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This supplement provides the omitted technical details to the proofs of Theorem 1 and
Proposition 1, in the main manuscript. The setting, notation, equation reference numbers are
retained from the main paper.

1 Proof of Theorem 1

Here we only present the details for the in-degree sequence, and those for out-degrees will follow
from a similar reasoning. The derivations for out-degree sequence are similar, so omitted.
For k,£ > 0, we have
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for s large. For the expectation in the summand, we have
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Since for n > 1, |V;,| — 1 is a binomial random variable with success probability 1 — 3, then we
apply the Chernoff bound to get
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Then by (1), we get
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Putting them together, we conclude that E ‘M,i;jrz — M,‘H — 0 as k — oo, suggesting that
{E [M;ln] }n>1 is a cauchy sequence in Ly space. Applying the martingale convergence theo-
rem (Durrett, 2006, Theorem 4.2.11) gives that there exists some finite random variable L; such
that as n — oo,
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Then it remains to show the almost sure convergence of
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Consider log X,,, and rewrite it as
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For P;(n), we first note that log(1 + z) —x < 0 for all z > 0. Then P;(n+ 1) — Pi(n) <0, i.e.
Py (n) is decreasing in n, and it suffices to show
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is finite almost surely. Note also that |log(1 + z) — x| < 22/2, for all z > 0, then
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Hence, Pi(n) — Pi(00).



For Py(n), we apply (Athreya and Ney, 2004, Theorem 3.9.4) to conclude that there exists
a finite r.v. Z such that
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Meanwhile, since Y ,_, 1/k — 1ogn — ¢ as n — 00, where ¢ is Euler’s constant, then for i > 1,
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Then we conclude from (4) that
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The results in the theorem follow by combining (5) with (3), where we set
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2 Proof of Proposition 1

We explicitly demonstrate the derivations of Proposition 1 for the in-degree distribution, and
the methodology is also applicable to out-degrees. Let F,, denote the o-field generated by the
network evolution up to n steps. Set 7 to be an (F,,)n>0-stopping time, then

Fr=A{F:Fn{r=n}eF,}
For i > 1, let S; be the time when node ¢ is created, i.e.,
S; =inf{n > 0:|V,| =i}.
Then S; is an (F,)n>0-stopping time. Also, for n > k > 0, we have
{Si+k=n}={S;=n—k} € F,_r CFp,

so S;+k, k>0, is a stopping time with respect to (F,)n>0.
Since the in-degree of ¢ is increased at most by 1 at each evolutionary step, then under
P7si+n () := P(-| Fs,4n), we have
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With C; = p(a+ 8)/(1 + 6in(1 — B)), we have
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For RZ@ (n), we apply the Cauchy-Schwartz inequality to obtain
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By Theorem 3.9.4 in Athreya and Ney (2004), we have as n — oo,
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Hence, there exists some constant A; > 0 such that
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For RZ(?) (n), we now claim that

E(D () + 6n) _

10
Sup G , (10)
then for some constant K > 0, RZ@) (n) is bounded by
Kn%E( (o + B)p N 2(a+5)(1—p)>
Si+n+ 1+ 0in|Vs,nl Vs, 4nl ’
and by (1) and (9) we see that
26inv/12n1 40i, 1+ n)? 1
n n n
Then combining (8), (9) and (11) gives that there exists some constant Ap > 0 such that
in 2
E {(Di (Si+n+1)+dn) }
. 2 20inv/12n1 _
<E[(DI(Si+n) + 6n)’] (1 - Sl + ot 0g"> + A
u 207  26in/12kTogk
2 2 1 in
S~-§(oz6m+v(1+6in))kl_[l<1+ ot = >
. B 201 | 20in/120Tog]1
C1—1 1 in g
+ A0 K ]] <1+ T+ 7 )
k=1 I=k+1
Note that
- 201 | 26iny/120T0g]1 =~ (20 | 26imy/T2000g]l
IT (1+52+ S ) <epd Y (ZE 4 S
! l l
I=k+1 I=k+1
. 20m/120Tog 1
< (n/k)ch exp{ Z 12} . (12)
I=k+1
Since 3%, 4 Ly 12og! Vllf“ogl < 00, then we conclude that
in 2
E[(Di(n))’]
e <

Hence, we are left with verifying (10). Note that
E (D(S; +n+1) + 6in)

S
( ¢ ( +n) * ) < - Si+n+1 +5in‘VSi+n| " ‘VSi+n|




<E [(Di“(Si + 1) + 6in) (1 + il)]
pla+ B) 1

n 4+ 14 6in|Val n

+E [(Din(si + 1) + Gin)

1—p
+E[ y
:| |V51+n’
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Iterating the inequality in (13) backwards for n times gives
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By a similar argument as in (12), we see that the bound in (14) implies (10), which completes
the proof of Proposition 1. O
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