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Abstract
Image classifiers based on convolutional neural networks are defined, and the rate 
of convergence of the misclassification risk of the estimates towards the optimal 
misclassification risk is analyzed. Under suitable assumptions on the smoothness 
and structure of a posteriori probability, the rate of convergence is shown which is 
independent of the dimension of the image. This proves that in image classifica-
tion, it is possible to circumvent the curse of dimensionality by convolutional neural 
networks. Furthermore, the obtained result gives an indication why convolutional 
neural networks are able to outperform the standard feedforward neural networks in 
image classification. Our classifiers are compared with various other classification 
methods using simulated data. Furthermore, the performance of our estimates is also 
tested on real images.
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1  Introduction

1.1 � Scope of this article

Deep neural networks are nowadays among the most successful and most widely 
used methods in machine learning, see, e.g., Schmidhuber (2015), Rawat and 
Wang (2017), and the literature cited therein. In many applications the most suc-
cessful networks are deep convolutional networks, see, e.g., Krizhevsky et  al. 
(2012) and Kim (2014) concerning applications in image classification or lan-
guage recognition, respectively. These networks can be considered as a special 
case of the standard deep feedforward neural networks, where symmetry con-
straints are imposed on the weights of the networks. For general standard deep 
feedforward neural networks it was recently shown that under suitable composi-
tory assumptions on the structure of the regression function these networks are 
able to achieve dimension reduction in estimation of high-dimensional regression 
functions (cf., Kohler and Krzyżak, 2017; Bauer and Kohler, 2019; Schmidt-Hie-
ber, 2020; Kohler and Langer, 2021; Suzuki and Nitanda, 2019). The purpose of 
this article is to characterize situations in image classification, where deep convo-
lutional neural networks can achieve a similar dimension reduction.

1.2 � Image classification

Let d1, d2 ∈ ℕ and let (�,Y) , (�1, Y1) , ..., (�n, Yn) be independent and identically 
distributed random variables with values in

Here, we use the notation

for a nonempty and finite index set J, and we describe a (random) image from (ran-
dom) class Y ∈ {0, 1} by a (random) matrix X with d1 columns and d2 rows, which 
contains at position (i, j) the gray scale value of the pixel of the image at the corre-
sponding position.

Let

be the so-called a posteriori probability. Then we have

where

[0, 1]{1,…,d1}×{1,…,d2} × {0, 1}.

[0, 1]J =
{
(aj)j∈J ∶ aj ∈ [0, 1] (j ∈ J)

}

(1)�(�) = �{Y = 1|� = �} (� ∈ [0, 1]{1,…,d1}×{1,…,d2})

min
f∶[0,1]{1,…,d1}×{1,…,d2}→{0,1}

�{f (�) ≠ Y} = �{f ∗(�) ≠ Y},
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is the so-called Bayes classifier (cf., e.g., Theorem 2.1 in Devroye et al. (1996)). Set

In the sequel, we consider the problem of constructing a classifier

such that the misclassification risk

of this classifier is as small as possible. Our aim is to derive a bound on the expected 
difference of the misclassification risk of fn and the optimal misclassification risk, 
i.e., we want to derive an upper bound on

1.3 � Plug‑in classifiers

We will use plug-in classifiers of the form

where

is an estimate of a posteriori probability (1). It is well-known that such plug-in clas-
sifiers satisfy

(cf., e.g., Theorem  1.1 in Györfi et  al., 2002), which implies (via the 
Cauchy–Schwarz inequality)

f ∗(�) =

{
1, if 𝜂(�) >

1

2

0, elsewhere

Dn =
{
(�1, Y1),… , (�n, Yn)

}
.

fn = fn(⋅,Dn) ∶ [0, 1]{1,…,d1}×{1,…,d2}
→ {0, 1}

�{fn(�) ≠ Y|Dn}

�

{
�{fn(�) ≠ Y|Dn} − min

f∶[0,1]{1,…,d1}×{1,…,d2}→{0,1}
�{f (�) ≠ Y}

}

= �{fn(�) ≠ Y} − �{f ∗(�) ≠ Y}.

fn(�) =

{
1, if �n(�) ≥ 1

2

0, elsewhere

�n(⋅) = �n(⋅,Dn) ∶ [0, 1]{1,…,d1}×{1,…,d2}
→ ℝ

�{fn(�) ≠ Y|Dn} − �{f ∗(�) ≠ Y} ≤ 2 ⋅ � |�n(�) − �(�)|�
�
(d�)

(2)�{fn(�) ≠ Y} − �{f ∗(�) ≠ Y} ≤ 2 ⋅

√
�

{
� |�n(�) − �(�)|2 �

�
(d�)

}
.
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Hence, we can derive an upper bound on the difference between the expected mis-
classification risk of our estimate and the minimal possible value from a bound on 
the expected L2-error of the estimate �n of a posteriori probability.

It is well-known that the bound in (2) is not tight, therefore classification is easier 
than regression estimation (cf., Devroye et al., 1996).

In the sequel, we will nevertheless solve an image classification problem via 
regression estimation by estimating the a posteriori probability and defining the cor-
responding plug-in classifier. We do this because, as described below, it is neces-
sary to impose conditions on the underlying distribution and since this can be done 
by restricting the structure of a posteriori probability. And, as we will see in the 
next subsection, it is easy to formulate such restrictions such that they seem to be 
natural assumptions in image classification applications. Moreover, by considering 
the corresponding least squares estimate of the a posteriori probability, no further 
assumptions on the distribution of (�,Y) are required. In other papers that consider 
a classification problem and where a different loss function is used, such Kim et al. 
(2021) and Liu et al. (2021), they have made additional assumptions on the distribu-
tion of (�,Y).

1.4 � A hierarchical max‑pooling model for a posteriori probability

In order to derive nontrivial rate of convergence results on the difference between 
the misclassification risk of any estimate and the minimal possible value it is neces-
sary to restrict the class of distributions (cf., Cover, 1968; Devroye, 1982). There-
fore, in Definition 1, we will introduce a model for a posteriori probability which 
makes assumptions on its structure and smoothness. The new model introduced here 
is specifically designed for applications in image classification.

For the structural assumptions in our model, consider an application where 
a human has to decide about a class of an image, e.g., the human has to decide 
whether an image contains a certain speed limit traffic sign, but not a dead-end or 
a no-entry traffic sign (an example image is shown in Fig. 1). Then, for each of the 
three traffic signs, the human will survey the whole image and look at each subpart 
of the image whether it contains the particular traffic sign or not. By looking at a 
subpart, the human can estimate a probability that this subpart contains the traffic 
sign. It is then natural to assume that the probability that the whole image contains 
the traffic sign is simply the maximum of the probabilities for each subpart of the 
image. Furthermore, the human takes decision whether a given subpart of the image 
contains the traffic sign or not by taking several decisions whether the image con-
tains parts of the traffic sign or not, and by combining these decisions about the 
different parts hierarchically. To decide whether the image belongs to the described 
class, the human finally checks whether its estimated probability for the speed limit 
sign is sufficiently large and the probabilities for the other two traffic signs are cor-
respondingly small. To do this, e.g., the human could use the function g ∶ ℝ

3
→ ℝ , 

which is given by g((p1, p2, p3)) = max{p1, 1 − p2, 1 − p3}.
For the structural assumptions in our model, we summarize the ideas above: 
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1.	 We assume that the probability whether an image belongs to a class is obtained 
by applying a function to the probabilities of the existence of several objects.

2.	 The probability whether the image contains a certain object is obtained by look-
ing at each subpart of the image whether it contains the object or not. Here, we 
assume that the probability that the whole image contains the object is the maxi-
mum of the probabilities for each subpart of the image.

3.	 Furthermore, we assume that the probability whether a given subpart contains 
a particular object is hierarchically composed of the decisions of smaller and 
smaller subparts.

Combining these three ideas leads us to the generalized hierarchical max-pooling 
model introduced next. In order to define this model we need the following notation: 
For M ⊆ ℝ

d and � ∈ ℝ
d we define

For I ⊆ {1,… , d1} × {1,… , d2} and � = (xi)i∈{1,…,d1}×{1,…,d2}
∈ [0, 1]{1,…,d1}×{1,…,d2} 

we set

Definition 1  Let d1, d2 ∈ ℕ with d1, d2 > 1 and m ∶ [0, 1]{1,…,d1}×{1,…,d2} → ℝ.

� +M = {� + � ∶ � ∈ M}.

�I = (xi)i∈I .

Fig. 1   The shown image does not belong to the class described above, because it contains both a dead-
end traffic sign and a no-entry traffic sign. We have marked the subparts with the corresponding traffic 
signs and have indicated how the decisions about the subparts are composed of the decisions of smaller 
and smaller subparts
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(a) We say that m satisfies a max-pooling model with index set

if there exist a function f ∶ [0, 1](1,1)+I → ℝ such that

(b) Let I = {0,… , 2l − 1} × {0,… , 2l − 1} for some l ∈ ℕ . We say that

satisfies a hierarchical model of level l, if there exist functions

such that we have

for some fk,s ∶ [0, 1]{1,…,2k}×{1,…,2k}
→ ℝ recursively defined by

for k = 2,… , l, s = 1,… , 4l−k , and

for s = 1,… , 4l−1.
(c) We say that m ∶ [0, 1]{1,…,d1}×{1,…,d2} → ℝ satisfies a hierarchical max-pooling 

model of level l (where 2l ≤ min{d1, d2} ), if m satisfies a max-pooling model with 
index set

and the function f ∶ [0, 1](1,1)+I → ℝ in the definition of this max-pooling model 
satisfies a hierarchical model with level l.

(d) Let d∗ ∈ ℕ . We say m ∶ [0, 1]{1,…,d1}×{1,…,d2} → ℝ satisfies a generalized hier-
archical max-pooling model of order d∗ and level l , if there exist functions

which satisfy a hierarchical max-pooling model of level l, and if there exists a func-
tion g ∶ ℝ

d∗
→ [0, 1] such that

I ⊆ {0,… , d1 − 1} × {0,… , d2 − 1},

m(�) = max
(i,j)∈ℤ2 ∶ (i,j)+I⊆{1,…,d1}×{1,…,d2}

f
(
�(i,j)+I

)
(� ∈ [0, 1]{1,…,d1}×{1,…,d2}).

f ∶ [0, 1]{1,…,2l}×{1,…,2l}
→ ℝ

gk,s ∶ ℝ
4
→ [0, 1] (k = 1,… , l, s = 1,… , 4l−k)

f = fl,1

fk,s(�) =gk,s
(
fk−1,4⋅(s−1)+1(�{1,…,2k−1}×{1,…,2k−1}),

fk−1,4⋅(s−1)+2(�{2k−1+1,…,2k}×{1,…,2k−1}),

fk−1,4⋅(s−1)+3(�{1,…,2k−1}×{2k−1+1,…,2k}),

fk−1,4⋅s(�{2k−1+1,…,2k}×{2k−1+1,…,2k})
)

(
� ∈ [0, 1]{1,…,2k}×{1,…,2k}

)

f1,s(x1,1, x1,2, x2,1, x2,2) = g1,s(x1,1, x1,2, x2,1, x2,2) (x1,1, x1,2, x2,1, x2,2 ∈ [0, 1])

I =
{
0,… , 2l − 1

}
×
{
0,… , 2l − 1

}

m1,… ,md∗ ∶ [0, 1]{1,…,d1}×{1,…,d2}
→ ℝ,
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(e) Let p1, p2 ∈ (0,∞) . We say that a generalized hierarchical max-pooling model 
of order d∗ and level l has smoothness constraints p1 and p2 , if all functions gk,s 
in the definition of the functions mi are (p1,C1)–smooth for some C1 > 0 for any 
i ∈ {1,… , d∗} , and if the function g is (p2,C2)–smooth for some C2 > 0 (see 
Sect. 1.7 for the definition of (p, C)–smoothness).

Remark 1  The generalized hierarchical max-pooling model with smoothness con-
straints is a special case of the function class considered in Schmidt-Hieber (2020) 
and also a special case of the more general hierarchical composition model with 
order and smoothness constraint from Kohler and Langer (2021).

Remark 2  In our definition, the function gk,s is mapping from ℝ4 for simplicity, since 
this lets us easily implement the above idea of hierarchical decisions.

Remark 3  The parameter d∗ in our model describes the number of objects that are 
relevant for the classification of a random image. In our above example from Fig. 1, 
we assume that the a posteriori probability satisfies a generalized hierarchical max-
pooling model of order d∗ = 3 , since the correct classification depends only on the 
existence of the three specific traffic signs. In our example, as already mentioned, 
the function g ∶ ℝ

3
→ ℝ could be given by g(�) = max{x1, 1 − x2, 1 − x3} . The 

function g is then (1,
√
3)-smooth with respect to the Euclidean norm (see Sect. 1.7 

for the definition of (p, C)–smoothness). The level l of our model is derived from the 
minimum size of a square of 2l × 2l pixels, which is sufficiently large to detect all 
relevant objects within a random image.

Remark 4  In the definition of our generalized hierarchical max-pooling model we do 
not allow distinct levels l1,… , ld∗ for the functions m1, ...,md∗ . This is a restriction of 
the more general case which we use because it makes our proofs much less technical 
(see Remark 7 for the generalization of our results).

1.5 � Main results

The main contributions of this paper are as follows: First, we introduce the above 
setting for the mathematical analysis of an image classification problem. Here, our 
main idea is to use plug-in classification estimates, which allows us to restrict the 
underlying class of distributions by imposing constraints on the structure and the 
smoothness of a posteriori probability. The main advantage of this approach is that 
we can introduce in this setting with the above generalized hierarchical max-pooling 
model a natural condition for applications. Second, we analyze the rate of conver-
gence of the deep convolutional neural network classifiers (with ReLU activation 
function) in this context. Here, we show in Theorem 1 that in case that a posteriori 
probability satisfies a generalized hierarchical max-pooling model of order d∗ with 

m(�) = g(m1(�),… ,md∗ (�)).
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smoothness constraints p1 and p2 , the expected misclassification risk of the estimate 
converges toward the minimal possible value with rate

(up to some logarithmic factor). Since this rate of convergence does not depend on 
the dimension d1 ⋅ d2 of the image, this shows that under suitable assumptions on 
the structure of the a posteriori probability it is possible to circumvent the curse of 
dimensionality in image classification by using convolutional neural networks.

In the proof, we use standard bounds from empirical process theory (cf., Lemma 
10 in the supplement). The main technical novelty is the bound on the approximation 
error. Here, a connection between standard feedforward neural networks and convo-
lutional neural networks is made (cf., Lemma 2 in the supplement) which, using the 
approximation result from Theorem 2 b) in Kohler and Langer (2021) for fully con-
nected standard deep feedforward neural networks, yields us an approximation result 
for the generalized hierarchical max-pooling model by convolutional neural net-
works. Here, the difference with existing works such as Oono and Suzuki (2019) and 
Petersen and Voigtlaender (2020), which use the approximation capability of fully 
connected neural networks, is that we do not use the approximation capability of 
the fully connected neural networks to bound the overall approximation error of our 
convolutional neural network. Indeed we, on the other hand, have adapted the con-
volutional neural network architecture to the generalized hierarchical max-pooling 
function class and use the fully connected neural networks only as approximations 
of the functions g(a)

k,s
 and g(a) of the generalized hierarchical max-pooling model. For 

the estimation error, our technical novelty is a bound on the VC-dimension for con-
volutional neural networks (cf., Lemma 7 in the supplement), which is a modifica-
tion of Theorem 6 in Bartlett et al. (2019). Specifically, we adapted the proof therein 
to our architecture of convolutional neural networks, which additionally includes 
max-pooling layers.

1.6 � Discussion of related results

Convolutional neural networks, introduced by LeCun et al. (1989), have become the 
leading techniques in pattern recognition applications, cf., e.g., Lecun et al. (1998), 
LeCun et al. (2015), Goodfellow et al. (2016), Rawat and Wang (2017), and the lit-
erature cited therein.

As mentioned by Rawat and Wang (2017), despite the empirical success of these 
methods the theoretical proof of why they succeed is lacking. In fact there are only 
a few papers addressing theoretical properties of these networks. Several papers 
used the idea that properly defined convolutional neural networks are able to mimic 
standard deep feedforward neural networks and obtained rate of convergence results 
for estimates based on convolutional neural networks similar to standard feedfor-
ward neural networks estimates (cf., e.g., Oono and Suzuki 2019 and the literature 
cited therein). The drawback of this approach is that in this way it is not possible to 
identify situations in which convolutional neural networks are superior to standard 

max
{
n
−

p1

2⋅p1+4 , n
−

p2

2⋅p2+d
∗

}
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feedforward neural networks. More specifically, in Oono and Suzuki (2019), it is 
shown that an arbitrary block-sparse fully connected neural network, which con-
sists of M parallel blocks, can be realized by a convolutional residual neural network 
(i.e., a convolutional neural network that contains skip layers connections). Here, 
the skip layers connections are used to sum up the scaled outputs of each block in 
order to compute the output of the overall network, while in the proof of our result 
we successively compute several fully connected neural networks with small input 
dimension that share the same input by storing computed values in corresponding 
channels of the convolutional neural network. In Liu et al. (2021), they consider con-
volutional residual neural network architectures similar to Oono and Suzuki (2019) 
in a statistical setting for binary classification. Their idea is to exploit low-dimen-
sional geometric structures in the input data to achieve dimensionality reduction. 
Instead of directly using the approximation capability of fully connected neural net-
works, cardinal B-splines and the geometric structure of the input data are used. 
Generalization bounds for convolutional neural networks have been analyzed in Lin 
and Zhang (2019). In several papers, it was shown that gradient descent is able to 
find the global minimum of the empirical loss function in case of overparameterized 
convolutional neural networks, cf., e.g., Du et al. (2018). But, as was shown by a 
counterexample in Kohler and Krzyżak (2021), overparameterized deep neural net-
works minimizing the empirical loss do not, in general, generalize well. Remarkable 
approximation properties were obtained in Zhou (2020). Here, the network archi-
tecture has only one channel per layer, with the size of this channel increasing lin-
early with the number of layers, leading to extremely wide network architectures. In 
an abstract setting, very interesting approximation properties of deep convolutional 
neural networks have been obtained by Yarotsky (2018). However, it is unclear how 
one can apply these results in statistical estimation problem.

Much more is known about standard deep feedforward neural networks. Here, it 
was recently shown that under suitable compository assumptions on the structure of 
the regression function these networks are able to achieve dimension reduction in 
estimation of high-dimensional regression functions (cf., Kohler and Krzyżak, 2017; 
Bauer and Kohler, 2019; Schmidt-Hieber, 2020; Kohler and Langer, 2021; Suzuki 
and Nitanda, 2019). As already mentioned in Remark 1, especially the results 
from Schmidt-Hieber (2020) and Kohler and Langer (2021) are closely related to 
our analysis. In Schmidt-Hieber (2020) the neural networks must be sparse, that is, 
the number of weights that are nonzero is specified, but an exact architecture is not 
provided. In Kohler and Langer (2021), it is shown that a similar convergence rate 
holds for fully connected standard deep feedforward neural networks, which makes 
their network architecture easier to apply.

Imaizumi and Fukamizu (2019) derived results concerning estimation by neural 
networks of piecewise polynomial regression functions with partitions having rather 
general smooth boundaries. Eckle and Schmidt-Hieber (2019) and Kohler et  al. 
(2019) showed that the least squares neural network regression estimates based on 
deep neural networks can achieve the rate of convergence results similar to piece-
wise polynomial partition estimates where partition is chosen in an optimal way.

Classification theory has been intensively studied in statistics, see e.g., the book 
Devroye et  al. (1996) which discusses probabilistic theory of pattern recognition 
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in depth. This theory can of course be applied to image classification, but due to 
high dimensionality of the input in image classification, this will not lead to useful 
results.

Classification problem with standard deep feedforward neural networks has been 
analyzed in Kim et al. (2021) and Hu et al. (2020). In Hu et al. (2020) they derive 
sharp convergence rates for standard deep feedforward neural networks in a teacher-
student setting. However, in this setting we obtain only limited hints on how these 
results can be applied or how they can be used to identify good network architec-
tures in applications.

Bayesian image analysis, which can be used, e.g., for feature extraction, can be 
found in Chang et al. (2017).

A related problem to image classification is image reconstruction or image 
denoising. Here, quite a few theoretical results exist, see, e.g., Korostelev and Tsyb-
akov (1993) and the literature cited therein.

1.7 � Notation

Throughout the paper, the following notation is used: The sets of natural numbers, 
natural numbers including 0, integers and real numbers are denoted by ℕ , ℕ0 , ℤ 
and ℝ , respectively. For z ∈ ℝ , we denote the smallest integer greater than or equal 
to z by ⌈z⌉ . Let D ⊆ ℝ

d and let f ∶ ℝ
d
→ ℝ be a real-valued function defined on 

ℝ
d . We write � = argmin

�∈D f (�) if min
�∈D f (�) exists and if � satisfies � ∈ D and 

f (�) = min
�∈D f (�) . For f ∶ ℝ

d
→ ℝ

is its supremum norm, and the supremum norm of f on a set A ⊆ ℝ
d is denoted by

Let p = q + s for some q ∈ ℕ0 and 0 < s ≤ 1 . A function f ∶ ℝ
d
→ ℝ is called 

(p, C)-smooth, if for every � = (�1,… , �d) ∈ ℕ
d
0
 with 

∑d

j=1
�j = q the partial deriva-

tive �qf

�x
�1
1
…�x

�d
d

 exists and satisfies

for all �, � ∈ ℝ
d.

Let F  be a set of functions f ∶ ℝ
d
→ ℝ , let �1,… , �n ∈ ℝ

d and set 
�
n
1
= (�1,… , �n) . A finite collection f1,… , fN ∶ ℝ

d
→ ℝ is called an � – cover of F  

on �n
1
 if for any f ∈ F  there exists i ∈ {1,… ,N} such that

‖f‖∞ = sup
�∈ℝd

�f (�)�

‖f‖A,∞ = sup
�∈A

�f (�)�.

�����
�qf

�x
�1
1
… �x

�d
d

(�) −
�qf

�x
�1
1
… �x

�d
d

(�)
�����
≤ C ⋅ ‖� − �‖s

1

n

n∑
k=1

|f (�k) − fi(�k)| < 𝜀.
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The �–covering number of F  on �n
1
 is the size N of the smallest �–cover of F  on �n

1
 

and is denoted by N1(�,F, �
n
1
).

For z ∈ ℝ and 𝛽 > 0 we define T�z = max{−�, min{�, z}} . If f ∶ ℝ
d
→ ℝ is a 

function and F  is a set of such functions, then we set

By �X we denote the distribution of a random variable X, i.e., the measure associ-
ated with the random variable X.

We denote by ci > 0 for i ∈ ℕ constants that do not depend on the image dimen-
sions d1, d2 ∈ ℕ and the sample size n ∈ ℕ.

1.8 � Outline of the paper

In Sect. 2, the convolutional neural network image classifiers used in this paper are 
defined. The main result is presented in Sect.  3 and proven in Sect.  6. The finite 
sample size behavior of our classifier is analyzed by applying it to simulated and real 
data in Sects. 4 and 5 respectively.

2 � Convolutional neural network image classifiers

In the sequel, we define a convolutional neural network architecture by computing 
several convolutional networks in parallel and by finally applying a fully connected 
standard feedforward neural network consisting of several layers to the results of 
these networks.

Firstly, we define a fully connected standard feedforward neural network with L 
hidden layers and kr neurons in layer r ( r = 1,… , L ). The output of the network is 
produced by a function g ∶ ℝ

t
→ ℝ of the form

where w(L)

0
,… ,w

(L)

kL
∈ ℝ denote the output weights and for i ∈ {1,… , kL} the g(L)

i
 

are recursively defined by

for w(r−1)

i,0
,… ,w

(r−1)

i,kr−1
∈ ℝ , i ∈ {1,… , kr} , r ∈ {1,… , L} , k0 = t and

for i ∈ {1,… , k0} , where the function � ∶ ℝ → ℝ denotes the ReLU activation 
function

(T� f )(�) = T�(f (�)) and T�F =
{
T� f ∶ f ∈ F

}
.

(3)g(�) =

kL∑
i=1

w
(L)

i
⋅ g

(L)

i
(�) + w

(L)

0
,

g
(r)

i
(�) = �

(
kr−1∑
j=1

w
(r−1)

i,j
⋅ g

(r−1)

j
(�) + w

(r−1)

i,0

)

g
(0)

i
(�) = xi
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We define the function class of all real-valued functions on ℝt of form (3) with 
parameters L and � = (k1,… , kL) by Gt(L, �).

Secondly, we define a convolutional neural network with L ∈ ℕ convolutional 
layers, one linear layer and one max-pooling layer for a [0, 1]{1,…,d1}×{1,…,d2}–valued 
input, where d1, d2 ∈ ℕ . The network has kr ∈ ℕ channels (also called feature maps) 
in the convolutional layer r and the convolution in layer r is performed by a window 
of values of layer r − 1 of size Mr ∈ {1,… , min{d1, d2}} , where r ∈ {1,… , L} . We 
will denote the input layer as the convolutional layer 0 with k0 = 1 channels. The 
network depends on the weight matrix (so-called filter)

the weights

for the bias in each channel and each convolutional layer and the output weights

The output of the network is given by a real-valued function on [0, 1]{1,…,d1}×{1,…,d2} 
of the form

where o(L)
(i,j),s2

 is the output of the last convolutional layer, which is recursively defined 
as follows:

We start with

Then we define recursively

�(x) = max{x, 0}.

� =
(
w
(r)

i,j,s1,s2

)
1≤i,j≤Mr ,s1∈{1,…,kr−1},s2∈{1,…,kr},r∈{1,…,L}

,

�bias =
(
w(r)
s2

)
s2∈{1,…,kr},r∈{1,…,L}

�out = (ws)s∈{1,…,kL}
.

f
�,�bias,�out

(�) =max

{ kL∑
s2=1

ws2
⋅ o

(L)

(i,j),s2
∶ i ∈ {1,… , d1 −ML + 1},

j ∈ {1,… , d2 −ML + 1}

}
,

o
(0)

(i,j),1
= xi,j for i ∈ {1,… , d1} and j ∈ {1,… , d2}.

(4)o
(r)

(i,j),s2
= �

⎛
⎜⎜⎜⎜⎜⎝

kr−1�
s1=1

�
t1, t2 ∈ {1,… ,Mr}

(i + t1 − 1, j + t2 − 1) ∈ D

w
(r)
t1,t2,s1,s2

⋅ o
(r−1)

(i+t1−1,j+t2−1),s1
+ w(r)

s2

⎞⎟⎟⎟⎟⎟⎠
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for the index set D = {1,… , d1} × {1,… , d2} , (i, j) ∈ D , s2 ∈ {1,… , kr} and 
r ∈ {1,… , L}.

Let F(L, �,�) be the set of all functions of the above form with parameters L, 
� = (k1,… , kL) and � = (M1,… ,ML) . With the definition of the index set D in (4) we 
use a so-called zero padding which is illustrated in Fig. 2. Therefore, the size of a chan-
nel is the same as in the previous layer.

The function class that we will introduce here is then given by

It depends on the parameters

and t ∈ ℕ . Let

be the least squares estimate of �(�) = �{Y = 1|� = �} . Then our estimate fn is 
defined by

For simplicity, we assume here that the minimum of the empirical L2 risk (5) exists. 
If this is not the case, we can choose an estimator whose empirical L2 risk is close 
enough to the infimum. In addition, using the approach of Schmidt-Hieber (2020), it 
is possible to adjust our main result such that it is valid for an estimate whose empir-
ical L2 risk is not equal to the minimal possible value. To do this, it suffices to use 

Ft

(
�,�(1), �(2),�

)

=
{
g◦(f1,… , ft) ∶ f1,… , ft ∈ F

(
L(1), �(1),�

)
, g ∈ Gt

(
L(2), �(2)

)}
.

� = (L(1), L(2)), �(1) =
(
k
(1)

1
,… , k

(1)

L(1)

)
, �(2) =

(
k
(2)

1
,… , k

(2)

L(2)

)
,

� = (M1,… ,ML(1) )

(5)�n = argmin
f∈Ft(�,�(1),�(2),�)

1

n

n∑
i=1

|Yi − f (�i)|2

fn(�) =

{
1, if �n(�) ≥ 1

2

0, elsewhere .

Fig. 2   Illustration of the zero padding for M
r
= 2 and d

1
= d

2
= 3
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empirical process theory in order to adjust Lemma 10 from the supplement such that 
it contains a corresponding additional error term. In this case, our upper bound in 
Theorem 1 will contain an additional error term depending on the distance between 
the empirical L2 risk and its minimal value. In this work, we ignore the optimization 
error that occurs in practical applications.

3 � Main results

Our main result is the following theorem, which presents an upper bound on the 
distance between the expected misclassification risk of our plug-in classifier and 
the optimal misclassification risk.

Theorem 1  Let d1, d2 ∈ ℕ with d1, d2 > 1 . Let (�,Y) , (�1, Y1) , ..., (�n, Yn) be inde-
pendent and identically distributed [0, 1]{1,…,d1}×{1,…,d2} × {0, 1}-valued random 
variables with n > 1 . Assume that a posteriori probability �(�) = �{Y = 1|� = �} 
satisfies a generalized hierarchical max-pooling model of finite order d∗ and level l 
with smoothness constraints p1, p2 ∈ [1,∞) . Choose

and set

for c1 > 0 sufficiently large. Furthermore, choose t = d∗,

for s ∈ {1,… , L(1)} , k(2)
s

= c2 for s ∈ {1,… , L(2)} and c2 ∈ ℕ sufficiently large and 
set

where � ∶ {1,… , L(1)} → {1,… , l} is an increasing function defined by

We define the estimate fn as plug-in classifier based on Ft

(
�,�(1), �(2),�

)
 as in 

Sect. 2. Then we have

Ln = max

{⌈
c1 ⋅ n

4

2⋅(2⋅p1+4)

⌉
,

⌈
c1 ⋅ n

d∗

2⋅(2⋅p2+d
∗)

⌉}

� = (L(1), L(2)) =

(
4l − 1

3
⋅ Ln + l, Ln

)
,

k(1)
s

=
2 ⋅ 4l + 4

3
+ c2

Ms = 2�(s) for s ∈ {1,… , L(1)},

�(s) =

l�
i=1

��
s≥i+∑l−1

r=l−i+1
4r ⋅Ln

�.
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for some constant c3 > 0 which does not depend on d1 , d2 and n.

Remark 5  The rate of convergence max

{
n
−

p1

2⋅p1+4 , n
−

p2

2⋅p2+d
∗

}
 (up to some logarithmic 

factor) in Theorem 1 does not depend on the dimension d1 ⋅ d2 of � , hence the esti-
mate is able to circumvent the curse of dimensionality under the above structural 
assumption on � . We have focused on the rate of convergence here and have made 
no attempt to choose the constants in the definitions of � , �(1) and �(2) as small as 
possible. Since the constant c3 in (6) depends on the level l, the dimension d1 ⋅ d2 in 
(6) occurs logarithmically only for the case where 2l ≪ min{d1, d2}.

Remark 6  In the proof of Theorem 1 we show that the expected L2 error for a regres-
sion estimation problem, where the regression function �{Y|� = �} satisfies a gen-
eralized hierarchical max-pooling model, tends to zero with the rate of convergence

(up to some logarithmic factor). Therefore, our result implies a corresponding result 
for regression estimation. In Section D of the supplement, we show that the rate 
of convergence of (7) is the optimal minimax rate for the corresponding regression 
estimation problem. Consequently, the least squares regression estimator introduced 
in the proof of Theorem 1, after a suitable truncation, achieves the optimal rate of 
convergence up to some logarithmic factor.

Remark 7  The above result can also be shown for the more general case where a pos-
teriori probability satisfies a generalized hierarchical max-pooling model in which 
functions m1, ...,md∗ have distinct levels l1, ..., ld∗ . In this case, we would choose the 
parameter l in the definition of the convolutional neural network as the maximum 
max{l1, ...ld∗} . The biggest challenge would then be to modify the approximation 
result of Lemma 2 from the supplement. Here, the idea of the proof would then be 
to represent the maximum max{x1,… , x4} on ℝ4 as a standard feedforward neural 
network and apply a modification of Lemma 3 from the supplement to it. This would 
enable us to calculate the maximum of four positions of a channel. However, the 
proof would be much more technical.

Remark 8  In Section E of the supplement, we explain how the network architecture 
proposed by our theory can be applied in practice. Here, we rely on the practical 
applications from Sects. 4 and 5.

Remark 9  General convolutional neural network architectures such as Alex-net 
or VGG-net (cf., Krizhevsky et  al., 2012; Simonyan and Zisserman, 2014) are 

(6)

�{fn(�) ≠ Y} − min
f∶[0,1]{1,…,d1}×{1,…,d2}→{0,1}

�{f (�) ≠ Y}

≤ c3 ⋅
√
log(d1 ⋅ d2) ⋅ (log n)

2
⋅max

�
n
−

p1

2⋅p1+4 , n
−

p2

2⋅p2+d
∗

�
,

(7)max

{
n
−

2p1

2p1+4 , n
−

2p2

2p2+d
∗

}
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constructed for multi-label image classification and have additional modules, such 
as pooling layers, convolutional strides, response normalization layers and skip 
connections. Extending our theory to an even more realistic model, which would 
include further concepts of image recognition (e.g., translation invariance or rotation 
invariance) could yield results that could be even better transferred to such general 
architectures. Nevertheless, our analysis explains some properties of these convolu-
tional neural networks and gives hints for good network architectures.

4 � Application to simulated data

In this section, we illustrate how the introduced image classifier based on the convo-
lutional neural networks behaves in case of finite sample sizes. Therefore, we apply 
it to the synthetic image data sets and compare the results with other classification 
methods using Python code. Firstly, we describe how the synthetic image data sets 
were generated. A data set consists of finitely many realizations (�1, y1), (�2, y2),… 
of a random variable

where � is a random image with label Y and the image dimensions here correspond 
to d1 = d2 = 32 . As described in Sect. 1, the matrix � contains at position (i, j) the 
gray scale value of the pixel of the image at the corresponding position. We consider 
two different classification problems, where our classifier is supposed to distinguish 
between two classes of geometric objects. The objects are defined theoretically on 
[0, 32]2 , then downsampled to the {1,… , 32} × {1,… , 32} grid using the Python 
package Pillow. The synthetic image datasets described below are inspired by Glo-
rot and Bengio (2010).

The first classification task is to detect whether an image contains a circle  (see 
Fig. 3). Therefore, our synthetic image data set consists of images that do not con-
tain a circle and images that contain at least one circle. In the following, we describe 
how such an image is created. Each image consists of three geometric objects. For 
each object we randomly and independently choose between a square, an equilateral 
triangle and a circle with fixed probabilities each. The circle is chosen with prob-
ability p = 1 − 0.5

1

3 and the square and the equilateral triangle with probability 
q =

1

2
⋅ 0.5

1

3 , respectively. After an object has been defined as the square, triangle or 
circle we randomly choose its area, rotation and gray scale values. For each object, 
rotation and area are chosen independently and are uniformly distributed on a fixed 
interval. We determine the gray scale values of the three objects by randomly per-
muting the list ( 1

3
,
2

3
, 1) of three gray scale values. The positions of the objects are 

determined one after the other. For the first object, we generate its position from 
the uniform distribution on the restricted image area so that the object lies com-
pletely within the image. The position of the second object is chosen in the same 
way with the additional restriction that the second object only covers a maximum 
of one percent of the area of the first object. For the placement of the third object, 
we use the corresponding restriction that the third image only covers a maximum of 

(�, Y) ∈ [0, 1]{1,…,32}×{1,…,32} × {0, 1},
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one percent of the area of the first and second object. With the above procedure, the 
label Y is discrete and is uniformly distributed on {0, 1} , since the probability that 
the image does not contain a circle is (2 ⋅ q)3 = 0.5.

In our second classification task, we determine whether an image consists of two 
equal geometric objects  (see Fig.  4). The first difference to the above problem is 
that only the two geometric objects circle and triangle are available and each image 
contains only two geometric objects. Apart from that, the images are generated in 
the same way as above with the difference that the two objects are chosen with the 
probability p = 0.5 each and the list of gray scale values only consists of the values 
1

2
 and 1. Again, label Y is discrete and is uniformly distributed on {0, 1} , since the 

probability that the image does contain two identical objects is given by 2 ⋅ p2 = 0.5.
We conjecture that a posteriori probability of the first classification task satisfies 

our generalized hierarchical max-pooling model of order 1, since only one object 
has to be detected. To solve our second classification task, we apply a function to the 
information about the existence of the two objects. Therefore, we conjecture that for 

Fig. 3   Some random images as realizations of the random variable � for the first classification task, 
where the first two rows show images of class 0 and the two lower rows show images of class 1

Fig. 4   Some random images as realizations of the random variable � for the second classification task, 
where the first two rows show images of class 0 and the two lower rows show images of class 1
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the second classification task a posteriori probability satisfies our generalized hierar-
chical max-pooling model of order 2.

Since all classifiers, i.e., ours and the classifiers we compare ourselves to, depend 
on parameters that influence their behavior, we choose some parameters in data-
dependent manner by sample splitting. This means that we split our sample into a 
learning sample of size nl =

⌊
4

5
⋅ n

⌋
 and a testing sample of size nt = n − nl . We use 

the learning sample to train our classifiers several times with the different choices 
for the parameters and use the testing sample to select the classifiers that minimize 
the empirical misclassification risk. We then train the selected classifiers on the 
entire training set, consisting of the n data points.

The detailed network architecture of our convolutional neural network image 
classifiers, i.e., the adaptive choice of the parameters t, � = (L(1), L(2)), �(1), �(2) 
and � of the network architecture we introduced in Sect. 2, can be found in Section 
E of the supplement. To avoid overparameterization, we only use those parameter 
combinations for which the total number of trainable parameters of our model does 
not exceed the size of the training data set. To approximate the minimum of the least 
squares problem (5), we use the stochastic gradient descent method Adam from the 
Keras library.

We compare the results of our estimate (abbr. neural-c) with other conventional 
classification methods. Firstly, we consider a fully connected standard feedforward 
neural network (abbr. neural-s). Here, we also use least squares estimation as in (5) 
and the plug-in method described in Sect. 1.3, with fully connected standard feed-
forward neural networks of the form (3). We have implemented both the above 
approach and our convolutional neural network classifier, using the Keras library 
in Python. As a second alternative approach, we consider a support vector machine 
using a Gaussian radial basis function kernel (abbr. svm-rbf) and polynomial kernel 
(abbr. svm-p). For its computation we use the function SVC integrated in the Python 
library scikit-learn. We also compare our estimate with a kn–nearest neighbors clas-
sification estimate (abbr. neighbor) and a random forest classifier (abbr. rand-f), 
where we use the RandomForestClassifier function from the scikit-learn library. A 
description of the choice of the hyperparameters of all approaches is provided in 
Section E of the Supplement.

The quality of each estimate is measured by its empirical misclassification risk

where fn is the considered estimate based on the training set and

are newly generated independent realizations of the random variable (�,Y) , i.e., 
different from the n labeled training images. We choose N = 105 . Since our results 
depend on randomly selected data, we calculate the estimators and their errors (8) 
based on 25 independently generated data sets {(�1, y1),… , (�n+N , yn+N)} . Table 1 
lists the median and interquartile range (IQR) of all runs.

(8)�N =
1

N

N∑
k=1

�{fn(�n+k)≠yn+k}

(�n+1, yn+1),… , (�n+N , yn+N)
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We observe that our convolutional neural network classifier (neural-c) outper-
forms the other approaches in both classification tasks. The errors of our classi-
fier are 8 to 25 times smaller than the errors of the other approaches. The relative 
improvement of our classifier with increasing sample size is much larger than the 
relative improvements of the other approaches. This could indicate that our classifier 
also has a better rate of convergence. In the second classification task all approaches 
except our classifier, are not able to achieve satisfactory results, since the errors of 
these estimates correspond to the expected error of a classifier which always esti-
mates the same class.

5 � Application to real images

Although it is a well-known fact that convolutional neural networks are among the 
most successful methods in object classification using real images, in this section we 
will test the different image classification methods on real image datasets. On the 
one hand, we want to show the practical relevance of our particular network archi-
tecture, since it has some differences to convolutional neural networks used in prac-
tice, such as the asymmetric one-sided zero padding or the specific choice of filter 
sizes. On the other hand, by applying these methods to real images, we also want 
to show that the assumption of a generalized max-pooling model seems plausible, 
since the network architecture of our convolutional neural network image classifier 
was specifically designed for this model.

We consider the CIFAR-10 data set described in Krizhevsky (2009). It contains 
60,000 images, which consist of 10 different classes. We limit ourselves here to only 
two of these classes (12,000 images). One class contains images of cars and the 
other class contains images of ships. The size of each image is 32 × 32 pixels. Since 
the images are in color, we have converted them to gray scale (see Fig. 5).

The different approaches of classification, as well as the parameter sets we use, 
are described in the simulation study in Section 4 and in Section E of the sup-
plement, respectively. We choose n = 2000, nl = 1600 and nt = 400 to train our 

Table 1   Median and interquartile range of the empirical misclassification risk �
N

Task 1 Task 2

Sample size n = 1000 n = 2000 n = 1000 n = 2000

Approach Median (IQR) Median (IQR) Median (IQR) Median (IQR)

Neural-c 0.05 (0.02) 0.02 (0.01) 0.05 (0.05) 0.02 (0.01)
Neural-s 0.46 (0.01) 0.45 (0.01) 0.50 (0.02) 0.50 (0.01)
Neighbor 0.48 (0.01) 0.46 (0.01) 0.50 (0.01) 0.50 (0.01)
Rand-f 0.46 (0.01) 0.45 (0.02) 0.50 (0.01) 0.50 (0.01)
svm-p 0.42 (0.01) 0.39 (0.01) 0.50 (0.01) 0.50 (0.01)
svm-rbf 0.50 (0.01) 0.49 (0.01) 0.50 (0.01) 0.50 (0.01)
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classifiers. We calculate the empirical misclassification risk (8) using the remain-
ing N = 10,000 images. The results of all approaches are summarized in Table 2.

Again, we observe that our estimate outperforms the others. This time, unlike 
in the case of the synthetic image data sets, the error is only 1.4 times smaller 
than the error of the two second best approaches (the fully connected standard 
feedforward neural network and the random forest classifier). However, in the 
case of the real images we do not know for which model parameters the a pos-
teriori probability could satisfy our generalized hierarchical max-pooling model. 
In particular, we have only tested the values t ∈ {1, 2} which correspond to the 
orders d∗ ∈ {1, 2} of our generalized hierarchical max-pooling model.

6 � Proof of theorem 1

Let c4 > 0 be so large that c4 ⋅ log n ≥ 2 holds. Then z > 1∕2 holds if and only if 
Tc4⋅log nz > 1∕2 holds, and consequently we have

Hence, inequality (2) implies that it suffices to show

fn(�) =

{
1, if Tc4⋅log n�n(�) ≥ 1

2

0, elsewhere .

Fig. 5   The first two rows show some images of the ships and the lower two rows show images of the cars 
of the gray scaled CIFAR-10 data set

Table 2   The empirical misclassification risk �
N

 for each estimate based on the presented gray scaled sub-
set of the CIFAR-10 data set

Neural-c Neural-s Neighbor rand-f svm-p svm-rbf

0.16 0.22 0.36 0.22 0.28 0.30
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Using standard results from empirical process theory (cf., Lemma 9 in the supple-
ment) we get

where F∶=Ft

(
�,�(1), �(2),�

)
 . Our bound on the covering number (cf., Lemma 4 in 

the supplement) yields

where Lmax = max{L(1),L(2)} . Next we derive a bound on the approximation error

Because of the assumption on � , we have

such that ma satisfies a max-pooling model with index set

for any a ∈ {1,… , d∗} and ma satisfies a hierarchical model with level l with 
functions

for a ∈ {1,… , d∗} , k ∈ {1,… , l} and s ∈ {1,… , 4l−k} . Then, for any 
a ∈ {1,… , d∗} , k ∈ {1,… , l} and any s ∈ {1,… , 4l−k} let ḡ(a)

k,s
∈ G4

(
Ln, �

(2)
)
 and 

ḡ ∈ Gd∗

(
Ln, �

(2)
)
 be the neural network from Kohler and Langer (2021) in Theo-

rem 2 (cf., Lemma 10 in the supplement) which satisfies

�� |Tc4⋅log n�n(�) − �(�)|2�
�
(d�) ≤ c11 ⋅ log(d1 ⋅ d2) ⋅ (log n)

4
⋅max

{
n
−

2⋅p1

2⋅p1+4 , n
−

2⋅p2

2⋅p2+d
∗

}
.

�� |Tc4⋅log n�n(�) − �(�)|2�
�
(d�)

≤
c12 ⋅ (log n)

2
⋅ sup

�
n
1

(
log

(
N1

(
1

n⋅c4⋅log n
, Tc4⋅log nF, �

n
1

))
+ 1

)

n

+ 2 ⋅ inf
f∈F� |f (�) − �(�)|2�

�
(d�),

c12 ⋅ (log n)
2
⋅ sup

�
n
1

(
log

(
N1

(
1

n⋅c4⋅log n
, Tc4⋅log nF, �

n
1

))
+ 1

)

n

≤ c13 ⋅
log(d1 ⋅ d2) ⋅ (log n)

3
⋅ L2

max
⋅ log Lmax

n

≤ c14 ⋅ log(d1 ⋅ d2) ⋅ (log n)
4
⋅max

{
n
−

2⋅p1

2⋅p1+4 , n
−

2⋅p2

2⋅p2+d
∗

}
,

inf
f∈F∫ |f (�) − �(�)|2�

�
(d�).

�(�) = g(m1(�),… ,md∗ (�))

I = {0,… , 2l − 1} × {0,… , 2l − 1}

g
(a)

k,s
∶ ℝ

4
→ [0, 1].
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and

Then Lemma 2 from the supplement let us choose

such that

where f̄ (a) satisfies

for f̄ (a)
k,s

∶ [0, 1]{1,…,2k}×{1,…,2k}
→ ℝ recursively defined by

for k = 2,… , l, s = 1,… , 4l−k , and

for s = 1,… , 4l−1 . Due to property (11) it holds that

Since the functions g(a)
k,s

 are [0, 1]–valued, inequalities (9) and (10) let us choose c1 
in the definition of Ln sufficiently large such that the triangle inequality implies that

for all a ∈ {1,… , d∗} , k ∈ {1,… , l} and s ∈ {1,… , 4l−k} . Then the application of 
Lemma 1 from the supplement yields

(9)‖g(a)
k,s

− ḡ
(a)

k,s
‖[−2,2]4,∞ ≤ c15 ⋅ L

−
2⋅p1

4

n ≤ c16 ⋅ n
−

p1

2⋅p1+4 ,

(10)‖g − ḡnet‖[−2,2]d∗ ,∞ ≤ c15 ⋅ L
−

2⋅p2

d∗

n ≤ c16 ⋅ n
−

p2

2⋅p2+d
∗ .

(11)m̄1,… , m̄d∗ ∈ F(L(1),�(1),�)

m̄a(�) = max
(i,j)∈ℤ2∶(i,j)+I⊂{1,…,d1}×{1,…,d2}

f̄ (a)(x(i,j)+I),

f̄ (a) = f̄
(a)

l,1

f̄
(a)

k,s
(�) =ḡ

(a)

k,s

(
f̄
(a)

k−1,4⋅(s−1)+1
(�{1,…,2k−1}×{1,…,2k−1}),

f̄
(a)

k−1,4⋅(s−1)+2
(�{2k−1+1,…,2k}×{1,…,2k−1}),

f̄
(a)

k−1,4⋅(s−1)+3
(�{1,…,2k−1}×{2k−1+1,…,2k}),

f̄
(a)

k−1,4⋅s
(�{2k−1+1,…,2k}×{2k−1+1,…,2k})

)

f̄
(a)

1,s
(x1,1, x1,2, x2,1, x2,2) = ḡ

(a)

1,s
(x1,1, x1,2, x2,1, x2,2)

(12)ḡ◦(m̄1,… , m̄d∗ ) ∈ F.

‖ḡ(a)
k,s
‖[−2,2]4,∞ ≤ 2
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Summarizing the above results, the proof is complete. 	�  ◻

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10463-​022-​00828-4.
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