)) (s =

4, fos(Xjyrre) (s=1,... A7), fus (X j)10) (s = 1), where we set
7(m) ={0,...,2" -1} x {0,...,2m — 1}
for m € Ny. To do this we need two neurons for each of the above values, so altogether

-1\  2-4'4+4
4-1) 3

2'(1+4l1+412+-~+4O):2-<1+



channels or neurons for each position (7, ). Furthermore, we will need r,; additional
channels to compute the networks g 5. So altogether we need

2.4+ 4

3 + Tnet = ki

many channels in each convolutional layer r.

The convolutional neural network mpe; € F (Ipet, k, M), which we will construct to
prove the assertion, has the parameters l,,.¢, k and M of Lemma 2. We make use of the
above idea by choosing the filters (and bias weights) of the convolutional neural 7,
network so that it has the following property for any k € {1,...,1}:

For any s € {1,...,4" "%} (i,5) € {1,...,d1 —2F + 1} x {1,...,dy — 2F + 1}
and any r € {47 Lyt + -+ + 4% Lot + k, ..., lnet} it holds that

(r) _
O(i,), 242411 g 2441 42,51 (3 5), 242401 g 241K+ 4 2. (27)

= fk,s (X(m)_;_](k) ).

Due to equation (26) is suffices to show equation (27) for r = 4=V Ly op+- - -4+4F. Lo+ k.
To construct our convolutional neural network m,.; so that the above property (27) is
fulfilled, we use an induction on k.

We start with £ = 1. First we note that

fl,s(x(i7j)+](1>) = gl,s(x(i,j)vx(i+1,j)7x(i,j+1)7 33(1'+1,j+1))

for s € {1,...,4 1} and (i,5) € {1,...,d; — 1} x {1,...,d2—1}. So we have to compute
the networks gy 1,...,g; 41 applied to the input of our convultional network. The idea is
to use Lemma 3 for each network g; ;. Therefore, we first make sure that the assumptions
(19)—(22) of Lemma 3 are fulfilled as we need them. In the first convolutional layer we
copy ; j in the first two channels using the weights as in equation (25), and we propagate
these values in the successive layers using the weights as in equation (26). So after the
first layer we have available the input in the first two channels in all convolutional layers,
so that for all 7 € {2,...,lhe} and all (4,75) € {1,...,d1} x {1,...,dz2} it holds that

o

(i.4),1 ~ G2 =

i,5)"
For the filter size it holds that
M,=2 (renx'(1)={1,2,...,4" " Loy +1}).

Starting already in parallel in the first layer, we compute successively the networks g 1,
-+»g1.41-1 1n layers
1,2,..., 47 Lo + 1

in the channels
2-4l+4+12-4l+4 2.4 44

3 ) 3 +27"'>T+Tnet

10



for the computation of their hidden layers and the ouput layers in channels 2+1,...,2+
2 . 4=1 by applying Lemma 3 4! times. We now describe how to use Lemma 3 to
compute g5 (s =1,..., 41*1). In particular, we specify how to choose the parameters
52.1,-.-,52,10 from Lemma 3. The computation of g s takes place in layers

(3_1)'Lnet+1>“-78'Lnet

in channels
2.4 +4 2-4 44 2.4 44
+ 1, +2,. ., ————— + Thet
3 3
for the computation of its hidden layers and its output layer is computed in layer s-Lje;+1
in channels sy 9 = 2+ 2s — 1 and s10 = 2 + 2s. As input the network g; s uses the first

two channels for s > 1 such that

891 = 823 =825 =527 =1and sp0 =534 = S35 = 528 = 2,

and in case s = 1 it selects its input from the input of the convolutional network and
then use a simple variation of Lemma 3 by adapting the assumptions (19)—(22). The
computed function value of gy is then saved in the two channels spg =2+ 25 — 1 and
$2.10 = 2 + 2s. Here we propagate again the value of these neurons successively to the
next layer by using the weights as in equation (26). So after layer 4'=!- L,; + 1 we have
available the values of all fl,s in the channels 2+ 1, ..., 24241 so that for any
se{l,...,4=Y and any (i,5) € {1,...,d; — 1} x {1,...,dy — 1} it holds that

(4171 Lier+1) (A=Y Lper+1) _
OU,j),2+2:s—1 — O(i,5),242-s 91,5(T 5.5y T(i+1,5)> T(ij+1)s T(i+1,5+1))

f_l,s(x(i,j)—l-l(l))'

Thus property (27) holds for k£ = 1.

~ Now we assume that equation (27) holds for k € {1,...,1 —1}. We use the values

fk,s(x(i7j)+1(k)), which are given by equation (27), to compute all values of
fk+1,s(x(i,j)+[(’€+1)) = Ok+1,s (fk,4~(sfl)+1(X(i,j)+[(k>)7 fk,4-(sfl)+2(X(i+2k,j)+[(’€))’

fk,4~(s—1)+3(X(i,j+2k)+1<k))a fk,4~s(x(i+2k,j+2k)+1<k> ))

for s € {1,... 41_("3*1)} using Lemma 3. We proceed similarly to the above case of k = 1.
For the filter size it holds that

M, =21 (ren Yk 4+ 1)),
where 771 (k + 1) is given by
(A L+ 447" Lo+ (k+1), .. 47 Ly 4 447D L+ (R + 1))

By applying Lemma 3 4/~(+1) times we compute successively the networks Tht1,15- -+
Gk+1.41-(e+1), In the corresponding layers

A7 Lyt 447 L+ k1, A7 Ly 4 47F L 447D L b4 1,

11



where the computation of their hidden layers takes place in channels

2-4l+4+12-4l+4+2 2.4 44
3 " g

+ Tnet

and the computation of their ouput layers takes place in channels

24247 g4 2424 424l (D)

As above we describe how to use Lemma 3 to compute g1 (s =1,..., 41*(’““)) and
specify how to choose the parameters s21,..., 5210 from Lemma 3. The computation of
Grt1s (s=1,... ,4l=(+1)) takes place in layers

4l_1'Lnet+' : '+4l_k'Lnet+k+(5_1)'Lnet+1a cee 74Z_I'Lnet+' : '+4l_k'Lnet+k+5'Lnet

in channels

2.4l+4+12.4l+4+2 2.4 44
3 " T

for the computation of its hidden layers and its output layer is computed in layer

+ Tnet

4l_1'Lnet+"‘+4l_k'Lnet+k+5'Lnet+1

in channels

S99 =2+2-471 4. p2.47F 195 1 (28)
and
so10=2+2-47" 4. 2.4k 4 9 (29)
We choose
-1 ‘
Som =2+ ( > 2-4Z> +2-4-(s—1)+m
i=l—(k—1)
for m € {1,...,8}, because then we have

(r) (r) _ 7
O(i,j)ysz,szl o O(i,j),sz,zm - fkv4'(s*1)+m(x(i7j)+1(k>)

for m € {1,...,4} and any r € {41 Lyt + - +4"F - Lot + k..., lnet} and any
(i,5) € {1,...,d; —2F +1} x {1,...,d2 — 2 4+ 1} due to the induction hypothesis. Then
Lemma 3 let us choose the corresponding weights of the network my; such that

(4l_1'Lnet+"'+4l_k'Lnet+k+3'Lnet+1) _ (41_1'Lnet+'"+4l_k'Lnet+k+S'Lnet+1)
(4,3),52,9 (4.9),52,10

= Ok+1,s (ﬁ;,4-(s—1)+1 (X(i,j)+1(k) ) fk,4.(s—1)+2 (X(i+2k,j)+1(k) )

fk,4~(s—1)+3 (X(i,j+2k)+1(k) )7 fk,4-s (X(Z‘+2k’j+2k)+[(k) ))

= fk+1,s (X(Z'7j)+[(k+1) )-

12



for any (i,7) € {1,...,dy — 281 +1} x {1,...,dy — 2¥*1 + 1}. By propagating again the
values of these neurons successively to the next layer we have available the values of all
fr41,s after layer

AT L4+ 47 Ly + 47D L+ k4 1
in the channels
24247 4o g4l 2424 40 g (D)

so that for any s € {1,...,4~* +tDY and any (i,7) € {1,...,d; — 281 =1} x {1,...,dy —
281 — 1} it holds that

0(41_1’Lnet+"'+4l_k'Lnet+4l_(k+1)'Lnet+k+1) _ 0(41_1'Lnet+'"+4l_k'Lnet+4l_(k+1)'Lnet+k+1)
(4,5),2+2-40 =14 424~k 251 (i,5),2+2-40 =1 2.4l —k 4 25

= Frt1.s (X ) 10640))-

So property (27) holds for all k£ € {1,...,1}.
Hence in layer

4h—1
lnet:4l_1'Lnet+4l_2'Lnet+"'+40'Lnet+l:T'Lnet"‘l

we have by equation (27)

(lnet) _ (l”wt) _ I
(1,5), 2424 oo 2441~ 9(i,5), 24241 142442 — fia(x(i ) 10)

for all (i,7) € {1,...,dy —2'+1} x {1,...,ds — 2 +1}. Now we choose the outer weights
Wyt Of our convolutional neural network my,e; such that

1,ifs=24+2-4"14...42.441
ws=¢{ -1, ifs=2+2-4"14...4+2.44+2

0, else.

This implies that the output of our network is given by

_ (lnet) _ (lnet)
Mier(X) = max {O(i,j),2+2-4l1—|—~--+2-4ll+1+1 Oi,7), 242411 4. g 2.41-1+1 42

(i,j)e{1,...,d1—2l+1}x{1,...,d2—2l+1}}

max {f(x(i,j)+l) : (l,]) € ZQ, (Z,j) + I Q {1, v ,dl} X {1, .. .,dz}}

m(x).

13



B. A bound on the covering number

In this section, we present a result on the covering number of the class F; (L, kM k@), M)
of convolutional neural networks.

Lemma 4 Let o(x) = max{x,0} be the ReLU activation function, define
F=F (L,ku)’km),M)

as in Section 2 and set

1 2 2
[ max{k§ N AR .,k:(L()Z)} , Mipaw = max{Mi, ..., My}

and
Loz = InaX{L(l), L(Q)}.

Assume dy - d2 > 1 and cq -logn > 2. Then we have for any € € (0,1):

sup log (Nl (€7TC4-lognJT", X?))
xPe(R{Ld1}x{1,..do})n

cy - logn
<ecr- LGax ’ log(Lmax ~dy - d2) -log <46g>

for some constant c; > 0 which depends only on ke and My,q:.

With the aim of proving Lemma 4, we first have to study the VC dimension of our
function class F; (L, kM k@), M) For a class of subsets of R%, the VC dimension is
defined as follows:

Definition 2 Let A be a class of subsets of R% with A # () and m € N.

1. For xq, ..., %X, € R? we define
S(A X1, oy X)) = [{AN{x1, .. xm} + A€ A}

2. Then the mth shatter coefficient S(A,m) of A is defined by

S(A,m) = max  S(A, {x1,...,Xm}).

{x1,..y%Xm }CRE
3. The VC dimension (Vapnik-Chervonenkis-Dimension) V4 of A is defined as

Vai=sup{m e N : S(A,m)=2"}

For a class of real-valued functions, we define the VC dimension as follows:

Definition 3 Let H denote a class of functions from R? to {0,1} and let F be a class
of real-valued functions.

14



1. For any non-negative integer m, we define the growth function of H as

Iy(m) = max |[{(h(x1),...,h(xm)):h € H}|.

X155 Xm €R4

2. The VC dimension (Vapnik-Chervonenkis-Dimension) of H we define as

VCdim(H) = sup{m € N : IIy(m) = 2™ }.

3. For f € F we denote sgn(f) := I;>0y and sgn(F) := {sgn(f) : f € F}. Then the
VC dimension of F is defined as

VCdim(F) := VCdim(sgn(F)).
A connection between both definitions is given by the following lemma.
Lemma 5 Suppose F is a class of real-valued functions on R%. Furthermore, we define
Fr={{xy) eR'xR: f(x) 2y}: [ € F}

and define the class H of real-valued functions on R% x R by

H={h((x,y)) =f(x) —y: feF}
Then, it holds that

Vr+ = VCdim(H).

Proof. For all (x1,41),-- -, (Xm,¥m) € R x R with m € N it holds that

S(f+a{(xlay1)v"'>(meym)})
= HAO {x1y1)s s (Xmsym)} 2 AE ‘F+}‘
= [{{eew) € R xR £ 2 9} 0 {Gxa, 00, (s yn)} 5 f € F
= ‘ {{(Xay) € {(mlayl)w"?(xmvym)} : f(X) > y} : f € Jt}‘
=|{{ie{l,....m}: f(xi) > v} : f€F}
- ‘{(Sgn(f(xl) - y1)7 cee 7Sgn(f(xm) - ym)) : f € ]:}’
= {(sgn(h(x1,91)), - - ., sgn(h(xm, ym))) : h € H}|.
It follows that
S(f+,m) :HH(m)
holds for all m € N, which implies

Ve = VCdim(H).

O
In order to bound the VC dimension of our function class, we need the following auxiliary

result about the number of possible sign vectors attained by polynomials of bounded
degree.

15



Lemma 6 Suppose W < m and let fi,..., fm be polynomials of degree at most D in W
variables. Define

K = [{(sgn(fi(a), . 580 (fm(a))) : 2 € RV}].

Then we have

2.¢-m-D\"
KL<2. | — .
Proof. See Theorem 8.3 in Anthony and Bartlett (1999). O

To get an upper bound for the VC dimension of our function class F; (L, k() k@), M)
defined as in Section 2 we will use a modification of Theorem 6 in Bartlett et al. (2019).

Lemma 7 Let o(x) = max{z,0} be the ReLU activation function, define
F=F (L, k) k@), M)
as in Section 2, set

1 2 2
[ max{k§ e kR .,k:(L(L)} , Mpaw = max{Mi, ..., My}

and
Limae = max{LM L1

Assume dy - dy > 1. Then, we have
Vs <10 Lingy <1085 (Linae - di - d2)
for some constant cig > 0 which depends only on kpee and Mpqq.

Proof. We want to use Lemma 5 to bound Vz+ by VCdim(#), where # is the class of
real-valued functions on [0, 1]{1-d}x{L.d2} s R defined by

H={h((xy)) = f(x)—y: fe T}
Let h € H. Then h depends on t convolutional neural networks
fuoo foe FLW, kW M)
and one standard feedforward neural network g € G;(L(® k®) such that
h((x,9) =go(f1,.-, fi)(x) —y

Each one of the convolutional neural networks fi, ..., f; depends on a weight matrix

® _ (,,br)
W= \Wigisise ) ) (1) 1y’
1§17.]SMTasl6{17“'7k7—71}7526{1)"'7k7’ }7T€{17~-~’L( )}
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the weights
b _ ( (b,r))
W =
bias Wg, 526{1,...,/651)},re{l,...,L(l)}
for the bias in each channel and each convolutional layer, the output weights

®) _ (w(b)

Wout = )
out S )86{1""’k1;(1)}

for b € {1,...,t}. The standard feedforward neural network g € G;(L(® k®) depends
on the inner weigths
(r=1)

Wi

for j € {0,... k:( )1} ied{l,. k:,(?)} and r € {1,...,L(®} and the outer weights
(L®)

%

for i € {0,..., k(L2()2)} (where k(()2) =1).

We set
1 1 2
k= (ko,....kpoo o) = (LAY, k6 k)
and count the number of weights used up to layer r € {1, ... , LM } in the convolutional
part by

=t (ng'ks'k81+iks> s
s=1 s=1

for r € {1,..., LM} (where we set Wy := 0) and
Wi =Wra +t- ko).
We continue in the part of the standard feedforward neural network by counting the
weights used up to layer r € {1,..., L(®} by
Wi 140 = Woo gy + (ks +1) - kpo s
and denote the total number of weights by
W= WL<1>+L<2>+2
=Wioir@p Hkpogipee +1
S L(l) -t ( mazx kznaa: + kmam) +t- kma:v
( kmax + 1) max) + kmax +1
((kmax + 1) max)
+2.t-(kmax+1)
<LV +L@ 49yt M2 (kmaz + 1) - kmaz
<2- (LW 4+ L@ 4 2) .t M2, - k2

max mazx*

17



We define I(0) = () and for r € {1,..., L™ + L&) + 2} we define the index sets
1M =11, W,}.

Furthermore, we define a sequence of vectors containing the weights used up to layer
re{1,...,LM} in the convolutional part by

— (1,r) (1) (1,r) (1,r)

ar) = (A0, W11 115 s WL Ay b WT e W
(t,r) (tr) (tr) (tr) 1%
W WA M Ky ey W s W e R

(where ay denotes the empty vector),

— ( (1) (t) (t) W, )
& ()4 = (aI(L(m),w1 ,...,ka<1),...,w1 ,...,ka(l)) eR" LMW1

and by continuing with the part of the standard feedforward neural network we get for
re{l,...,.L®}

. (r—1) (r-1) W .
a =la w co, W eR "+t
[(”'+L<1)+1) < ](TJrL(l)) » 1,00 ) kr+L<1)+1’k7'+L(1)
and ( (2)) ( (2))
. L L w
a:= <aI<L(1>+L<2)+1),wO s Wi ) e R"™.

With this notation we can write
H={(xy) ~ h((x,y),a):acR"}
and for b e {1,...,t}
FLW kW M) = {x — fy(x,a):ac RV},

where the convolutional networks f1,..., f € F (L(l), k™, M), as described above, each
depends only on W)/t variables of a. To get an upper bound for the VC-dimension
of H, we will bound the growth function Il (3)(m). In the following we assume that
m is a positive integer with

m>W (31)

since this will allow us several uses of Lemma 6. To bound the growth function ITgz, ) (m),
we fix the input values

(X1,51)- - > (X, Ym) € [0, 1] Tt} s R
and consider h € H as a function of the weight vector a € RW of h
a > h((xp, ye),a) = go (fi,.., f)(xk,a) — yp = hi(a)
for any k € {1,...,m}. Then, an upper bound for

K = |{(sgn(h1(a)),...,sgn(hn(a))) :a € RV}
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implies an upper bound for the growth function Il (3 (m). For any partition
S={51,....,5u}
of RV it holds that

{(sgn(hi(a)),...,sgn(hm(a)) : a € S;}|. (32)

||M§

We will construct a partition S of R such that within each region S € S , the functions
hi(-) are all fixed polynomials of bounded degree for k € {1,...,m}, so that each
summand of equation (32) can be bounded via Lemma 6. We do this in two steps.

In the first step we construct a partition S of R" such that within each S € S()
the ¢ convolutional neural networks fi(a),..., fix(a) are all fixed polynomials with
dergee of at most LW 41 forall k € {1,...,m}, where we denote

fox (@) = fo (x,a)
for b € {1,...,t}. We define
D:{l,...,dl}X{l,...,dg}.

For b € {1,...,t} we have

kL(l) (L<1))
fb,k (a) = max{ Z wgb) 'O(i,j),b,s,xk(aI(L(l))> : (l,j) € D},
s=1
where ng ), 2 o, «(@,,))) is recursively defined by
01 bror e (@19)
kr—l
(b,r) (r 1) b,r
Z Z Wiy ta,s1,52 " Olitty—1,j+ta—1),b,51,x (are—1) + w( )

s1=1  #1,t0€{1,....M,}
(i+t1—1,j+t2—1)€D

for (i,j) € D and r € {1,..., LMV}, and by

0 .
Ogi,)j),b,l,x(aﬂ())) =, for (i,j) € D.
Firstly, we construct a partition Sy = {S1,...,Sum} of R such that within each
S € SL(I)
(M)

O(i ),y (Bpz))
is a fixed polynomial for all k € {1,...,m}, s {1,...,kr},be {l,...,t} and (3,5) € D
with degree of at most LW in the Wy variables a ) of a € S. We construct the
partition S; 1) iteratively layer by layer, by creating a sequence Sy, ..., S; 1), where each
S, is a partition of R" with the following properties:
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1. We have |Sp| = 1 and, for each r € {1,..., LD},

S|
<2
|Sr—1] —

2oe-t-ky-dy-dg-m-r\""
< e 1 gmr> 7 (33)

W,

2. For each r € {0,...,L(V}, and each element S € S,, each (i,5) € D, each s €
{1,...,kr},each k € {1,...,m}, and each b € {1,...,t} when a varies in S,
(r)
O(i,j),b,s,xk (aIW )
is a fixed polynomial function in the W, variables a;.) of a, of total degree no
more than r.

We define Sy := {R"}. Since

0)
OEi,j),b,S,Xk (aI(O)) - (xk)l"]
is a constant polynomial, property 2 above is satisfied for r = 0. Now suppose that
So, ..., Sr_1 have been defined, and we want to define S,.. For S € S,_1 let

P(i.j) b.s1 xi.8 (Br6-1))

(r—1)

denote the function o;. .
(7’7])7b7817xk

(aj-1)), when a € S. By induction hypothesis

p(ivj)vbzslvxk)s(al("«*l) )

is a polynomial with total degree no more than r —1, and depends on the W,._; variables
a;o—1 of a for any b € {1,...,t}, k € {1,...,m}, (i,5) € D and s; € {1,...,k—1}.
Hence for any b € {1,...,t} k€ {1,...,m}, (i,j) € D and s9 € {1,...,k,}

kr—1
Z Z wlgr,)tg,sl,sz : p(i+t1—17j+t2_1)7b751 ,xk,S(aI(Tfl)) + wgg’r)
s1=1 tl,tze{l,...,MT-}
(i+t1—1,j+t2—1)eD
is a polynomial in the W, variables a;) of a with total degree no more than r. Because
of condition (31) we have ¢ - k. - m - dy - do > W,.. Hence, by Lemma 6, the collection of
polynomials

kz” 5 ()
b,r br) .
Wy t2,51,52 ’p(i+t1—1,j+t2—1),b,817Xk,5(al(“1>) + w£2 )

s1=1 ¢1,t2€{1,...,.M,}
(i4+t1—1,j+t2—1)€D

be{l,...,t},ke{l,....,m}, (i,j) € D,s2s € {1,... ,k-}
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attains at most

W
H::2<2-e-t-kr-m-d1-d2~r>
W,

distinct sign patterns when a; () € RYr and therefore the above collection of polynomials
also attains at most II distinct sign patterns when a varies in R" since the above
polynomials depend only on the W, variables a;) of a. Therefore, we can partition
S c RW into II subregions, such that all the polynomials don’t change their signs within
each subregion. Doing this for all regions S € S,_1 we get our required partition S, by
assembling all of these subregions. In particular, property 1 (inequality (33)) is then
satisfied.
Fix some S’ € S,. Notice that, when a varies in S/, all the polynomials

k’,«71
(b,r) b,r) .
§ : § : Wy t2,51,82 ’p(i+t1—1,j+t2—1)7b,817Xk,5(a1(7*1)) + wgz )

s1=1 #1,t2€{1,...,.My}
(i4+t1—1,j+t2—1)€D

be{l,....t},ke{l,....,m},(i,j) € D,so €{1,...,k.}

don’t change their signs, hence

(r)
O(i 1) brsa s, (BT

kT*l
_ (bsr) (r-1) (b,r)
-9 Z Z Wiy ta,s1,52 " Olitts—1,j+t2—1),b,51,x% (a;e-1) +wg,

s1=1 tl,tQE{l,...,qu}
(i4+t1—1,j+t2—1)eD

kr—1
_ (br) (r-1) (b,r)
= max Z Z Wiy ta,s1,82 " Oitts—1,j+ta—1),b,51,%5 (aje-n) +wg,™, 0

s1=1  t1,ta€{1,....M;}
(i4+t1—1,j+t2—1)€D

is either a polynomial of degree no more than r in the W, variables a;.) of a or a
constant polynomial with value 0 for all (i,j) € D, b € {1,...,t}, s2 € {1,...,k-} and
k € {1,...,m}. Hence, property 2 is also satisfied and we are able to construct our
desired partition S; ). Because of inequality (33) of property 1 it holds that

L W,
2-e-t-kp-dy-dyg-m-r\""
|5L<1>rég2< T ) .
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For any (i,7) € D,be {1,...,t} and k € {1,...,m}, we define

kL(l) (D)
— b
Fai b @) = Z wl) 10, 5) sz Bpe»))-

so=1
For any fixed S € S ), let P(i,5),b,5,x (aI(L(1)+1)) denote the function f(z’,j),b,xk (aI(L(l)Jrl))?
when a € S. By construction of S;a) this is a polynomial of degree no more than
LMW + 1 in the Wiy, variables a , of a. Because of condition (31) we have
t-dj-d3-m>Wpa . Hence, by Lemma 6, the collection of polynomials

JLOASOES]

{p(z‘l,jl),b,S,xk (aI(L<1)+1)) — P(iz,52),b,5xx (a](L(l)H)) :
(ilajl)a (iQ’jQ) € Dv (ibjl) 7& (iQ’jQ)ab € {L s 7t}7k € {17 s 7m}}

attains at most

w
Ao 2ot d B m (LD 1)) O
WL<1>+1

distinct sign patterns when a_  a),,, € R":W+1 and therefore the above collection of

1(
polynomials also attains at most A distinct sign patterns when a varies in R" since the
above polynomials depend only on the W), variables a1, of a. Therefore, we
can partition S € R" into A subregions, such that all the polynomials don’t change
their signs within each subregion. Doing this for all regions S € S; 1) we get our required
partition M) by assembling all of these subregions. For the size of our partition S0 we

get

L W, W
_7":1 WT WL(1)+1

Fix some S’ € S, Notice that, when a varies in S’, all the polynomials

{p(il,jl),b,S,xk (@, 41)) = Plin, o) b,Soxr (B0 41))
(i1, 1), (i2, j2) € D, (i1, j1) # (i2,j2),b € {1,...,t} k € {1,.. .,m}}
don’t change their signs. Hence, there is a permutation 7(**) of the set
{1,...;di — My + 1} x{1,...,do — M;q) + 1}

for any b € {1,...,t} and k € {1,...,m} such that

o (e B ) 2 7 2 o s s B 0)

forae S  and any k € {1,...,m} and b € {1,...,t}. Therefore, it holds that

fb,k(a) = max {f(l,l),b,Xk (aI(L(1)+1)> Yy f(dlfML(l)+17d2*ML(1)+1):b:Xk (aI(L(l)-H)) }
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= From ((1,0), b Ay 1))

for a € S’. Since Jrem)((1,1)),b,xs (aI<L<1)+1)) is a polynomial within S’, also fx(a) is a

polynomial within S’ with degree no more than L(Y) + 1 and in the W, )., variables
y g LMW 41

A, ()4 of ac RV,

In the second step we construct the partition S starting from partition S such that
within each region S € S the functions hy(-) are all fixed polynomials of degree of at
most LY + L) 42 for k € {1,...,m}. We have

kL(1>+L(2)+1

L® L® L®
hi(a) = Z wz( ) gz(k ) (aI<L<1)+L<2>+1>) + wé - Yk
i=1

(2)
where the gz(i ) are recursively defined by

kL)
(r) _ (r=1) (r-1)

ik \Bp@Wrsy ) =9 Z Wi ik Rrun)
j=1

for r € {1,...,L®} and
0
gz(,k) (@, ) = fir(a)

fori e {1,...,k a1} (kpay,, =t). As above we construct the partition S iteratively
layer by layer, by creating a sequence Sy, ..., Sy 2), where each S, is a partition of RW
with the following porperties:

1. We set Sy = SM and, for each r € {1,.. .,L(Q)}7

S|
<2
’Sr71| N

WL 4r
(2'6'kL<1)+r+1'm'(L(l)—i-r—i-l)) L ++1’ s

WL e

2. For each r € {0,...,L®}, and each element S € S,, each i € {1,.. ko h
and each k € {1,...,m} when a varies in S,

gl(,rk) (aI(L(1)+r+1))

is a fixed polynomial function in the W), variables A1)t of a, of total

degree no more than LW + r + 1.

As we have already shown in step 1, property 2 above is satisfied for » = 0. Now

suppose that Sg,...,S-_1 have been defined, and we want to define S,.. For S € §,_;

. . -1
and j € {1,...,k; 0 .} let pj7k75(a[(L(1)+T)) denote the function gj(rk )(aI(L(1)+T>), when

a € S. By induction hypothesis pj,k7s(a](L(1)+r)) is a polynomial with total degree no
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more than LY + 7, and depends on the Wy, variables a4 of a. Hence for any
ke{l,....om}andi€{l,....,kya) 41}

kL<1)+T

(r=1) (r—1)
Z Wi 5) Dk, (A, 1) T Wi g
j=1

is a polynomial in the W; ), variables a variables of a with total degree no

(L@ 4r41)
more than L) 4+ 7 + 1. Because of condition (31) we have Eraypppr-m > Wray -

Hence, by Lemma 6, the collection of polynomials

kray .,
(r=1) .

-1 )
Z wé;j) ) -pj,k,g(a](Lu)M)) +wig ke{l,...,m},ie{l,... ,kL<1>+T+1}
j=1

attains at most

w
II=2 2-e- kL(l)JrrJrl "m- (L(l) +r+ 1) LM pr1
WL e

distinct sign patterns when a ) € R 441 and therefore the above collection of

7LD prg1
polynomials also attains at most IT distinct sign patterns when a varies in R" since the
above polynomials depend only on the W), variables A1) 1) of a. Therefore,
we can partition S C R" into II subregions, such that all the polynomials don’t change
their signs within each subregion. Doing this for all regions S € S,_1 we get our required
partition S, by assembling all of these subregions. In particular property 1 is then
satisfied. In order to see that condition 2 is also satisfied, we can proceed analogously
to step 1. Hence, when a varies in S € S the function

kL p@

L L® L
hi(a) = § wz( ) 'gz(,k: ) <31<L<1)+L(2>+1>) + w((] - Yk
i=1

is a polynomial of degree no more than L) + L) 4 2 in the W variables of a € RV for

any k € {1,...,m}. For the size of our partition S we get
(1) w
L 2-e-t-kp-dy-dy-m-r\"" 2-e-d?-d3-m- (LMY +1) L1
Si< ]2 2.
r—1 W Wi

Wi gria

r=1

(2) .
[ﬁQ <2.e-kL(1)+T+1-m.(L(1)+r+1)> LDyt

CON ¢
Lo 2-e-t-k.-d?-di-m-r Wr
<1 2

W,

r=1
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By condition (31) and another application of Lemma 6 it holds for any S’ € S that
{(sgn(h1(@)), .., sgn(hn(a) s a € 8"}
w
ce-m- (LM 2)
§2'<2 e-m- (LYW +L -|—2)> '

w

Now we are able to bound K via equation (32) and because K is an upper bound for
the growth function we set kj ), 2, =1 and get

JAOEE JCIE; 2 12 Wr
Q.e-t-k.d?.-d2.r.
Hsgn(H)(m) < H 2.( e r-0yp-dy-T m>

W,

r=1
L4240
L(1)+L(2)+2 r=1 Wy
<2L(1)+L(2)+2 Zr:l 2-e-t'kr-d%-d%-r-m
- (1) (2)

r=1

Sy

T

ZL(1)+L(2)+2 W, )
r

r=1

with R == 2-e-t-d?-d3- ZL(1)+L(2)+2 ky-r. In the third row we used the weighted AM-GM

r=1
. . . . . )4 r1,2)
inequality. Without loss of generality, we can assume that VCdim(H) > Zlel +LE 42 W,

. . [COI A¢))]
because in the case VCdim(H) < ZlelJrL 291 we have

VCdim(H) < (LW +L® +2).w
(30)
< 2. (LW 4 L3 y2)2 . M2 - k2

max max

2

for some constant ci;g > 0 which only depends on M4, and k., and get the assertion
by Lemma 5. Hence we get by the definition of the VC-dimension and inequality (35)
(which only holds for m > W)

JASO NN A CIN) W
I

R - VCdim(H) e
ZL(1)+L(2)+2 W,

2VCdim(H) — Hsgn(?{) (VCdlm(H)) < 2L(1)+L(2)+2 ) (

r=1
Since
1+1+42
R>2-e-t-di-d5- Y r>2-e-t-di-d3-10>16
r=1

Lemma 8 below (with parameters R, m = VCdim(H), w = 271};11)+L(2>+2 W, and L =
LM 4+ L) 4 2) implies that

JASORE ACIE))
VCdim(H) < (LM + L®) +2) + > W | logy(2- R-logy(R))
r=1
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< (@Y +L® 1 2) 4+ (LW + L® 4 2) . W
Jogy(2- (2-e-t-d?-d3- (LMW + L® 4+ 2) - kpas)?)

4
SQ.(L(1)+L(2)+2).W.10g2 <<2-e-t-(L(1)+L(2)—|—2)-kmax-d1-d2> >

(

30)
< 16-t- (LW 4+ L@ 42)2. 2 . M2

max * max
-log, (2 cet- (LY +L® 4+ 9) kpas - dy - d2>
< 10 Lipag <1082 (Limaz - d1 - da),
for some constant c¢ijg > 0 which only depends on kpyax and Myax. In the third row we
used equation (30) for the total number of weights W. Now we make use of Lemma 5

and finally get
V]:+ < C10 * L%naz . 1Og2(Lmax . d1 . dg).

Lemma 8 Suppose that 2™ < 2L . (m - R/w)" for some R > 16 and m > w > L > 0.
Then,
m < L+ w-logy(2- R -logy(R)).

Proof. See Lemma 16 in Bartlett et al. (2019). O

Proof of Lemma 4. Using Lemma 7 and

VTC F+ S V]:+ 5

4-logn

we can conclude from this together with Lemma 9.2 and Theorem 9.4 in Gyorfi et al.
(2002)

Nl (67 TC4-10g nfv X?)

<3. <4€ e4-logn log Ge - ca - logn>VTC4»1ognf+
€ €

<3 <6€-C4-logn

2-c10 ~L$nax Jog(Lmaa-di-d2)
6 >

This completes the proof of Lemma 4. O

C. Auxiliary results

In this section we present several auxiliary results from the literature which we have
used in the proof of Theorem 1. Our first result is a bound on the expected Ly error of
the (truncated) least squares regression estimate.
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Lemma 9 Let (X,Y), (X1,Y1), ..., (X,,Y,) be independent and identically distributed
R? x R-valued random variables. Assume that the distribution of (X,Y) satisfies

E{exp(cs-Y?)} < o0

for some constant c3 > 0 and that the regression function m(-) = E{Y|X = -} is bounded
in absolute value. Let m,, be the least squares estimate
n

n(-) = arg min ~ > 1= P

feFL N

based on some function space F, consisting of functions f : R — R and set m, =
Ty 10g(n)Mn for some constant ¢4 > 0. Then m,, satisfies

/ mn () — m(x)PPx (dx)

5 - (log(n))? - SUDn e (Rel)n <log (N1 (W T., 1og(n).7'-n,x7f>) + 1)

n

inf /|f x)|?Px (dx)

<

fe€Fn

for n > 1 and some constant cs5 > 0, which does not depend on n or the parameters of
the estimate.

Proof. This result follows in a straightforward way from the proof of Theorem 1 in
Bagirov et al. (2009). A complete proof can be found in the supplement of Bauer and
Kohler (2019). O

Our second auxiliary result is an approximation result for (p, C')—smooth functions by
very deep feedforward neural networks.

Lemma 10 Letd € N, let f : R? — R be (p, C)-smooth for some p = q+ s, ¢ € Ng and
€ (0,1], and C > 0. Let M € N with M > 1 sufficiently large, where

4(q+1)
gltFla
20 > o
MEZ e maxq 2 S0 |G glag@ ™)
(l1,-..,lq) €N
Lit+la<q

must hold for some sufficiently large constant cs > 1. Let 0 : R — R be the ReLU
activation function
o(z) = max{z,0}

and let L,r € N such that
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(i)
L >5M¢% + [log4 (M2p+4~d~(q+1) . e4(q+1)~(Md—1)>—‘

- [logy(max{d, ¢} +2)] + [log,(M*?)]

(ii)
d
r>132.24. [¢7] . ( ;q) -max{q + 1,d*}

hold. Then there exists a feedforward neural network

fnet € gd(L) k)

with k = (k1,...,kr) and ky = --- = kp = r such that
Sup ‘f(X) - fnet(x)‘
x€[—2,2]¢
4(q+1)
al1+~-~+ldf 2%
< . . i
Scor[maxy 2 S G m gl @ ) M
(I1,...,1q)EN?
lit+la<q

Proof. See Theorem 2 in Kohler and Langer (2021). An alternative proof of a closely
related result can be found in Yarotsky and Zhevnerchuk (2019), see Theorem 4.1 therein.
O

D. A minimax lower bound

In this section, we show that the rate of convergence of our truncated least squares
estimate introduced in the proof of Theorem 1, up to a logarithmic factor, is in some
sense an optimal minimax rate of convergence. To show the upper bound (6) in Theorem
1, we used equation (2) and then derived an upper bound on

B { [ 1.0 - 16 ?Px(ax) | (36)

where 7, (-, D,,) is a (truncated) estimate of the a posteriori probability 7. Thus, we solve
the classification problem via regression estimation. In our theorem we have made the
assumption that (X,Y) is a [0, 1]{1-dbx{ld2} 5 £0 1} valued random variable and
the a posteriri probability satifies a generalized hierarchical max-pooling model given by
the functions

(a) | R4 1 } d . Rd* 1
{gkvs R = [0.1] k=1,...l,s=1,...A=k a=1,....d* anc g: = [0.1]
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However, we have shown our upper bound for (36) for a more general case in which
(X,Y) is a [0, 1]{1odibx{ld2} 5 Rovalued random variable satisfying

E{exp (03 . YQ)} < 00

for a constant cg > 0, where the regression function 7(x) = E{Y|X = x} satisfies a
generalized hierarchical max-pooling model with functions

(@) .4 [ R
{gkvs.R .y 1/273/2]}k::l,u.,l,s:l,...Al*k,azl,...,d* and ¢:RY —[-1/2,3/2] (37)
such that

g([0, %) € [0,1] and g{*)(0,1]%) C [0,1].

The aim of this section is to show that for this more general class of distributions
2, _ 2Py
max<n 2ritd pn  2potdt

is also a lower minimax rate of convergence, which means that our estimate for this class
has an optimal rate of convergence up to the logarithmic factor.

In the following, for d € N and A C R%, Hff’c) denote the class of all (p, C')-smooth
functions h : R — [0,1] with supp(h) C A and Qc(lp’c) denote the class of all (p, C)-
smooth functions g : R? — [~1/2,3/2] with g([0,1]%) C [0,1]. Furthermore, 7_[1(21*,172)
denote the class of all real-valued functions on [0, 1]{1-~d1}x{1d2} that satisfy a gen-

eralized hierarchical max-pooling model of order d* and level [ such that the functions

(37) are choosen from Q’ip 1) and 96(152’02) for some C7,Cs > 0, respectively.

Lemma 11 Let py,py € [1,00) and di,ds,d*,1 € N with di,dy > 1, and v/d* < 2! <
min{dl,dg}.
a) We set I = {1,2} x {1,2} and define the subset Ay C [0, 1]{1dibx{lda}

A = {(a3)ieq1,.. diyx{1,..do} : G €[0,1] (i€l1), az =0 ({¢ N)}.

For each h € ’H[(g 11’]31) there exist ny, € Hl(lzll*’p 2) such that

nn(x) = h(z1,1, 21,2, 72,1, 222) (x S Al).
b) Let I, = {i1,...,ig-} C {1,...,21% x {1,...,2"} such that iy,...,ig are pairwise
distinct. For j € {1,...,d*} we define the interval
3-5—2 3-5—-1
A; =
J 3-d* " 3-d* |’

(38)
and define the subset Ay C [0, 1)1 dbx{l.d2} 4y,

Az = {(ai)ic1,.di}x{1,de} @i, € A5 (G€{1,...,d*}),a;=0 (¢ ) }.
For each h € Hfff;??)xAd* there exist ny, € Hl(Zl*’pQ) such that

nh(X):h(ZEil,...,l’id*) (XG.AQ).
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Proof. a) Let h € 'H[(g 11’]?) We define n;, € ’Hl(p 1:P2) by choosing the functions

(p2,C2) { (p1,C1)
€ G, and € g,
g In. S k=1, Ls=1,.. 4=k =1, .. d*

of the corresponding generalized hierarchical max-pooling model as follows:

1. Set gg(;) =hforalls=1,....,4 tanda=1,...,d*".
2. Choose gk gpl’ 1 such that

g(x) =21 (39)

forxec[0,1]*andall k=2,...,l,s=1,.... 4% anda=1,...,d"

Ca)

3. Choose g € G . (P2:%2) such that g(x) = 21 for x € [0, 1]+

By using equation (39) and since supp(h) C (0,1)* we get
_ @5, .
ma(x) ()Lt — 2}3?;2({1’ o 21+1}f (X{Z,‘..,Z+2l*1}X{j,.‘.,j+2l71})

= max h(Tijs Tij+1, Tit1,5, Tit1,5+1)
(i) Lydi—21+ 1} 3 {1,.ido 2141} JrhIT J? J

= max{h(z1,1, 212,21, 222),0}
= h(z1,1,21,2, 221, 222)

for x € A; and therefore we have

(%) = g(mi(x), ..., ma(x))
= m1(x)

(1)
= max 7 (X ot iaol_
()€1 sdy — 241} X {1, dp—21+1} 1,1 ( {2, 0420 =1} x{4,...,5+2 1})

= h(z1,1,21,2, 22,1, 222)
for all x € A;.

b) Let h € Hg’f’XCZ)X A and define ny, € Hl(zg*,pz) as follows:

1. We choose j(k,s,a) € {1,...,4} and g ) ¢ g(pl’ Y for some Oy > 0 sufficiently
large with

(@ ) Tithsa) o+ I Tjhsa) € Aa = 550 5]
=1

i 2w € 10,10\ (57 53)
forx € [0,1]* and all k=1,...,l and s = 1,...,4"7% such that

(a) xi, , ifxz, €A,
x) = 40
fl,l ( ) {O , lf xi [O 1] \ ( d—*3’ 33.-;*) ( )

for x € [0, 1]{1-2'>{1-2"} and all @ € {1,...,d*}.
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2. We set g = h.
For x € A equation (40) yields

me(x) = max (a)(

= Ji1 (i, ig 42013 % oy jo 20— 1})
(i9,j2) {1y —24 1} x {1,..sdg—2i1y T b1 N 2l 212 o 21

= max{z;,,0}

:J;‘i

for a € {1,...,d*}, which imply
nh(x) = h(xiy, ..., :Eid*).
U

To show the lower minimax rate of convergence, we use the following lemma, which is
a modification of Theorem 3.2 in Gyérfi et al. (2002).

Lemma 12 Let d € N, let € > 0, and let a1,...,aq € R. Define the cube
A=lay,a1+€ XX [ag,aq+ € C RY
and let Dg”c) be the class of distributions of (X,Y") such that:
1. X is uniformly distributed on A,

2. Y =n(X)+ N, where X and N are independent and N is standard normal, and

n e 7—[1(4 ’C).
Then )
E n — Px(d
lim inf inf sup {f () 92(;(” x( X>} >(C1>0.
e (x yyep® ) n~ Zp+d

In the proof of Lemma 12 we follow the proof of Theorem 3.2 in Gyorfi et al. (2002).

Proof. Firstly, we define a subclass of DX”C) for sufficiently large n. Therefore set

M, = [(C’2 : n)ﬁ}

and partition the cube A into M¢ equal sized cubes {An7j}j€{17...7Mg} with side length
€/My, and centers {a,;};cq1 . may- Set k= [p|, 8 =p—k, and let g : RY — Ry be
a bounded and (p, (e?/2) - 28~ . C)-smooth function with supp(g) C (—1/2,1/2) and
[ g*(x)dx > 0. For j € {1,..., M2} we define the functions g, ; : R — Ry by

i =007 (M2 (=) ) (xem)

€

and for ¢, = (¢cn1, - .- ,cnng) e {-1, 1}Md =: C,, we define the function
M
m)(x) =" (1+cnj) - gnj(x) (x €R?).
j=1
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Next, we show that m(®) is a (p, C')-smooth function. Let a = (ay,...,0q) € N¢ with

Z?Zl o; = k and set D™ = W. For j € {1,...,M%} and x,z € A, j we have

|D*m () (x) — D*m(°")(z))|
=14+ cnj| - |1D%n,j(x) — D9y j(2)|

k
<2MPM el
ek 2

B

S(x—ang) - —" - (z2—any)
=2k
<C-x—z||.
Now let 4,5 € {1,..., M%} with i # j, and x € Ay and z € A, ;. We choose X on the
boundary of A, ; and z on the boundary of A, ; such that ||x —x|| + ||z — z|| < ||x — z||
and get
[D%mle) (x) — Dl ()
= (14 cni) - D%gni(x) = (1 + cnj) - D¥gn,j(z)|
ST+ eni) - DY¥gni(X) [+ (1 + ¢nj) - D¥gnj(2)]

=1+ cnil - [D%Gni(x) — DYgni(X) | + |1+ cnj| - |D%gn j(z) — D%gn j(Z) |
=0 =0

<271 C (Ix - x|7 + |lz — 2[)7)

1 1
= (G lx-xl 4 5 a3l

1 1 g
<0 (5 Ix-xl+ 3 la-al)

<C-|x—z|’

where we used that u — u” is a concave function on R,. Therefore the class 15,(117 O of
distributions of (X,Y") with

1. X is uniformly distributed on A,

2. Y = m(®)(X)+N for ¢, € C,, where X and N are independent and N is standard
normal.

c)

is a subclass of fo’ for sufficiently large n. Therefore it is sufficient to show that

n—oo  1Nn

M?
lim inf inf sup( . Z -E {/ |7 (x) — m(C")(X)2Px(ClX)} > 0.
(X, Y)eDl

Now, let 7, be an arbitrary estimate. Since the supports of the functions g, ; are
disjoint by construction, {gn ;} j=1,..,m¢d 18 an orthogonal system with respect to the Ly
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inner product. Hence the orthogonal projection 7, of m, to {mm}. <c,
M
(%) = D enj - gnj(%),
j=1
where
L () - g ()

Cnj =
" fAn,j Gn 5 (x)dx

For an arbitrary c,, € C,, we have
2
/’mn(x) — m(C")(x)‘ dx
-/
2

M
B / ’ D (eng gng(x) = (14 ny) - gnj(x)) | dx
j=1

() = ) )|

dx

M
~ 2
=3 [ g 00s 0~ () g0
j=17An;
M
=Y s~ (e [ 2 xlax
j:1 An,j

d M
€ N 2
= [oix g S ey (L4 ey
M o

We set
~ 1, if ¢, > 1
Cn,j = oA
-1, if Cn,j < 1.
Because of
|én,j - (1 + Cn,j)‘ > H{én,jicn,j}
we get

/ ‘mn(x) - m(‘:”)(x)‘2 dx

d M
2 6
> / g9°(x)dx - Vias DI (A
n j=1
Md
C? 9 ed 1 -
=5 / 0% 5 2 Hew o)
n n j:l
>0
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and therefore it suffices to show that

Md
o 1 =
mintinf sup g7 2 Plons 7 cug} > 0 .

The proof of inequality (41) can be found in the proof of Theorem 3.2 in Gyorfi et al.
(2002). O

Lemma 13 Let p1,ps € [1,00) and di,dy,d*,1 € N with di,dy > 1, and vd* < 2! <
min{dy,ds}. Let D be the class of distributions of a [0,1]{1dbx{bd2} s R_yalued
random variable (X,Y) such that:

1. E {exp (63 . YQ)} < 00,
2. () = B{Y|X =} e HL"),

where Hl(zl*’m) is defined as above. Then we have

liminfinf sup = {f I (3) = n(X)|2PX(dX>}

n— 00 _2p __2po
Mn (X,Y)ED max {n 2.p1+4’n 2‘p2+d*}

>C > 0.

Proof. The idea of the proof is to use Lemma 1 to find corresponding subclasses of D
which allow us to reduce the assertion to the case of Lemma 12. Set I; = {1,2} x {1, 2},
let I = {i1,...,ig-} € {1,...,2'} x {1,...,2!} such that iy,...,is are pairwise distinct
and set D ={1,...,d1} x {1,...,d2}. We define

A2 = {(ai)i612 Doaq; € Aj (] S {1, R ,d*})} - [0, 1]12

for A; C [0,1] (j € {1,...,d"}) defined as in equation (38) and set

o= {m € I - h e HEV Y and Hy = {m e M) - hen, Y,

where the functions ny, € HZ(ZI*’p 2) are defined as in Lemma 11 a) and b), respectively. We

then define two subclasses D1 and Dy of D as follows. Let D; the class of distributions
of (X,Y) such that:

1. Xy, is uniformly distributed on [0, 1]’ and Xp, ;, is concentrated on {0}” )

2. Y =n(X)+ N, where X and N are independent and N is standard normal, and
n € Hq,

and let Dy the class of distributions of (X,Y") such that:

1. Xy, is uniformly distributed on A and Xpy, is concentrated on {0} \lz
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2. Y =n(X) + N, where X and N are independent and N is standard normal, and
n € Ha.

Furthermore, let DU1) be the class of distributions of (X 1,,Y) such that
1. X, is uniformly distributed on [0, 1}%

2. Y = n(X11,X12,X21,X22) + N, where X;, and N are independent and N is

standard normal, and n € ;:_l[(pl,](h)7

and let D2) be the class of distributions of (Xz,,Y’) such that
1. X, is uniformly distributed on A2

2. Y =n(Xjy,...,Xj,.) + N, where X7, and N are independent and NN is standard

(p2,C-2)

normal, and 7 € H 7T 4

By Lemma 11 and Fubini’s Theorem we get

E n Px(d
liminfinf sup {f’n (x)]“Px( X)}

— _ 2p1 __2p3
n—oo  MNn (X,Y)eD max {n 2.p1+4’n 2<p2+d*}

E {[[m(x) — n(x)["Px(dx)}

> min { liminfinf sup

n—oo Nn (X,Y)G’D n 2‘2pfi4 )
E 2Px(d
liminfinf sup {f|77n 2p2)| x( X)}
n—oo Nn (X,Y)ED n W
’Px(d
> min< liminfinf sup {f’n" 2p1)| x( X)}’
n—oo Nn (X,Y)eDy n_ 2p1+a
E - n(x)|*Px(d
lim inf inf sup {f|77n 2p2)‘ X( X)}
n—oo Mn (X7Y)E'D2 n ~

= min ¢ liminfinf sup
n=00 M (X Y)eD;

E {f (%11, 0,.-,0)) = g1 (w11, 012, 2.1, 722)) [P, (dXh)}

_ 2:pq )
n 2:p1+4

liminfinf sup
N0 Mn (X Y)eD,
E i { [ Imn((x15,0,. ., 0)) = glaiy, .. 31,0

__2p2
n 2-po+d*

2Px,, (dx1,) } }

> min < liminf inf sup
n—oo  Mn (X[l,Y)ED(Il)
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LN {f n(x1,) = 01,1, 212, 221, 22.2)PPx,, (dxh)}

2:pq 9
n_ 2p1+4
By {f I (x1,) = 0,2, )PP, (dxr,) |
lim inf inf sup - 5o ,
n—oo Mn (X12,Y)€'Dél2) n—igm_,_d*

where in the last two lines 7, is an estimator depending on a n-sized sample of the
random vector (Xr,,Y) and (Xz,,Y), respectively. For i € {1,2} the subscript P in
EDSLIZ-) indicates that the expectation is taken with respect to a m-sized sample of the
random vector (Xy;,Y") instead of the n-sized sample D,, of (X, Y’). The assertion follows
by Lemma 12. O

E. Design of the network architecture and choice of
hyperparameters

In this section, we first describe how, derived from our theory, we used the class of
convolutional neural networks introduced in Section 2 in the simulation study in Section
4 and Section 5. We then explain which hyperparameters the other methods use and
list the parameter sets for the adaptive choices of hyperparameters in Table 3.

The class of convolutional neural networks introduced in Section 2 depends on the
parameters ¢, L = (L(l), L(z)), k@, k@ and M. In Theorem 1, some of these parame-
ters depend on the level [ and the order d* of the generalized hierarchical max-pooling
model. Therefore, we adaptively choose (using the splitting of the sample technique as
descripted in Section 4) these two parameters from the parameter sets shown in Ta-
ble 3. As in our theoretical result the filter sizes M, have the values 2%, 22, ... 2! for
re{l,... ,L(l)}, where the filter sizes grow with increasing r. To simplify the architec-
ture of our classifier, each value of the filter sizes is repeated L, times. The number of
layers in the convolutional part is then given by L(Y) = L, - I. Furthermore, as in our
theoretical result, we choose k(1) channels in each layer in the convolutional part and
k2 neurons in each layer of the fully connected neural network part, i e., we have

K = (0, ) amd 1 = (2, ),

The parameter sets from which we adaptively choose the parameters and the resulting
network parameters (derived from our theoretical result) are shown in Table 3. Next, we
describe the hyperparameters of the other methods, whose parameters are adaptively
choosen from the parameter sets from Table 3. The connected standard feedforward
neural network (abbr. neural-s) has L hidden layers and k neurons per layer. Our k-
nearest neighbor classification estimate (abbreviated neighbor) has only the parameter
k. For our random forest classifier (abbr. rand-f), we choose Nicgpes as the maximum
number of leaf nodes and Nyees as the number of trees in the forest. Both support
vector machine approaches, sum-p and svm-rbf, have a parameter C that controls the
importance of the regularization term and a parameter v that represents the kernel
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choice of hyperparameters

approach | adaptively choosen parameters resulting parameters
neural-c | 1 € {2,3,4}, d* € {1,2}, L, € {1,2,3} 1U=7.1, L®=1L,
k(l) € {27 47 8}7 k(2) € {57 10} M(rfl)-LnJrly sy Mr-Ln =27

forr=1,...,[,t=d*

neural-s | L € {1,2,...,8}, k € {10, 20,50, 100, 200}

neighbor | k, € {1,2,3} U{2,4,8,12,16,...,4- %]}
rand-f | Nieaves € {8,16,32}, Nirees € {50, 100,200}
svom-p | de{1,2,3,4}, C € {1072,1071, 1,10}

v € {1072,1071, 1,10}

svm-rbf | C € {1072,1071, 1,10},

v € {1072,107%,1,10}

Table 3: Parameter sets for the choice of the hyperparameters.

coefficient. The polynomial kernel of the support vector machine (abbr. svm-p) has a
degree of d.
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