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Abstract
Motivated by the complexity of network data, we propose a directed hybrid ran-
dom network that mixes preferential attachment (PA) rules with uniform attachment 
rules. When a new edge is created, with probability p ∈ (0, 1) , it follows the PA 
rule. Otherwise, this new edge is added between two uniformly chosen nodes. Such 
mixture makes the in- and out-degrees of a fixed node grow at a slower rate, com-
pared to the pure PA case, thus leading to lighter distributional tails. For estimation 
and inference, we develop two numerical methods which are applied to both syn-
thetic and real network data. We see that with extra flexibility given by the parame-
ter p, the hybrid random network provides a better fit to real-world scenarios, where 
lighter tails from in- and out-degrees are observed.

Keywords Preferential attachment · Uniform attachment · In- and out-degrees · 
Power laws · Random networks

1 Introduction

The preferential attachment (PA) mechanism (Barabási and Albert 1999) has been 
widely used to model interactions or communications among the entities in a net-
work-based system, especially evolving networks. A precursory study of PA net-
works was conducted by de Sollar Price (1965) to model the growth of citation net-
works, where the research outcome coincides with a sociological theory called the 
Matthew Effect  (Merton 1968), inducing a well known economic manifestation—
“The rich get richer; the poor get poorer”.
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One of the most appealing properties of the PA network is scale-free (i.e., the 
node degree distribution follows a power law), rendering that the PA rule has 
become an attractive choice for real network modeling, such as the World Wide 
Web (Henzinger and Lawrence 2004) and collaboration networks Newman (2001). 
We refer the readers to Durrett (2006); van der Hofstad (2017) for some text-style 
elaborations of the elementary descriptions and probabilistic properties of PA net-
works. Recent studies have extended classical PA networks to directed counter-
parts, where degree distributions and maximum degrees (Cooper and Frieze 2003), 
asymptotic theories (Wang and Resnick 2015, 2018, 2020) and the maximum likeli-
hood estimators (MLEs) of the parameters (Wan et al. 2017) have been developed. 
Other recent works on the mathematical treatments of PA networks and their vari-
ants include Gao and van der Vaart (2017); Alves et al. (2019); Mahmoud (2019); 
Wang and Resnick  (2020); Zhang and Mahmoud (2020).

However, classical (either directed or undirected) PA networks do not always fit 
the real network data well, nor are they able to precisely capture some key attributes 
of the networks. Alternatively, Atalay et  al. (2011) proposed a model mixing PA 
and uniform attachment (UA) to investigate the buyer-supplier network in the United 
States, showing that the proposed model has outperformed the pure PA model. In 
this paper, we consider a class of directed hybrid random networks (HRNs) pre-
senting PA and UA mechanisms simultaneously, governed by a tuning parameter 
p ∈ (0, 1) . The presence of UA in the proposed model effectively leverages the 
heavy tail produced by the PA mechanism, rendering the model tentatively better fits 
the real networks whose degree distributions are less heavier.

In the literature, there is a limited amount of work on the random structures that 
integrate PA and UA during the evolution. Cooper and Frieze (2003) looked into the 
degree sequences in an undirected random network model mixing PA and UA. Shao 
et al. (2006) carried out a simulation study of the degree distribution in a standard 
mixed attachment growing network. More recently, Pachon et al. (2018) investigated 
the scale-free property of the degree distribution in an analogous model through 
recursive formulations, and Medina et al. (2019) established an Expectation-Max-
imization (EM) algorithm for parameter estimation of a similar model. The rest of 
the manuscript is organized as follows. We describe the construction of a hybrid ran-
dom network in Sect. 2, and study theoretical properties of its degree distributions 
in Sect. 3. We then propose estimation methods and explore properties of the esti-
mators in Sect. 4, which facilitate the numerical studies on both synthetic datasets 
(cf. Sect. 5) and real network data (cf. Sect. 6). With all results available, we also 
provide some interesting direction for future research in Sect. 7.

2  Hybrid random networks

Let Hn(Vn,En;�, �, � , p, �in, �out ) denote the structure of a class of HRNs consist-
ing of a vertex set Vn and an edge set En at time  n, parameterized by a set of 
parameters � ∶= (�, �, � , p, �in, �out) subject to � + � + � = 1 , 𝛿in, 𝛿out > 0 . Specifi-
cally, the parameters, � , � and � , represent the probabilities of presenting one of 
the three edge-creation scenarios at each step. With probability � , there emerges 
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a directed edge from the newcomer to an existing node. With probability � , there 
emerges a directed edge from an existing node to the newcomer. With probability 
� = 1 − � − � , a directed edge is added between two existing nodes. See Fig.  1 
for a graphical illustration. The offset parameters �in and �out respectively control 
the growth rate of in-degree and out-degree in the network. Another parameter 
0 ≤ p ≤ 1 specifies the probability of executing PA when sampling the node(s) at 
the end(s) of the newly added edge at each timestamp. The functionality of p is 
to balance PA and UA in the model, and accordingly the proposed HRN becomes 
more flexible than pure PA network model for characterizing the in-degree and 
out-degree tail distributions of real network data.

We start the network with H0 , which is a self-looped single node labeled with 
1. At any subsequent point n ≥ 1 , flip a three-sided coin, for which the probabili-
ties of landing the three faces up are respectively � (associated with scenario 1), � 
(associated with scenario 2) and � (associated with scenario 3). Let Jn ∈ {1, 2, 3} 
indicate the occurrence of the scenario type at time n, i.e. Jn is a tri-nomial ran-
dom variable on {1, 2, 3} with cell probability � , � and � , respectively. The net-
work evolves as below. 

1. For Jn = 1 , we add a new node u to the network, connecting it to an existing node 
i ∈ Vn−1 by a directed edge pointing to i with probability 

where Din
i
(n) is the in-degree of i in Hn , and |Vn| denotes the number of nodes at 

time n.
2. For Jn = 2 , we add a directed edge between two existing nodes i, j ∈ Vn−1 , where 

i and j are sampled independently. Suppose that the newly added edge is pointed 
(from j) to i, then the associated probability is given by 

(1)p ×
Din

i
(n − 1) + �in

∑
k∈Vn−1

(Din
k
(n − 1) + �in)

+ (1 − p) ×
1

�Vn−1�
,

(2)

�
p ×

Dout
j
(n − 1) + �out

∑
k∈Vn−1

(Dout
k
(n − 1) + �out )

+ (1 − p) ×
1

�Vn−1�

�

×

�
p ×

Din
i
(n − 1) + �in

∑
k∈Vn−1

(Din
k
(n − 1) + �in)

+ (1 − p) ×
1

�Vn−1�

�
,

i

u

i j j

u

Fig. 1  Three edge-addition scenarios respectively corresponding to � , � and � (from left to right)
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where Dout
i
(n) is analogously defined as the out-degree of node i in Hn . Note 

that no new node is added to the network under this scenario, hence Vn = Vn−1 . 
Besides, there is a positive probability that a node is sampled twice; If so, a self 
loop is created.

3. For Jn = 3 , a new node u is appended to the network by a directed edge emanating 
out from j ∈ Vn−1 with probability 

Some simplifications can be made to the conditional probabilities in Eqs.  (1),  (2) 
and  (3) after observing 

∑
k∈Vn−1

(Din
k
(n − 1) + �in) = n + �in�Vn−1� and ∑

k∈Vn−1
(Dout

k
(n − 1) + �out ) = n + �out�Vn−1� (since our initial time is n = 0 ). Mean-

while, the fact that the two fractions have different denominators in each of the con-
ditional probabilities would have brought a great deal of challenges to both analytical 
computations and parameter estimations.

3  Asymptotic results for the degree distributions

In this section, we investigate the in-degree and out-degree distributions of Hn , and 
we will focus on both the degree growth of a fixed node and the empirical in- and out-
degree distributions.

3.1  Degree growth for a fixed node

Let Fn be the sigma field generated by the evolution of a hybrid random network up to 
time n, i.e., {Hk ∶ k ≤ n} . According to the evolutionary scenarios described in Sect. 2, 
we have for i ∈ Vn,

We present important theoretical results on the in- and out-degree sequences in an 
HRN. We also include detailed proofs for Theorem 2 in Appendix A, and other tech-
nical proofs are collected in the supplement.

(3)p ×
Dout

j
(n − 1) + �out

∑
k∈Vn−1

(Dout
k
(n − 1) + �out )

+ (1 − p) ×
1

�Vn−1�
.

(4)

ℙ
�
Din

i
(n + 1) − Din

i
(n) = 1 �Fn

�

= (� + �)

�
p
�
Din

i
(n) + �in

�

∑
k∈Vn

�
Din

k
(n) + �in

� +
(1 − p)

�Vn�

�
,

(5)

ℙ
�
Dout

i
(n + 1) − Dout

i
(n) = 1 �Fn

�

= (� + �)

�
p
�
Dout

i
(n) + �out

�

∑
k∈Vn

�
Dout

k
(n) + �out

� +
(1 − p)

�Vn�

�
.
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We start with the asymptotic properties of (Din
i
(n),Dout

i
(n)) for a fixed node i, 

by utilizing martingale formulations  (Durrett 2006,  Chapter  4). By the condi-
tional probability in Eq. (4), we have for i ∈ Vn,

which implies that for a fixed i,

is a sub-martingale with respect to the filtration (Fn)n≥0 , where 
Si ∶= inf{n ≥ 0 ∶ |Vn| = i} . Analogously, based on Eq.  (5), we construct another 
sub-martingale sequence for out-degrees:

In the proof of Theorem 1, we specify the asymptotic orders of the denominator in 
Eq. (6) (a similar argument also applies to the denominator in Eq. (7)). Then apply-
ing the martingale convergence theorem (Durrett 2006, Theorem 4.2.11) gives the 
following convergence results for the in- and out-degrees of a fixed node. Technical 
details of the proof of Theorem 1 are given in Sect. 1 of the supplement.

Theorem 1 Set

Then for a fixed node i, there exist finite random variables �i and �i such that as 
n → ∞,

It is worth noting that the growth rates C1 and C2 are smaller than those in a pure 
directed PA model (i.e., p = 1 ). This suggests that incorporating a non-negligible 
number of uniformly added edges create lighter distributional tails for both in- and 
out-degrees.

Further, in the next proposition, we specify the growth rates of �
[(
Din

i
(n)

)2] and 

�

[(
Dout

i
(n)

)2] for a fixed node i ∈ Vn.

Proposition 1 There exist M1,M2 > 0 such that

ℙ
(
Din

i
(n + 1) − Din

i
(n) = 1 |Fn

)
≥

p
(
Din

i
(n) + �in

)
(� + �)

1 + n + �in|Vn|
,

(6)
Min

n+1
∶=

Din
i
(Si + n + 1) + �in

∏n

k=0

�
1 +

p(�+�)

Si+k+1+�in�VSi+k
�

�

(7)
Mout

n+1
∶=

Dout
i
(Si + n + 1) + �out

∏n

k=0

�
1 +

p(�+�)

Si+k+1+�out �VSi+k
�

� .

C1 =
(� + �)p

1 + �in(1 − �)
and C2 =

(� + �)p

1 + �out (1 − �)
.

(
Din

i
(n)

nC1

,
Dout

i
(n)

nC2

)
a.s.
⟶

(
�i, �i

)
.
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where C1 and C2 are identical to those specified in Theorem 1.

The full proof of Proposition 1 is collected in Sect. 2 of the supplement. Then 
with Proposition  1 developed, we apply Theorem  4.6.2 in Durrett (2019) to con-
clude that both {Din

i
(n)∕nC1 ∶ n ≥ 1} and {Dout

i
(n)∕nC2 ∶ n ≥ 1} are uniformly inte-

grable. Therefore, using Theorem 1, we also have

3.2  Degree counts

Let N in
m
(n) and Nout

m
(n) respectively denote the number of nodes of in-degree m and 

out-degree m in an HRN at time n. We develop the asymptotics for N in
m
(n)∕n , and 

Nout
m

(n)∕n , m ≥ 0 , i.e., the empirical proportional of nodes with in- or out-degree m 
in Hn . Let NB(n, q) represent a negative binomial random variable with generating 
function

Theorem  2 Define 𝛿in ∶= 𝛿in∕p + (1 − p)∕
(
p(1 − 𝛽)

)
and 𝛿out ∶= 𝛿out∕p

+(1 − p)∕
(
p(1 − �)

)
. Let NB(𝛿in, p1) , NB(1 + 𝛿in, p1) , NB(𝛿out , p2) and 

NB(1 + 𝛿out , p2) , be four independent negative binomial random variables, and set 
Tin and Tout to be two independent exponential random variables with rates

respectively (which are also independent from NB(𝛿in, p1) , NB(1 + 𝛿in, p1) , 
NB(𝛿out , p2) and NB(1 + 𝛿out , p2) ). As n → ∞ , we have

where

sup
i≥1

�

[(
Din

i
(n)

)2]

n2C1

≤ M1 and sup
i≥1

�

[(
Dout

i
(n)

)2]

n2C2

≤ M2,

Din
i
(n)

nC1

L1
⟶�i,

Dout
i
(n)

nC2

L1
⟶�i.

(s + (1 − s)∕q)−n, s ∈ [0, 1].

1 + �in(1 − �)

p(� + �)
and

1 + �out (1 − �)

p(� + �)
,

(8)
N in
m
(n)

n

p
⟶�̃� in

m
and

Nout
m

(n)

n

p
⟶�̃�out

m
,

(9)
�̃� in

m
= 𝛼 ℙ

(
NB

(
𝛿in, e

−Tin
)
= m

)

+ 𝛾 ℙ
(
1 + NB

(
1 + 𝛿in, e

−Tin
)
= m

)
,
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In the proof of Theorem  2, we will first show the concentration of N in
m
(n) 

around �(N in
m
(n)) , i.e. there exists some constant C > 2

√
2 such that

This further implies

as m ≤ n in G(n). Then we approximate �(N in
m
(n))∕n by �̃� in

m
 . A similar argument is 

also applicable to Nout
m

(n).
We conclude this section by remarking that the limit functions in Eqs.  (9) 

and (10) coincide with those from a pure PA network with parameters 
(𝛼, 𝛽, 𝛾 , 𝛿in, 𝛿out). In fact, when � = 0 , the HRN is identical to a pure PA network 
with (𝛼, 0, 𝛾 , 𝛿in, 𝛿out) , where all established results for the pure PA model can be 
readily applied. The major goal in the proof of Theorem 2 is to show that the dis-
crepancy caused by having random number of edges is negligible when n is large.

4  Parameter estimation

In this section, we propose our estimation scheme for the parameters in the 
HRN model described in Sect. 2, under a few regularity conditions given as fol-
lows. We assume the evolution history of the entire network is available since 
the beginning, recorded in the edge list E ∶= {Ek}

n−1
k=0

 , where E0 = (1, 1) is deter-
ministic. Notice that � = 1 − (� + �) completely depends on � and � so that the 
model is parametrized in terms of (�, �, p, �in, �out ) . We also assume 0 < p < 1 , 
0 ≤ 𝛼, 𝛽 < 1 and 0 < 𝛼 + 𝛽 ≤ 1 , where the latter two jointly ensure the exclusion 
of the trivial cases of either � , � or � taking value 1. Besides, the value of p is not 
allowed to take 0 or 1 such that UA and PA mechanisms co-exist in the model to 
ensure identifiability. The offset parameters �in and �out are assumed to be positive 
and finite.

4.1  Maximum likelihood estimation

In a slight abuse of notation, let Ek = (vk,1, vk,2) represent the edge (from vk,1 to vk,2 ) 
added at time k, vk,1 and vk,2 can be the nodes from the existing network or newcom-
ers. According to Eqs. (1), (2) and (3), the likelihood of the model is given by

(10)
�̃�out

m
= 𝛼 ℙ

(
NB

(
𝛿out , e

−Tout
)
= m

)

+ 𝛾 ℙ
(
1 + NB

(
1 + 𝛿out , e

−Tout
)
= m

)
.

ℙ

����N
in

m
(n) − 𝔼(N in

m
(n))

��� ≥ C
√
n log n(1 + log n)

�
= o(1∕n).

ℙ

�
max
m≥0

���N
in

m
(n) − 𝔼(N in

m
(n))

��� ≥ C
√
n log n(1 + log n)

�
= o(1),
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then the log-likelihood becomes

from which we see that the score functions of � and � are independent of those of 
the other parameters.

Carrying out an analogous analysis as in (Wan et al. 2017, Sect. 3.1), we find that 
the MLEs for � and � are respectively given by

To develop the MLEs for �in , �out and p, we solve their score equations (cf. (16), (17) 
and (18)). In Appendix B, we present the approximation procedure for solving the 
score equations, and come up with a conclusion that previously adopted methods 
in Wan et al. (2017) fail to attain the desired MLE solutions. Alternatively, in the 
next section, we formulate the MLE searching procedure as a nonlinear optimization 
problem with constraint p ∈ (0, 1).

L(� |E) =
n∏

k=1

[
�

(
p(Din

vk,2
(k − 1) + �in)

k + �in|Vk−1|
+

1 − p

|Vk−1|

)]�{Jk=1}

×

n∏

k=1

[
�

(
p(Dout

vk,1
(k − 1) + �out )

k + �out|Vk−1|
+

1 − p

|Vk−1|

)

×

(
p(Din

vk,2
(k − 1) + �in)

k + �in|Vk−1|
+

1 − p

|Vk−1|

)]�{Jk=2}

×

n∏

k=1

[
(1 − � − �)

(
p(Dout

vk,1
(k − 1) + �out )

k + �out|Vk−1|
+

1 − p

|Vk−1|

)]�{Jk=3}

,

(11)

logL(� |E)

= log �

n∑

k=1

�{Jk=1}
+ log �

n∑

k=1

�{Jk=2}
+ log(1 − � − �)

n∑

k=1

�{Jk=3}

+

n∑

k=1

log
[(
pDin

vk,2
(k − 1) + �in

)
|Vk−1| + (1 − p)k

]
�{Jk∈{1,2}}

+

n∑

k=1

log
[(
pDout

vk,1
(k − 1) + �out

)
|Vk−1| + (1 − p)k

]
�{Jk∈{2,3}}

−

n∑

k=1

log
[
k|Vk−1| + |Vk−1|2�in

]
�{Jk∈{1,2}}

−

n∑

k=1

log
[
k|Vk−1| + |Vk−1|2�out

]
�{Jk∈{2,3}}

,

�̂�MLE =
1

n

n∑

k=1

�{Jk=1}
and 𝛽MLE =

1

n

n∑

k=1

�{Jk=2}
.
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4.2  Nonlinear optimization

Noticing that a former approach that approximates the MLE does not produce rea-
sonable estimates, we consider the MLE-searching procedure as a nonlinear opti-
mization problem with properly identified constraints such that �, �, p ∈ (0, 1) and 
𝛿in, 𝛿out > 0 . Specifically, we adopt the Nelder-Mead (N-M) algorithm (Nelder and 
Mead 1965), which is appealing for efficiency and fast convergence. Despite limited 
knowledge about the theoretical results of the N-M algorithm (Lagarias et al. 1998), 
its utilization is widespread in the community since it generally performs well in 
practice. One practical issue of the algorithm is that its convergence is quite sensi-
tive to the choice of the initial simplex. An improper initial simplex is usually the 
main cause of the algorithm breakdown.

Having this in mind, we back up with an alternative—a Bayesian estimation 
based on Markov chain Monte Carlo (MCMC) algorithms. Specifically, we consider 
a Metropolis-Hastings (M-H) algorithm  (Metropolis et  al. 1953; Hastings 1970). 
Being a classical approach, the fundamentals of the M-H algorithms have been 
extensively elaborated in a wide range of texts (Chen et al. 2010; Liang et al. 2010; 
Gelman et al. 2013). Hence we only present a few essential steps.

Let �(�;�) be the prior distribution of � , where � is a collection of hyper-param-
eters. Under this setting, the likelihood function L(� |E) is the posterior distribution 
of � . Let �(t) be the estimates from the t-th iteration, and let Q(�prop |�(t)) denote the 
proposal density governing the transition probability from the current estimates to a 
proposed set of candidates. Suppose that the distribution Q is symmetric, then the 
acceptance rate a(�prop |�(t)) is given by

This can be done by generating a standard uniform random variable U such that 
�
(t+1) = �

prop if U < a(�prop |�(t)) ; �(t+1) = �
(t) , otherwise.

There are multiple ways of selecting proposal distribution Q(�prop |�(t)) , where a 
simple approach based on random walk that ensures symmetric Q is adopted. One 
drawback of MCMC algorithms is the lack of theoretical foundation for the assess-
ment of convergence. Since the initial samples of � from a proper prior distribution 
may fall into a low density of the target posterior distribution, a sufficiently large 
burn-in period is always necessary. The number of iterations needed for the algo-
rithm to converge is closely related to its convergence rate (Mengersen and Tweedie 
1996), which is practically unwieldy in general. Here we will rely on a few widely-
accepted graphical diagnostics to assess the convergence of MCMC algorithms, 
such as time-series plots and running mean plots (Smith 2007).

min

{
L(�prop |E)Q(�prop |�(t))

L(�(t) |E)Q(�(t) |�prop)
, 1

}
= min

{
L(�prop |E)
L(�(t) |E)

, 1

}
.
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5  Simulations

In this section, we carry out an extensive simulation study along with a sen-
sitivity analysis for estimating the parameters of HRN. We focus on the per-
formance of the N-M and M-H algorithms under different combinations of 
(�, �, p) . Specifically, we consider p ∈ {0.8, 0.6, 0.2} (respectively correspond-
ing to dominant PA, roughly even PA and UA and dominant UA) paired with 
(�, �) ∈ {(0.8, 0.1), (0.45, 0.1), (0.1, 0.8)} . The other two offset parameters are set to 
be �in = 1.3 and �out = 0.7.

For each setting, we generate R = 100 replicates of independent HRNs with 
n = 104 edges. The optimization functions from � package ������ (Nash 2014) are 
used to implement the N-M algorithm, where all the maximum iteration is set to 500 
(default). When applying the M-H algorithm, we use non-informative priors. The 
burn-in number is set to 10,000, and the number of iterations after burn-in is 20,000. 
To avoid auto-correlation in the posterior sample, a thinning sampling of gap 500 is 
used. In Tables 1, 2 and 3, we present the point estimates, the absolute percentages 
of bias, and the standard errors based on the simulation results. Note that we only 
report the statistics for p, �in and �out , as the MLEs of � and � are in closed forms, 
allowing us to compute their estimates and corresponding sample standard devia-
tions mathematically. For all considered scenarios, the estimates of � and � are unbi-
ased, and the standard errors are infinitesimal.

Overall, both algorithms provide estimates with low bias for p, across all combi-
nations of the parameters, but we do observe that the N-M algorithm outperforms 
the M-H algorithm.

In particular, for p which controls the percentage of edges produced by the PA 
rule, the N-M algorithm is preferred as the standard errors are consistently smaller. 
Estimates for �in and �out from both algorithms tend to be biased, especially when 
p is small (cf. Table 3; when the UA part dominates), though the estimated �in is 
slightly less biased than the estimated �out . When p = 0.8 , Table 1 reveals that the 
N-M method produces the best (small bias and small standard errors) estimated 

Table 1  Simulation results with large p = 0.8

Parameters Nelder-Mead Algorithm Metropolis-Hastings Algorithm

p̂ 𝛿in 𝛿out p̂ 𝛿in 𝛿out

� = 0.1 Est. 0.7908 1.2304 0.6345 0.8183 1.4513 0.8331
� = 0.8 Bias(%) 1.1653 5.6584 10.3172 2.2357 10.4235 15.9719
p = 0.8 S.E. 0.0010 0.0103 0.0058 0.0079 0.0640 0.0567
� = 0.8 Est. 0.7611 1.1776 0.6251 0.8128 1.3351 0.8302
� = 0.1 Bias(%) 5.1091 10.3971 11.9915 1.5728 2.6264 15.6826
p = 0.8 S.E. 0.0048 0.0154 0.0138 0.0118 0.0361 0.0449
� = 0.45 Est. 0.8153 1.3608 0.7339 0.8305 1.4193 0.7714
� = 0.1 Bias(%) 1.8762 4.6677 4.6199 3.6774 8.4022 9.2520
p = 0.8 S.E. 0.0049 0.0156 0.0113 0.0098 0.0324 0.0236
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(�in, �out ) for the combination (�, �, �) = (0.45, 0.1, 0.45) . When p = 0.2 or 0.6, 
from Tables 2 and 3, we see the most accurately estimated (�in, �out ) appear in case 
(�, �, �) = (0.1, 0.8, 0.1) . Especially for p = 0.6 , the N-M algorithm provides the 
most accurate estimation overall.

The simulation results reveal that p̂ is unbiased from both algorithms. However, 
there is a noticeable efficiency gain in estimating the tuning parameter p by using the 
N-M algorithm, rendering it a preferred approach. Besides, we look into the distri-
butions of the estimates. The standard central limit theorem ensures that the limiting 
distributions of �̂�MLE and 𝛽MLE are normal. However, since the score functions for 
�in , �out and p are not separable, no standard approach can be readily used to uncover 
their limiting distributions. Nonetheless, the approximation method developed in 
Theorem 2 plausibly suggests that they may follow a Gaussian law asymptotically as 
well. To verify, we show the quantile-quantile (Q-Q) plots for the estimates from the 
case of � = 0.1 , � = 0.8 and p = 0.8 as an example; see Fig. 2. The Q-Q plots imply 

Table 2  Simulation results with moderate p = 0.6

Parameters Nelder-Mead Algorithm Metropolis-Hastings Algorithm

p̂ 𝛿in 𝛿out p̂ 𝛿in 𝛿out

� = 0.1 Est. 0.6001 1.3340 0.7012 0.6216 1.5576 0.9057
� = 0.8 Bias(%) 0.0101 2.5520 0.1694 3.4725 16.5359 22.7067
p = 0.6 S.E. 0.0016 0.0162 0.0134 0.0077 0.0819 0.0704
� = 0.8 Est. 0.5713 1.1725 0.6319 0.6537 1.4981 1.0724
� = 0.1 Bias(%) 5.0156 10.8786 10.7706 8.2084 13.2215 34.7240
p = 0.6 S.E. 0.0034 0.0115 0.0146 0.0144 0.0564 0.0752
� = 0.45 Est. 0.6227 1.4097 0.7746 0.6643 1.5867 0.9064
� = 0.1 Bias(%) 3.6493 7.7825 9.6363 9.6789 18.0667 22.7719
p = 0.6 S.E. 0.0034 0.0147 0.0104 0.0154 0.0637 0.0468

Table 3  Simulation results with small p = 0.2

Parameters Nelder-Mead Algorithm Metropolis-Hastings Algorithm

p̂ 𝛿in 𝛿out p̂ 𝛿in 𝛿out

� = 0.1 Est. 0.2021 1.2424 0.8122 0.2079 1.4151 1.0505
� = 0.8 Bias(%) 1.0335 4.6396 13.8146 3.8097 8.1307 33.3683
p = 0.2 S.E. 0.0010 0.0249 0.0268 0.0023 0.0788 0.0750
� = 0.8 Est. 0.1971 1.2281 0.8923 0.2321 1.6970 1.2663
� = 0.1 Bias(%) 1.4966 5.8588 21.5482 13.8237 23.3961 44.7213
p = 0.2 S.E. 0.0039 0.0410 0.0436 0.0071 0.0902 0.0996
� = 0.45 Est. 0.2125 1.4816 0.8271 0.2398 1.7302 1.2277
� = 0.1 Bias(%) 5.8757 12.2570 15.3696 16.6028 24.8628 42.9845
p = 0.2 S.E. 0.0026 0.0265 0.0249 0.0072 0.0703 0.1108
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that each of the estimates seems to follow a normal distribution marginally. We then 
run analogous analyses on the simulated HRNs under different parameter settings 
and obtain the same pattern. So, those Q-Q plots are not repeatedly presented.

Additionally, the N-M algorithm appears to be more efficient with average com-
putation time (over valid simulation runs) 2.2 seconds versus 340.2 seconds for the 

−2 −1 0 1 2

0.
46

0.
48

0.
50

0.
52

0.
54

0.
56

p

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2
0.

44
0.

46
0.

48
0.

50
0.

52
0.

54
0.

56
0.

58

delta_in

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

0.
19

0
0.

19
5

0.
20

0
0.

20
5

0.
21

0

delta_out

Theoretical Quantiles

Sa
m

pl
e 

Q
ua

nt
ile

s

Fig. 2  Q-Q plots for the estimates based on 100 independently simulated HRNs with � = 0.1 , � = 0.8 , 
p = 0.8 , �in = 1.3 and �out = 0.7
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M-H algorithm. Albeit the better overall performance of the N-M method, the algo-
rithm, as mentioned, undergoes the limitation of sensitivity to the initial value. Under 
the current setting, the N-M algorithm is able to provide estimation results over 90% 
of the simulation run with a fixed initial start given by �(0) = �(0) = � (0) = 1∕3 , 
p(0) = 1∕2 and �(0)

in
= �

(0)

out
= 1 , where all the initial values are relatively close to the 

true values. When we use a random initial start (e.g., spacing � , � and � randomly 
on the unit interval, sampling p from a standard uniform distribution and sampling 
�in and �out independently from a standard exponential distribution), the success rates 
(for all the scenarios) drop significantly to 60% or less. The failure of the algorithm 
is primarily due to the inaccurate start of �in and �out . We have also run some experi-
ments on smaller networks. When reducing the simulated network size to 5,000, the 
success rate of the N-M algorithm declines to 35% or less even with a fixed initial 
simplex.

In contrast, the M-H algorithm is more robust, as it is always able to produce 
estimation results regardless of the size of the network. Specifically, we consider a 
random spacing of � , � and � on the unit interval, sample �in and �out independently 
from a standard exponential distribution, and let p start from a value close to 1 (e.g., 
1 − 10−4 ), which indicates an almost perfect linear PA. Simulation results show that 
the choice of a non-informative prior of p (i.e., sampling it uniformly from [0, 1]) 
has negligible impact on the final estimation results. Though we observe bias in the 
estimates of �in and �out , the 100% success rate renders the M-H method a competi-
tive alternative.

To summarize, we recommend the N-M algorithm for parameter estimation if 
there is auxiliary information available to decide reasonable initial values. In addi-
tion, the M-H algorithm is a possible backup when the N-M algorithm fails. In prac-
tice, we may consider an integration of the two algorithms. Although the estimates 
of �in and �out from the M-H algorithm may not be very accurate, they are close 
enough to true values allowing for a successful implementation of the N-M algo-
rithm. Therefore, we may first adopt the M-H algorithm to get coarse estimates of 
the model parameters and use them as initial values for the N-M algorithm, which 
ultimately leads to finer estimation results. It is worth mentioning that this initial 
value selection procedure does not actually affect the estimation results by the N-M 
algorithm, but effectively increases the probability of the successful implementation 
of the N-M algorithm. If the target parameter is p only but not �in or �out , the estima-
tion results from the M-H algorithm may have been acceptable.

5.1  Model identifiability

It is worth highlighting that the proposed mixture model assumes p ∈ (0, 1) . When-
ever p = 1 , the proposed model coincides with the standard linear PA model. Based 
on the theoretical results given in Theorem 2, we notice that the limiting out- and 
in-degree distributions from an HRN with parameters (�, �, � , p, �in, �out ) agrees with 
those from a standard PA model with parameters (𝛼, 𝛽, 𝛾 , 𝛿in, 𝛿out) . This raises poten-
tial concerns on the issue of non-identifiability for our proposed model.
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To verify, we generate 100 independent HRN replicates of size 104 with 
parameters given by (�, �, � , p, �in, �out ) = (0.1, 0.8, 0.1, 0.5, 1, 2) . Pertaining to 
the relations developed in Theorem  2, we have (𝛿in, 𝛿out ) = (7, 9) . In Table  4, 
we present the estimated results based on the proposed algorithm, and see that 
the estimates of p, �in and �out are all close to the true parameters for simu-
lated HRNs, rather than (p, 𝛿in, 𝛿out ) = (1, 7, 9) . For comparison, we also use 
(𝛼, 𝛽, 𝛾 , 𝛿in, 𝛿out ) = (0.1, 0.8, 0.1, 7, 9) to generate 100 independent linear PA net-
works. Our numerical results show that if we do not impose the criterion p = 1 , 
i.e. we do not have strong belief on a pure PA model, the estimated parameters 
are close to those from the HRN counterparts. Therefore, the condition of p < 1 is 
crucial to avoid the non-identifiability issue of the proposed model.

6  Real data analysis

In this section, we fit the proposed HRN model to two real network datasets: 
the Dutch Wikipedia talk network and the Facebook wall posts, both of which 
are retrieved from the KONECT network data repository (http:// konect. cc/). By 
investigating the timestamp information from both datasets, we see the existence 
of two additional edge creation scenarios at each step: 

1. Set Jn = 4 (with probability 0 < 𝜉 < 1 ) if a new node with a self-loop is added to 
the network;

2. Set Jn = 5 (with probability 0 < 𝜂 < 1 ) if two new nodes with a directed edge 
connecting them are added to the network.

Note that these two additional scenarios require minor modifications of the log-
likelihood given in Sect. 4, but they do not impose direct effect on the score func-
tions of p, �in and �out . The MLEs of � and � are straightforward:

The assessment of the goodness-of-fit of the proposed HRN model is based on sim-
ulations. This is a valid approach which has been theoretically validated and widely 
used in the community (Hunter et al. 2008).

𝜉MLE =
1

n

n∑

k=1

�{Jk=4}
and �̂�MLE =

1

n

n∑

k=1

�{Jk=5}
.

Table 4  Estimates of p, �in 
and �out for HRNs given 
(�, �, �) = (0.1, 0.8, 0.1)

Model �̂� 𝛽 p̂ 𝛿in 𝛿out

Est. 0.0997 0.8002 0.4802 0.7905 1.7385
SE 0.0003 0.0004 0.0040 0.0462 0.0579

http://konect.cc/
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6.1  Dutch wikipedia talk

In the Dutch Wikipedia talk dataset, every single node represents a specific user of 
the Dutch Wikipedia, and the creation of a directed edge from node  u to node v 
refers to the event that user u leaves a message on user v’s talk page. The dataset 
includes the communication among the users of Dutch Wikipedia talk pages from 
10/18/2002 and 11/23/2015, consisting of three columns. The first two columns rep-
resent users’ ID and the third column gives a UNIX timestamp with the time of a 
message posted on one’s Wikipedia talk page. For each row, the first user writes 
a message on the talk page of the second user at a timestamp given in the third 
column.

According to findings in Wang and Resnick (2021), this network does not enter 
the stable phase of network growth until year 2008. Then for illustration purposes, 
we choose a sub-network according to the timestamp information from 01/01/2013 
to 03/31/2013. The sub-network is directed, consisting of 3288 nodes and 21,724 
directed edges. We fit the proposed hybrid model to the data by using the integration 
of the M-H algorithm and the N-M algorithm. For the M-H algorithm, the burn-in 
number and iteration sample size are both set at 100,000, and the gap for thinning 
sampling is 500. The convergence of the estimates is checked via the time-series 
plots in Fig. 3. Using the estimates from the M-H algorithm as the initial values for 
the N-M algorithm, we get almost identical estimates given by

where the value of p̂ is extremely close to 1. The large p̂ suggests PA dominates the 
evolutionary process, thus leading to little difference between the proposed HRN 
and that proposed in Wan et al. (2017). For comparison, we compute the MLEs from 
the pure PA network model to get

from which we see the estimates from the two models are close to each other.
We generate 50 independent replications of the HRNs and pure PA networks 

with their respective estimates. The out-degree and in-degree tail distributions of 
these simulated networks are presented in Fig. 4, where the top two panels are for 
HRNs and the bottom two are for pure PA networks. Since the estimate p̂ for HRN 
is extremely close to 1, the empirical out-degree and in-degree tail distributions 
from the two classes of simulated networks and their coverage region shapes are 
alike as expected. The left two-panel show that the out-degree tail distribution of the 
selected sub-network is well covered by both overlaid plots. However, in the right 
two panels, we observe negligible discrepancies between the overlaid plots and the 
in-degree distribution of the real data. Overall, our analysis suggests the evolution of 
the selected sub-network of the Dutch Wikipedia talk data follows a linear PA mech-
anism, so it is well fit by both HRN and pure PA model (Wan et al. 2017). Thus, the 
proposed hybrid model is flexible to fit the real network data only presenting linear 
PA mechanism.

��WK ∶= (�̂�, 𝛽, �̂� , 𝜉, p̂, 𝛿in, 𝛿out ) = (0.014, 0.745, 0.227, 0.006, 0.999, 0.186, 0.149),

��
(PA)

WK
∶= (�̂�, 𝛽, �̂� , 𝜉, 𝛿in, 𝛿out ) = (0.012, 0.784, 0.189, 0.006, 0.156, 0.152),
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6.2  Facebook wall posts

The Facebook wall post dataset collects data from a regional network of users in 
New Orleans from 09/13/2004 to 01/21/2009. The data forms a directed graph 
where the nodes are Facebook users and each directed edge represents a post 
from one node to another node’s page. Like the Dutch Wikipedia Talk example, 
the Facebook dataset also contains three columns, where the first two contain the 
identifiers of the individual users, while the third records the timestamp of the 
corresponding post.

We select a sub-network of the Facebook wall post based on timestamps from 
01/01/2006 to 06/30/2006. The sub-network consists of 4,200 nodes and 11,422 
directed edges. Fitting the proposed hybrid model to the data, we get

The estimates are obtained via the integration of the N-M and M-H algorithms, 
where the settings of burn-in number, iteration size and thinning gap are identical 
to the previous example. In Fig. 5, we verify the convergence of the estimates based 
on the M-H algorithm. Once again, we do not observe significant difference between 
the corresponding estimates from the two algorithms. For the purpose of compari-
son, we also fit the data with pure PA model to get

��FB ∶= (�̂�, 𝛽, �̂� , 𝜉, p̂, 𝛿in, 𝛿out ) = (0.071, 0.714, 0.114, 0.077, 0.830, 0.172, 0.007).

��
(PA)

FB
∶= (�̂�, 𝛽, �̂� , 𝜉, 𝛿in, 𝛿out ) = (0.073, 0.711, 0.115, 0.078, 0.604, 0.341).
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tributions of 50 independent pure PA networks (blue), compared with those from the Wikipedia data 
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Analogous to the previous example, we assess the goodness-of-fit of the model 
through the tail distributions of in-degree and out-degree. Specifically, we gener-
ate 50 independent HRNs and pure PA networks by using �̂FB and �̂

(PA)

FB
 , respec-

tively. We then overlay the empirical out-degree and in-degree distributions of 
the two classes of simulated networks in Fig. 6. The graphical results show that 
the out-degree tail distribution is better captured by the HRN than the in-degree 
tail distribution, as it appears on the lower bound of the overlaid tail distributions 
of the simulated networks. The in-degree tail distribution of the Facebook sub-
network is not well covered by the coverage region formed by the counterparts 
of the simulated networks, though the shapes look similar and the deviation is 
not large. Nonetheless, the goodness of fit of the proposed HRN is better than the 
pure PA model. The out-degree tail of the Facebook sub-network obviously devi-
ates away from the coverage region, and for in-degree tail, we observe much more 
discrepancy in pure PA model (than the proposed HRN).

The discrepancy in Fig.  6 may be due to the high reciprocity feature in the 
Facebook wall posts as well as the fact that the collected data is for users in New 
Orleans only. The wall posts activities among the Facebook users in a specific 
region tend to be reciprocated: when a friend posts a message on one’s wall, he/
she is likely to reply quickly. In fact, using the reciprocity() function in the 
igraph package (Csardi and Nepusz 2006), we see that the proportion of recip-
rocated edges in the sub-network is over 0.18. Indeed, the reciprocated wall posts 
are certainly not uniform, thus not very well characterized by the parameter p. 
To better study the reciprocity feature, we may consider other variants of the PA 
model, which are left for future work.
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Fig. 6  Top two panels: Out-degree and in-degree tail distributions of 50 independent HRNs (red), com-
pared with those from the Facebook data (black); Bottom two panels: Out-degree and in-degree tail 
distributions of 50 independent pure PA networks (blue), compared with those from the Facebook data 
(black)
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6.3  Multiple time window fit

Recently in Wang and Resnick (2021), the detailed timestamp information for these 
two datasets has been carefully studied, and the actual network evolution may have 
different phases of growth. Therefore, we now divide the network evolution into 
small sub-networks and fit the proposed model according to each sub-network. A 
similar study has been done in (Wan et al. 2017, Sect. 6) to obtain a reasonable fit 
for the pure PA model in the Dutch Wikipedia Talk data. Since we have p̂ ≈ 1 in 
Sect. 6.1, here we will only consider applying the multiple-window approach to the 
Facebook data.

By Wang and Resnick (2021), the Facebook wall post network does not enter 
the stable phase of network growth until May 2006, suggesting that this particular 
network may reach its local stability in different time windows. To characterize the 
evolutionary feature of the entire dataset, we use the proposed HRN model to fit 
the sub-networks from different time windows. More specifically, we split the whole 
network into 87 sub-networks, each of which contains 104 edges (where the last sub-
network is slightly smaller than the rest in size). By applying the HRN model, we 
get the estimates of � , � , � , � , p, �in and �out for each sub-network. The estimation 
results for p, �in and �out are shown in Fig. 7, whereas the estimates of the rest remain 
almost identical over time.

The top panel in Fig. 7 suggests an overall decreasing trend in the estimates of 
p. Especially after entering 2009, the estimate of p stays lower than 0.7, rendering 
that fitting the data via the proposed HRN model is significantly different from by 
fitting a pure PA model. As remarked in (Wang and Resnick 2021, Sect. 3.1) and 
Viswanath et al. (2009), Facebook’s new site design was unveiled on July 20, 2008, 
allowing users to directly view wall posts through friends’ feeds, and we speculate 
this new design as one possible reason to increase the part of uniform attachment in 
the fitted network.

In addition, the downward trend also shows that it may be inappropriate to fit the 
entire network data via one model, regardless of HRN model or pure PA model. In 
contrast, the estimates of �in and �out are relatively stable overtime in spite of ups 
and downs. Therefore, fitting massive scale networks, especially those growing with 
multiple phases, by fitting locally stable sub-networks seems a promising approach, 
which deserves further investigation in our future study.

7  Discussions

In this paper, we propose a class of hybrid model simultaneously presenting the 
preferential attachment (PA) and uniform attachment (UA) mechanisms, which 
are governed by a tuning parameter p ∈ (0, 1) . We would like to point out that the 
degree distributions of the proposed model are asymptotically equivalent to those of 
the linear PA model under the setup of 𝛿in and 𝛿out given in Theorem 2. Therefore, 
the value of p is assumed to be strictly less than 1 to avoid the issue of identifiabil-
ity. Two standard methods, the Nelder-Mead (N-M) algorithm and the Metropolis-
Hastings (M-H) algorithm, are adopted for parameter estimation. Through extensive 
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simulations and a sensitivity study, we find that the N-M algorithm is preferred, but 
the corresponding success rate of producing estimation result depends heavily on 
the selection of the initial simplex. We thus consider an integrated approach where 
we use the more robust M-H algorithm to get the initial values for the target param-
eters, followed by the implementation of the N-M algorithm.

In addition, we fit the HRN model to two real network datasets: the Dutch Wiki-
pedia talk and Facebook wall posts, where we see that the proposed hybrid model 
provides a more flexible modeling framework compared with the directed PA net-
work model as in Wan et al. (2017). The extra tuning parameter p helps correct the 
tail distributions of out-and in-degrees.
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Fig. 7  Estimates of p, �in and �out over time windows
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From the Facebook example, it is worth noting that even though the heaviness of the 
tail distributions (for both out- and in-degrees) has been weakened by p in the HRN, 
the proposed UA part is not able to fully capture the reciprocity property in the real 
network. We here provide three classes of possible remedies: (1) It may be worthwhile 
to try some algorithmic approaches, such as network rewiring, to wash off the nodes of 
large in-degree or out-degree in the simulated networks; (2) We may extend the model 
allowing for multi-edge addition at each timestamp; (3) We may consider modifying 
the model directly by introducing another parameter measuring the rate of reciproca-
tion; (4) We may consider a more realistic mixer (some suitable light-tailed distribu-
tion) rather than simple UA in the present hybrid setting. We will report our research 
outcomes elsewhere in the future.

A. Proof of Theorem 2

Analogous to the previous proofs, we present the major steps of the proof for in-degree. 
To show the convergence of N

in
m
(n)

n
 , we take two steps. The first is to prove the con-

centration of N
in
m
(n)

n
 around �

(
N in
m
(n)

)
∕n , then it suffices to find the asymptotic limit of 

�
(
N in
m
(n)

)
∕n.

Note that when � = 0 , then the number of nodes in graph G(n) is deterministic, so 
the concentration results in van der Hofstad (2017), Proposition 8.4 are applicable, and 
we have for C > 2

√
2,

When 𝛽 > 0 , the total number of nodes in graph G(n) is random, and detailed proofs 
are needed. We claim that for 𝛽 > 0 , there exists some constant C > 2

√
2 such that.

The proof of (12) relies on rewriting N in
m
(n) − �(N in

m
(n)) in terms of a Doob’s martin-

gale, similar to the argument in the corrected version of Deijfen et al. (2009) (avail-
able at https:// arxiv. org/ pdf/ 0705. 4151. pdf, and cited as Deijfen et  al. (2020). But 
here since the number of nodes created at each step is random, we need to modify 
the proof machinery outlined in Deijfen et al. (2020). Recall the notation in Sect. 2 
that {Jn ∶ n ≥ 1} is a sequence of iid tri-nomial random variable on {1, 2, 3} with 
cell probability � , � and  � , respectively. Write {Jk ∶ 1 ≤ k ≤ n} =∶ J[n] , and for 
1 ≤ t ≤ n , define

and Z0 = �
[
N in
m
(n)

]
 . Then

and {Zn ∶ n ≥ 0} is a martingale with �(|Zt|) = �(N in
m
(n)) ≤ n.

ℙ

����N
in

m
(n) − 𝔼(N in

m
(n))

��� ≥ C
√
n log n

�
= o(1∕n).

(12)ℙ

����N
in

m
(n) − 𝔼(N in

m
(n))

��� ≥ C
√
n log n(1 + log n)

�
= o(1∕n).

Zt ∶= �

[
N in

m
(n)

|||Ft, J[t]

]
,

N in

m
(n) − �(N in

m
(n)) = Zn − Z0,

https://arxiv.org/pdf/0705.4151.pdf
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Then consider

For I, the only change in the conditioning is the extra information contained in 
G(t), which, compared with that in G(t − 1) , specifies how the edge created at the 
t-th -step is constructed. This has the potential to affect the in-degrees of at most 2 
nodes, thus leading to |I| ≤ 2.

For the second term, II, we define J̄t to be an independent copy of Jt , which is 
also independent from J[n] . Write J̄[n] ∶= {J1,… , Jt−1, J̄t, Jt+1,… , Jn} . Let N̄ in

m
(n) 

and D̄in
v
(n) be the number of nodes with in-degree m, and the in-degree of node v in 

the hybrid PA graph, Ḡ(n) = (V̄n, Ēn) , constructed from J̄[n] , respectively. Then we 
have

Therefore, it suffices to consider

where potential differences will occur only if Jn ≠ J̄n.
We start by assuming that Jn, J̄n ∈ {1, 3} , i.e. the total numbers of nodes in the 

two graphs remain unchanged. Then the quantity in (13) is bounded above by

Zt − Zt−1 = �

[
N in

m
(n)

|||Ft, J[t]

]
− �

[
N in

m
(n)

|||Ft−1, J[t−1]

]

= �

[
N in

m
(n)

|||Ft, J[t]

]
− �

[
N in

m
(n)

|||Ft−1, J[t]

]

+ �

[
N in

m
(n)

|||Ft−1, J[t]

]
− �

[
N in

m
(n)

|||Ft−1, J[t−1]

]

=∶ I + II.

II = �

[
N in

m
(n)

|||Ft−1, J[t]

]
− �

[
N̄ in

m
(n)

|||Ft−1, J[t−1]

]

= �

[
�

[
N in

m
(n)

|||Ft−1, J[n]

] |||Ft−1, J[t]

]
− �

[
N̄ in

m
(n)

|||Ft−1, J[t]

]

= �

{
�

[
N in

m
(n)

|||Ft−1, J[n]

]
− �

[
N̄ in

m
(n)

|||Ft−1, J̄[n]

] |||Ft−1, J[t]

}

= �

{
�

[
N in

m
(n)

|||Ft−1, J[n], J̄[n]

]
− �

[
N̄ in

m
(n)

|||Ft−1, J[n], J̄[n]

] |||Ft−1, J[t]

}
.

(13)

||||
𝔼

[
N in

m
(n)

|||Ft−1, J[n], J̄[n]

]
− 𝔼

[
N̄ in

m
(n)

|||Ft−1, J[n], J̄[n]

]||||

≤

||||||

|Vn|∑

v=1

ℙ

[
Din

v
(n) = m

|||Ft−1, J[n], J̄[n]

]
−

|V̄n|∑

v=1

ℙ

[
D̄in

v
(n) = m

|||Ft−1, J[n], J̄[n]

]||||||

|Vn|∑

v=1

||||
ℙ

[
Din

v
(n) = m

|||Ft−1, J[n], J̄[n]

]
− ℙ

[
D̄in

v
(n) = m

|||Ft−1, J[n], J̄[n]

]||||

≤

|Vn|∑

v=1

𝔼

[
1{Din

v
(n)≠D̄in

v
(n)}

|||Ft−1, J[n], J̄[n]

]
.
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When we either have Jt = 1, J̄t = 3 or Jt = 3, J̄t = 1 , there are at most 2 nodes whose 
in-degrees will be different. Therefore, when Jt, J̄t ∈ {1, 3},

If (Jt, J̄t) ∈ {(2, 1), (2, 3), (1, 2), (3, 2)} , then |||Vs| − |V̄s||| = 1 , for all s ≥ n , and we 
need to consider nodes created before and after step t separately. In particular, the 
difference in the total number of nodes will also lead to different attachment prob-
abilities in the two graphs. Without loss of generality, we assume Jt = 2 and J̄t ≠ 2 . 
For comparison purpose, we will relabel the extra node added at the t-th step as t′ , 
and keep the labeling of the other nodes identical in the two graphs. Then the quan-
tity in (13) is bounded above by

Let N be the first time after t that a new node is created, i.e. 
N ∶= inf{k ≥ t + 1 ∶ Jk ≠ 2} . Note that for s ∈ {t + 1,…N} , every edge that is 
added at step s and pointing to the node t′ will lead to a potential difference in the 
in-degree of nodes in Vt−1 . Hence, apart from node t′ , there are at most N − t − 1 
number of nodes in Vt−1 having different in-degrees in the two graphs. If no edge 
between step t + 1 and step N has been pointing to the node t′ , then possible differ-
ences in the in-degree of one particular node may occur due to the change in the 
attachment probabilities. This is also the case for those nodes added at N and after-
ward. To deal with different in-degrees due to changes in the attachment probabili-
ties, we will apply a similar treatment as given in (Deijfen et al. 2020, Eq. (2.17)).

We now rewrite

Therefore, at least one of the attachments to node v ∈ Vn needs to have been 
made for one of the graphs but not the other. Let s denote the first time where 
such an attachment was made differently in the two graphs. Then we have 
Din

v
(s − 1) = D̄in

v
(s − 1) ≤ m . Hence,

||||
�

[
N in

m
(n)

|||Ft−1, J[n], J̄[n]

]
− �

[
N̄ in

m
(n)

|||Ft−1, J[n], J̄[n]

]||||
≤ 2.

1 +

|Vn|∑

v=1

||||
ℙ

[
Din

v
(n) = m

|||Ft−1, J[n], J̄[n]

]
− ℙ

[
D̄in

v
(n) = m

|||Ft−1, J[n], J̄[n]

]||||
.

ℙ

[
Din

v
(n) = m

|||Ft−1, J[n], J̄[n]

]
− ℙ

[
D̄in

v
(n) = m

|||Ft−1, J[n], J̄[n]

]

= ℙ

[
Din

v
(n) = m, D̄in

v
(n) ≠ m

|||Ft−1, J[n], J̄[n]

]

− ℙ

[
Din

v
(n) ≠ m, D̄in

v
(n) = m

|||Ft−1, J[n], J̄[n]

]
.
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Since 
∑

v∈Vs−1
(Din

v
(s − 1) + �in) = s + �in�Vs−1� , then (14) implies that

Thus, combining all scenarios together gives that

Applying the bound in Eq. (1.2) of the supplement gives that there exists some con-
stant C′ > 0 such that

which further implies

(14)

ℙ

[
Din

v
(n) = m, D̄in

v
(n) ≠ m

|||Ft−1, J[n], J̄[n]

]

≤

n∑

s=t+1

𝔼

[
p(Din

v
(s − 1) + 𝛿in)

|||||
1

s + 𝛿in|Vs−1|
−

1

s + 𝛿in|V̄s−1|

|||||
|||Ft−1, J[n], J̄[n]

]

+

n∑

s=t+1

(1 − p)
|||||

1

|Vs−1|
−

1

|V̄s−1|

|||||

=

n∑

s=t+1

𝔼

[
p𝛿in(D

in
v
(s − 1) + 𝛿in)

(s + 𝛿in|Vs−1|)(s + 𝛿in|V̄s−1|)
|||Ft−1, J[n], J̄[n]

]

+

n∑

s=t+1

(1 − p)
1

|Vs−1||V̄s−1|
.

∑

v

ℙ

[
Din

v
(n) = m, D̄in

v
(n) ≠ m

|||Ft−1, J[n], J̄[n]

]

≤

n∑

s=t+1

∑

v∈Vs−1

(
𝔼

[
p𝛿in(D

in
v
(s − 1) + 𝛿in)

(s + 𝛿in|Vs−1|)(s + 𝛿in|V̄s−1|)
|||Ft−1, J[n], J̄[n]

]

+

n∑

s=t+1

(1 − p)
1

|Vs−1||V̄s−1|

)

≤

n∑

s=t+1

(
p𝛿in
s

+
1 − p

|Vs−1|

)
.

||II|| ≤ �

[||||
�

[
N in

m
(n)

|||Ft−1, J[n], J̄[n]

]
− �

[
N̄ in

m
(n)

|||Ft−1, J[n], J̄[n]

]||||
|||Ft−1, J[t]

]

≤ 2

(
1 + �

[
N − t − 1 +

n∑

s=t+1

(
p𝛿in
s

+
1 − p

|Vs−1|

)|||||
Ft−1, J[t]

])

= 2

(
1

𝛽
+

n∑

s=t+1

p𝛿in
s

+

n∑

s=t+1

�

[
1 − p

|Vs−1|

|||||
Ft−1, J[t]

])
.

||II|| ≤ 2∕� + C�

n∑

s=t+1

s−1 ≤ C� log(n∕t),
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Then by the Azuma-Hoeffding’s inequality, we have

Then the claim in (12) follows by setting b = C
√
n log n(1 + 2∕� + log n) , with 

C > 2
√
2.

Then we are left with identifying the asymptotic limit of �(N in
m
(n))∕n . Consider 

the following approximation of the attachment probability:

Recall that

Applying Chernoff bound again gives

for some constant C > 0 . Consider a in-degree sequence 
{
D̃in

i
(n)

}
 from a directed 

PA network with set of parameters (𝛼, 𝛽, 𝛾 , 𝛿in, 𝛿out ) , as studied in Samorodnitsky 
et  al. (2016); Wan et  al. (2017). Establish an argument similar to Eq.  (1.1) in the 
supplement as follows:

for some constant C̃ > 0 . Note

By the developed Chernoff bounds, we have

|Zt − Zt−1| ≤ 1 + 2∕� + C� log(n∕t).

ℙ

����N
in

m
(n) − 𝔼(N in

m
(n))

��� ≥ b
�
≤ 2 exp

�
−

b2

8
∑n

t=1
(1 + 2∕� + C� log(n∕t))2

�

≤ 2 exp

�
−

b2

8n(1 + 2∕� + log n)2

�
.

p
(
Din

i
(n) + �in

)
(
1 + �in(1 − �)

)
n
+

1 − p

(1 − �)n
=

Din
i
(n) + �in +

1−p

p(1−�)

(
1 + �in(1 − �)

)

(
1 + �in(1 − �)

)
n∕p

.

𝛿in = 𝛿in +
1 − p

p(1 − 𝛽)

(
1 + 𝛿in(1 − 𝛽)

)
=

𝛿in
p

+
1 − p

p(1 − 𝛽)
.

(15)

������
�

�
p
�
Din

i
(n) + 𝛿in

�

n + 1 + �Vn�𝛿in
+

1 − p

�Vn�

�
− �

�
Din

i
(n) + 𝛿in�

1 + 𝛿in(1 − 𝛽)
�
n∕p

�������
≤ Cn−3∕2

√
log n,

������
�

�
p
�
Din

i
(n) + 𝛿in

�

n + 1 + �Vn�𝛿in
+

1 − p

�Vn�

�
− �

�
D̃in

i
(n) − 𝛿in

n + 1 + �Vn�𝛿in

�������
≤ C̃n−3∕2

√
log n,

ℙ
(
Din

i
(n) = m

)
=

m∑

j=m−1

ℙ
(
Din

i
(n) = m |Din

i
(n − 1) = j

)
ℙ
(
Din

i
(n − 1) = j

)
.
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Noticing that 
∑n

k=i
k−3∕2

√
log k < ∞ as n → ∞ , we complete the proof by applying 

the results derived in Wang and Resnick (2020).   ◻

B.  Validation of MLE

From the log-likelihood function in (11), we have the following score functions for 
�in, �out and p, respectively.

We then set the score function (16) to 0. Note that due to the randomness of |Vk−1| , 
the methodology given in Wan et al. (2017) is not directly applicable. Instead, we 
approximate the score function (16) as follows:

where

ℙ
�
Din

i
(n) = m

�
≤ ℙ

�
D̃in

i
(n) = m

�
+ (C + C̃)

n�

k=i

k−3∕2
√
log k.

(16)

�

��in
log L(� |E) =

n∑

k=1

|Vk−1|(
pDin

vk,2
(k − 1) + �in

)
|Vk−1| + (1 − p)k

�{Jk={1,2}}

−

n∑

k=1

|Vk−1|
k + |Vk−1|�in

�{Jk={1,2}}
,

(17)

�

��out
log L(� |E) =

n∑

k=1

|Vk−1|(
pDout

vk,1
(k − 1) + �out

)
|Vk−1| + (1 − p)k

�{Jk={2,3}}

−

n∑

k=1

|Vk−1|
k + |Vk−1|�out

�{Jk={2,3}}
,

(18)

�

�p
logL(� |E) =

n∑

k=1

(
Din

vk,2
(k − 1)|Vk−1| − k

)
�{Jk={1,2}}

(
pDin

vk,2
(k − 1) + �in

)
|Vk−1| + (1 − p)k

+

n∑

k=1

(
Dout

vk,1
(k − 1)|Vk−1| − k

)
�{Jk={2,3}}

(
pDout

vk,1
(k − 1) + �out

)
|Vk−1| + (1 − p)k

.

n∑

k=1

|Vk−1|(
pDin

vk,2
(k − 1) + 𝛿in

)
|Vk−1| + (1 − p)k

�{Jk={1,2}}

=

n∑

k=1

�{Jk={1,2}}(
pDin

vk,2
(k − 1) + 𝛿in

)
+ (1 − p)k∕|Vk−1|

=
1

p

n∑

k=1

�{Jk={1,2}}

Din
vk,2

(k − 1) + 𝛿in
+ Rin(n),
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Therefore,

Since |Vn−1|∕n
a.s.
⟶ 1∕(1 − �) , then by the Cesàro convergence of random variables, 

we have |Rin(n)|∕n
a.s.
⟶ 0 . Then the approximate score equation in (16) becomes

Applying the method in Wan et al. (2017) further yields the following approximate 
score function:

where N in
>m

(n) denotes the number of nodes with in-degree strictly greater than m in 
Hn.

Similarly, the score equation with respect to (17) can be approximated by

with Nout
>m

(n) being the number of nodes with out-degree strictly greater than m in 
Hn . However, with (19) and (20) available, the approximation to the third score 
equation in (18) leads to a deterministic solution of p = 1 . This indicates former 
methods to find MLE as in Wan et al. (2017) are not able to give us the desirable 
results.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10463- 022- 00827-5.
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Rin(n) =

n∑

k=1

�{Jk={1,2}}

p

(
1

Din
vk,2

(k − 1) + 𝛿in∕p + (1 − p)k∕(p|Vk−1|)

−
1

Din
vk,2

(k − 1) + 𝛿in

)
.

|Rin(n)| ≤
1

p

n∑

k=1

(1 − p)∕p||k∕|Vk−1| − 1∕(1 − 𝛽)||�{Jk={1,2}}
(Din

vk,2
(k − 1) + 𝛿in∕p + (1 − p)k∕|Vk−1|)(Din

vk,2
(k − 1) + 𝛿in)

≤
1 − p

p2

n∑

k=1

|k∕|Vk−1| − 1∕(1 − 𝛽)|
(𝛿in∕p + (1 − p)k∕|Vk−1|)𝛿in

.

1

n

n∑

k=1

�{Jk={1,2}}

Din
vk,2

(k − 1) + 𝛿in
=

1

n

n∑

k=1

|Vk−1|
k + |Vk−1|𝛿in

�{Jk={1,2}}
.

(19)
∞∑

m=0

N in
>m

(n)∕n

m + 𝛿in
=

𝛾

𝛿in
+

(𝛼 + 𝛽)(1 − 𝛽)

1 + 𝛿in(1 − 𝛽)
,

(20)
∞∑

m=0

Nout
>m

(n)∕n

m + 𝛿out
=

𝛼

𝛿out
+

(𝛽 + 𝛾)(1 − 𝛽)

1 + 𝛿out (1 − 𝛽)
,

https://doi.org/10.1007/s10463-022-00827-5
https://doi.org/10.1007/s10463-022-00827-5
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