
Supplementary material to ”On the rate of
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Michael Kohler, Adam Krzyżak and Benjamin Walter

This supplement contains an approximation result for convolutional neural networks in
Section A, a bound on the covering number in Section B, and several auxiliary results
from the literature in Section C. In Section D we provide a proof on the lower minimax
rate described in Remark 6, and in Section E we explain how to design the network archi-
tecture proposed by the theory describe the choice of hyperparameters for the simulation
studies.

A. An approximation result for convolutional neural networks

In this section we describe in Lemma 2 a connection between fully connected neural
networks and convolutional neural networks, which will enbable us to derive in the proof
of Theorem 1 an approximation result for the generalized hierarchical max-pooling model
by the convolutional neural networks. Before we do this we present in Lemma 1 a bound
on the error we make in case that we replace the functions g and gk,s in a hierarchical
model by some approximations of them.

In the sequel d1, d2 ∈ N denote the image dimensions and furthermore let l ∈ N with
2l ≤ min{d1, d2}. We set I = {0, 1, . . . , 2l − 1} × {0, 1, . . . , 2l − 1} and assume

m : [0, 1]{1,...,d1}×{1,...,d2} → [0, 1]

satisfies a generalized hierarchical max-pooling model of level l and order t ∈ N with
functions

g : Rt → [0, 1] and g
(a)
k,s : R4 → [0, 1]

for a ∈ {1, . . . , t}, k ∈ {1, . . . , l} and s ∈ {1, . . . , 4k−1}. That is,

m(x) = g(m1(x), . . . ,mt(x))

and for all a ∈ {1, . . . , t} it holds that

ma(x) = max
(i,j)∈Z2 : (i,j)+I⊆{1,...,d1}×{1,...,d2}

fa
(
x(i,j)+I

)
where fa satisfy

fa = f
(a)
l,1

for some f
(a)
k,s : R{1,...,2k}×{1,...,2k} → R recursively defined by

f
(a)
k,s (x) = g

(a)
k,s

(
f
(a)
k−1,4·(s−1)+1(x{1,...,2k−1}×{1,...,2k−1}),
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f
(a)
k−1,4·(s−1)+2(x{2k−1+1,...,2k}×{1,...,2k−1}),

f
(a)
k−1,4·(s−1)+3(x{1,...,2k−1}×{2k−1+1,...,2k}),

f
(a)
k−1,4·s(x{2k−1+1,...,2k}×{2k−1+1,...,2k})

)
for k = 2, . . . , l, s = 1, . . . , 4l−k, and

f
(a)
1,s (x1,1, x1,2, x2,1, x2,2) = g

(a)
1,s (x1,1, x1,2, x2,1, x2,2)

for s = 1, . . . , 4l−1. As already mentioned, we replace the functions g and gk,s by
approximations of them. Therefore let

m̄ : [0, 1]{1,...,d1}×{1,...,d2} → R (13)

be a function which satisfies a general hierarchical max-pooling model of level l and
order t with functions

ḡ : Rt → R and ḡ
(a)
k,s : R4 → R

for a ∈ {1, . . . , t}, k ∈ {1, . . . , l} and s ∈ {1, . . . , 4k−1}. Analogous to the above, we also

define the functions f̄
(a)
k,s : R{1,...,2k}×{1,...,2k} → R for all a ∈ {1, . . . , t}, k ∈ {1, . . . , l} and

s ∈ {1, . . . , 4k−1}.

Lemma 1 Assume that all restrictions g
(a)
k,s |[−2,2]4 : [−2, 2]4 → [0, 1] and g|[−2,2]t :

[−2, 2]t → [0, 1] are Lipschitz continuous (with respect to the Euclidean distance) with
Lipschitz constant C > 0 for all a ∈ {1, . . . , t}, k ∈ {1, . . . , l} and s ∈ {1, . . . , 4l−k}.
Furthermore, assume that for all a ∈ {1, . . . , t}, k ∈ {1, . . . , l} and s ∈ {1, . . . , 4l−k}∥∥∥ḡ(a)k,s

∥∥∥
[−2,2]4,∞

≤ 2. (14)

Then for any x ∈ [0, 1]{1,...,d1}×{1,...,d2} it holds:

|m(x)− m̄(x)| ≤
√
t · (2C + 1)l

· max
a∈{1,...,t},j∈{1,...,l},s∈{1,...,4l−j}

{
‖g(a)j,s − ḡ

(a)
j,s ‖[−2,2]4,∞, ‖g − ḡ‖[−2,2]t,∞

}
.

Proof. Firstly, we show for any a ∈ {1, . . . , t} that

|ma(x)− m̄a(x)| ≤ (2C + 1)l−1 · max
j∈{1,...,l},s∈{1,...,4l−j}

‖g(a)j,s − ḡ
(a)
j,s ‖[−2,2]4,∞. (15)

If a1, b1, . . . , an, bn ∈ R, then

| max
i=1,...,n

ai − max
i=1,...,n

bi| ≤ max
i=1,...,n

|ai − bi|.

Indeed, in case a1 = maxi=1,...,n ai ≥ maxi=1,...,n bi (which we can assume w.l.o.g.) we
have

| max
i=1,...,n

ai − max
i=1,...,n

bi| = a1 − max
i=1,...,n

bi ≤ a1 − b1 ≤ max
i=1,...,n

|ai − bi|.
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Consequently it suffices to show

max
(i,j)∈Z2 : (i,j)+I⊆{1,...,d1}×{1,...,d2}

∣∣fa (x(i,j)+I

)
− f̄a

(
x(i,j)+I

)∣∣
≤ (2C + 1)l−1 · max

j∈{1,...,l},s∈{1,...,4l−j}
‖g(a)j,s − ḡ

(a)
j,s ‖[−2,2]4,∞.

This in turn follows from

|f (a)k,s (x)− f̄ (a)k,s (x)| ≤ (2C + 1)k−1 · max
i∈{1,...,k},s∈{1,...,4l−i}

‖g(a)i,s − ḡ
(a)
i,s ‖[−2,2]4,∞ (16)

for all k ∈ {1, . . . , l}, all s ∈ {1, . . . , 4l−k} and all x ∈ [0, 1]{1,...,2
k}×{1,...,2k}, which we

show in the sequel by induction on k.
For k = 1 and s ∈ {1, . . . , 4l−1} we have∣∣∣f (a)1,s (x)− f̄ (a)1,s (x)

∣∣∣ =
∣∣∣g(a)1,s (x1,1, x1,2, x2,1, x2,2)− ḡ(a)1,s (x1,1, x1,2, x2,1, x2,2)

∣∣∣
≤

∥∥∥g(a)1,s − ḡ
(a)
1,s

∥∥∥
[0,1]4,∞

.

Assume now that (16) holds for some k ∈ {1, . . . , l − 1}. The definition of f̄
(a)
k,s and

inequality (14) imply that ∣∣∣f̄ (a)k,s (x)
∣∣∣ ≤ 2

for all x ∈ [0, 1]{1,...,2
k}×{1,...,2k} and s ∈ {1, . . . , 4l−k}. Then, the triangle inequality and

the Lipschitz assumption on g imply

|f (a)k+1,s(x)− f̄ (a)k+1,s(x)|

≤
∣∣∣g(a)k+1,s

(
f
(a)
k,4·(s−1)+1(x{1,...,2k}×{1,...,2k}), f

(a)
k,4·(s−1)+2(x{2k+1,...,2k+1}×{1,...,2k}),

f
(a)
k,4·(s−1)+3(x{1,...,2k}×{2k+1,...,2k+1}), f

(a)
k,4·s(x{2k+1,...,2k+1}×{2k+1,...,2k+1})

)
−g(a)k+1,s

(
f̄
(a)
k,4·(s−1)+1(x{1,...,2k}×{1,...,2k}), f̄

(a)
k,4·(s−1)+2(x{2k+1,...,2k+1}×{1,...,2k}),

f̄
(a)
k,4·(s−1)+3(x{1,...,2k}×{2k+1,...,2k+1}), f̄

(a)
k,4·s(x{2k+1,...,2k+1}×{2k+1,...,2k+1})

)∣∣∣
+
∣∣∣g(a)k+1,s

(
f̄
(a)
k,4·(s−1)+1(x{1,...,2k}×{1,...,2k}), f̄

(a)
k,4·(s−1)+2(x{2k+1,...,2k+1}×{1,...,2k}),

f̄
(a)
k,4·(s−1)+3(x{1,...,2k}×{2k+1,...,2k+1}), f̄

(a)
k,4·s(x{2k+1,...,2k+1}×{2k+1,...,2k+1})

)
−ḡ(a)k+1,s

(
f̄
(a)
k,4·(s−1)+1(x{1,...,2k}×{1,...,2k}), f̄

(a)
k,4·(s−1)+2(x{2k+1,...,2k+1}×{1,...,2k}),

f̄
(a)
k,4·(s−1)+3(x{1,...,2k}×{2k+1,...,2k+1}), f̄

(a)
k,4·s(x{2k+1,...,2k+1}×{2k+1,...,2k+1})

)∣∣∣
≤ C ·

(
|f (a)k,4·(s−1)+1(x{1,...,2k}×{1,...,2k})− f̄

(a)
k,4·(s−1)+1(x{1,...,2k}×{1,...,2k})|

2

+|f (a)k,4·(s−1)+2(x{2k+1,...,2k+1}×{1,...,2k})− f̄
(a)
k,4·(s−1)+2(x{2k+1,...,2k+1}×{1,...,2k})|2

+|f (a)k,4·(s−1)+3(x{1,...,2k}×{2k+1,...,2k+1})− f̄
(a)
k,4·(s−1)+3(x{1,...,2k}×{2k+1,...,2k+1})|2
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+|f (a)k,4·s(x{2k+1,...,2k+1}×{2k+1,...,2k+1})− f̄
(a)
k,4·s(x{2k+1,...,2k+1}×{2k+1,...,2k+1})|2

)1/2
+‖g(a)k+1,s − ḡ

(a)
k+1,s‖[−2,2]4,∞

≤ (2 · C) · (2C + 1)k−1 · max
i∈{1,...,k},s∈{1,...,4l−i}

‖g(a)i,s − ḡ
(a)
i,s ‖[−2,2]4,∞

+‖g(a)k+1,s − ḡ
(a)
k+1,s‖[−2,2]4,∞

≤ (2C + 1)k · max
i∈{1,...,k+1},s∈{1,...,4l−i}

‖g(a)i,s − ḡ
(a)
i,s ‖[−2,2]4,∞

for all x ∈ [0, 1]{1,...,2
k+1}×{1,...,2k+1}.

The definition of the functions f̄
(a)
k,s and inequality (14) imply that

|m̄a(x)| ≤ 2

for all x ∈ [0, 1]{1,...,d1}×{1,...,d2} and a ∈ {1, . . . , t}. Then, the triangle inequality, the
Lipschitz assumption on g and inequality (15) imply

|g(m1(x), . . . ,mt(x))− ḡ(m̄1(x), . . . , m̄t(x))|
≤ |g(m1(x), . . . ,mt(x))− g(m̄1(x), . . . , m̄t(x))|

+ |g(m̄1(x), . . . , m̄t(x))− ḡ(m̄1(x), . . . , m̄t(x))|

≤ C ·
(
|m1(x)− m̄1(x)|2 + · · ·+ |mt(x)− m̄t(x)|2

)1/2
+ ‖g − ḡ‖[−2,2]t,∞

≤
√
t · C · (2C + 1)l−1 · max

a∈{1,...,t},j∈{1,...,l},s∈{1,...,4l−j}
‖g(i)j,s − ḡ

(i)
j,s‖[−2,2]4,∞

+ ‖g − ḡ‖[−2,2]t,∞
≤
√
t · (2C + 1)l

· max
a∈{1,...,t},

j∈{1,...,l},s∈{1,...,4l−j}

{
‖g(a)j,s − ḡ

(a)
j,s ‖[−2,2]4,∞, ‖g − ḡ‖[−2,2]t,∞

}

for all x ∈ [0, 1]{1,...,d1}×{1,...,d2}. �

In the next lemma, we show that a convolutional neural network mnet ∈ F (lnet,k,M)
can mimic a function m̄a from the definition of m̄(x) = ḡ(m̄1(x), . . . , m̄t(x)) (cf., equa-

tion (13)) if the functions ḡ
(a)
k,s are standard feedforward neural networks.

Lemma 2 Let a ∈ {1, . . . , t} and assume that the functions

ḡ
(a)
k,s : R4 → R

in the definition the of m̄(x) = ḡ(m̄1(x), . . . , m̄t(x)) (cf., equation (13)) are standard
feedforward neural networks (defined as in equation (3)) with Lnet ∈ N hidden layers and
rnet ∈ N neurons per hidden layer and ReLU activation function for all k ∈ {1, . . . , l}
and s ∈ {1, . . . , 4l−k} . Set

lnet =
4l − 1

3
· Lnet + l,
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ks =
2 · 4l + 4

3
+ rnet (s = 1, . . . , lnet),

and set
Ms = 2π(s) for s ∈ {1, . . . , lnet},

where the function π : {1, . . . , lnet} → {1, . . . , l} is defined by

π(s) =
l∑

i=1

I{s≥i+∑l−1
r=l−i+1 4

r·Lnet}.

Then there exists some mnet ∈ F (lnet,k,M) such that

m̄a(x) = mnet(x)

holds for all x ∈ [0, 1]{1,...,d1}×{1,...,d2}.

In order to prove Lemma 2 we will use the following auxiliary result.

Lemma 3 Let ḡ : R4 → R be a standard feedforward neural network (defined as in
equation (3)) with Lnet ∈ N hidden layers and rnet ∈ N neurons per hidden layer. Let
d1, d2 ∈ N with d1, d2 > 1 and let σ(x) = max{x, 0} be the ReLU activation function.
We assume that there is a convolutional neural network mnet ∈ F(L,k,M) with L =
r0 + Lnet + 1 convolutional layers and kr = t+ rnet channels in the convolutional layer
r (r = 1, . . . , r0 + Lnet + 1) for r0, t ∈ N, and filter sizes M1, . . . ,Mr0+Lnet+1 ∈ N with

Mr0+1 = 2k for some k ∈ N with 2k ≤ min{d1, d2}.

The convolutional neural network mnet is given by its weight matrix

w =
(
w

(r)
i,j,s1,s2

)
1≤i,j≤Mr,s1∈{1,...,kr−1},s2∈{1,...,kr}r∈{1,...,r0+Lnet+1}

, (17)

and its bias weights

wbias =
(
w(r)
s2

)
s2∈{1,...,kr},r∈{1,...,r0+Lnet+1}

. (18)

Set I(m) = {0, . . . , 2m − 1} × {0, . . . 2m − 1} for m ∈ N0. Furthermore, let f1, . . . , f4 :

[0, 1](1,1)+I
(k−1) → R be functions and let s2,1, . . . , s2,10 ∈ {1, . . . , t}. Assume that the

given convolutional neural network mnet satisfies the following four conditions for all
(i2, j2) ∈ {1, . . . , d1 − 2k + 1} × {1, . . . , d2 − 2k + 1}:

o
(r0)
(i2,j2),s2,1

− o(r0)(i2,j2),s2,2
= f1(x(i2,j2)+I(k−1)), (19)

o
(r0)

(i2+2k−1,j2),s2,3
− o(r0)

(i2+2k−1,j2),s2,4
= f2(x(i2+2k−1,j2)+I(k−1)), (20)

o
(r0)

(i2,j2+2k−1),s2,5
− o(r0)

(i2,j2+2k−1),s2,6
= f3(x(i2,j2+2k−1)+I(k−1)) (21)
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and

o
(r0)

(i2+2k−1,j2+2k−1),s2,7
− o(r0)

(i2+2k−1,j2+2k−1),s2,8
= f4(x(i2+2k−1,j2+2k−1)+I(k−1)). (22)

Then we are able to modify the weights (17) and (18)

w
(r)
t1,t2,s1,s2

, w(r)
s2 (s1 ∈ {1, . . . , t+ rnet}) (23)

in layers r ∈ {r0+1, . . . , r0+Lnet+1} and in channels s2 ∈ {s2,9, s2,10, t+1, . . . , t+rnet}
such that

o
(r0+Lnet+1)
(i2,j2),s2,9

− o(r0+Lnet+1)
(i2,j2),s2,10

= ḡ
(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
)

holds for all (i2, j2) ∈ {1, . . . , d1 − 2k + 1} × {1, . . . , d2 − 2k + 1}.

Remark 9. In the proof of Lemma 3 we only modify in layers r0 + 1, . . . , r0 + Lnet + 1
the filters and bias weights (23) in channels

t+ 1, . . . , t+ rnet

and in layer r0 + Lnet + 1 the filters and bias weights in channels

s2,9, s2,10.

This means that the calculation only takes place in these channels. The filter and bias
weights in the remaining channels can therefore be arbitrary.
Proof. Let (i2, j2) ∈ {1, . . . , d1− 2k + 1}× {1, . . . , d2− 2k + 1} be arbitrary. We modify
the weights (23) by using the weights of ḡ. Here we assume that ḡ is given by

ḡ(x) =

rnet∑
i=1

w
(Lnet)
1,i · g(Lnet)i (x) + w

(Lnet)
1,0

for g
(Lnet)
i ’s recursively defined by

g
(r)
i (x) = σ

rnet∑
j=1

w
(r−1)
i,j · g(r−1)j (x) + w

(r−1)
i,0


for i ∈ {1, . . . , rnet}, r ∈ {2, . . . , Lnet}, and

g
(1)
i (x) = σ

 4∑
j=1

w
(0)
i,j · x

(j) + w
(0)
i,0

 (i ∈ {1, . . . , rnet}).
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In layer r0 + 1 we modify the weights (23) in channel t+ i by setting

w
(r0+1)
t1,t2,s,t+i

= 0

for all t1, t2 /∈ {1, 1 + 2k−1} and all s /∈ {s2,1, . . . , s2,8} and choose the only nonzero
weights by

w
(r0+1)
1,1,s2,1,t+i

= w
(0)
i,1 ,

w
(r0+1)

1+2k−1,1,s2,3,t+i
= w

(0)
i,2 ,

w
(r0+1)

1,1+2k−1,s2,5,t+i
= w

(0)
i,3 ,

w
(r0+1)

1+2k−1,1+2k−1,s2,7,t+i
= w

(0)
i,4 ,

w
(r0+1)
1,1,s2,2,t+i

= −w(0)
i,1 ,

w
(r0+1)

1+2k−1,1,s2,4,t+i
= −w(0)

i,2 ,

w
(r0+1)

1,1+2k−1,s2,6,t+i
= −w(0)

i,3 ,

w
(r0+1)

1+2k−1,1+2k−1,s2,8,t+i
= −w(0)

i,4

and w
(r0+1)
t+i = w

(0)
i,0 for i ∈ {1, . . . , rnet}. Then we calculate with the modified weights

and the assumptions (19)–(22)

o
(r0+1)
(i2,j2),t+i

=σ


t+rnet∑
s1=1

∑
t1,t2∈{1,...,Mr0+1}

(i2+t1−1,j2+t2−1)∈D

w
(r0+1)
t1,t2,s1,t+i

· o(r0)(i2+t1−1,j2+t2−1),s1 + w
(r0+1)
t+i


=σ

(
w

(0)
i,1 ·

(
o
(r0)
(i2,j2),s2,1

− o(r0)(i2,j2),s2,2

)
+ w

(0)
i,2 ·

(
o
(r0)

(i2+2k−1,j2),s2,3
− o(r0)

(i2+2k−1,j2),s2,4

)
+ w

(0)
i,3 ·

(
o
(r0)

(i2,j2+2k−1),s2,5
− o(r0)

(i2,j2+2k−1),s2,6

)
+ w

(0)
i,4 ·

(
o
(r0)

(i2+2k−1,j2+2k−1),s2,7
− o(r0)

(i2+2k−1,j2+2k−1),s2,8

)
+ w

(0)
i,0

)

=σ

(
w

(0)
i,1 f1(x(i2,j2)+I(k−1)) + w

(0)
i,2 f2(x(i2+2k−1,j2)+I(k−1))

+ w
(0)
i,3 f3(x(i2,j2+2k−1)+I(k−1)) + w

(0)
i,4 f4(x(i2+2k−1,j2+2k−1)+I(k−1)) + w

(0)
i,0

)
=g

(1)
i

(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
)

(24)

for i ∈ {1, . . . , rnet}. In layers r ∈ {r0 + 2, . . . , r0 + Lnet} in channel t+ i we modify the
weights (23) by setting

w
(r)
t1,t2,s,t+i

= 0
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for all (t1, t2) 6= (1, 1) and all s ∈ {1, . . . , t} and choose the only nonzero weights by

w
(r)
1,1,t+j,t+i = w

(r−r0−1)
i,j , w

(r)
t+i = w

(r−r0−1)
i,0 (j ∈ {1, . . . , rnet})

for i ∈ {1, . . . , rnet}. Thus we obtain

o
(r0+r)
(i2,j2),t+i

=σ

(
rnet∑
j=1

w
(r−1)
i,j · o(r0+r−1)(i2,j2),t+j

+ w
(r−1)
i,0

)

for i ∈ {1, . . . , rnet} and r ∈ {2, . . . , Lnet}. Then we get by equation (24) and the

definition of g
(r)
i that

o
(r0+r)
(i2,j2),t+i

=g
(r)
i

(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
)

for i ∈ {1, . . . , rnet} and r ∈ {2, . . . , Lnet}. Now in layer r0 + Lnet + 1 in channels
s2,9, s2,10 ∈ {1, . . . , t} we modify the weights (23) by setting

w
(r0+Lnet+1)
t1,t2,s,s2,9

= w
(r0+Lnet+1)
t1,t2,s,s2,10

= 0

for all (t1, t2) 6= (1, 1) and all s ∈ {1, . . . , t} and choose the only nonzero weights by

w
(r0+Lnet+1)
1,1,t+i,s2,9

= w
(Lnet)
1,i ,

w(r0+Lnet+1)
s2,9 = w

(Lnet)
1,0 ,

w
(r0+Lnet+1)
1,1,t+i,s2,10

= −w(Lnet)
1,i ,

w(r0+Lnet+1)
s2,10 = −w(Lnet)

1,0

for i ∈ {1, . . . , rnet}. Consequently, we get the following outputs:

o
(r0+Lnet+1)
(i2,j2),s2,9

= σ

(
rnet∑
i=1

w
(Lnet)
1,i · o(r0+Lnet)(i2,j2),t+i

+ w
(Lnet)
1,0

)

= σ

(
ḡ
(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
))

and

o
(r0+Lnet+1)
(i2,j2),s2,10

= σ

(
rnet∑
i=1

−w(Lnet)
1,i · o(r0+Lnet)(i2,j2),t+i

− w(Lnet)
1,0

)

= σ

(
− ḡ
(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
))

.
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Finally, we obtain

o
(r0+Lnet+1)
(i2,j2),s2,9

− o(r0+Lnet+1)
(i2,j2),s2,10

= max

{
ḡ
(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
)
, 0

}

−max

{
− gnet

(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
)
, 0

}
= gnet

(
f1(x(i2,j2)+I(k−1)), f2(x(i2+2k−1,j2)+I(k−1)),

f3(x(i2,j2+2k−1)+I(k−1)), f4(x(i2+2k−1,j2+2k−1)+I(k−1))
)
.

�
Proof of Lemma 2. In the proof we will use the network fid : R→ R defined by

fid(x) = σ(x)− σ(−x) = max{x, 0} −max{−x, 0} = x,

which enables us to save a value computed in layer r − 1 in channel s at position (i, j)
by a difference of the outputs of two neurons in distinct channels s1 and s2 in layer r by

o
(r)
(i,j),s1

− o(r)(i,j),s2
= σ

(
o
(r−1)
(i,j),s

)
− σ

(
− o(r−1)(i,j),s

)
= o

(r−1)
(i,j),s. (25)

Once a value has been saved in layer r by the difference of two neurons, it will be
propagated analogously to the next layer r + 1 by calculating

o
(r+1)
(i,j),s1

− o(r+1)
(i,j),s2

= σ
(
o
(r)
(i,j),s1

− o(r)(i,j),s2

)
−σ
(
o
(r)
(i,j),s2

− o(r)(i,j),s1

)
= o

(r)
(i,j),s1

− o(r)(i,j),s2
. (26)

In case we want to make use of equation (25) or equation (26), we have to choose the
filters (and the bias weights) of the convolutional neural network in layer r in the channels
s1 and s2 accordingly from the set {−1, 0, 1}.

With this approach of storing and propagating calculated values, the idea of our proof
is to choose the filters (and the bias weights) such that our convolutional neural network
saves in channels corresponding to position (i, j) the values of xi,j , f̄1,s(x(i,j)+I(1)) (s =

1, . . . , 4l−1), f̄2,s(x(i,j)+I(2)) (s = 1, . . . , 4l−2), . . . , f̄l,s(x(i,j)+I(l)) (s = 1), where we set

I(m) = {0, . . . , 2m − 1} × {0, . . . , 2m − 1}

for m ∈ N0. To do this we need two neurons for each of the above values, so altogether

2 · (1 + 4l−1 + 4l−2 + · · ·+ 40) = 2 ·
(

1 +
4l − 1

4− 1

)
=

2 · 4l + 4

3

9



channels or neurons for each position (i, j). Furthermore, we will need rnet additional
channels to compute the networks ḡk,s. So altogether we need

2 · 4l + 4

3
+ rnet = kr

many channels in each convolutional layer r.
The convolutional neural network mnet ∈ F (lnet,k,M), which we will construct to

prove the assertion, has the parameters lnet,k and M of Lemma 2. We make use of the
above idea by choosing the filters (and bias weights) of the convolutional neural mnet

network so that it has the following property for any k ∈ {1, . . . , l}:

For any s ∈ {1, . . . , 4l−k}, (i, j) ∈ {1, . . . , d1 − 2k + 1} × {1, . . . , d2 − 2k + 1}
and any r ∈ {4l−1 · Lnet + · · ·+ 4l−k · Lnet + k, . . . , lnet} it holds that

o
(r)

(i,j),2+2·4l−1+···+2·4l−k+1+2·s−1 − o
(r)

(i,j),2+2·4l−1+···+2·4l−k+1+2·s

= f̄k,s(x(i,j)+I(k)).
(27)

Due to equation (26) is suffices to show equation (27) for r = 4l−1·Lnet+· · ·+4l−k·Lnet+k.
To construct our convolutional neural network mnet so that the above property (27) is
fulfilled, we use an induction on k.

We start with k = 1. First we note that

f̄1,s(x(i,j)+I(1)) = ḡ1,s(x(i,j), x(i+1,j), x(i,j+1), x(i+1,j+1))

for s ∈ {1, . . . , 4l−1} and (i, j) ∈ {1, . . . , d1−1}×{1, . . . , d2−1}. So we have to compute
the networks ḡ1,1,. . . ,ḡ1,4l−1 applied to the input of our convultional network. The idea is
to use Lemma 3 for each network ḡ1,s. Therefore, we first make sure that the assumptions
(19)–(22) of Lemma 3 are fulfilled as we need them. In the first convolutional layer we
copy xi,j in the first two channels using the weights as in equation (25), and we propagate
these values in the successive layers using the weights as in equation (26). So after the
first layer we have available the input in the first two channels in all convolutional layers,
so that for all r ∈ {2, . . . , lnet} and all (i, j) ∈ {1, . . . , d1} × {1, . . . , d2} it holds that

o
(r)
(i,j),1 − o

(r)
(i,j),2 = x(i,j).

For the filter size it holds that

Mr = 2 (r ∈ π−1(1) = {1, 2, . . . , 4l−1 · Lnet + 1}).

Starting already in parallel in the first layer, we compute successively the networks ḡ1,1,
. . . ,ḡ1,4l−1 in layers

1, 2, . . . , 4l−1 · Lnet + 1

in the channels
2 · 4l + 4

3
+ 1,

2 · 4l + 4

3
+ 2, . . . ,

2 · 4l + 4

3
+ rnet

10



for the computation of their hidden layers and the ouput layers in channels 2+1, . . . , 2+
2 · 4l−1 by applying Lemma 3 4l−1 times. We now describe how to use Lemma 3 to
compute ḡ1,s (s = 1, . . . , 4l−1). In particular, we specify how to choose the parameters
s2,1, . . . , s2,10 from Lemma 3. The computation of ḡ1,s takes place in layers

(s− 1) · Lnet + 1, . . . , s · Lnet

in channels
2 · 4l + 4

3
+ 1,

2 · 4l + 4

3
+ 2, . . . ,

2 · 4l + 4

3
+ rnet

for the computation of its hidden layers and its output layer is computed in layer s·Lnet+1
in channels s2,9 = 2 + 2s− 1 and s2,10 = 2 + 2s. As input the network ḡ1,s uses the first
two channels for s > 1 such that

s2,1 = s2,3 = s2,5 = s2,7 = 1 and s2,2 = s2,4 = s2,6 = s2,8 = 2,

and in case s = 1 it selects its input from the input of the convolutional network and
then use a simple variation of Lemma 3 by adapting the assumptions (19)–(22). The
computed function value of ḡ1,s is then saved in the two channels s2,9 = 2 + 2s− 1 and
s2,10 = 2 + 2s. Here we propagate again the value of these neurons successively to the
next layer by using the weights as in equation (26). So after layer 4l−1 ·Lnet + 1 we have
available the values of all f̄1,s in the channels 2 + 1, . . . , 2 + 2 · 4l−1, so that for any
s ∈ {1, . . . , 4l−1} and any (i, j) ∈ {1, . . . , d1 − 1} × {1, . . . , d2 − 1} it holds that

o
(4l−1·Lnet+1)
(i,j),2+2·s−1 − o

(4l−1·Lnet+1)
(i,j),2+2·s = ḡ1,s(x(i,j), x(i+1,j), x(i,j+1), x(i+1,j+1))

= f̄1,s(x(i,j)+I(1)).

Thus property (27) holds for k = 1.
Now we assume that equation (27) holds for k ∈ {1, . . . , l − 1}. We use the values

f̄k,s(x(i,j)+I(k)), which are given by equation (27), to compute all values of

f̄k+1,s(x(i,j)+I(k+1)) = ḡk+1,s

(
f̄k,4·(s−1)+1(x(i,j)+I(k)), f̄k,4·(s−1)+2(x(i+2k,j)+I(k)),

f̄k,4·(s−1)+3(x(i,j+2k)+I(k)), f̄k,4·s(x(i+2k,j+2k)+I(k))
)

for s ∈ {1, . . . 4l−(k+1)} using Lemma 3. We proceed similarly to the above case of k = 1.
For the filter size it holds that

Mr = 2k+1 (r ∈ π−1(k + 1)),

where π−1(k + 1) is given by

{4l−1 · Lnet + · · ·+ 4l−k · Lnet + (k + 1), . . . , 4l−1 · Lnet + · · ·+ 4l−(k+1) · Lnet + (k + 1)}.

By applying Lemma 3 4l−(k+1) times we compute successively the networks ḡk+1,1,. . . ,
ḡk+1,4l−(k+1) , in the corresponding layers

4l−1 ·Lnet+ · · ·+4l−k ·Lnet+k+1, . . . , 4l−1 ·Lnet+ · · ·+4l−k ·Lnet+4l−(k+1) ·Lnet+k+1,
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where the computation of their hidden layers takes place in channels

2 · 4l + 4

3
+ 1,

2 · 4l + 4

3
+ 2, . . . ,

2 · 4l + 4

3
+ rnet

and the computation of their ouput layers takes place in channels

2 + 2 · 4l−1 + · · ·+ 2 · 4l−k + 1, . . . , 2 + 2 · 4l−1 + · · ·+ 2 · 4l−(k+1).

As above we describe how to use Lemma 3 to compute ḡk+1,s (s = 1, . . . , 4l−(k+1)) and
specify how to choose the parameters s2,1, . . . , s2,10 from Lemma 3. The computation of
ḡk+1,s (s = 1, . . . , 4l−(k+1)) takes place in layers

4l−1 ·Lnet+· · ·+4l−k ·Lnet+k+(s−1)·Lnet+1, . . . , 4l−1 ·Lnet+· · ·+4l−k ·Lnet+k+s·Lnet

in channels
2 · 4l + 4

3
+ 1,

2 · 4l + 4

3
+ 2, . . . ,

2 · 4l + 4

3
+ rnet

for the computation of its hidden layers and its output layer is computed in layer

4l−1 · Lnet + · · ·+ 4l−k · Lnet + k + s · Lnet + 1

in channels
s2,9 = 2 + 2 · 4l−1 + · · ·+ 2 · 4l−k + 2s− 1 (28)

and
s2,10 = 2 + 2 · 4l−1 + · · ·+ 2 · 4l−k + 2s. (29)

We choose

s2,m = 2 +

(
l−1∑

i=l−(k−1)

2 · 4i
)

+ 2 · 4 · (s− 1) +m

for m ∈ {1, . . . , 8}, because then we have

o
(r)
(i,j),s2,2·m−1

− o(r)(i,j),s2,2·m
= f̄k,4·(s−1)+m(x(i,j)+I(k))

for m ∈ {1, . . . , 4} and any r ∈ {4l−1 · Lnet + · · · + 4l−k · Lnet + k, . . . , lnet} and any
(i, j) ∈ {1, . . . , d1− 2k + 1}×{1, . . . , d2− 2k + 1} due to the induction hypothesis. Then
Lemma 3 let us choose the corresponding weights of the network mnet such that

o
(4l−1·Lnet+···+4l−k·Lnet+k+s·Lnet+1)
(i,j),s2,9

− o(4
l−1·Lnet+···+4l−k·Lnet+k+s·Lnet+1)

(i,j),s2,10

= ḡk+1,s

(
f̄k,4·(s−1)+1(x(i,j)+I(k)), f̄k,4·(s−1)+2(x(i+2k,j)+I(k)),

f̄k,4·(s−1)+3(x(i,j+2k)+I(k)), f̄k,4·s(x(i+2k,j+2k)+I(k))
)

= f̄k+1,s(x(i,j)+I(k+1)).
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for any (i, j) ∈ {1, . . . , d1− 2k+1 + 1}×{1, . . . , d2− 2k+1 + 1}. By propagating again the
values of these neurons successively to the next layer we have available the values of all
f̄k+1,s after layer

4l−1 · Lnet + · · ·+ 4l−k · Lnet + 4l−(k+1) · Lnet + k + 1

in the channels

2 + 2 · 4l−1 + · · ·+ 2 · 4l−k + 1, . . . , 2 + 2 · 4l−1 + · · ·+ 2 · 4l−(k+1)

so that for any s ∈ {1, . . . , 4l−(k+1)} and any (i, j) ∈ {1, . . . , d1−2k+1−1}×{1, . . . , d2−
2k+1 − 1} it holds that

o
(4l−1·Lnet+···+4l−k·Lnet+4l−(k+1)·Lnet+k+1)

(i,j),2+2·4l−1+···+2·4l−k+2s−1 − o(4
l−1·Lnet+···+4l−k·Lnet+4l−(k+1)·Lnet+k+1)

(i,j),2+2·4l−1+···+2·4l−k+2s

= f̄k+1,s(x(i,j)+I(k+1)).

So property (27) holds for all k ∈ {1, . . . , l}.
Hence in layer

lnet = 4l−1 · Lnet + 4l−2 · Lnet + · · ·+ 40 · Lnet + l =
4l − 1

3
· Lnet + l

we have by equation (27)

o
(lnet)

(i,j),2+2·4l−1+···+2·4+1
− o(lnet)

(i,j),2+2·4l−1+···+2·4+2
= f̄l,1(x(i,j)+I(l))

for all (i, j) ∈ {1, . . . , d1−2l+1}×{1, . . . , d2−2l+1}. Now we choose the outer weights
wout of our convolutional neural network mnet such that

ws =


1, if s = 2 + 2 · 4l−1 + · · ·+ 2 · 4 + 1

−1, if s = 2 + 2 · 4l−1 + · · ·+ 2 · 4 + 2

0, else.

This implies that the output of our network is given by

mnet(x) = max

{
o
(lnet)

(i,j),2+2·4l−1+···+2·4l−l+1+1
− o(lnet)

(i,j),2+2·4l−1+···+2·4l−l+1+2
:

(i, j) ∈ {1, . . . , d1 − 2l + 1} × {1, . . . , d2 − 2l + 1}

}

= max

{
f̄(x(i,j)+I) : (i, j) ∈ Z2, (i, j) + I ⊆ {1, . . . , d1} × {1, . . . , d2}

}
= m̄(x).

�
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B. A bound on the covering number

In this section, we present a result on the covering number of the class Ft
(
L,k(1),k(2),M

)
of convolutional neural networks.

Lemma 4 Let σ(x) = max{x, 0} be the ReLU activation function, define

F := Ft
(
L,k(1),k(2),M

)
as in Section 2 and set

kmax = max
{
k
(1)
1 , . . . , k

(1)

L(1) , t, k
(2)
1 , . . . , k

(2)

L(2)

}
, Mmax = max{M1, . . . ,ML(1)}

and
Lmax = max{L(1), L(2)}.

Assume d1 · d2 > 1 and c4 · log n ≥ 2. Then we have for any ε ∈ (0, 1):

sup
xn1∈(R{1,...,d1}×{1,...,d2})n

log (N1 (ε, Tc4·lognF ,xn1 ))

≤ c7 · L2
max · log(Lmax · d1 · d2) · log

(
c4 · log n

ε

)
for some constant c7 > 0 which depends only on kmax and Mmax.

With the aim of proving Lemma 4, we first have to study the VC dimension of our
function class Ft

(
L,k(1),k(2),M

)
. For a class of subsets of Rd, the VC dimension is

defined as follows:

Definition 2 Let A be a class of subsets of Rd with A 6= ∅ and m ∈ N.

1. For x1, ...,xm ∈ Rd we define

s(A, {x1, ...,xm}) := | {A ∩ {x1, ...,xm} : A ∈ A} |.

2. Then the mth shatter coefficient S(A,m) of A is defined by

S(A,m) := max
{x1,...,xm}⊂Rd

s(A, {x1, ...,xm}).

3. The VC dimension (Vapnik-Chervonenkis-Dimension) VA of A is defined as

VA := sup{m ∈ N : S(A,m) = 2m}.

For a class of real-valued functions, we define the VC dimension as follows:

Definition 3 Let H denote a class of functions from Rd to {0, 1} and let F be a class
of real-valued functions.
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1. For any non-negative integer m, we define the growth function of H as

ΠH(m) := max
x1,...,xm∈Rd

|{(h(x1), . . . , h(xm)) : h ∈ H}|.

2. The VC dimension (Vapnik-Chervonenkis-Dimension) of H we define as

VCdim(H) := sup{m ∈ N : ΠH(m) = 2m}.

3. For f ∈ F we denote sgn(f) := I{f≥0} and sgn(F) := {sgn(f) : f ∈ F}. Then the
VC dimension of F is defined as

VCdim(F) := VCdim(sgn(F)).

A connection between both definitions is given by the following lemma.

Lemma 5 Suppose F is a class of real-valued functions on Rd. Furthermore, we define

F+ := {{(x, y) ∈ Rd × R : f(x) ≥ y} : f ∈ F}

and define the class H of real-valued functions on Rd × R by

H := {h((x, y)) = f(x)− y : f ∈ F}.

Then, it holds that
VF+ = VCdim(H).

Proof. For all (x1, y1), . . . , (xm, ym) ∈ Rd × R with m ∈ N it holds that

s(F+, {(x1, y1), . . . , (xm, ym)})
=
∣∣{A ∩ {(x1, y1), . . . , (xm, ym)} : A ∈ F+

}∣∣
=
∣∣∣{{(x, y) ∈ Rd × R : f(x) ≥ y} ∩ {(x1, y1), . . . , (xm, ym)} : f ∈ F

}∣∣∣
= | {{(x, y) ∈ {(x1, y1), . . . , (xm, ym)} : f(x) ≥ y} : f ∈ F} |
= | {{i ∈ {1, . . . ,m} : f(xi) ≥ yi} : f ∈ F} |
= |{(sgn(f(x1)− y1), . . . , sgn(f(xm)− ym)) : f ∈ F}|
= |{(sgn(h(x1, y1)), . . . , sgn(h(xm, ym))) : h ∈ H}|.

It follows that
S(F+,m) = ΠH(m)

holds for all m ∈ N, which implies

VF+ = VCdim(H).

�
In order to bound the VC dimension of our function class, we need the following auxiliary
result about the number of possible sign vectors attained by polynomials of bounded
degree.
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Lemma 6 Suppose W ≤ m and let f1, ..., fm be polynomials of degree at most D in W
variables. Define

K := |{(sgn(f1(a)), . . . , sgn(fm(a))) : a ∈ RW }|.

Then we have

K ≤ 2 ·
(

2 · e ·m ·D
W

)W
.

Proof. See Theorem 8.3 in Anthony and Bartlett (1999). �

To get an upper bound for the VC dimension of our function class Ft
(
L,k(1),k(2),M

)
defined as in Section 2 we will use a modification of Theorem 6 in Bartlett et al. (2019).

Lemma 7 Let σ(x) = max{x, 0} be the ReLU activation function, define

F := Ft
(
L,k(1),k(2),M

)
as in Section 2, set

kmax = max
{
k
(1)
1 , . . . , k

(1)

L(1) , t, k
(2)
1 , . . . , k

(2)

L(2)

}
, Mmax = max{M1, . . . ,ML(1)}

and
Lmax = max{L(1), L(2)}.

Assume d1 · d2 > 1. Then, we have

VF+ ≤ c10 · L2
max · log2(Lmax · d1 · d2)

for some constant c10 > 0 which depends only on kmax and Mmax.

Proof. We want to use Lemma 5 to bound VF+ by VCdim(H), where H is the class of
real-valued functions on [0, 1]{1,...,d1}×{1,...,d2} × R defined by

H := {h((x, y)) = f(x)− y : f ∈ F}.

Let h ∈ H. Then h depends on t convolutional neural networks

f1, . . . , ft ∈ F(L(1),k(1),M)

and one standard feedforward neural network g ∈ Gt(L(2),k(2)) such that

h((x, y)) = g ◦ (f1, . . . , ft)(x)− y

Each one of the convolutional neural networks f1, . . . , ft depends on a weight matrix

w(b) =
(
w

(b,r)
i,j,s1,s2

)
1≤i,j≤Mr,s1∈{1,...,k(1)r−1},s2∈{1,...,k

(1)
r },r∈{1,...,L(1)}

,
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the weights

w
(b)
bias =

(
w(b,r)
s2

)
s2∈{1,...,k(1)r },r∈{1,...,L(1)}

for the bias in each channel and each convolutional layer, the output weights

w
(b)
out = (w(b)

s )
s∈{1,...,k(1)

L(1)
}

for b ∈ {1, . . . , t}. The standard feedforward neural network g ∈ Gt(L(2),k(2)) depends
on the inner weigths

w
(r−1)
i,j

for j ∈ {0, . . . , k(2)r−1}, i ∈ {1, . . . , k
(2)
r } and r ∈ {1, . . . , L(2)} and the outer weights

w
(L(2))
i

for i ∈ {0, . . . , k(2)
L(2)} (where k

(2)
0 = t).

We set

k = (k0, . . . , kL(1)+L(2)+1) = (1, k
(1)
1 , . . . , k

(1)

L(1) , t, k
(2)
1 , . . . , k

(2)

L(2))

and count the number of weights used up to layer r ∈ {1, . . . , L(1)} in the convolutional
part by

Wr := t ·

(
r∑
s=1

M2
s · ks · ks−1 +

r∑
s=1

ks

)
,

for r ∈ {1, . . . , L(1)} (where we set W0 := 0) and

WL(1)+1 := WL(1) + t · kL(1) .

We continue in the part of the standard feedforward neural network by counting the
weights used up to layer r ∈ {1, . . . , L(2)} by

WL(1)+1+r = WL(1)+r +
(
kL(1)+r + 1

)
· kL(1)+r+1

and denote the total number of weights by

W = WL(1)+L(2)+2

= WL(1)+L(2)+1 + kL(1)+L(2)+1 + 1

≤ L(1) · t ·
(
M2
max · k2max + kmax

)
+ t · kmax

+ L(2) · ((kmax + 1) · kmax) + kmax + 1

≤ L(1) · t ·
(
M2
max · (kmax + 1) · kmax

)
+ L(2) · ((kmax + 1) · kmax)

+ 2 · t · (kmax + 1)

≤ (L(1) + L(2) + 2) · t ·M2
max · (kmax + 1) · kmax

≤ 2 · (L(1) + L(2) + 2) · t ·M2
max · k2max.

(30)
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We define I(0) = ∅ and for r ∈ {1, . . . , L(1) + L(2) + 2} we define the index sets

I(r) = {1, . . . ,Wr}.

Furthermore, we define a sequence of vectors containing the weights used up to layer
r ∈ {1, . . . , L(1)} in the convolutional part by

aI(r) :=
(
aI(r−1) , w

(1,r)
1,1,1,1, . . . , w

(1,r)
Mr,Mr,kr−1,kr

, w
(1,r)
1 , . . . , w

(1,r)
kr

,

. . . , w
(t,r)
1,1,1,1, . . . , w

(t,r)
Mr,Mr,kr−1,kr

, w
(t,r)
1 , . . . , w

(t,r)
kr

)
∈ RWr

(where a∅ denotes the empty vector),

a
I(L

(1)+1)
:= (a

I(L
(1)) , w

(1)
1 , . . . , w

(1)
k
L(1)

, . . . , w
(t)
1 , . . . , w

(t)
k
L(1)

) ∈ RWL(1)+1 ,

and by continuing with the part of the standard feedforward neural network we get for
r ∈ {1, . . . , L(2)}

a
I(r+L

(1)+1)
:=

(
a
I(r+L

(1)) , w
(r−1)
1,0 , . . . , w

(r−1)
k
r+L(1)+1

,k
r+L(1)

)
∈ RWr+L(1)+1

and
a :=

(
a
I(L

(1)+L(2)+1) , w
(L(2))
0 , . . . , w

(L(2))

L(2)

)
∈ RW .

With this notation we can write

H = {(x, y) 7→ h((x, y),a) : a ∈ RW }

and for b ∈ {1, . . . , t}

F(L(1),k(1),M) = {x 7→ fb(x,a) : a ∈ RW },

where the convolutional networks f1, . . . , ft ∈ F(L(1),k(1),M), as described above, each
depends only on WL(1)+1/t variables of a. To get an upper bound for the VC-dimension
of H, we will bound the growth function Πsgn(H)(m). In the following we assume that
m is a positive integer with

m ≥W (31)

since this will allow us several uses of Lemma 6. To bound the growth function Πsgn(H)(m),
we fix the input values

(x1, y1), . . . , (xm, ym) ∈ [0, 1]{1,...,d1}×{1,...,d2} × R

and consider h ∈ H as a function of the weight vector a ∈ RW of h

a 7→ h((xk, yk),a) = g ◦ (f1, . . . , ft)(xk,a)− yk = hk(a)

for any k ∈ {1, . . . ,m}. Then, an upper bound for

K := |{(sgn(h1(a)), . . . , sgn(hm(a))) : a ∈ RW }|

18



implies an upper bound for the growth function Πsgn(H)(m). For any partition

S = {S1, . . . , SM}

of RW it holds that

K ≤
M∑
i=1

|{(sgn(h1(a)), . . . , sgn(hm(a)) : a ∈ Si}|. (32)

We will construct a partition S of RW such that within each region S ∈ S , the functions
hk(·) are all fixed polynomials of bounded degree for k ∈ {1, . . . ,m}, so that each
summand of equation (32) can be bounded via Lemma 6. We do this in two steps.

In the first step we construct a partition S(1) of RW such that within each S ∈ S(1)
the t convolutional neural networks f1,k (a) , . . . , ft,k (a) are all fixed polynomials with
dergee of at most L(1) + 1 for all k ∈ {1, . . . ,m}, where we denote

fb,k (a) = fb (xk,a)

for b ∈ {1, . . . , t}. We define

D = {1, . . . , d1} × {1, . . . , d2}.

For b ∈ {1, . . . , t} we have

fb,k (a) = max

{ k
L(1)∑
s=1

w(b)
s · o

(L(1))
(i,j),b,s,xk

(a
I(L

(1))) : (i, j) ∈ D

}
,

where o
(L(1))
(i,j),b,s2,x

(a
I(L

(1))) is recursively defined by

o
(r)
(i,j),b,s2,x

(aI(r))

= σ

kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(b,r)
t1,t2,s1,s2

· o(r−1)(i+t1−1,j+t2−1),b,s1,x(aI(r−1)) + w(b,r)
s2


for (i, j) ∈ D and r ∈ {1, . . . , L(1)}, and by

o
(0)
(i,j),b,1,x(aI(0)) = xi,j for (i, j) ∈ D.

Firstly, we construct a partition SL(1) = {S1, . . . , SM} of RW such that within each
S ∈ SL(1)

o
(L(1))
(i,j),b,s,xk

(a
I(L

(1)))

is a fixed polynomial for all k ∈ {1, . . . ,m}, s ∈ {1, . . . , kL}, b ∈ {1, . . . , t} and (i, j) ∈ D
with degree of at most L(1) in the WL(1) variables a

I(L
(1)) of a ∈ S. We construct the

partition SL(1) iteratively layer by layer, by creating a sequence S0, . . . ,SL(1) , where each
Sr is a partition of RW with the following properties:
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1. We have |S0| = 1 and, for each r ∈ {1, . . . , L(1)},

|Sr|
|Sr−1|

≤ 2

(
2 · e · t · kr · d1 · d2 ·m · r

Wr

)Wr

, (33)

2. For each r ∈ {0, . . . , L(1)}, and each element S ∈ Sr, each (i, j) ∈ D, each s ∈
{1, . . . , kr}, each k ∈ {1, . . . ,m}, and each b ∈ {1, . . . , t} when a varies in S,

o
(r)
(i,j),b,s,xk

(aI(r))

is a fixed polynomial function in the Wr variables aI(r) of a, of total degree no
more than r.

We define S0 := {RW }. Since

o
(0)
(i,j),b,s,xk

(aI(0)) = (xk)i,j

is a constant polynomial, property 2 above is satisfied for r = 0. Now suppose that
S0, . . . ,Sr−1 have been defined, and we want to define Sr. For S ∈ Sr−1 let

p(i,j),b,s1,xk,S(aI(r−1))

denote the function o
(r−1)
(i,j),b,s1,xk

(aI(r−1)), when a ∈ S. By induction hypothesis

p(i,j),b,s1,xk,S(aI(r−1))

is a polynomial with total degree no more than r−1, and depends on the Wr−1 variables
aI(r−1) of a for any b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}, (i, j) ∈ D and s1 ∈ {1, . . . , kr−1}.
Hence for any b ∈ {1, . . . , t} k ∈ {1, . . . ,m}, (i, j) ∈ D and s2 ∈ {1, . . . , kr}

kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(r)
t1,t2,s1,s2

· p(i+t1−1,j+t2−1),b,s1,xk,S(aI(r−1)) + w(b,r)
s2

is a polynomial in the Wr variables aI(r) of a with total degree no more than r. Because
of condition (31) we have t · kr ·m · d1 · d2 ≥ Wr. Hence, by Lemma 6, the collection of
polynomials

kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(b,r)
t1,t2,s1,s2

· p(i+t1−1,j+t2−1),b,s1,xk,S(aI(r−1)) + w(b,r)
s2 :

b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}, (i, j) ∈ D, s2 ∈ {1, . . . , kr}
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attains at most

Π := 2

(
2 · e · t · kr ·m · d1 · d2 · r

Wr

)Wr

distinct sign patterns when aI(r) ∈ RWr and therefore the above collection of polynomials
also attains at most Π distinct sign patterns when a varies in RW since the above
polynomials depend only on the Wr variables aI(r) of a. Therefore, we can partition
S ⊂ RW into Π subregions, such that all the polynomials don’t change their signs within
each subregion. Doing this for all regions S ∈ Sr−1 we get our required partition Sr by
assembling all of these subregions. In particular, property 1 (inequality (33)) is then
satisfied.

Fix some S′ ∈ Sr. Notice that, when a varies in S′, all the polynomials
kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(b,r)
t1,t2,s1,s2

· p(i+t1−1,j+t2−1),b,s1,xk,S(aI(r−1)) + w(b,r)
s2 :

b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}, (i, j) ∈ D, s2 ∈ {1, . . . , kr}


don’t change their signs, hence

o
(r)
(i,j),b,s2,xk

(aI(r))

= σ

kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(b,r)
t1,t2,s1,s2

· o(r−1)(i+t1−1,j+t2−1),b,s1,xk(aI(r−1)) + w(b,r)
s2



= max


kr−1∑
s1=1

∑
t1,t2∈{1,...,Mr}

(i+t1−1,j+t2−1)∈D

w
(b,r)
t1,t2,s1,s2

· o(r−1)(i+t1−1,j+t2−1),b,s1,xk(aI(r−1)) + w(b,r)
s2 , 0


is either a polynomial of degree no more than r in the Wr variables aI(r) of a or a
constant polynomial with value 0 for all (i, j) ∈ D, b ∈ {1, . . . , t}, s2 ∈ {1, . . . , kr} and
k ∈ {1, . . . ,m}. Hence, property 2 is also satisfied and we are able to construct our
desired partition SL(1) . Because of inequality (33) of property 1 it holds that

|SL(1) | ≤
L(1)∏
r=1

2

(
2 · e · t · kr · d1 · d2 ·m · r

Wr

)Wr

.
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For any (i, j) ∈ D, b ∈ {1, . . . , t} and k ∈ {1, . . . ,m}, we define

f(i,j),b,xk(a
I(L

(1)+1)) :=

k
L(1)∑
s2=1

w(b)
s2 · o

(L(1))
(i,j),b,s2,xk

(a
I(L

(1))).

For any fixed S ∈ SL(1) , let p(i,j),b,S,xk(a
I(L

(1)+1)) denote the function f(i,j),b,xk(a
I(L

(1)+1)),
when a ∈ S. By construction of SL(1) this is a polynomial of degree no more than
L(1) + 1 in the WL(1)+1 variables a

I(L
(1)+1) of a. Because of condition (31) we have

t · d21 · d22 ·m ≥WL(1)+1. Hence, by Lemma 6, the collection of polynomials{
p(i1,j1),b,S,xk(a

I(L
(1)+1))− p(i2,j2),b,S,xk(a

I(L
(1)+1)) :

(i1, j1), (i2, j2) ∈ D, (i1, j1) 6= (i2, j2), b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}
}

attains at most

∆ := 2

(
2 · e · t · d21 · d22 ·m · (L(1) + 1)

WL(1)+1

)W
L(1)+1

distinct sign patterns when a
I(L

(1)+1) ∈ RWL(1)+1 and therefore the above collection of

polynomials also attains at most ∆ distinct sign patterns when a varies in RW since the
above polynomials depend only on the WL(1)+1 variables a

I(L
(1)+1) of a. Therefore, we

can partition S ⊂ RW into ∆ subregions, such that all the polynomials don’t change
their signs within each subregion. Doing this for all regions S ∈ SL(1) we get our required
partition S(1) by assembling all of these subregions. For the size of our partition S(1) we
get

|S(1)| ≤
L(1)∏
r=1

2·
(

2 · t · e · kr · d1 · d2 ·m · r
Wr

)Wr

·2·

(
2 · e · t · d21 · d22 ·m · (L(1) + 1)

WL(1)+1

)W
L(1)+1

.

Fix some S′ ∈ S(1). Notice that, when a varies in S′, all the polynomials{
p(i1,j1),b,S,xk(a

I(L
(1)+1))− p(i2,j2),b,S,xk(a

I(L
(1)+1)) :

(i1, j1), (i2, j2) ∈ D, (i1, j1) 6= (i2, j2), b ∈ {1, . . . , t}, k ∈ {1, . . . ,m}
}

don’t change their signs. Hence, there is a permutation π(b,k) of the set

{1, . . . , d1 −ML(1) + 1} × {1, . . . , d2 −ML(1) + 1}

for any b ∈ {1, . . . , t} and k ∈ {1, . . . ,m} such that

fπ(b,k)((1,1)),b,xk
(a
I(L

(1)+1)) ≥ · · · ≥ fπ(b,k)((d1−ML(1)+1,d2−ML(1)+1)),b,xk
(a
I(L

(1)+1))

for a ∈ S′ and any k ∈ {1, . . . ,m} and b ∈ {1, . . . , t}. Therefore, it holds that

fb,k(a) = max
{
f(1,1),b,xk

(
a
I(L

(1)+1)

)
, . . . , f(d1−ML(1)+1,d2−ML(1)+1),b,xk

(
a
I(L

(1)+1)

)}
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= fπ(b,k)((1,1)),b,xk
(a
I(L

(1)+1)),

for a ∈ S′. Since fπ(b,k)((1,1)),b,xk
(a
I(L

(1)+1)) is a polynomial within S′, also fb,k(a) is a

polynomial within S′ with degree no more than L(1) + 1 and in the WL(1)+1 variables
a
I(L

(1)+1) of a ∈ RW .

In the second step we construct the partition S starting from partition S(1) such that
within each region S ∈ S the functions hk(·) are all fixed polynomials of degree of at
most L(1) + L(2) + 2 for k ∈ {1, . . . ,m}. We have

hk(a) =

k
L(1)+L(2)+1∑

i=1

w
(L(2))
i · g(L

(2))
i,k

(
a
I(L

(1)+L(2)+1)

)
+ w

(L(2))
0 − yk

where the g
(L(2))
i,k are recursively defined by

g
(r)
i,k

(
a
I(L

(1)+r+1)

)
= σ

k
L(1)+r∑
j=1

w
(r−1)
i,j g

(r−1)
j,k (a

I(L
(1)+r))


for r ∈ {1, . . . , L(2)} and

g
(0)
i,k (a

I(L
(1)+1)) = fi,k(a)

for i ∈ {1, . . . , kL(1)+1} (kL(1)+1 = t). As above we construct the partition S iteratively
layer by layer, by creating a sequence S0, . . . ,SL(2) , where each Sr is a partition of RW
with the following porperties:

1. We set S0 = S(1) and, for each r ∈ {1, . . . , L(2)},

|Sr|
|Sr−1|

≤ 2

(
2 · e · kL(1)+r+1 ·m · (L(1) + r + 1)

WL(1)+r+1

)W
L(1)+r+1

, (34)

2. For each r ∈ {0, . . . , L(2)}, and each element S ∈ Sr, each i ∈ {1, . . . , kL(1)+r+1},
and each k ∈ {1, . . . ,m} when a varies in S,

g
(r)
i,k (a

I(L
(1)+r+1))

is a fixed polynomial function in the WL(1)+r+1 variables a
I(L

(1)+r+1) of a, of total

degree no more than L(1) + r + 1.

As we have already shown in step 1, property 2 above is satisfied for r = 0. Now
suppose that S0, . . . ,Sr−1 have been defined, and we want to define Sr. For S ∈ Sr−1
and j ∈ {1, . . . , kL(1)+r} let pj,k,S(a

I(L
(1)+r)) denote the function g

(r−1)
j,k (a

I(L
(1)+r)), when

a ∈ S. By induction hypothesis pj,k,S(a
I(L

(1)+r)) is a polynomial with total degree no
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more than L(1) + r, and depends on the WL(1)+r variables a
I(L

(1)+r) of a. Hence for any
k ∈ {1, . . . ,m} and i ∈ {1, . . . , kL(1)+r+1}

k
L(1)+r∑
j=1

w
(r−1)
(i,j) · pj,k,S(a

I(L
(1)+r)) + w

(r−1)
i,0

is a polynomial in the WL(1)+r+1 variables a
I(L

(1)+r+1) variables of a with total degree no

more than L(1) + r + 1. Because of condition (31) we have kL(1)+r+1 ·m ≥ WL(1)+r+1.
Hence, by Lemma 6, the collection of polynomials

k
L(1)+r∑
j=1

w
(r−1)
(i,j) · pj,k,S(a

I(L
(1)+r)) + w

(r−1)
i,0 : k ∈ {1, . . . ,m}, i ∈ {1, . . . , kL(1)+r+1}


attains at most

Π := 2

(
2 · e · kL(1)+r+1 ·m · (L(1) + r + 1)

WL(1)+r+1

)W
L(1)+r+1

distinct sign patterns when a
I(L

(1)+r+1) ∈ RWL(1)+r+1 and therefore the above collection of

polynomials also attains at most Π distinct sign patterns when a varies in RW since the
above polynomials depend only on the WL(1)+r+1 variables a

I(L
(1)+r+1) of a. Therefore,

we can partition S ⊂ RW into Π subregions, such that all the polynomials don’t change
their signs within each subregion. Doing this for all regions S ∈ Sr−1 we get our required
partition Sr by assembling all of these subregions. In particular property 1 is then
satisfied. In order to see that condition 2 is also satisfied, we can proceed analogously
to step 1. Hence, when a varies in S ∈ S the function

hk(a) =

k
L(1)+L(2)+1∑

i=1

w
(L)
i · g(L

(2))
i,k

(
a
I(L

(1)+L(2)+1)

)
+ w

(L)
0 − yk

is a polynomial of degree no more than L(1) +L(2) + 2 in the W variables of a ∈ RW for
any k ∈ {1, . . . ,m}. For the size of our partition S we get

|S| ≤
L(1)∏
r=1

2 ·
(

2 · e · t · kr · d1 · d2 ·m · r
Wr

)Wr

· 2 ·

(
2 · e · d21 · d22 ·m · (L(1) + 1)

WL(1)+1

)W
L(1)+1

·
L(2)∏
r=1

2 ·

(
2 · e · kL(1)+r+1 ·m · (L(1) + r + 1)

WL(1)+r+1

)W
L(1)+r+1

≤
L(1)+L(2)+1∏

r=1

2 ·
(

2 · e · t · kr · d21 · d22 ·m · r
Wr

)Wr
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By condition (31) and another application of Lemma 6 it holds for any S′ ∈ S that

|{(sgn(h1(a)), . . . , sgn(hm(a))) : a ∈ S′}|

≤ 2 ·

(
2 · e ·m · (L(1) + L(2) + 2)

W

)W
.

Now we are able to bound K via equation (32) and because K is an upper bound for
the growth function we set kL(1)+L(2)+2 = 1 and get

Πsgn(H)(m) ≤
L(1)+L(2)+2∏

r=1

2 ·
(

2 · e · t · kr · d21 · d22 · r ·m
Wr

)Wr

≤2L
(1)+L(2)+2 ·

(∑L(1)+L(2)+2
r=1 2 · e · t · kr · d21 · d22 · r ·m∑L(1)+L(2)+2

r=1 Wr

)∑L(1)+L(2)+2
r=1 Wr

= 2L
(1)+L(2)+2 ·

(
R ·m∑L(1)+L(2)+2

r=1 Wr

)∑L(1)+L(2)+2
r=1 Wr

, (35)

with R := 2·e·t·d21 ·d22 ·
∑L(1)+L(2)+2

r=1 kr ·r. In the third row we used the weighted AM-GM

inequality. Without loss of generality, we can assume that VCdim(H) ≥
∑L(1)+L(2)+2

r=1 Wr

because in the case VCdim(H) <
∑L(1)+L(2)+2

r=1 Wr we have

VCdim(H) < (L(1) + L(2) + 2) ·W
(30)

≤ 2 · (L(1) + L(2) + 2)2 · t ·M2
max · k2max

≤ c10 · L2
max

for some constant c10 > 0 which only depends on Mmax and kmax and get the assertion
by Lemma 5. Hence we get by the definition of the VC–dimension and inequality (35)
(which only holds for m ≥W )

2VCdim(H) = Πsgn(H)(VCdim(H)) ≤ 2L
(1)+L(2)+2 ·

(
R ·VCdim(H)∑L(1)+L(2)+2
r=1 Wr

)∑L(1)+L(2)+2
r=1 Wr

.

Since

R ≥ 2 · e · t · d21 · d22 ·
1+1+2∑
r=1

r ≥ 2 · e · t · d21 · d22 · 10 ≥ 16

Lemma 8 below (with parameters R, m = VCdim(H), w =
∑L(1)+L(2)+2

r=1 Wr and L =
L(1) + L(2) + 2) implies that

VCdim(H) ≤ (L(1) + L(2) + 2) +

L(1)+L(2)+2∑
r=1

Wr

 · log2(2 ·R · log2(R))
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≤ (L(1) + L(2) + 2) + (L(1) + L(2) + 2) ·W
· log2(2 · (2 · e · t · d21 · d22 · (L(1) + L(2) + 2) · kmax)2)

≤ 2 · (L(1) + L(2) + 2) ·W · log2

((
2 · e · t · (L(1) + L(2) + 2) · kmax · d1 · d2

)4)
(30)

≤ 16 · t · (L(1) + L(2) + 2)2 · k2max ·M2
max

· log2

(
2 · e · t · (L(1) + L(2) + 2) · kmax · d1 · d2

)
≤ c10 · L2

max · log2(Lmax · d1 · d2),

for some constant c10 > 0 which only depends on kmax and Mmax. In the third row we
used equation (30) for the total number of weights W . Now we make use of Lemma 5
and finally get

VF+ ≤ c10 · L2
max · log2(Lmax · d1 · d2).

�

Lemma 8 Suppose that 2m ≤ 2L · (m · R/w)w for some R ≥ 16 and m ≥ w ≥ L ≥ 0.
Then,

m ≤ L+ w · log2(2 ·R · log2(R)).

Proof. See Lemma 16 in Bartlett et al. (2019). �

Proof of Lemma 4. Using Lemma 7 and

VTc4·lognF
+ ≤ VF+ ,

we can conclude from this together with Lemma 9.2 and Theorem 9.4 in Györfi et al.
(2002)

N1 (ε, Tc4·lognF ,xn1 )

≤ 3 ·
(

4e · c4 · log n

ε
· log

6e · c4 · log n

ε

)VTc4·lognF+

≤ 3 ·
(

6e · c4 · log n

ε

)2·c10·L2
max·log(Lmax·d1·d2)

.

This completes the proof of Lemma 4. �

C. Auxiliary results

In this section we present several auxiliary results from the literature which we have
used in the proof of Theorem 1. Our first result is a bound on the expected L2 error of
the (truncated) least squares regression estimate.
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Lemma 9 Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be independent and identically distributed
Rd × R-valued random variables. Assume that the distribution of (X, Y ) satisfies

E{exp(c3 · Y 2)} <∞

for some constant c3 > 0 and that the regression function m(·) = E{Y |X = ·} is bounded
in absolute value. Let m̃n be the least squares estimate

m̃n(·) = arg min
f∈Fn

1

n

n∑
i=1

|Yi − f(Xi)|2

based on some function space Fn consisting of functions f : Rd → R and set mn =
Tc4·log(n)m̃n for some constant c4 > 0. Then mn satisfies

E

∫
|mn(x)−m(x)|2PX(dx)

≤
c5 · (log(n))2 · supxn1∈(Rd)n

(
log
(
N1

(
1

n·c4 log(n) , Tc4 log(n)Fn,x
n
1

))
+ 1
)

n

+ 2 · inf
f∈Fn

∫
|f(x)−m(x)|2PX(dx)

for n > 1 and some constant c5 > 0, which does not depend on n or the parameters of
the estimate.

Proof. This result follows in a straightforward way from the proof of Theorem 1 in
Bagirov et al. (2009). A complete proof can be found in the supplement of Bauer and
Kohler (2019). �

Our second auxiliary result is an approximation result for (p, C)–smooth functions by
very deep feedforward neural networks.

Lemma 10 Let d ∈ N, let f : Rd → R be (p, C)–smooth for some p = q+ s, q ∈ N0 and
s ∈ (0, 1], and C > 0. Let M ∈ N with M > 1 sufficiently large, where

M2p ≥ c5 ·

max

2, sup
x∈[−2,2]d

(l1,...,ld)∈Nd
l1+···+ld≤q

∣∣∣∣ ∂l1+···+ldf

∂l1x(1) . . . ∂ldx(d)
(x)

∣∣∣∣



4(q+1)

must hold for some sufficiently large constant c5 ≥ 1. Let σ : R → R be the ReLU
activation function

σ(x) = max{x, 0}

and let L, r ∈ N such that
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(i)

L ≥5Md +
⌈
log4

(
M2p+4·d·(q+1) · e4(̇q+1)·(Md−1)

)⌉
· dlog2(max{d, q}+ 2)e+ dlog4(M

2p)e

(ii)

r ≥ 132 · 2d · dede ·
(
d+ q

d

)
·max{q + 1, d2}

hold. Then there exists a feedforward neural network

fnet ∈ Gd(L,k)

with k = (k1, . . . , kL) and k1 = · · · = kL = r such that

sup
x∈[−2,2]d

|f(x)− fnet(x)|

≤ c6 ·

max

2, sup
x∈[−2,2]d

(l1,...,ld)∈Nd
l1+···+ld≤q

∣∣∣∣ ∂l1+···+ldf

∂l1x(1) . . . ∂ldx(d)
(x)

∣∣∣∣



4(q+1)

·M−2p.

Proof. See Theorem 2 in Kohler and Langer (2021). An alternative proof of a closely
related result can be found in Yarotsky and Zhevnerchuk (2019), see Theorem 4.1 therein.

�

D. A minimax lower bound

In this section, we show that the rate of convergence of our truncated least squares
estimate introduced in the proof of Theorem 1, up to a logarithmic factor, is in some
sense an optimal minimax rate of convergence. To show the upper bound (6) in Theorem
1, we used equation (2) and then derived an upper bound on

E

{∫
|ηn(x)− η(x)|2PX(dx)

}
, (36)

where ηn(·,Dn) is a (truncated) estimate of the a posteriori probability η. Thus, we solve
the classification problem via regression estimation. In our theorem we have made the
assumption that (X, Y ) is a [0, 1]{1,...,d1}×{1,...,d2} × {0, 1}-valued random variable and
the a posteriri probability satifies a generalized hierarchical max-pooling model given by
the functions{

g
(a)
k,s : R4 → [0, 1]

}
k=1,...,l,s=1,...,4l−k,a=1,...,d∗

and g : Rd
∗ → [0, 1]
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However, we have shown our upper bound for (36) for a more general case in which
(X, Y ) is a [0, 1]{1,...,d1}×{1,...,d2} × R-valued random variable satisfying

E
{

exp
(
c3 · Y 2

)}
<∞

for a constant c3 > 0, where the regression function η(x) = E{Y |X = x} satisfies a
generalized hierarchical max-pooling model with functions{

g
(a)
k,s : R4 → [−1/2, 3/2]

}
k=1,...,l,s=1,...,4l−k,a=1,...,d∗

and g : Rd
∗ → [−1/2, 3/2] (37)

such that
g([0, 1]d

∗
) ⊆ [0, 1] and g

(a)
k,s([0, 1]4) ⊆ [0, 1].

The aim of this section is to show that for this more general class of distributions

max

{
n
− 2·p1

2·p1+4 , n
− 2·p2

2·p2+d∗

}
is also a lower minimax rate of convergence, which means that our estimate for this class
has an optimal rate of convergence up to the logarithmic factor.

In the following, for d ∈ N and A ⊆ Rd, H(p,C)
A denote the class of all (p, C)-smooth

functions h : Rd → [0, 1] with supp(h) ⊆ A and G(p,C)
d denote the class of all (p, C)-

smooth functions g : Rd → [−1/2, 3/2] with g([0, 1]d) ⊆ [0, 1]. Furthermore, H(p1,p2)
l,d∗

denote the class of all real-valued functions on [0, 1]{1,...,d1}×{1,...,d2} that satisfy a gen-
eralized hierarchical max-pooling model of order d∗ and level l such that the functions

(37) are choosen from G(p1,C1)
4 and G(p2,C2)

d∗ for some C1, C2 > 0, respectively.

Lemma 11 Let p1, p2 ∈ [1,∞) and d1, d2, d
∗, l ∈ N with d1, d2 > 1, and

√
d∗ ≤ 2l ≤

min{d1, d2}.
a) We set I1 = {1, 2} × {1, 2} and define the subset A1 ⊂ [0, 1]{1,...,d1}×{1,...,d2} by

A1 =
{

(ai)i∈{1,...,d1}×{1,...,d2} : ai ∈ [0, 1] (i ∈ I1), ai = 0 (i /∈ I1)
}
.

For each h ∈ H(p1,C1)
[0,1]4

there exist ηh ∈ H
(p1,p2)
l,d∗ such that

ηh(x) = h(x1,1, x1,2, x2,1, x2,2)
(
x ∈ A1

)
.

b) Let I2 = {i1, . . . , id∗} ⊆ {1, . . . , 2l} × {1, . . . , 2l} such that i1, . . . , id∗ are pairwise
distinct. For j ∈ {1, . . . , d∗} we define the interval

Aj =

[
3 · j − 2

3 · d∗
,
3 · j − 1

3 · d∗

]
, (38)

and define the subset A2 ⊆ [0, 1]{1,...,d1}×{1,...,d2} by

A2 =
{

(ai)i∈{1,...,d1}×{1,...,d2} : aij ∈ Aj (j ∈ {1, . . . , d∗}), ai = 0 (i /∈ I2)
}
.

For each h ∈ H(p2,C2)
A1×···×Ad∗ there exist ηh ∈ H

(p1,p2)
l,d∗ such that

ηh(x) = h(xi1 , . . . , xid∗ )
(
x ∈ A2

)
.
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Proof. a) Let h ∈ H(p1,C1)
[0,1]4

. We define ηh ∈ H
(p1,p2)
l,d∗ by choosing the functions

g ∈ G(p2,C2)
d∗ and

{
g
(a)
k,s ∈ G

(p1,C1)
4

}
k=1,...,l,s=1,...,4l−k,a=1,...,d∗

of the corresponding generalized hierarchical max-pooling model as follows:

1. Set g
(a)
1,s = h for all s = 1, . . . , 4l−1 and a = 1, . . . , d∗.

2. Choose g
(a)
k,s ∈ G

(p1,C1)
4 such that

g
(a)
k,s(x) = x1 (39)

for x ∈ [0, 1]4 and all k = 2, . . . , l, s = 1, . . . , 4l−k and a = 1, . . . , d∗.

3. Choose g ∈ G(p2,C2)
d∗ such that g(x) = x1 for x ∈ [0, 1]d

∗
.

By using equation (39) and since supp(h) ⊆ (0, 1)4 we get

ma(x) = max
(i,j)∈{1,...,d1−2l+1}×{1,...,d2−2l+1}

f
(a)
l,1 (x{i,...,i+2l−1}×{j,...,j+2l−1})

= max
(i,j)∈{1,...,d1−2l+1}×{1,...,d2−2l+1}

h(xi,j , xi,j+1, xi+1,j , xi+1,j+1)

= max{h(x1,1, x1,2, x2,1, x2,2), 0}
= h(x1,1, x1,2, x2,1, x2,2)

for x ∈ A1 and therefore we have

ηh(x) = g(m1(x), . . . ,md∗(x))

= m1(x)

= max
(i,j)∈{1,...,d1−2l+1}×{1,...,d2−2l+1}

f
(1)
l,1 (x{i,...,i+2l−1}×{j,...,j+2l−1})

= h(x1,1, x1,2, x2,1, x2,2)

for all x ∈ A1.
b) Let h ∈ H(p2,C2)

A1×···×Ad∗ and define ηh ∈ H
(p1,p2)
l,d∗ as follows:

1. We choose j(k, s, a) ∈ {1, . . . , 4} and g
(a)
k,s ∈ G

(p1,C1)
4 for some C1 > 0 sufficiently

large with

g
(a)
k,s(x) =

{
xj(k,s,a) , if xj(k,s,a) ∈ Aa =

[
3·a−2
3·d∗ ,

3·a−1
3·d∗

]
0 , if xj(k,s,a) ∈ [0, 1] \

(
3·a−3
3·d∗ ,

3·a
3·d∗
)

for x ∈ [0, 1]4 and all k = 1, . . . , l and s = 1, . . . , 4l−k such that

f
(a)
l,1 (x) =

{
xia , if xia ∈ Aa
0 , if xia ∈ [0, 1] \

(
3·a−3
3·d∗ ,

3·a
3·d∗
) (40)

for x ∈ [0, 1]{1,...,2
l}×{1,...,2l} and all a ∈ {1, . . . , d∗}.
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2. We set g = h.

For x ∈ A2 equation (40) yields

ma(x) = max
(i2,j2)∈{1,...,d1−2l+1}×{1,...,d2−2l+1}

f
(a)
l,1 (x{i2,...,i2+2l−1}×{j2,...,j2+2l−1})

= max{xia , 0}
= xia

for a ∈ {1, . . . , d∗}, which imply

ηh(x) = h(xi1 , . . . , xid∗ ).

�
To show the lower minimax rate of convergence, we use the following lemma, which is

a modification of Theorem 3.2 in Györfi et al. (2002).

Lemma 12 Let d ∈ N, let ε > 0, and let a1, . . . , ad ∈ R. Define the cube

A = [a1, a1 + ε]× · · · × [ad, ad + ε] ⊂ Rd

and let D(p,C)
A be the class of distributions of (X, Y ) such that:

1. X is uniformly distributed on A,

2. Y = η(X) + N , where X and N are independent and N is standard normal, and

η ∈ H(p,C)
A .

Then

lim inf
n→∞

inf
ηn

sup
(X,Y )∈D(p,C)

A

E
{∫
|ηn(x)− g(x)|2PX(dx)

}
n
− 2·p

2·p+d
≥ C1 > 0.

In the proof of Lemma 12 we follow the proof of Theorem 3.2 in Györfi et al. (2002).

Proof. Firstly, we define a subclass of D(p,C)
A for sufficiently large n. Therefore set

Mn =
⌈
(C2 · n)

1
2p+d

⌉
and partition the cube A into Md

n equal sized cubes {An,j}j∈{1,...,Md
n} with side length

ε/Mn and centers {an,j}j∈{1,...,Md
n}. Set k = bpc, β = p − k, and let g : Rd → R+ be

a bounded and (p, (εp/2) · 2β−1 · C)-smooth function with supp(g) ⊂ (−1/2, 1/2) and∫
g2(x)dx > 0. For j ∈ {1, . . . ,Md

n} we define the functions gn,j : Rd → R+ by

gn,j(x) = M−pn · g
(
Mn

ε
· (x− an,j)

) (
x ∈ Rd

)
and for cn = (cn,1, . . . , cn,Md

n
) ∈ {−1, 1}Md

n =: Cn we define the function

m(cn)(x) =

Md
n∑

j=1

(1 + cn,j) · gn,j(x)
(
x ∈ Rd

)
.
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Next, we show that m(cn) is a (p, C)-smooth function. Let α = (α1, . . . , αd) ∈ Nd0 with∑d
i=1 αi = k and set Dα = ∂k

∂x
α1
1 ...∂x

αd
d

. For j ∈ {1, . . . ,Md
n} and x, z ∈ An,j we have

|Dαm(cn)(x)−Dαm(cn)(z)|
= |1 + cn,j | · |Dαgn,j(x)−Dαgn,j(z)|

≤ 2 ·M−pn ·
Mk
n

εk
· ε

p

2
· 2β−1 · C ·

∥∥∥∥Mn

ε
· (x− an,j)−

Mn

ε
· (z− an,j)

∥∥∥∥β
= 2β−1 · C · ‖x− z‖β

≤ C · ‖x− z‖β.

Now let i, j ∈ {1, . . . ,Md
n} with i 6= j, and x ∈ An,i and z ∈ An,j . We choose x̄ on the

boundary of An,i and z̄ on the boundary of An,j such that ‖x− x̄‖+ ‖z− z̄‖ ≤ ‖x− z‖
and get

|Dαm(cn)(x)−Dαm(cn)(z)|
= |(1 + cn,i) ·Dαgn,i(x)− (1 + cn,j) ·Dαgn,j(z)|
≤ |(1 + cn,i) ·Dαgn,i(x)|+ |(1 + cn,j) ·Dαgn,j(z)|
= |1 + cn,i| · |Dαgn,i(x)−Dαgn,i(x̄)︸ ︷︷ ︸

=0

|+ |1 + cn,j | · |Dαgn,j(z)−Dαgn,j(z̄)︸ ︷︷ ︸
=0

|

≤ 2β−1 · C · (‖x− x̄‖β + ‖z− z̄‖β)

= 2β · C ·
(

1

2
· ‖x− x̄‖β +

1

2
· ‖z− z̄‖β

)
≤ 2β · C ·

(
1

2
· ‖x− x̄‖+

1

2
· ‖z− z̄‖

)β
≤ C · ‖x− z‖β,

where we used that u 7→ uβ is a concave function on R+. Therefore the class D̃(p,C)
n of

distributions of (X, Y ) with

1. X is uniformly distributed on A,

2. Y = m(cn)(X)+N for cn ∈ Cn, where X and N are independent and N is standard
normal.

is a subclass of D(p,C)
A for sufficiently large n. Therefore it is sufficient to show that

lim inf
n→∞

inf
ηn

sup
(X,Y )∈D̃(p,C)

n

M2p
n

C2
·E
{∫
|ηn(x)−m(cn)(x)|2PX(dx)

}
> 0.

Now, let ηn be an arbitrary estimate. Since the supports of the functions gn,j are
disjoint by construction, {gn,j}j=1,...,Md

n
is an orthogonal system with respect to the L2
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inner product. Hence the orthogonal projection m̂n of mn to {m(cn)}cn∈Cn is given by

m̂n(x) =

Md
n∑

j=1

ĉn,j · gn,j(x),

where

ĉn,j =

∫
An,j

mn(x) · gn,j(x)dx∫
An,j

g2n,j(x)dx
.

For an arbitrary cn ∈ Cn we have∫ ∣∣∣mn(x)−m(cn)(x)
∣∣∣2 dx

≥
∫ ∣∣∣m̂n(x)−m(cn)(x)

∣∣∣2 dx
=

∫ ∣∣∣ Md
n∑

j=1

(ĉn,j · gn,j(x)− (1 + cn,j) · gn,j(x))
∣∣∣2dx

=

Md
n∑

j=1

∫
An,j

|ĉn,j · gn,j(x)− (1 + cn,j) · gn,j(x)|2 dx

=

Md
n∑

j=1

|ĉn,j − (1 + cn,j)|2
∫
An,j

g2n,j(x)dx

=

∫
g2(x)dx · εd

M2p+d
n

·
Md
n∑

j=1

|ĉn,j − (1 + cn,j)|2 .

We set

c̃n,j =

{
1, if ĉn,j ≥ 1

−1, if ĉn,j < 1.

Because of
|ĉn,j − (1 + cn,j)| ≥ I{c̃n,j 6=cn,j}

we get ∫ ∣∣∣mn(x)−m(cn)(x)
∣∣∣2 dx

≥
∫
g2(x)dx · εd

M2p+d
n

·
Md
n∑

j=1

I{c̃n,j 6=cn,j}

=
C2

M2p
n

·
∫
g2(x)dx · ε

d

C2︸ ︷︷ ︸
>0

· 1

Md
n

·
Md
n∑

j=1

I{c̃n,j 6=cn,j}
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and therefore it suffices to show that

lim inf
n→∞

inf
c̃n

sup
cn∈Cn

1

Md
n

Md
n∑

j=1

P{c̃n,j 6= cn,j} > 0. (41)

The proof of inequality (41) can be found in the proof of Theorem 3.2 in Györfi et al.
(2002). �

Lemma 13 Let p1, p2 ∈ [1,∞) and d1, d2, d
∗, l ∈ N with d1, d2 > 1, and

√
d∗ ≤ 2l ≤

min{d1, d2}. Let D be the class of distributions of a [0, 1]{1,...,d1}×{1,...,d2} × R-valued
random variable (X, Y ) such that:

1. E
{

exp
(
c3 · Y 2

)}
<∞,

2. η(·) = E{Y |X = ·} ∈ H(p1,p2)
l,d∗ ,

where H(p1,p2)
l,d∗ is defined as above. Then we have

lim inf
n→∞

inf
ηn

sup
(X,Y )∈D

E
{∫
|ηn(x)− η(x)|2PX(dx)

}
max

{
n
− 2·p1

2·p1+4 , n
− 2·p2

2·p2+d∗

} ≥ C > 0.

Proof. The idea of the proof is to use Lemma 1 to find corresponding subclasses of D
which allow us to reduce the assertion to the case of Lemma 12. Set I1 = {1, 2}×{1, 2},
let I2 = {i1, . . . , id∗} ⊆ {1, . . . , 2l}× {1, . . . , 2l} such that i1, . . . , id∗ are pairwise distinct
and set D = {1, . . . , d1} × {1, . . . , d2}. We define

AI2 = {(ai)i∈I2 : aij ∈ Aj (j ∈ {1, . . . , d∗})} ⊂ [0, 1]I2

for Aj ⊂ [0, 1] (j ∈ {1, . . . , d∗}) defined as in equation (38) and set

H1 =
{
ηh ∈ H

(p1,p2)
l,d∗ : h ∈ H(p1,C1)

[0,1]4

}
and H2 =

{
ηh ∈ H

(p1,p2)
l,d∗ : h ∈ H(p2,C2)

A1×···×Ad∗

}
,

where the functions ηh ∈ H
(p1,p2)
l,d∗ are defined as in Lemma 11 a) and b), respectively. We

then define two subclasses D1 and D2 of D as follows. Let D1 the class of distributions
of (X, Y ) such that:

1. XI1 is uniformly distributed on [0, 1]I1 and XD\I1 is concentrated on {0}D\I1 ,

2. Y = η(X) + N , where X and N are independent and N is standard normal, and
η ∈ H1,

and let D2 the class of distributions of (X, Y ) such that:

1. XI2 is uniformly distributed on AI2 and XD\I2 is concentrated on {0}D\I2 ,
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2. Y = η(X) + N , where X and N are independent and N is standard normal, and
η ∈ H2.

Furthermore, let D(I1) be the class of distributions of (XI1 , Y ) such that

1. XI1 is uniformly distributed on [0, 1]I1

2. Y = η(X1,1, X1,2, X2,1, X2,2) + N , where XI1 and N are independent and N is

standard normal, and η ∈ H(p1,C1)
[0,1]4

,

and let D(I2) be the class of distributions of (XI2 , Y ) such that

1. XI2 is uniformly distributed on AI2

2. Y = η(Xi1 , . . . , Xid∗ ) + N , where XI2 and N are independent and N is standard

normal, and η ∈ H(p2,C2)
A1×···×Ad∗ ,

By Lemma 11 and Fubini’s Theorem we get

lim inf
n→∞

inf
ηn

sup
(X,Y )∈D

E
{∫
|ηn(x)− η(x)|2PX(dx)

}
max

{
n
− 2·p1

2·p1+4 , n
− 2·p2

2·p2+d∗

}
≥ min

{
lim inf
n→∞

inf
ηn

sup
(X,Y )∈D

E
{∫
|ηn(x)− η(x)|2PX(dx)

}
n
− 2·p1

2·p1+4

,

lim inf
n→∞

inf
ηn

sup
(X,Y )∈D

E
{∫
|ηn(x)− η(x)|2PX(dx)

}
n
− 2·p2

2·p2+d∗

}

≥ min

{
lim inf
n→∞

inf
ηn

sup
(X,Y )∈D1

E
{∫
|ηn(x)− η(x)|2PX(dx)

}
n
− 2·p1

2·p1+4

,

lim inf
n→∞

inf
ηn

sup
(X,Y )∈D2

E
{∫
|ηn(x)− η(x)|2PX(dx)

}
n
− 2·p2

2·p2+d∗

}

= min

{
lim inf
n→∞

inf
ηn

sup
(X,Y )∈D1

ED(I1)
n

{∫
|ηn((xI1 , 0, . . . , 0))− g(1)1,1(x1,1, x1,2, x2,1, x2,2))|2PXI1

(dxI1)
}

n
− 2·p1

2·p1+4

,

lim inf
n→∞

inf
ηn

sup
(X,Y )∈D2

ED(I2)
n

{∫
|ηn((xI2 , 0, . . . , 0))− g(xi1 , . . . , xid∗ )|

2PXI2
(dxI2)

}
n
− 2·p2

2·p2+d∗

}

≥ min

{
lim inf
n→∞

inf
ηn

sup
(XI1

,Y )∈D(I1)
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ED(I1)
n

{∫
|ηn(xI1)− η(x1,1, x1,2, x2,1, x2,2)|2PXI1

(dxI1)
}

n
− 2·p1

2·p1+4

,

lim inf
n→∞

inf
ηn

sup
(XI2

,Y )∈D(I2)
2

ED(I2)
n

{∫
|ηn(xI2)− η(xi1 , . . . , xid∗ )|

2PXI2
(dxI2)

}
n
− 2·p2

2·p2+d∗

}
,

where in the last two lines ηn is an estimator depending on a n-sized sample of the

random vector (XI1 , Y ) and (XI2 , Y ), respectively. For i ∈ {1, 2} the subscript D(Ii)
n in

ED(Ii)
n

indicates that the expectation is taken with respect to a n-sized sample of the

random vector (XIi , Y ) instead of the n-sized sample Dn of (X, Y ). The assertion follows
by Lemma 12. �

E. Design of the network architecture and choice of
hyperparameters

In this section, we first describe how, derived from our theory, we used the class of
convolutional neural networks introduced in Section 2 in the simulation study in Section
4 and Section 5. We then explain which hyperparameters the other methods use and
list the parameter sets for the adaptive choices of hyperparameters in Table 3.

The class of convolutional neural networks introduced in Section 2 depends on the
parameters t, L = (L(1), L(2)), k(1), k(2) and M. In Theorem 1, some of these parame-
ters depend on the level l and the order d∗ of the generalized hierarchical max-pooling
model. Therefore, we adaptively choose (using the splitting of the sample technique as
descripted in Section 4) these two parameters from the parameter sets shown in Ta-
ble 3. As in our theoretical result the filter sizes Mr have the values 21, 22, . . . , 2l for
r ∈ {1, . . . , L(1)}, where the filter sizes grow with increasing r. To simplify the architec-
ture of our classifier, each value of the filter sizes is repeated Ln times. The number of
layers in the convolutional part is then given by L(1) = Ln · l. Furthermore, as in our
theoretical result, we choose k(1) channels in each layer in the convolutional part and
k(2) neurons in each layer of the fully connected neural network part, i e., we have

k(1) = (k
(1)
1 , . . . , k

(1)
1 ) and k(2) = (k

(2)
1 , . . . , k

(2)
1 ).

The parameter sets from which we adaptively choose the parameters and the resulting
network parameters (derived from our theoretical result) are shown in Table 3. Next, we
describe the hyperparameters of the other methods, whose parameters are adaptively
choosen from the parameter sets from Table 3. The connected standard feedforward
neural network (abbr. neural-s) has L hidden layers and k neurons per layer. Our kn-
nearest neighbor classification estimate (abbreviated neighbor) has only the parameter
kn. For our random forest classifier (abbr. rand-f ), we choose Nleaves as the maximum
number of leaf nodes and Ntrees as the number of trees in the forest. Both support
vector machine approaches, svm-p and svm-rbf, have a parameter C that controls the
importance of the regularization term and a parameter γ that represents the kernel
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choice of hyperparameters

approach adaptively choosen parameters resulting parameters

neural-c l ∈ {2, 3, 4}, d∗ ∈ {1, 2}, Ln ∈ {1, 2, 3} L(1) = l · Ln, L(2) = Ln
k(1) ∈ {2, 4, 8}, k(2) ∈ {5, 10} M(r−1)·Ln+1, . . . ,Mr·Ln = 2r

for r = 1, . . . , l, t = d∗

neural-s L ∈ {1, 2, . . . , 8}, k ∈ {10, 20, 50, 100, 200}
neighbor kn ∈ {1, 2, 3} ∪ {2, 4, 8, 12, 16, . . . , 4 · bnl4 c}
rand-f Nleaves ∈ {8, 16, 32}, Ntrees ∈ {50, 100, 200}
svm-p d ∈ {1, 2, 3, 4}, C ∈ {10−2, 10−1, 1, 10}

γ ∈ {10−2, 10−1, 1, 10}
svm-rbf C ∈ {10−2, 10−1, 1, 10},

γ ∈ {10−2, 10−1, 1, 10}

Table 3: Parameter sets for the choice of the hyperparameters.

coefficient. The polynomial kernel of the support vector machine (abbr. svm-p) has a
degree of d.
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