
Vol.:(0123456789)

Annals of the Institute of Statistical Mathematics (2022) 74:1143–1161
https://doi.org/10.1007/s10463-022-00825-7

1 3

Inference of random effects for linear mixed‑effects models 
with a fixed number of clusters

Chih‑Hao Chang1 · Hsin‑Cheng Huang2 · Ching‑Kang Ing3

Received: 14 June 2021 / Revised: 9 March 2022 / Accepted: 22 March 2022 /  
Published online: 14 May 2022 
© The Institute of Statistical Mathematics, Tokyo 2022

Abstract
We consider a linear mixed-effects model with a clustered structure, where the 
parameters are estimated using maximum likelihood (ML) based on possibly unbal-
anced data. Inference with this model is typically done based on asymptotic theory, 
assuming that the number of clusters tends to infinity with the sample size. How-
ever, when the number of clusters is fixed, classical asymptotic theory developed 
under a divergent number of clusters is no longer valid and can lead to erroneous 
conclusions. In this paper, we establish the asymptotic properties of the ML estima-
tors of random-effects parameters under a general setting, which can be applied to 
conduct valid statistical inference with fixed numbers of clusters. Our asymptotic 
theorems allow both fixed effects and random effects to be misspecified, and the 
dimensions of both effects to go to infinity with the sample size.
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1  Introduction

Over the past several decades, linear mixed-effects models have been broadly 
applied to clustered data  (Longford, 1993), longitudinal data  (Laird and Ware, 
1982; Verbeke and Molenberghs, 2000), spatial data  (Mardia and Marshall, 
1984), and data in scientific fields  (Jiang, 2007, 2017), particularly due to their 
usefulness in modeling data with clustered structures. Model parameters are tra-
ditionally estimated, for example, via minimum norm quadratic, maximum likeli-
hood (ML), and restricted ML (REML) methods. ML and REML estimators are 
compared in Gumedze and Dunne (2011).

Estimating random-effects variances in mixed-effects models is usually more 
challenging than estimating fixed-effects parameters. Although desired asymp-
totic properties have been developed for ML and REML estimators of random-
effects variances (Hartley and Rao, 1967; Harville, 1977; Miller, 1977), these are 
mainly obtained under the mathematical device of requiring the number of clus-
ters (denoted as m) to grow to infinity with the sample size (denoted as N) and the 
numbers of fixed effects and random effects (denoted as p and q) to be fixed. In 
fact, most asymptotic results for likelihood ratio tests and model selection in lin-
ear mixed-effects models are established under a similar mathematical device; see 
Self and Liang (1987), Stram and Lee (1994), Crainiceanu and Ruppert (2004), 
Pu and Niu (2006), Fan and Li (2012), and Peng and Lu (2012). However, in 
many practical situations, we are faced with a small m, which does not grow to 
infinity with N. As pointed out by McNeish and Stapleton (2016a) and Huang 
(2018), data collected in the fields of education or developmental psychology typ-
ically have a small number of clusters, corresponding, for example, to classrooms 
or schools. Unfortunately, to the best of our knowledge, no theoretical justifica-
tion has been provided for random-effects estimators when m is fixed.

As shown by Maas and Hox (2004), Bell et al. (2014), and McNeish and Sta-
pleton (2016b), for a linear mixed-effects model with few clusters, random-effects 
variances are not well estimated by either ML or REML. This is because when 
m is fixed, the Fisher information for random-effects variances fails to grow with 
N, and hence, the corresponding ML estimators do not achieve consistency. A 
similar difficulty arises in a spatial-regression model of Chang et al. (2017) under 
the fixed domain asymptotics, in which the spatial covariance parameters cannot 
be consistently estimated. A direct impact of this difficulty is that the classical 
central limit theorem established under m → ∞ for the ML (or REML) estimators 
(Hartley and Rao, 1967; Harville, 1977; Miller, 1977) is no longer valid. Conse-
quently, statistical inference based on the asymptotic results for m → ∞ can be 
misleading.

In this article, we focus on the ML estimators in linear mixed-effects models 
with possibly unbalanced data. We first develop the asymptotic properties of the 
ML estimators, without assuming that fixed- and random-effects models are cor-
rectly specified, p and q are fixed, or m → ∞ . Based on the asymptotic properties 
of the ML estimators, we provide, for the first time in the mixed-effects models 
literature, the asymptotic valid confidence intervals for random-effects variances 
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when m is fixed. In addition, we present an example illustrating that empirical 
best linear unbiased predictors (BLUPs) of random effects (which are the BLUPs 
with the unknown parameters replaced by their ML estimators) compare favora-
bly to least squares (LS) predictors even when the ML estimators are not consist-
ent; see Sect. 3.1 for details. Also note that our asymptotic theorems allow both 
fixed- and random-effects models to be misspecified. Consequently, our results 
are crucial to facilitate further studies on model selection for linear mixed-effects 
models with fixed m, in which investigating the impact of model misspecification 
is indispensable.

This article is organized as follows. Section 2 introduces the linear mixed-effects 
model and the regularity conditions. The asymptotic results for the ML estimators are 
given in Sect. 3. Section 4 describes simulation studies that confirm our asymptotic the-
ory, and a real-data example, including a comparison between the conventional confi-
dence intervals and the proposed ones for random-effects variances. A brief discussion 
is given in Sect. 5. The proofs of all the theoretical results are deferred to the online 
supplementary material.

2 � Linear mixed‑effects models

Consider a set of observations with m clusters, {(yi,Xi,Zi)}
m
i=1

 , where 
yi = (yi,1,… , yi,ni )

� is the response vector, Xi and Zi are ni × p and ni × q design matri-
ces of p and q covariates with the (j, k)-th entries xi,j,k and zi,j,k , respectively, and ni is 
the number of observations in cluster i. A general linear mixed-effects model can be 
written as

where � = (�1,… , �p)
� is the p-vector of fixed effects, 

bi = (bi,1,… , bi,q)
� ∼ N(0, diag(�2

1
,… , �2

q
)) is the q-vector of random effects, 

�i ∼ N(0, v2Ini) , and Ini is the ni-dimensional identity matrix. Here, {bi} and {�i} are 
mutually independent. Let y , X , b , and � be obtained by stacking {yi} , {Xi} , {bi} , 
and {�i} . Also let Z = diag(Z1,… ,Zm) be the block diagonal matrix with diagonal 
blocks {Zi} and dimension N × (mq) , where N = n1 +⋯ + nm is the total sample 
size. Let �k = �2

k
∕v2 ; k = 1,… , q and D = diag(�1,… , �q) . Then, we can rewrite (1) 

as

where H = R + IN , R = diag(R1,… ,Rm) , and Ri = ZiDZ
�
i
 ; i = 1,… ,m.

Let A × G ⊂ 2{1,…,p} × 2{1,…,q} be the set of candidate models with � ∈ A and 
� ∈ G corresponding to the fixed-effects and random-effects covariates indexed by � 
and � , respectively. Then, a linear mixed-effects model corresponding to (�, �) ∈ A × G 
can be written as

(1)yi = Xi� + Zibi + �i; i = 1,… ,m,

(2)y = X� + Zb + � ∼ N(X�, v2H),

(3)y = X(�)�(�) + Z(�)b(�) + �.
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For i = 1,… ,m , let Zi(�) be the sub-matrix of Zi and bi(�) be the sub-vector of bi 
corresponding to � . Then for � ∈ G,

where zi,k is the k-th column of Zi and �(�) is the parameter vector of �k ; k ∈ � . In 
other words, under (�, �) ∈ A × G,

where

hi,k = (0�
n1
,… , 0�

nk−1
, z�

i,k
, 0�

nk+1
,… , 0�

nm
)� , and 0ni is the ni-vector of zeros. Here, for 

notational simplicity, we suppress the dependence of � on �.
For (�, �) ∈ A × G , let p(�) be the dimension of � and let q(�) be the dimension 

of � . Assume that the true model of y is

where �0 is the underlying mean trend, v2
0
> 0 is the true value of v2 , H0 = R0 + IN , 

R0 = diag(Z1D0Z
�
1
,… ,ZmD0Z

�
m
) , and D0 = diag(�1,0,… , �q,0) for some �k,0 ≥ 0 ; 

k = 1,… , q . Similarly, let v2
0
D0 = diag(�2

1,0
,… , �2

q,0
) with �2

k,0
≥ 0 being the true 

values of �2
k
 , for k = 1,… , q . We say that a fixed-effects model � is correct if there 

exists �(�) ∈ ℝ
p(�) such that �0 = X(�)�(�) . Similarly, a random-effects model � is 

correct if {k ∶ 𝜃k,0 > 0, k = 1,… , q} ⊂ 𝛾 . Let A0 and G0 denote the sets of all cor-
rect fixed-effects and random-effects models, respectively. A linear mixed-effects 
model (�, �) is said to be correct if (�, �) ∈ A0 × G0 . We denote the smallest correct 
model by (�0, �0) , which satisfies

where p0 > 0 and q0 > 0 are assumed fixed.
Given a model (�, �) ∈ A × G , the covariance parameters consist of � and v2 . 

We estimate these by ML. We assume that X and Z are of full column rank. The 
ML estimators �̂(𝛼, 𝛾) and v̂2(𝛼, 𝛾) of � and v2 based on model (�, �) ∈ A × G can 
be obtained by minimizing the negative twice profile log-likelihood function:

Ri(� ,�(�)) ≡
1

v2
var(Zi(�)bi(�)) =

∑
k∈�

�kzi,kz
�
i,k
,

(4)y ∼ N(X(�)�(�), v2H(� ,�)),

(5)

H(� ,�) = R(� ,�) + IN ,

R(� ,�) = diag(R1(� ,�),… ,Rm(� ,�)) =

m∑
i=1

∑
k∈�

�khi,kh
�
i,k
,

(6)y ∼ N(�0, v
2
0
H0),

p0 ≡ p(�0) = inf
�∈A0

p(�),

q0 ≡ q(�0) = inf
�∈G0

q(�),
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where

Note that M2(�, �;�) = M(�, �;�) , M(�, �;�)X(�) = X(�) and

For model (�, �) ∈ A × G , the ML estimator of �(�) is given by

where �̂ = �̂(𝛼, 𝛾) satisfies

Then, the ML estimator of �2
k
 is

where 𝜃̂k(𝛼, 𝛾) is the ML estimator of �k based on model (�, �).
To study the asymptotic properties for the ML estimators of �2

k
 and v2 , we pro-

vide a novel decomposition of the likelihood equations based on the following 
quadratic forms: x�

i,j
H−1

i
(� ,�)xi,j∗ , z�i,kH

−1
i
(� ,�)zi,k∗ , ��iH

−1
i
(� ,�)�i , x�i,jH

−1
i
(� ,�)zi,k , 

x�
i,j
H−1

i
(� ,�)�i , and z�

i,k
H−1

i
(� ,�)�i , where Hi(� ,�) = Ini + Ri(� ,�) and xi,j is the j-

th column of Xi , for i = 1,… ,m and j = 1,… , p . The main difficulty lies in how 
to build a suitable representation of the precision matrix H−1

i
(� ,�) so that the 

desired convergent rates of these quadratic forms are derived. We shall also 
require the following regularity conditions, which play the key role in establish-
ing the asymptotic theory for the ML estimators of the parameters in linear 
mixed-effects models. 

	(A0)	 Let nmin = min
i=1,…,m

ni . Assume that p = cp + o(n�
min

) and q = cq + o(n�
min

) , for 
some constant � ∈ [0, 1∕2) , where cp > 0 and cq > 0.

	(A1)	 With � given in (A0), there exist constants � ∈ (2�, 1] and di,j > 0 ; i = 1,… ,m , 
j = 1,… , p , with 0 < inf{di,j} ≤ sup{di,j} < ∞ such that for i = 1,… ,m and 
1 ≤ j, j∗ ≤ p , 

(7)
−2 log L(�, v2;�, �) = N log(2�) + N log(v2) + log det(H(� ,�))

+
y�H−1(� ,�)A(�, �;�)y

v2
,

(8)A(�, �;�) ≡ IN −M(�, �;�),

(9)M(�, �;�) ≡ X(�)(X(�)�H−1(� ,�)X(�))−1X(�)�H−1(� ,�).

M(�, �;�)�H−1(� ,�)M(�, �;�) = H−1(� ,�)M(�, �;�).

(10)�̂(𝛼, 𝛾;�̂) = (X(𝛼)�H−1(𝛾 , �̂)X(𝛼))−1X(𝛼)�H−1(𝛾 , �̂)y,

(�̂(𝛼, 𝛾), v̂2(𝛼, 𝛾)) = * argmin
�∈[0,∞)q(𝛾),v2∈(0,∞)

{−2 logL(�, v2;𝛼, 𝛾)}.

𝜎̂2
k
(𝛼, 𝛾) = 𝜃̂k(𝛼, 𝛾)v̂

2(𝛼, 𝛾); k ∈ 𝛾 ,

x�
i,j
xi,j∗ =

{
di,jn

�

i
+ o(n

�

i
); if j = j∗,

o(n
�−�

i
); if j ≠ j∗ .
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	(A2)	 With � given in (A0), there exist constants � ∈ (2�, 1] and ci,k > 0 ; i = 1,… ,m , 
k = 1,… , q , with 0 < inf{ci,k} ≤ sup{ci,k} < ∞ such that for i = 1,… ,m and 
1 ≤ k, k∗ ≤ q , 

	(A3)	 For i = 1,… ,m , j = 1,… , p , and k = 1,… , q , 

 where � , � , and � are given in (A0), (A1), and (A2), respectively.
Condition (A0) allows the numbers of fixed effects and random effects (i.e., p and q) 
to go to infinity with nmin at a certain rate. Conditions (A1)–(A3) impose correlation 
constraints on {xi,j} and {zi,k} . For example, Condition (A2) implies that the maxi-
mum eigenvalue satisfies �max(ZiDZ

�
i
) = O(n�

i
) , which is similar to an assumption 

given in Condition 3 of Fan and Li (2012).

3 � Asymptotic properties

In this section, we investigate the asymptotic properties of the ML estimators of v2 
and {�2

k
∶ k ∈ �} for any (�, �) ∈ A × G . We allow p and q to go to infinity with the 

sample size N. In addition, as we allow m to be fixed, we must account for the fact 
that {�2

k
∶ k ∈ �} may not be estimated consistently.

3.1 � Asymptotics under correct specification

In this subsection, we consider a correct (but possibly overfitted) model 
(�, �) ∈ A0 × G0 . We derive not only the convergence rates for the ML estimators of 
v2 and {�2

k
∶ k ∈ �} , but also their asymptotic distributions.

Theorem  1  Consider the data generated from (2) with the true parameters given 
by (6). Let (�, �) ∈ A0 × G0 be a correct model defined in (4). Denote 𝜎̂2

k
(𝛼, 𝛾) and 

v̂2(𝛼, 𝛾) to be the ML estimators of �2
k
 and v2 , respectively. Assume that (A0)–(A3) 

hold. Then,

where nmax = max
i=1,…,m

ni . In addition, if p + mq = o
(
N1∕2

)
 , then

z�
i,k
zi,k∗ =

{
ci,kn

�

i
+ o(n�

i
); if k = k∗,

o(n�−�
i

); if k ≠ k∗ .

x�
i,j
zi,k = o(n

(�+�)∕2−�

i
),

(11)v̂2(𝛼, 𝛾) = v2
0
+ Op

(p + mq

N

)
+ Op(N

−1∕2),

(12)𝜎̂2
k
(𝛼, 𝛾) =

⎧
⎪⎨⎪⎩

1

m

m�
i=1

b2
i,k
+ Op

�
1

m

m�
i=1

n
−�∕2

i

�
; if k ∈ 𝛾 ∩ 𝛾0,

Op

�
n−�
max

�
; if k ∈ 𝛾 ⧵ 𝛾0,
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Remark 1  When m is fixed, for (�, �) ∈ A0 × G0 and k ∈ � ∩ �0 , (12) implies that

which further shows that 𝜎̂2
k
(𝛼, 𝛾) does not converge to �2

k,0
 . This is because the data 

do not contain enough information about {�2
k
∶ k ∈ � ∩ �0} . On the other hand, for 

k ∈ � ⧵ �0 , 𝜎̂2
k
(𝛼, 𝛾) converges to �2

k,0
= 0 at a rate n−�

max
 , which can be faster than 

N−1∕2.

When m → ∞ , by applying the law of large numbers and the central limit theo-
rem to b2

i,k
 ; i = 1,… ,m, k ∈ �0 , we immediately have the following corollary.

Corollary 1  Under the assumptions of Theorem  1, 𝜎̂2
k
(𝛼, 𝛾)

p
�����→ 𝜎2

k,0
 as m → ∞ , for 

k ∈ � . If, in addition, m = o(n�
min

) , then

From Corollary 1, for k ∈ �0 , we obtain a 100(1 − �)% confidence interval of �2
k,0

 :

where �a is the (100a)-th percentile of the standard normal distribution. Although 
this confidence interval is commonly applied in practice (e.g., Maas and Hox, 2004; 
McNeish and Stapleton, 2016b), it is only valid when m is large, as detailed in a sim-
ulation experiment of Sect. 4.2. Thanks to Theorem 1, we can derive a 100(1 − �)% 
confidence interval of �2

k,0
 valid for a fixed m.

Theorem 2  Under the assumptions of Theorem 1, suppose that m is fixed. Then for 
k ∈ � ∩ �0 , a 100(1 − �)% confidence interval of �2

k
 is

where �2
m,a

 denotes the (100a)-th percentile of the chi-square distribution on m 
degrees of freedom.

Remark 2  Theorem 2 provides a proper confidence interval for 𝜎̂2
k
(𝛼, 𝛾) in practice 

when m is small. Note that the length of the confidence interval of �2
k,0

 in (15) does 
not shrink to 0 as N → ∞ , which is owing to the fact that 𝜎̂2

k
(𝛼, 𝛾) is not a consistent 

estimator of �2
k
 when m is fixed and k ∈ � ∩ �0.

(13)N1∕2
(
v̂2(𝛼, 𝛾) − v2

0

) d
�����→ N

(
0, 2v4

0

)
, as N → ∞.

m𝜎̂2
k
(𝛼, 𝛾)

d
�����→ 𝜎2

k,0
𝜒2
m
,

m1∕2(𝜎̂2
k
(𝛼, 𝛾) − 𝜎2

k,0
)

d
�����→ N(0, 2𝜎4

k,0
); k ∈ 𝛾 ∩ 𝛾0, as N → ∞.

(14)
(
𝜎̂2
k
(𝛼, 𝛾) −

(
2𝜎̂4

k
(𝛼, 𝛾)

m

)1∕2

𝜁1−𝛼∕2, 𝜎̂
2
k
(𝛼, 𝛾) −

(
2𝜎̂4

k
(𝛼, 𝛾)

m

)1∕2

𝜁𝛼∕2

)
,

(15)
(
m𝜎̂2

k
(𝛼, 𝛾)

𝜒2
m,1−𝛼∕2

,
m𝜎̂2

k
(𝛼, 𝛾)

𝜒2
m,𝛼∕2

)
,
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We close this section by mentioning that although a fixed m hinders us from consist-
ently estimating �2

k
 , the empirical BLUPs of random effects, based on the ML estimator 

of �2
k
 , are still asymptotically more efficient than the LS predictors, as illustrated in the 

following example.

Example 1  Consider model (2) with p = 0 , q = 1 , n1 = ⋯ = nm = n and m > 1 fixed. 
Assume that (A2) holds with c1,1 = ⋯ = cm,1 = 1 and � = 1 . Let b̃i be the LS predic-
tor of bi and b̂i(𝜎2

1
, v2) be the BLUP of bi given (�2

1
, v2) . Define

Then, we show in Appendix B of the supplementary material that

where 𝜎̂2
1
 and v̂2 are the ML estimators of �2

1
 and v2 , and Gn,m is some random vari-

able depending on n, m. Moreover, it is shown in Appendix B that the moments of 
Gn,m do not exist for m ≤ 4 and

for m > 4 . Equation  (16) reveals that for any fixed m > 4 , the empirical BLUP, 
Zib̂i(𝜎̂

2
1
, v̂2) of Zibi , is asymptotically more efficient than its LS counterpart, Zib̃i , 

even when 𝜎̂2
1
 is not a consistent estimator of �2

1
 . In addition, the advantage of the 

former over the latter rapidly increases with m.

3.2 � Asymptotics under misspecification

In this subsection, we consider a misspecified model (�, �) ∈ (A × G) ⧵ (A0 × G0) . We 
derive not only the convergence rates for v̂2(𝛼, 𝛾) and {𝜎̂2

k
(𝛼, 𝛾) ∶ k ∈ 𝛾} , but also their 

asymptotic distributions. These results are crucial for developing model selection con-
sistency and efficiency in linear mixed-effects models under fixed m; see Chang et al. 
(2022).

We start by investigating the asymptotic properties for the ML estimators of v2 and 
{�2

k
∶ k ∈ �} for (�, �) ∈ A0 × (G ⧵ G0) under a misspecified random-effects model.

Theorem 3  Under the assumptions of Theorem 1, except that (�, �) ∈ A0 × (G ⧵ G0),

D(𝜎2
1
, v2) ≡

m∑
i=1

‖‖Zi

(
b̃i − bi)

‖‖2 −
m∑
i=1

‖‖Zi

(
b̂i(𝜎

2
1
, v2) − bi

)‖‖2.

nD(𝜎̂2
1
, v̂2) = Gn,m + op(1),

(16)E(Gn,m) =
m(m − 4)v4

0

(m − 2)�2
1,0

(17)
v̂2(𝛼, 𝛾) = v2

0
+

1

N

m∑
i=1

(
n�
i

∑
k∈𝛾0⧵𝛾

ci,kb
2
i,k

)
+ op

(
1

N

m∑
i=1

n�
i

)

+ Op

(p + mq

N

)
+ Op(N

−1∕2)
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and

where aN(�,�) =
�∑m

i=1
n�
i∑m

i=1
n
�

i

��∑m

i=1
n
�−�

i

m

�
 . In addition, if � < 1 , then

Furthermore, if � ∈ (0, 1∕2) and p + mq = o
(
N1∕2

)
 , then

Remark 3  Note that 1
N

m∑
i=1

(
n�
i

∑
k∈�0⧵�

ci,kb
2
i,k

)
 in (17) is the dominant bias term con-

tributed by the non-negligible random effects missed by model � . When � = 1 , this 
term is asymptotically positive and hence v̂2(𝛼, 𝛾) suffers from a upward bias.

For � ≥ � or nearly balanced data, the following corollary shows that 
𝜎̂2
k
(𝛼, 𝛾)

p
�����→ 𝜎2

k
 ; k ∈ � , as m → ∞ , even though (�, �) ∈ A0 × (G ⧵ G0) is misspecified.

Corollary 2  Under the assumptions of Theorem 3, with � ≥ � or nmax = O(nmin),

If m → ∞ , then

The following theorem presents the asymptotic properties of v̂2(𝛼, 𝛾) and 
{𝜎̂2

k
(𝛼, 𝛾) ∶ k ∈ 𝛾} for (�, �) ∈ (A ⧵A0) × G under a misspecified fixed-effects 

model.

Theorem 4  Under the assumptions of Theorem 1 except that (�, �) ∈ (A ⧵A0) × G0,

and

(18)𝜎̂2
k
(𝛼, 𝛾) =

⎧
⎪⎨⎪⎩

1

m

m�
i=1

b2
i,k
+ op(aN(𝜉,�)) + op(1); if k ∈ 𝛾 ∩ 𝛾0,

op(aN(𝜉,�)) + op(1); if k ∈ 𝛾 ⧵ 𝛾0,

v̂2(𝛼, 𝛾)
p
�����→ v2

0
, as N → ∞.

N1∕2(v̂2(𝛼, 𝛾) − v2
0
)

d
�����→ N(0, 2v4

0
), as N → ∞.

𝜎̂2
k
(𝛼, 𝛾) =

⎧
⎪⎨⎪⎩

1

m

m�
i=1

b2
i,k
+ op(1); if k ∈ 𝛾 ∩ 𝛾0,

op(1); if k ∈ 𝛾 ⧵ 𝛾0.

𝜎̂2
k
(𝛼, 𝛾)

p
�����→ 𝜎2

k,0
; k ∈ 𝛾 , as N → ∞.

(19)
v̂2(𝛼, 𝛾) = v2

0
+

1

N

m∑
i=1

(
n
𝜉

i

∑
j∈𝛼0⧵𝛼

di,j𝛽
2
j,0

)
+ op

(
1

N

m∑
i=1

n
𝜉

i

)

+ Op

(p + mq

N

)
+ Op(N

−1∕2)
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In addition, if 𝜉 < 1 , then

Furthermore, if � ∈ (0, 1∕2) and p + mq = o
(
N1∕2

)
 , then

Remark 4     

(a)	 When � = 1 , 1
N

m∑
i=1

(
n
�

i

∑
j∈�0⧵�

di,j�
2
j,0

)
 in (19) is asymptotically positive, yielding 

an upward bias in v̂2(𝛼, 𝛾).
(b)	 For � ∈ G0 , 𝜎̂2

k
(𝛼, 𝛾) is consistent when � ≤ � , as m → ∞.

The following theorem establishes the asymptotic properties of v̂2(𝛼, 𝛾) and 
{𝜎̂2

k
(𝛼, 𝛾) ∶ k ∈ 𝛾} for (�, �) ∈ (A ⧵A0) × (G ⧵ G0) when both the fixed-effects 

model and the random-effects model are misspecified.

Theorem  5  Under the assumptions of Theorem  1 except that 
(�, �) ∈ (A ⧵A0) × (G ⧵ G0),

and

where a∗
N
(�,�) =

�
1 +

∑m

i=1
n�
i∑m

i=1
n
�

i

��∑m

i=1
n
�−�

i

m

�
 . In addition, if max{𝜉,�} < 1 , then

(20)𝜎̂2
k
(𝛼, 𝛾) =

⎧
⎪⎪⎨⎪⎪⎩

1

m

m�
i=1

b2
i,k
+ op

�
1

m

m�
i=1

n
𝜉−�

i

�
+ op(1); if k ∈ 𝛾 ∩ 𝛾0,

op

�
1

m

m�
i=1

n
𝜉−�

i

�
+ op(1); if k ∈ 𝛾 ⧵ 𝛾0.

v̂2(𝛼, 𝛾)
p
�����→ v2

0
, as N → ∞.

N1∕2(v̂2(𝛼, 𝛾) − v2
0
)

d
�����→ N(0, 2v4

0
), as N → ∞.

(21)

v̂2(𝛼, 𝛾) = v2
0
+

1

N

m∑
i=1

(
n
𝜉

i

∑
j∈𝛼0⧵𝛼

di,j𝛽
2
j,0
+ n�

i

∑
k∈𝛾0⧵𝛾

ci,kb
2
i,k

)

+ op

(
1

N

m∑
i=1

(n
𝜉

i
+ n�

i
)

)
+ Op

(p + mq

N

)
+ Op(N

−1∕2)

(22)𝜎̂2
k
(𝛼, 𝛾) =

⎧
⎪⎨⎪⎩

1

m

m�
i=1

b2
i,k
+ op(a

∗
N
(𝜉,�)) + op(1); if k ∈ 𝛾 ∩ 𝛾0,

op(a
∗
N
(𝜉,�)) + op(1); if k ∈ 𝛾 ⧵ 𝛾0,

v̂2(𝛼, 𝛾)
p
�����→ v2

0
, as N → ∞.
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Furthermore, if (�,�) ∈ (0, 1∕2) × (0, 1∕2) and p + mq = o
(
N1∕2

)
 , then

Remark 5  When � = 1 or � = 1 , 1
N

m∑
i=1

(
n
�

i

∑
j∈�0⧵�

di,j�
2
j,0
+ n�

i

∑
k∈�0⧵�

ci,kb
2
i,k

)
 in (21) is 

asymptotically positive, and hence v̂2(𝛼, 𝛾) has a non-negligible positive bias.

Similar to Corollary 2, we also have the following corollary.

Corollary 3  Under the assumptions of Theorem 5, with either (i) � = � or (ii) 𝜉 < � 
and nmax = O(nmin),

If m → ∞ , then

4 � Numerical examples

We conduct two simulation experiments and a real-data example for linear mixed-
effects models. The first one examines estimation of mixed-effects models, and the 
second concerns confidence intervals.

4.1 � Experiment 1

We generate data according to (1) with (p, q) ∈ {(5, 5), (15, 15)} , where

v2 = 1 , and xi,j ∼ N(0, Ini) and zi,k ∼ N(0, Ini ) are independent, for i = 1,… ,m , 
j = 1,… , p and k = 1,… , q . This setup satisfies (A1)–(A3) with � = � = 1 and 
di,j = ci,k = 1 , for i = 1,… ,m , j = 1… , p and k = 1,… , q . We consider parameter 
estimation under two scenarios corresponding to balanced data and unbalanced data. 
We apply the lme4 package (Bates et al., 2015) in R to obtain the ML estimators of 
fixed and random effects for our linear mixed-effects models.

For parameter estimation, we consider balanced data with m ∈ {10, 20, 30} , 
n1 = ⋯ = nm = m , and hence N = m2 . Since �4,0 = �5,0 = ⋯ = �p,0 = 0 and 
�2
1,0

= �2
5,0

= �2
6,0

= ⋯ = �2
q,0

= 0 , we only show results for 𝛽1,… , 𝛽4, 𝜎̂
2
2
,… , 𝜎̂2

5
 and 

N1∕2(v̂2(𝛼, 𝛾) − v2
0
)

d
�����→ N(0, 2v4

0
), as N → ∞.

𝜎̂2
k
(𝛼, 𝛾) =

⎧
⎪⎨⎪⎩

1

m

m�
i=1

b2
i,k
+ op(1); if k ∈ 𝛾 ∩ 𝛾0,

op(1); if k ∈ 𝛾 ⧵ 𝛾0.

𝜎̂2
k
(𝛼, 𝛾)

p
�����→ 𝜎2

k,0
; k ∈ 𝛾 , as N → ∞.

(�2
1,0
, �2

2,0
, �2

3,0
, �2

4,0
, �2

5,0
,… , �2

q,0
)� = (0, 0.5, 1, 1.5, 0�

q−4
)�,

(�1,0, �2,0, �3,0, �4,0,… , �p,0)
� = (1.2,−0.7, 0.8, 0�

p−3
)�,
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v̂2 , which includes all the estimators corresponding to (�0, �0) = ({1, 2, 3}, {2, 3, 4}) . 
The results for the full model ({1,… , p}, {1,… , q}) ∈ A0 × G0 based on 100 simu-
lated replicates are summarized in Table  1. The results for the model 
({1,… , p}, {3,… , q}) ∈ A0 × (G ⧵ G0) with correct fixed effects but misspecified 
random effects based on 100 simulated replicates are summarized in Table 2. The 
results for the model ({2,… , p}, {4,… , q}) ∈ (A ⧵A0) × (G ⧵ G0) with both mis-
specified fixed and random effects based on 100 simulated replicates are summa-
rized in Table 3.

As seen in Table 1, all the ML estimators based on the full model have small 
biases except for v̂2 with m = 10 , where v̂2 is under-estimated, particularly when 
(p, q) = (15, 15) . Comparing between the two settings of (p, q), the sample stand-
ard deviations of the ML estimators are larger when (p, q) = (15, 15) . This phe-
nomenon can also be found in Tables 2 and 3. We note that biases and standard 
deviations of ML estimators in Table 1 tend to be smaller when m is larger. In par-
ticular, the standard deviation of 𝜎̂2

5
 is much smaller than the others, which echoes 

a faster convergence rate of 𝜎̂2
k
 of Theorem 1, when it converges to zero. Although 

our main concern is on the estimation of v2 and 𝜎̂2
k
s’, the fixed-effects parame-

ters are all well estimated as expected. For model (�, �) = ({1,… , p}, {3,… , q}) 
with misspecified random effects, Table  2 shows that the ML estimator v̂2 

Table 1   Sample means and sample standard deviations (in parentheses) of ML estimators of selected 
parameters for different values of m obtained from the full model in Experiment 1 with balanced data 
based on 100 simulated replicates. Values corresponding to ∞ and True are the theoretical convergent 
values and the true parameter values, respectively

m 𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝜎̂2

2
𝜎̂2

3
𝜎̂2

4
𝜎̂2

5
v̂
2

(p, q) = (5, 5)

10 1.188 − 0.695 0.790 0.011 0.529 0.972 1.463 0.024 0.871
(0.116) (0.124) (0.125) (0.140) (0.311) (0.564) (0.683) (0.043) (0.159)

20 1.197 − 0.698 0.808 0.001 0.508 0.966 1.481 0.006 0.972
(0.049) (0.048) (0.057) (0.048) (0.169) (0.339) (0.456) (0.010) (0.085)

30 1.206 − 0.696 0.803 − 0.002 0.491 0.988 1.442 0.003 0.992
(0.039) (0.034) (0.036) (0.035) (0.153) (0.250) (0.302) (0.004) (0.047)

∞ 1.200 − 0.700 0.800 0.000 0.500 1.000 1.500 0.000 1.000
True 1.200 − 0.700 0.800 0.000 0.500 1.000 1.500 0.000 1.000
(p, q) = (15, 15)

10 1.203 − 0.683 0.822 0.013 0.572 1.056 1.460 0.059 0.327
(0.178) (0.157) (0.170) (0.176) (0.412) (0.626) (0.788) (0.103) (0.258)

20 1.205 − 0.696 0.800 0.010 0.498 0.989 1.510 0.006 0.868
(0.055) (0.054) (0.057) (0.051) (0.201) (0.275) (0.490) (0.012) (0.075)

30 1.199 − 0.702 0.796 − 0.000 0.485 1.044 1.474 0.004 0.940
(0.038) (0.034) (0.034) (0.033) (0.131) (0.268) (0.427) (0.006) (0.054)

∞ 1.200 − 0.700 0.800 0.000 0.500 1.000 1.500 0.000 1.000
True 1.200 − 0.700 0.800 0.000 0.500 1.000 1.500 0.000 1.000
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overestimates v2
0
= 1 by about �2

2,0
= 0.5 on average, particularly for larger val-

ues of m. This is in line with our conclusion in Theorem  3. Finally, for model 
(�, �) = ({2,… , p}, {4,… , p}) with both fixed and random effects misspecified, 
Table 3 confirms that v̂2 is far from its true value and reasonably close to its theo-
retical limit, v2

0
+ �2

2,0
+ �2

3,0
+ �2

1,0
= 3.69 , derived in Theorem 5. In addition, 𝜎̂2

4
 

tends to be closer to �2
4,0

 when m is larger, as expected from Theorem 5.
Next, we consider unbalanced data with m ∈ {10, 20, 30} and N = m2 . We set 

n1 = [N1∕4] , n2 = [N3∕4] , n3 = ⋯ = nm−1 = [(N − n1 − n2)∕(m − 2)] , and hence 
nm = N −

∑m−1

i=1
ni . The ML estimators of �1,… , �4, �

2
2
,… , �2

5
 and v2 under 

the full model ({1,… , p}, {1,… , q}) ∈ A0 × G0 based on 100 simulated rep-
licates are summarized in Table  4. The ML estimators of �1,… , �4 , �2

3
, �2

4
, �2

5
 

and v2 under model ({1,… , p}, {3,… , q}) ∈ A0 × (G ⧵ G0) with correct fixed 
effects but misspecified random effects based on 100 simulation runs are sum-
marized in Table  5. The ML estimators of �2, �3, �4, �2

4
, �2

5
 and v2 under model 

({2,… , p}, {4,… , q}) ∈ (A ⧵A0) × (G ⧵ G0) with both misspecified fixed and ran-
dom effects based on 100 simulated replicates are summarized in Table  6. The 
results based on unbalanced data can be seen to perform similarly to those based 
on balanced data.

Table 2   Sample means and sample standard deviations (in parentheses) of ML estimators of selected 
parameter for different values of m obtained from model (�, �) = ({1,… , p}, {3,… , q}) in Experiment 1 
with balanced data based on 100 simulated replicates. Values corresponding to ∞ and True are the theo-
retical convergent values and the true parameter values, respectively

m 𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝜎̂2

3
𝜎̂2

4
𝜎̂2

5
v̂
2

(p, q) = (5, 5)

10 1.198 − 0.698 0.783 0.020 0.962 1.445 0.037 1.373
(0.130) (0.147) (0.144) (0.149) (0.555) (0.714) (0.074) (0.359)

20 1.197 − 0.700 0.807 0.004 0.955 1.457 0.013 1.472
(0.067) (0.067) (0.070) (0.068) (0.345) (0.475) (0.023) (0.190)

30 1.206 − 0.696 0.800 0.001 0.997 1.447 0.007 1.481
(0.047) (0.042) (0.038) (0.038) (0.265) (0.306) (0.011) (0.171)

∞ 1.200 − 0.700 0.800 0.000 0.500 1.000 0.000 1.500
True 1.200 − 0.700 0.800 0.000 0.500 1.000 0.000 1.000
(p, q) = (15, 15)

10 1.204 − 0.672 0.805 0.002 1.052 1.409 0.053 0.728
(0.160) (0.153) (0.175) (0.169) (0.619) (0.753) (0.094) (0.318)

20 1.205 − 0.699 0.796 0.011 0.984 1.525 0.012 1.305
(0.062) (0.071) (0.064) (0.064) (0.276) (0.504) (0.018) (0.199)

30 1.198 − 0.705 0.800 0.001 1.049 1.482 0.005 1.394
(0.042) (0.042) (0.040) (0.043) (0.274) (0.436) (0.009) (0.128)

∞ 1.200 − 0.700 0.800 0.000 0.500 1.000 0.000 1.500
True 1.200 − 0.700 0.800 0.000 0.500 1.000 0.000 1.000
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4.2 � Experiment 2

In the second experiment, we compare the conventional confidence inter-
val given by (14) with the proposed confidence interval given by (15). Simi-
lar to Experiment  1, we generate data according to (1) with p = q = 5 , 
� = (1.2,−0.7, 0.8, 0, 0)� , v2 = 1 , and (�2

1,0
, �2

2,0
, �2

3,0
, �2

4,0
, �2

5,0
)� = (0, 0.5, 1, 1.5, 0)� , 

where xi,j ∼ N(0,�x) and zi,k ∼ N(0,�z) are independent, for i = 1,… ,m and 
j, k = 1,… , 5 . Here, we consider a more challenging situation of dependent 
covariates. Specifically, we assume that �x is a 5 × 5 matrix with the (i, j)-th entry 
0.4|i−j| , and �z is a 5 × 5 matrix with the (i,  j)-th entry 0.6|i−j| . We consider bal-
anced data with n = n1 = ⋯ = nm ∈ {10, 50, 100} and three numbers of clusters, 
m ∈ {2, 5, 10} , resulting in a total of nine different combinations.

We compare the 95% confidence intervals of (14) and (15) for �2
2
 and �2

4
 based 

on model (�, �) = ({1, 2, 3}, {2, 3, 4}) . The coverage probabilities of both confi-
dence intervals obtained from the two methods for various cases based on 1,000 
simulated replicates are shown in Table 7. The proposed method has better cov-
erage probabilities than the conventional ones in almost all cases. The coverage 
probabilities of our confidence interval tend to the nominal level (i.e., 0.95) as n 
increases for all cases even when m is very small. In contrast, the conventional 
method tends to be too optimistic for both �2

2
 and �2

4
 . For example, the coverage 

probabilities are less than 0.73 when m = 2 regardless of n. Although the cover-
age probabilities are a bit closer to the nominal level when m is larger, they are 

Table 3   Sample means 
and sample standard 
deviations (in parentheses) 
of ML estimators of selected 
parameters for different values 
of m obtained from model 
(�, �) = ({2, ,… , p}, {4,… , q}) 
in Experiment 1 with balanced 
data based on 100 simulated 
replicates

Values corresponding to ∞ and True are the theoretical convergent 
values and the true parameter values, respectively

m 𝛽
2

𝛽
3

𝛽
4

𝜎̂2

4
𝜎̂2

5
v̂
2

(p, q) = (5, 5)

10 − 0.666 0.766 0.035 1.452 0.095 3.610
(0.222) (0.225) (0.209) (0.828) (0.158) (0.885)

20 − 0.712 0.804 − 0.007 1.474 0.026 3.847
(0.109) (0.109) (0.103) (0.535) (0.046) (0.427)

30 − 0.701 0.803 − 0.001 1.426 0.011 3.919
(0.059) (0.058) (0.065) (0.308) (0.018) (0.352)

∞ − 0.700 0.800 0.000 1.500 0.000 3.940
True − 0.700 0.800 0.000 1.500 0.000 1.000
(p, q) = (15, 15)

10 − 0.670 0.837 0.018 1.431 0.144 2.186
(0.263) (0.260) (0.247) (0.866) (0.328) (0.774)

20 − 0.709 0.799 0.012 1.543 0.028 3.479
(0.108) (0.112) (0.100) (0.526) (0.046) (0.382)

30 − 0.705 0.783 0.001 1.456 0.042 3.728
(0.067) (0.064) (0.065) (0.462) (0.025) (0.339)

∞ − 0.700 0.800 0.000 1.500 0.000 3.940
True − 0.700 0.800 0.000 1.500 0.000 1.000
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still in the range of (0.82, 0.87) when m = 10 , showing that the conventional con-
fidence interval is not valid for small m.

4.3 � An application to preposition data

In this section, we applied the conventional confidence interval and the proposed one 
given in (14) and (15), respectively, to a preposition dataset that contains relative fre-
quencies of prepositions in English texts written between 1150 and 1913. The dataset, 
downloaded from https://slcladal.github.io/data/lmm.rda, contains 537 texts with five 
variables in each text, including the name of the text, the genre of the text (16 types), 
the date it is written, the region it is written, and the relative frequency (i.e., the num-
ber of prepositions per 1000 words). Following an analysis studied in https://slcladal.
github.io/mmws.html, we consider the following linear mixed-effects model:

where yi,j denotes the frequency of preposition in the jth text for the ith genre, 
xi,j denotes the centralized date the jth text of the ith genre was written, and ∑16

i=1
ni = 537 is the total sample size. We fit the model using the lmer function 

in lme4 package of R. The ML estimator of var(bi,0) is equal to 148.8. Since the 

(23)yi,j = �0 + �1xi,j + bi,0 + �i,j, i = 1,… , 16, j = 1,… , ni,

Table 4   Sample means and sample standard deviations (in parentheses) of ML estimators of selected 
parameters for different values of m obtained from the full model in Experiment 1 with unbalanced data 
based on 100 simulated replicates

Values corresponding to ∞ and True are the theoretical convergent values and the true parameter values, 
respectively

m 𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝜎̂2

2
𝜎̂2

3
𝜎̂2

4
𝜎̂2

5
v̂
2

(p, q) = (5, 5)

10 1.191 − 0.694 0.795 0.002 0.503 0.960 1.533 0.031 0.880
(0.120) (0.129) (0.131) (0.132) (0.312) (0.537) (0.782) (0.068) (0.170)

20 1.195 − 0.696 0.806 0.002 0.505 0.979 1.468 0.006 0.971
(0.050) (0.051) (0.057) (0.049) (0.184) (0.342) (0.480) (0.009) (0.082)

30 1.206 − 0.697 0.803 − 0.002 0.497 0.989 1.458 0.003 0.992
(0.038) (0.034) (0.036) (0.034) (0.151) (0.232) (0.323) (0.005) (0.045)

∞ 1.200 − 0.700 0.800 0.000 0.500 1.000 1.500 0.000 1.000
True 1.200 − 0.700 0.800 0.000 0.500 1.000 1.500 0.000 1.000
(p, q) = (15, 15)

10 1.199 − 0.673 0.808 − 0.001 0.536 0.976 1.411 0.044 0.511
(0.145) (0.136) (0.136) (0.138) (0.378) (0.573) (0.836) (0.100) (0.181)

20 1.205 − 0.695 0.801 0.006 0.502 0.978 1.511 0.006 0.877
(0.056) (0.056) (0.055) (0.050) (0.2010) (0.283) (0.487) (0.011) (0.080)

30 1.199 − 0.702 0.796 − 0.001 0.496 1.050 1.463 0.003 0.948
(0.039) (0.034) (0.033) (0.032) (0.159) (0.288) (0.415) (0.006) (0.057)

∞ 1.200 − 0.700 0.800 0.000 0.500 1.000 1.500 0.000 1.000
True 1.200 − 0.700 0.800 0.000 0.500 1.000 1.500 0.000 1.000
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number of clusters is merely 16, as demonstrated in our simulation experiments, the 
conventional confidence interval given by (14) may be problematic. Applying our 
method in Theorem 2, we obtain an asymptotically valid 95% confidence interval of 
var(bi,0) to be (82.56, 344.8). Not surprisingly, the range of the interval is large due 
to a small number of clusters.

5 � Discussion

In this article, we establish the asymptotic theory of the ML estimators of random-
effects parameters in linear mixed-effects models for unbalanced data, without 
assuming that m grows to infinity with N. We not only allow the dimensions of both 
the fixed-effects and random-effects models to go to infinity with N, but also allow 
both models to be misspecified. In addition, we provide an asymptotic valid confi-
dence interval for the random-effects parameters when m is fixed. These asymptotic 
results are essential for investigating the asymptotic properties of model-selection 
methods for linear mixed-effects models, which to the best of our knowledge, have 
only been developed under the assumption of m → ∞.

Although it is common to assume the random effects to be uncorrelated as 
done in model (1), it is also of interest to consider correlated random effects with 

Table 5   Sample means and sample standard deviations (in parentheses) of ML estimators of selected 
parameter for different values of m obtained from model (�, �) = ({1,… , p}, {3,… , q}) in Experiment 1 
with unbalanced data based on 100 simulated replicates

Values corresponding to ∞ and True are the theoretical convergent values and the true parameter values, 
respectively

m 𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝜎̂2

3
𝜎̂2

4
𝜎̂2

5
v̂
2

(p, q) = (5, 5)

10 1.201 − 0.697 0.790 0.002 0.948 1.561 0.040 1.344
(0.143) (0.150) (0.138) (0.150) (0.544) (0.840) (0.084) (0.319)

20 1.195 − 0.703 0.806 0.004 0.984 1.471 0.010 1.469
(0.058) (0.062) (0.073) (0.057) (0.350) (0.495) (0.018) (0.237)

30 1.206 − 0.696 0.805 0.000 0.993 1.456 0.006 1.480
(0.045) (0.044) (0.044) (0.042) (0.233) (0.321) (0.009) (0.223)

∞ 1.200 − 0.700 0.800 0.000 0.500 1.000 0.000 1.500
True 1.200 − 0.700 0.800 0.000 0.500 1.000 0.000 1.000
(p, q) = (15, 15)

10 1.201 − 0.675 0.812 0.007 0.983 1.443 0.065 0.825
(0.169) (0.143) (0.153) (0.161) (0.604) (0.900) (0.152) (0.324)

20 1.212 − 0.693 0.796 0.003 0.984 1.512 0.010 1.309
(0.060) (0.068) (0.076) (0.059) (0.305) (0.493) (0.023) (0.218)

30 1.198 − 0.704 0.796 − 0.000 1.051 1.476 0.005 1.394
(0.040) (0.039) (0.039) (0.038) (0.283) (0.412) (0.009) (0.150)

∞ 1.200 − 0.700 0.800 0.000 0.500 1.000 0.000 1.500
True 1.200 − 0.700 0.800 0.000 0.500 1.000 0.000 1.000
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no structure imposed on D . However, the technique developed in this article may 
not be directly applicable to the latter situation; further research in this direction 
is thus warranted.

Table 6   Sample means 
and sample standard 
deviations (in parentheses) 
of ML estimators of selected 
parameters for different values 
of m obtained from model 
(�, �) = ({2, ,… , p}, {4,… , q}) 
in Experiment 1 with 
unbalanced data based on 100 
simulated replicates

Values corresponding to ∞ and True are the theoretical convergent 
values and the true parameter values, respectively

m 𝛽
2

𝛽
3

𝛽
4

𝜎̂2

4
𝜎̂2

5
v̂
2

(p, q) = (5, 5)

10 − 0.683 0.786 0.026 1.501 0.093 3.538
(0.211) (0.209) (0.202) (0.945) (0.177) (0.949)

20 − 0.709 0.813 − 0.001 1.442 0.003 3.865
(0.106) (0.105) (0.106) (0.530) (0.041) (0.522)

30 − 0.703 0.801 − 0.001 1.461 0.012 3.920
(0.068) (0.066) (0.068) (0.347) (0.026) (0.417)

∞ − 0.700 0.800 0.000 1.500 0.000 3.940
True − 0.700 0.800 0.000 1.500 0.000 1.000
(p, q) = (15, 15)

10 − 0.701 0.859 0.001 1.521 0.086 2.426
(0.238) (0.216) (0.227) (1.142) (0.202) (0.677)

20 − 0.700 0.797 0.003 1.526 0.018 3.501
(0.105) (0.111) (0.089) (0.548) (0.038) (0.518)

30 − 0.707 0.788 − 0.001 1.481 0.016 3.742
(0.072) (0.069) (0.069) (0.439) (0.031) (0.401)

∞ − 0.700 0.800 0.000 1.500 0.000 3.940
True − 0.700 0.800 0.000 1.500 0.000 1.000

Table 7   Coverage probabilities (denoted by P̂ ) for 95% confidence intervals of �2

2
 and �2

4
 obtained from 

two methods in Sect. 4.2 based on 1000 simulated replicates

Values given in parentheses are standard errors of coverage probabilities (evaluated by 
√

P̂(1 − P̂)∕1000)

m n Classical Proposed

�2

2
�2

4
�2

2
�2

4

2 10 0.651 (0.015) 0.649 (0.015) 0.814 (0.012) 0.763 (0.013)
50 0.724 (0.014) 0.703 (0.014) 0.932 (0.008) 0.935 (0.008)

100 0.725 (0.014) 0.722 (0.014) 0.942 (0.007) 0.929 (0.008)
5 10 0.778 (0.013) 0.738 (0.014) 0.895 (0.010) 0.871 (0.011)

50 0.809 (0.012) 0.818 (0.012) 0.936 (0.008) 0.937 (0.008)
100 0.811 (0.012) 0.809 (0.012) 0.940 (0.008) 0.929 (0.008)

10 10 0.838 (0.012) 0.816 (0.012) 0.900 (0.009) 0.893 (0.010)
50 0.874 (0.010) 0.849 (0.011) 0.952 (0.007) 0.946 (0.007)

100 0.849 (0.011) 0.867 (0.011) 0.941 (0.007) 0.956 (0.006)
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Conditions (A1) and  (A2) assume that the covariates are asymptotically uncor-
related. These restrictions can be relaxed. Here is a simple example.

Lemma 1  Consider the data generated from (2) with m = 1 , n1 = N , p = q = 2 , and 
the true parameters given in (6). Suppose that (�0, �0) = ({1, 2}, {1, 2}) is the small-
est true model and (�1, �1) = ({1}, {1}) is a misspecified model defined in (4). Let 
𝜎̂2
k
(𝛼, 𝛾) and v̂2(𝛼, 𝛾) be the ML estimators of �2

k
 and v2 based on (�, �) . Assume that 

(A1)–(A3) hold except that z�
1,1
z1,2 = c1,12N + o(N) and x�

1,1
x1,2 = d1,12N + o(N) , for 

some constants c1,12, d1,12 ∈ ℝ . Then

where �2,0 ≠ 0 is the true parameter of �2.

From Lemma 1, it is not surprising to see that v̂2(𝛼0, 𝛾0)
p
�����→ v2

0
 . On the other hand, 

v̂2(𝛼1, 𝛾1) tends to overestimate v2
0
 by (d1,2 − d2

1,12
∕d1,1)�

2
2,0

+ (c1,2 − c2
1,12

∕c1,1)b
2
2
 . 

Since d1,2 − d2
1,12

∕d1,1 ≥ 0 and c1,2 − c2
1,12

∕c1,1 ≥ 0 , the amount of over-
estimation is smaller when either c2

1,12
 or d2

1,12
 is larger. In contrast, 

𝜎̂2
1
(𝛼1, 𝛾1) tends to be more upward biased when c2

1,12
 is larger, since 

E
(
b1 + (c1,12∕c1,1)b2

)2
= �2

1
+ (c1,12∕c1,1)

2�2
2
 . Lemma 1 demonstrates how the cor-

relations between the two covariates affect the behavior of v̂2(𝛼1, 𝛾1) and 𝜎̂2
1
(𝛼1, 𝛾1) . 

However, when the number of covariates is larger, the ML estimators of v2 and {�2
k
} 

become much more complicated. We leave this extension of Lemma 1 to the general 
case for future work.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10463-​022-​00825-7.
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