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Abstract
Feature selection for the high-dimensional Cox proportional hazards model (Cox 
model) is very important in many microarray genetic studies. In this paper, we pro-
pose a sequential feature selection procedure for this model. We define a novel par-
tial profile score to assess the impact of unselected features conditional on the cur-
rent model, significant features are thereby added into the model sequentially, and 
the Extended Bayesian Information Criteria (EBIC) is adopted as a stopping rule. 
Under mild conditions, we show that this procedure is selection consistent. Exten-
sive simulation studies and two real data applications are conducted to demonstrate 
the advantage of our proposed procedure over several representative approaches.

Keywords Sequential feature selection · Selection consistency · Cox proportional 
hazards model · High-dimensional · Extended Bayesian information criteria

1 Introduction

In the contemporary era, new biotechnologies have generated numerous high-dimen-
sional microarray data, and the role of feature selection is significant in the analysis 
of survival data. Various hazards regression models have been proposed in survival 
analysis, among which the Cox proportional hazards model (Cox model, Cox 1972) 
is most prevalent and has been thoroughly investigated. For feature selection, regu-
larization approaches such as Lasso (Tibshirani 1996), adaptive Lasso (Zou 2006), 
the smoothly clipped absolute deviation estimator (SCAD, Fan and Li 2001), the 
elastic net (Zou and Hastie 2005) and so on have been studied for Cox model in 
Tibshirani (1997), Fan and Li (2002), Zhang and Lu (2007), Zou (2008) and Huang 
et  al. (2013). Their oracle selection and estimation consistency properties rely on 
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the tuning parameter, which is available theoretically but almost infeasible compu-
tationally. As far as we know, Luo et al. (2015) is the only article discussing related 
issues for high-dimensional Cox model seriously. However, as demonstrated in Luo 
et al. (2015), the models obtained for the final selection is required to contain the 
true model and have comparable model sizes with the true model. If these models 
are generated by the above regularization approaches, it requires at least a proper 
range of the tuning parameter, which brings a challenge for practical application. 
Moreover, these methods only perform well when the number of covariate variables 
is moderate. Under the ultra-high-dimensional situation, these methods have prob-
lems such as algorithm instability, statistical inaccuracy and expensive computation 
cost (Fan et al. 2009).

In response, feature screening is proposed to reduce the dimension of variables 
before initiating the regularization methods. Feature screening techniques for sur-
vival data include sure independence screening based on marginal partial likelihood 
(Fan et al. 2010), principled sure independence screening (Zhao and Li 2012), fea-
ture aberration at survival times screening (Gorst-Rasmussen and Scheike 2013), 
censored rank independence screening (Song et al. 2014), sure joint screening (Yang 
et  al. 2016) and so on. To ensure the sure screening property, these procedures 
require strong assumptions such as the weak dependency among relevant and irrel-
evant features. Besides, irrelevant features which are highly correlated with relevant 
features tend to be retained in the model for further feature selection, bringing new 
challenges for regularization methods in the ultra-high-dimensional situation.

Sequential methods have attracted much attention for feature selection in high-
dimensional data for several years, such as Ing and Lai (2011), Cheng et al. (2014), 
Luo and Chen (2014), Luo and Chen (2021) for varying-coefficient models, linear 
models with main and interaction effects, etc. Sequential methods are much favora-
ble in terms of computation time and selection accuracy. Specifically, with suitable 
stopping rules, they can achieve selection consistency under reasonable assump-
tions. The implementation is much faster comparing with regularization methods, 
especially for very large p. In Hong et  al. (2019), the authors proposed forward 
regression for high-dimensional Cox model with EBIC in Chen and Chen (2008) as 
the stopping criterion. The procedure performs very well; however, it requires to fit 
almost p Cox models at each step, leading to expensive computation costs.

Motivated by the above discussions on the pros and cons of existing approaches, 
in this paper, we propose a novel sequential feature selection procedure for high-
dimensional Cox model. It selects variables sequentially based on the partial profile 
score, which is a new measurement to assess the impact of unselected features con-
ditional on the current model. The EBIC is employed as a stopping rule for our pro-
cedure. We establish the selection consistency of our procedure under regular condi-
tions. In detail, we show that, with probability tending to one, all relevant features 
will be selected before irrelevant features and the procedure will stop right after all 
relevant features are covered in the current model. Meanwhile, our simulation stud-
ies demonstrate that our procedure has better selection accuracy than regularization 
approaches and faster computation speed than forward regression. The rest of this 
paper is organized as follows. In Sect. 2, we provide the details of this procedure. 
In Sect.  3, we state our main theoretical results. In Sect.  4, we conduct extensive 
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numerical studies to assess the finite sample performance of our procedure and other 
methods, and the applications in analyzing two recent data sets are presented in 
Sect. 5. A short conclusion is provided in Sect. 6. Technical proofs of our theoretical 
results are relegated to the Appendix section.

2  Methodology

2.1  The Cox model

Let T represent the survival time to the event of interest, C represent the censoring 
time, and Z = (Z1, Z2,… , Zp)

⊤ be a p-dimensional time independent covariate vec-
tor, respectively. Under the right-censoring situation, X = min (T ,C) instead of T is 
observed; let � = I(T ≤ C) be the indicator taking value 1 when the survival time T 
is observed and 0 otherwise. Define Y(t) = I(X ≥ t) and N(t) = I(X ≤ t, � = 1) . We 
assume that C and T are independent given covariates in Z . Let FT , fT , and ST be 
the cumulative distribution function, density function, and survival function of T, 
respectively. They denote the corresponding quantities of the censoring time C when 
the subscript T is replaced by C.

Without loss of generality, denote � as the terminal time of observation. The Cox 
model proposed in Cox (1972) is

where �0(t) is an unspecified baseline hazard function and � is an unknown regres-
sion coefficient vector of interest, �(t|z) is the conditional hazard function defined by

Given data (Xi, �i,Zi), denote Yi(t) = I(Xi ≥ t), Ni(t) = I(Xi ≤ t, �i = 1) for 
i = 1,… , n . We consider the situation when there are no ties in the observed event 
time, let t1 < t2 < ⋯ < tN be the ordered observed survival times. Denote by 
{Z(j) ∶ j = 1,… ,N} the covariate vectors of the individuals with the survival times. 
Let R(t) be the risk set at time t, i.e., R(t) = {i ∶ Xi ≥ t}. For the Cox model, the 
pseudo-likelihood function based on the observations is given by

When the baseline cumulative hazard function H0(t) = ∫ t

0
�0(s)ds is modeled in a 

nonparametric manner as H0(t) =
∑N

j=1
hjI(tj ≤ t) , maximizing this pseudo-likeli-

hood function with respect to the hj ’s for any fixed � yields the so-called log partial 
likelihood function with expression

(1)𝜆(t|Z) = 𝜆0(t) exp (�
⊤
Z),

𝜆(t|z) = lim
𝛥t↓0

Pr (t ≤ T < t + 𝛥t|T ≥ t,Z = z)∕△ t.

L =
∏
i∶�i=1

�(Xi|Zi)

n∏
i=1

(
1 − FT (Xi|Zi)

)
.
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Denote ℑt as the �-algebra �(Ni(t), Yi(t),Zi, i = 1,… , n) , let �0 be the true � , then

is a square-integrable martingale with respect to the �-filtration ℑt , and the log par-
tial likelihood function (2) can also be expressed as

In the high-dimensional setting where the dimension p of covariate vector Z is larger 
than the sample size n, it is reasonably assumed that only a few covariate variables 
contribute to the survival time, i.e., the set of relevant features s0 = {j ∶ �0j ≠ 0} has 
a size much smaller than n. The goal of feature selection is to estimate this unknown 
set s0.

2.2  The partial profile score for the Cox model

For an arbitrary set s ⊂ {1, 2,… , p} , denote sc as the complementary set of s. Then the 
parameter vector � can be divided into (�⊤

s
, �⊤

sc
)⊤ , where �s is subvector with index in s 

and �sc is subvector with index in sc . Similarly for Zi , a vector with subscript s denotes 
the subvector with component indices in s. We denote

where �̂s(�sc) is the maximizer given �sc . For any k ∈ sc , the partial profile score 
(PPS) is defined as

By definition,

Therefore, for any k ∈ sc , it holds that

(2)�(�) =

N�
j=1

⎛
⎜⎜⎝
Z
⊤
(j)
� − log

⎛
⎜⎜⎝
�

i∈R(tj)

exp(Z⊤
i
�)

⎞
⎟⎟⎠

⎞
⎟⎟⎠
.

Mi(t) = Ni(t) − ∫
t

0

Yi(u)𝜆0(u) exp (�
⊤
0
Zi)du, t ∈ (0, 𝜏]

(3)�(�) =

n∑
i=1

∫
𝜏

0

(
�⊤

Zi − log

(
n∑
j=1

Yj(u) exp (�
⊤
Zj)

))
dNi(u).

�̂(�sc) = sup
�s

�(�s, �sc) = �(�̂s(�sc), �sc),

�k(s) = n−1
��̂(�sc)

��k

|�sc=0
.

�

��s

�(�s, �sc)|�s=�̂s(�sc )
= 0.
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From straightforward calculation, we have

where �̂s is the partial likelihood estimator for model s.
As a special case, when s = ∅ , �k(s) reduces to the Fast statistic in Gorst-Ras-

mussen and Scheike (2013). The partial profile score in (4) reflects the importance 
of Zk conditional on covariates in s.

On the other hand, denote 𝜆i(t) = Yi(t)𝜆0(t) exp(�
⊤
0
Zi) as the random intensity 

process and �i(s)(t) as the sub-model intensity process, when we use the Breslow 
type estimator to estimate the cumulative baseline hazard function

then we have

By the property of a martingale, we can see from (5) that �k(s) is asymptotically 
equivalent to n−1

∑n

i=1
∫ �

0
Zik{�i(u) − �̂i(s)(u)}du, which measures the correlation 

between covariate Zk and the fitting residuals of the intensity process. It is analogous 
to n−1

∑n

i=1
Zik(yi − �̂�i(s)) in linear regression models with yi being the observed 

response and �̂�i(s) being the estimated E (yi) given model s, which measures the cor-
relation between Zk and the fitted residuals.

2.3  A sequential feature selection procedure

In this subsection, we propose a sequential feature selection procedure based on the 
PPS defined in Sect. 2.2. For simplicity, we denote this procedure also by PPS. The 
details of this procedure are described in the following.

𝜕 ��(�sc)

𝜕�k

=

{
𝜕 ��s(�sc)

⊤

𝜕�k

𝜕�(�s, �sc)

𝜕�s

+
𝜕�(�s, �sc)

𝜕�k

}|||||�s=
��s(�sc )

=
𝜕�(�s, �sc)

𝜕�k

|
�s=

��s(�sc )
.

(4)𝜓k(s) =
1

n

n�
i=1

∫
𝜏

0

⎛
⎜⎜⎝
Zik −

∑n

j=1
Yj(u)Zjk exp (

��
⊤

s
Zjs)

∑n

j=1
Yj(u) exp (

��
⊤

s
Zjs)

⎞
⎟⎟⎠
dNi(u), ∀k ∈ sc,

�𝛬0(s)(t) = ∫
t

0

∑n

i=1
dNi(u)

∑n

i=1
Yi(u) exp (

��
⊤

s
Zis)

,

(5)

𝜓k(s) =
1

n

n∑
i=1

∫
𝜏

0

Zik{dNi(u) − Yi(u) exp (
��
⊤

s
Zis)d �𝛬0(s)(u)}

=
1

n

n∑
i=1

∫
𝜏

0

Zik{dNi(u) − �𝜆i(s)(u)du}.
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Initially, we let s be ∅ or a certain set of relevant features obtained from some 
prior knowledge. We standardize all covariates. Given s, for the next step, denote

For s and s⋆ , calculate their EBIC values defined in Chen and Chen (2008), for a 
given s,

where �(�̂s) is the maximum value of log partial likelihood function of the sub-
model containing only the covariate variables in s and C|s|

p  is the combination num-
ber. If EBIC𝛾 (s

⋆) > EBIC𝛾 (s) , stop the procedure and output s; otherwise, let s = s⋆ 
and iterate the procedure.

It is worthy to note that this procedure can be extended to the Cox model with 
grouped predictors wherein the model with interaction effects is a typical example. 
More details of the algorithm as well as numerical and theoretical justifications are pro-
vided elsewhere.

3  Theoretical properties

In this section, we establish the selection consistency of the PPS procedure for model 
(1). Firstly, we give some notations. For a column vector v , let v⊗0 = 1 , v⊗1 = v and 
v⊗2 = vv⊤ where v⊤ is the transpose vector of v . Let ‖v‖q for q ≥ 1 be the �q norm of v , 
and denote its �2 norm by ‖v‖ . Let �min(A) and �max(A) be the smallest and the largest 
eigenvalues of a symmetric matrix A. Let |s| represent the cardinality of an index set s 
and let |s0| = p0.

For an index set s ⊂ {1, 2, 3,… , p} , k ∈ {1, 2, 3,… , p} and m ∈ {0, 1, 2} , we 
define

In addition, we denote �∗
s
 as the root of equation

k⋆ = argmaxj∉s|𝜓j(s)|, s⋆ = s ∪ {k⋆}.

(6)EBIC� (s) = −2�(�̂s) + |s| ln(n) + 2� ln
(
C|s|
p

)

R(m)
s

(�s, t) = n−1
n�
i=1

Yi(t)Z
⊗m

is
exp

�
�⊤
s
Zis

�
, r(m)

s
(�s, t) = E

�
R(m)
s

(�s, t)
�
;

V (m)
s

(t) = n−1
n�
i=1

Yi(t)Z
⊗m

is
𝜆0(t) exp

�
�⊤
0
Zi

�
, v(m)

s
(t) = E

�
V (m)
s

(t)
�
;

R
(m)

ks
(�s, t) = n−1

n�
i=1

Yi(t)Z
⊗m

ik
exp

�
�⊤
s
Zis

�
, r

(m)

ks
(�s, t) = E

�
R
(m)

ks
(�s, t)

�
;

In(�s) = n∫
𝜏

0

⎧⎪⎨⎪⎩

R(2)
s
(�s, t)

R
(0)
s (�s, t)

−

�
R(1)
s
(�s, t)

�⊗2

�
R
(0)
s (�s, t)

�2

⎫⎪⎬⎪⎭
V (0)
s
(t)dt.
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it can be shown that, �∗
s
 exists and is unique. Denote

3.1  Assumptions

We make the following assumptions. 

 (A1) The study has a finite duration � such that 𝜔 = Pr (X ≥ 𝜏) > 0 and the baseline 
hazard ratio function �0(t) satisfies ∫ 𝜏

0
𝜆0(t)dt < ∞.

 (A2) The covariates Zj ’s are bounded by a constant K > 1 , and E(Zj) = 0 , E(Z2
j
) = 1 

for j = 1,… , p.
 (A3) There exist two positive constants 0 < 𝜅min < 𝜅max < ∞ , such that 

 uniformly for s ⊂ {1,… , p} , where |s| ≤ � for some 𝜌 > p0.
 (A4) There exists a constant L such that sup�s�≤� ‖�∗s ‖1 ≤ L.
 (A5) There exists a constant 𝜉 > 0 , such that 

 (A6) sC0 denotes the set of true covariates for the censoring time C, i.e, 

Denote S
0
= s

0
∪ s

C0
 . E{ZjST (t|Zs0

)fC(t|ZsC0
)|ZS0�j

} and E{ZjST (t|Zs0
)SC(t|ZsC0

)|ZS0�j
} 

have the same sign across t, for j ∈ s0.
 (A7) For ∀s ⊆ s0 , denote s− = sc ∩ s0 , we have 

 for some constant 0 < q < 1.

∫
�

0

(
v(1)
s
(t) −

r(1)
s
(�s, t)

r
(0)
s (�s, t)

v(0)
s
(t)

)
dt = 0,

�k(s) = ∫
�

0

⎛
⎜⎜⎜⎝
v
(1)

k
(t) −

r
(1)

ks

�
�∗
s
, t
�

r
(0)
s

�
�∗
s
, t
�v(0)s

(t)

⎞
⎟⎟⎟⎠
dt.

𝜅min < 𝜆min(E(Z
⊗2
s
)) ≤ 𝜆max(E(Z

⊗2
s
)) < 𝜅max

𝜅min ≤ inf
‖�

s
−�∗

s
‖∞≤𝜉,�s�≤𝜌 𝜆min

�
�

𝜏

0

�
r
(2)
s
(�

s
, t)

r
(0)
s
(�

s
, t)

−
(r(1)

s
(�

s
, t))⊗2

(r
(0)
s
(�

s
, t))2

�
v
(0)
s
(t)dt

�

≤ sup
‖�

s
−�∗

s
‖∞≤𝜉,�s�≤𝜌

𝜆max

�
�

𝜏

0

�
r
(2)
s
(�

s
, t)

r
(0)
s
(�

s
, t)

−
(r(1)

s
(�

s
, t))⊗2

(r
(0)
s
(�

s
, t))2

�
v
(0)
s
(t)dt

�
≤ 𝜅max.

Pr (C ≤ c|Z1,… , Zp) = Pr (C ≤ c|ZsC0
).

max
k∈sc

0

|𝛷k(s)| < qmax
k∈s−

|𝛷k(s)|
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 (A8) minj∈s0 | ∫ �

0
E{ZjfT (t|Zs0

)SC(t|ZsC0
)}dt| 1

�
(
ln p

n
)−1∕4 → ∞.

 (A9) For any given 𝜀 > 0 , there exists a constant 𝛿 > 0 such that, when n is suf-
ficiently large, In(�s) ≥ (1 − �)In(�0s) for all �s satisfying s0 ⊂ s, |s| ≤ 𝜌 and 
‖�s − �0s‖ ≤ �.

Now we provide a head-to-head comparison between our assumptions and those 
of existing approaches. Condition (A1)–(A6) are assumed in Hong et al. (2019). 
Condition (A1) is a standard assumption in survival analysis, condition (A2) and 
(A3) are common assumptions for variable screening and selection, see Wang 
(2009) and Zheng et  al. (2020). The boundedness assumption is imposed for 
simple technical proof, which can also be found in Zhao and Li (2012), Yang 
et al. (2016). Condition (A4) has a similar favor to the assumption (A2) in Bühl-
mann (2006) for linear regression models and the Lipschitz assumption in Van de 
Geer (2008) for generalized linear models. It is a common assumption for the 
Cox proportional hazard models, see Assumption D in Kong and Nan (2014) and 
Assumption (D) in Hong et al. (2019). Condition (A5) is similar to condition 2 
in Bradic et al. (2011), it requires that the concavity of the log partial likelihood 
is bounded in a neighborhood of �∗

s
 . Condition (A6) is used to analyze the least 

false value �∗
s
 . It is noteworthy that condition (A6) always holds in practice. For 

example, when s0 ∩ sC0 = � , condition (A6) holds according to Lemma (A) in 
Hong et al. (2019). Condition (A7) and (A8) are similar to the assumptions (A1) 
and (A3) in Luo and Chen (2014) where (A7) actually requires that the maximum 
“correlation” between the relevant features with the current residual should be 
larger than that of the irrelevant ones at the population level.

A parallel condition to (A7) is the partial orthogonality condition assumed in 
Zhao and Li (2012), Gorst-Rasmussen and Scheike (2013) and Hong et al. (2019) 
to establish the screening consistency and selection consistency. It requires the 
independency between Zs0

 and Zsc
0
 . The partial orthogonality condition implies 

(A7). A simple proof is provided as follows. For k ∈ (s0 ∪ s)c , by definition,

Under the partial orthogonality condition, according to Lemma B in Hong et  al. 
(2019), we have �∗

s∪{k}
= (�∗T

s
, 0)⊤ . Hence, r(0)

s∪{k}
(�∗

s∪{k}
, t) = r(0)

s
(�∗

s
, t) and the last 

element of r(1)
s∪{k}

(�∗
s∪{k}

, t) is the r(1)
ks
(�∗

s
, t) . Similarly, v(0)

s∪{k}
(t) = v(0)

s
(t) and the last 

element of v(1)
s∪{k}

(t) is v(1)
k
(t) . Consequently,

According to the proof of Theorem 1, maxk∈s− |�k(s)| is strictly positive for ∀s ⊆ s0 . 
Condition (A7) is therefore established.

∫
�

0

⎛⎜⎜⎝
v
(1)

s∪{k}
(t) −

r
(1)

s∪{k}
(�∗

s∪{k}
, t)

r
(0)

s∪{k}
(�∗

s∪{k}
, t)

v
(0)

s∪{k}
(t)

⎞⎟⎟⎠
dt = 0.

�k(s) = ∫
�

0

(
v
(1)

k
(t) −

r
(1)

ks
(�∗

s
, t)

r
(0)
s (�∗

s
, t)

v(0)
s
(t)

)
dt = 0.
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Condition (A8) is the signal strength condition, which requires that the effects 
of the relevant features must not tapper off too quickly. This constraint has a simi-
lar favor to the constraint on the regression coefficient for the linear model, see 
Zhao and Li (2012) and Hong et al. (2019). Condition (A9) can be found in Luo 
et al. (2015) which is used to ensure the selection consistency of EBIC in the Cox 
model.

3.2  Main results

Theorem 1 Let s∗1, s∗2,… , s∗m,… be the sequence produced by the PPS procedure 
in Sect. 2.3. Under assumptions (A1)–(A8), if p = O(n�) for 𝜅 > 1 , p0 is independ-
ent of the sample size n and � = Cp0 for some constant C > 1 , there exists a m∗ such 
that:

Theorem 2 Under the assumptions in Theorem 1 and (A9), for the model sequence 
produced by the PPS procedure, we have 

(1) uniformly for m < m∗ , when 𝛾 > 0 , 

(2) when 𝛾 > 1 − ln n∕(2 ln p) , 

i.e., the PPS procedure is selection consistent.

4  Numerical studies

In this section, we present extensive numerical results to compare the finite sample 
performances of our procedure PPS and other methods in the literature. We let the 
dimension of covariates be p = [n1.4] and n ∈ {100, 200, 300, 400} , namely

We consider four different values of � in EBIC, �1 = 0 degenerates to BIC, 
�2 = 1 − log(n)∕(2 log(p)) , �3 = 1 − log(n)∕(4 log(p)) , and �4 = 1 . For comparison, 
we include forward regression (FR) proposed in Hong et al. (2019), Lasso in Tibshi-
rani (1996) and SIS (Fan et al. 2010) followed by MCP (Zhang 2010), denoted by 
SIS-MCP. Since SCAD in Fan and Li (2001) and MCP in Zhang (2010) enjoy simi-
lar properties and performances, SIS-SCAD was excluded in our tables and figures. 

Pr (s∗m∗ = s0) → 1, as n → ∞.

Pr ( EBIC𝛾 (s∗m+1) < EBIC𝛾 (s∗m)) → 1.

Pr ( min
p0<|s∗m|<𝜌

EBIC𝛾 (s∗m) > EBIC𝛾 (s0)) → 1.

(n, p) ∈ {(100, 630), (200, 1665), (300, 2937), (400, 4394)}.
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Since estimation with MCP fails to converge without SIS, we have to implement 
SIS before MCP. The size of features retained at the SIS step is set to be ⌊n∕ log(n)⌋ , 
as suggested in Fan et al. (2010). For a fair comparison, we use EBIC� as a unified 
model selection criterion for all approaches.

For the evaluation of a feature selection procedure, we consider the running time, 
the positive discovery rate (PDR), the false discovery rate (FDR) and Mathews cor-
relation coefficient (MCC). Recall that s0 is the set of true features, denote ŝ  as the 
selected set of features, PDR and FDR are defined as follows:

For feature selection, MCC can be defined as

where

PDR will converge to 1, FDR will converge to 0, and MCC will converge to 1 simul-
taneously if the feature selection procedure posses selection consistency.

In our simulation, the survival time is generated from a Cox model 
𝜆(t|Z) = exp (Z⊤�) , where the baseline hazard function �0(t) = 1 . The censoring 
time is independently generated from an exponential distribution with mean L. Four 
different data scenarios are considered. 

 S 1. The true coefficient vector � is set as � = (1, 1, 1, 1, 1, 1, 0⊤
p−6

)⊤ . The covari-
ates vector Z follows a multivariate normal distribution with mean zero and 
covariance matrix Ip , where Ip is the p-dimensional identity matrix. We change 
the value of L to control the censoring proportion and we let L = 1, 10 . L = 10 
yields small censoring proportions (around 22%) and L = 1 yields large censor-
ing proportions (around 50%).

 S 2. The true coefficient vector � is set as � = (2,−2, 2,−2, 2,−2, 0⊤
p−6

)⊤ . The covari-
ate vector Z follows a multivariate normal distribution with mean zero and 
covariance matrix (�ij)p×p , where �ij = v|i−j| and v ∈ {0.3, 0.7} . Let L = 10.

 S 3. The true coefficient vector � is set as � = (1, 1, 1, 1, 1,−2.5, 0⊤
p−6

)⊤ . The covari-
ate vector Z follows a multivariate normal distribution with mean zero and 
covariance matrix (�ij)p×p , where �ij = 0.5 for i ≠ j and �ii = 1 . Let L = 10 . In 
this setting, Z6 ∈ s0 but the marginal utility of Z6 is lower than that of j ∈ sc

0
.

 S 4. The true coefficient vector � is set as � = (1,−1, 1,−1, 1,−0.34375, 0⊤
p−6

)⊤ . The 
covariate vector Z follows a multivariate normal distribution with mean zero 
and covariance matrix (�ij)p×p , where �ij = 0.5|i−j| . Let L = 10 . In this setting, 

PDR =
|̂s ∩ s0|
|s0| , FDR =

|̂s ∩ sc
0
|

max{1, |̂s|} .

MCC =
TP × TN − FP × FN

max{1,
√
( TP + FP)( TP + FN)( TN + FP)( TN + FN)}

TP =|̂s ∩ s0|, TN = |sc
0
| − |̂s ∩ sc

0
|,

FN =|s0| − |̂s ∩ s0|, FP = |̂s ∩ sc
0
|.
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Z6 ∈ s0 but the marginal utility of Z6 is lower than that of j ∈ sc
0
 . For other active 

variables in s0 , their marginal signals are also very weak.

From our simulation, we find that the running time is mainly affected by the feature 
dimension, sample size and the censoring proportion. We report the averaged run-
ning times of various methods over 100 replications for S 1 with L = 1 and L = 10 
in Table  1. The running times of Lasso and SIS-MCP with different � values are 
very close; hence, they are consolidated as Lasso and SIS-MCP in the table. From 
Table 1, we can see that FR takes dozens or even hundreds times longer time than 
PPS. PPS requires comparable running times with Lasso and SIS-MCP. For large n, 
PPS only requires several seconds. We observe similar phenomenon for settings S2, 
S3, S4, and hence, we skip their results in our table.

The averaged PDR, FDR and MCC over 100 replications for S1 are summa-
rized in Tables 2 and 3, those for S2 are in Tables 4 and 5, and results for S3 and 
S4 are provided in Tables 6 and 7, respectively. The following conclusions can 
be drawn from these tables. (1) Regarding the effect of different � values in the 
EBIC, we can see that larger � tends to be more conservative and leads to smaller 
PDR and smaller FDR. Especially, PPS and FR with �1 = 0 (BIC) always select 
the largest model, indicating that BIC fails to achieve selection consistency in 
the high-dimensional situation. With � values falling in the theoretical range such 
as �2, �3, �4 , PPS tends to select the true model with probability tending to one 
as the sample size grows. (2) Higher censoring proportion and higher correla-
tion among covariates will both result in worse performances of feature selection 
for all methods. The sequential methods FR and PPS are more robust than Lasso 
and SIS-MCP, especially when the sample size is moderate and the correlation 
coefficient is high. When v = 0.7 in S 2 and � ∈ {�2, �3, �4} , most PDRs of Lasso 
and SIS-MCP methods stay under 40% and MCCs remain below 60% for large 
n = 400 , our PPS method maintains a good performance with PDRs above 97% 
and MCCs around 95%. (3)For the two challenging settings S 3 and S 4 where a 
relevant feature has a weaker marginal effect than all irrelevant features, PPS and 

Table 1  The averaged running time (in seconds) over 100 replications

L n PPS�
1

FR�
1

PPS�
2

FR�
2

PPS�
3

FR�
3

PPS�
4

FR�
4

Lasso SIS-MCP

1 100 0.25 48.65 0.04 22.36 0.03 11.42 0.02 7.21 0.17 0.06
200 0.41 144.96 0.14 72.94 0.13 64.08 0.12 59.96 0.47 0.12
300 0.73 288.86 0.29 136.83 0.27 123.43 0.25 118.01 0.96 0.26
400 1.22 467.44 0.49 217.22 0.45 192.30 0.45 187.93 1.59 0.42

10 100 0.25 48.95 0.06 25.09 0.04 18.59 0.03 13.15 0.22 0.05
200 0.47 150.92 0.16 72.72 0.15 63.80 0.15 60.80 0.60 0.12
300 0.84 290.42 0.34 136.71 0.31 121.99 0.31 117.59 1.24 0.26
400 1.48 473.37 0.61 212.61 0.56 195.98 0.55 189.34 2.05 0.39
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Table 2  The averaged PDR, FDR and MCC over 100 replications with standard deviations in the brack-
ets for S1 with L = 1

Method n = 100 n = 200 n = 300 n = 400

PPS�
1

 PDR 0.868 (0.190) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.641 (0.094) 0.597 (0.027) 0.600 (0.003) 0.600 (0.000)
 MCC 0.552 (0.131) 0.633 (0.019) 0.632 (0.002) 0.632 (0.000)

FR�
1

 PDR 0.942 (0.117) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.623 (0.047) 0.600 (0.000) 0.600 (0.000) 0.600 (0.000)
 MCC 0.590 (0.075) 0.631 (0.000) 0.631 (0.000) 0.632 (0.000)

Lasso�
1

 PDR 0.710 (0.349) 0.997 (0.023) 1.000 (0.000) 1.000 (0.000)
 FDR 0.319 (0.222) 0.352 (0.181) 0.356 (0.138) 0.342 (0.154)
 MCC 0.605 (0.241) 0.795 (0.115) 0.797 (0.085) 0.805 (0.097)

SIS-MCP�
1

 PDR 0.387 (0.188) 0.655 (0.178) 0.823 (0.138) 0.928 (0.096)
 FDR 0.519 (0.289) 0.422 (0.265) 0.209 (0.230) 0.099 (0.168)
 MCC 0.400 (0.192) 0.599 (0.199) 0.798 (0.169) 0.910 (0.114)

PPS�
2

 PDR 0.577 (0.348) 0.992 (0.083) 1.000 (0.000) 1.000 (0.000)
 FDR 0.155 (0.208) 0.093 (0.112) 0.082 (0.110) 0.083 (0.100)
 MCC 0.631 (0.291) 0.944 (0.081) 0.956 (0.060) 0.956 (0.054)

FR�
2

 PDR 0.768 (0.325) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.250 (0.199) 0.136 (0.134) 0.119 (0.140) 0.118 (0.125)
 MCC 0.711 (0.237) 0.927 (0.074) 0.935 (0.079) 0.936 (0.069)

Lasso�
2

 PDR 0.020 (0.086) 0.797 (0.388) 1.000 (0.000) 1.000 (0.000)
 FDR 0.000 (0.000) 0.124 (0.129) 0.122 (0.128) 0.130 (0.122)
 MCC 0.036 (0.137) 0.744 (0.347) 0.934 (0.070) 0.930 (0.067)

SIS-MCP�
2

 PDR 0.202 (0.253) 0.620 (0.233) 0.823 (0.138) 0.928 (0.096)
 FDR 0.057 (0.143) 0.104 (0.146) 0.053 (0.107) 0.017 (0.062)
 MCC 0.276 (0.310) 0.711 (0.221) 0.879 (0.102) 0.954 (0.066)

PPS�
3

 PDR 0.403 (0.351) 0.975 (0.145) 1.000 (0.000) 1.000 (0.000)
 FDR 0.059 (0.159) 0.056 (0.090) 0.033 (0.069) 0.031 (0.070)
 MCC 0.509 (0.341) 0.951 (0.130) 0.983 (0.036) 0.984 (0.037)

FR�
3

 PDR 0.580 (0.399) 0.992 (0.083) 1.000 (0.000) 1.000 (0.000)
 FDR 0.112 (0.176) 0.055 (0.088) 0.037 (0.073) 0.039 (0.076)
 MCC 0.619 (0.345) 0.965 (0.073) 0.981 (0.038) 0.979 (0.041)

Lasso�
3

 PDR 0.003 (0.033) 0.642 (0.470) 0.990 (0.100) 1.000 (0.000)



1121

1 3

Feature selection for high-dimensional Cox model

FR are not much affected, while Lasso and SIS-MCP both deteriorate. In setting 
S 3, with � ∈ {�2, �3, �4} , FDRs of Lasso almost exceed 50% for large n, PDRs of 
SIS-MCP are all lower than 60% and their MCCs maintain around 70%, while 
PPS has 100% PDR, less than 10% FDR and more than 95% MCC for large n. In 
setting S 4, PDRs and MCCs of Lasso and SIS-MCP almost all stay below 50% 
and 60% respectively. In contrast, PDRs and MCCs of PPS reach over 90% when 
n = 400 . (4) Between PPS and FR, in the presence of large correlation, for exam-
ple, when v = 0.7 in S 2, FR has slightly better performance when the sample size 
n is small. However, as n grows up to 400, PPS and FR have comparable per-
formances, and the averaged MCC is 96% for PPS and 97.7%, for FR. However, 
FR occupies a much longer time than PPS. Similar pattern can be observed for 
setting S 4. For the low correlation situation, for instance, S 1 and v = 0.3 in S 2, 
PPS has slightly better performance than FR in moderate sample size according 
to the MCC values. From moderate to large sample sizes, they have comparable 
performances.

Table 2  (continued)

Method n = 100 n = 200 n = 300 n = 400

 FDR 0.000 (0.000) 0.074 (0.109) 0.098 (0.110) 0.107 (0.115)
 MCC 0.006 (0.058) 0.612 (0.442) 0.938 (0.112) 0.943 (0.062)

SIS-MCP�
3

 PDR 0.138 (0.226) 0.587 (0.279) 0.823 (0.138) 0.928 (0.096)
 FDR 0.029 (0.105) 0.080 (0.125) 0.042 (0.088) 0.016 (0.057)
 MCC 0.199 (0.293) 0.676 (0.280) 0.884 (0.094) 0.955 (0.064)

PPS�
4

 PDR 0.235 (0.294) 0.973 (0.153) 1.000 (0.000) 1.000 (0.000)
 FDR 0.031 (0.132) 0.017 (0.047) 0.013 (0.041) 0.004 (0.024)
 MCC 0.335 (0.335) 0.969 (0.130) 0.993 (0.021) 0.998 (0.013)

FR�
4

 PDR 0.303 (0.339) 0.973 (0.153) 1.000 (0.000) 1.000 (0.000)
 FDR 0.040 (0.126) 0.016 (0.045) 0.014 (0.043) 0.004 (0.024)
 MCC 0.398 (0.354) 0.970 (0.130) 0.993 (0.022) 0.998 (0.013)

Lasso�
4

 PDR 0.000 (0.000) 0.403 (0.485) 0.990 (0.100) 1.000 (0.000)
 FDR 0.000 (0.000) 0.040 (0.084) 0.076 (0.097) 0.097 (0.109)
 MCC 0.000 (0.000) 0.389 (0.464) 0.950 (0.109) 0.949 (0.059)

SIS-MCP�
4

 PDR 0.107 (0.209) 0.540 (0.318) 0.823 (0.138) 0.928 (0.096)
 FDR 0.020 (0.086) 0.058 (0.104) 0.037 (0.082) 0.016 (0.057)
 MCC 0.156 (0.270) 0.627 (0.330) 0.887 (0.091) 0.955 (0.064)
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Table 3  The averaged PDR, FDR and MCC over 100 replications with standard deviations in the brack-
ets for S1 with L = 10

Method n = 100 n = 200 n = 300 n = 400

PPS�
1

 PDR 0.978 (0.102) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.602 (0.051) 0.599 (0.007) 0.600 (0.000) 0.600 (0.000)
 MCC 0.619 (0.070) 0.632 (0.006) 0.631 (0.000) 0.632 (0.000)

FR�
1

 PDR 0.992 (0.060) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.603 (0.024) 0.600 (0.000) 0.600 (0.000) 0.600 (0.000)
 MCC 0.623 (0.038) 0.631 (0.000) 0.631 (0.000) 0.632 (0.000)

Lasso�
1

 PDR 0.960 (0.128) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.472 (0.235) 0.375 (0.162) 0.356 (0.160) 0.323 (0.142)
 MCC 0.678 (0.181) 0.783 (0.102) 0.796 (0.099) 0.818 (0.088)

SIS-MCP�
1

 PDR 0.547 (0.185) 0.830 (0.111) 0.935 (0.091) 0.992 (0.037)
 FDR 0.462 (0.252) 0.222 (0.230) 0.103 (0.167) 0.050 (0.124)
 MCC 0.525 (0.185) 0.794 (0.153) 0.911 (0.115) 0.968 (0.082)

PPS�
2

 PDR 0.882 (0.271) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.138 (0.161) 0.090 (0.111) 0.099 (0.109) 0.085 (0.109)
 MCC 0.844 (0.224) 0.952 (0.061) 0.947 (0.059) 0.955 (0.060)

FR�
2

 PDR 0.953 (0.191) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.203 (0.187) 0.136 (0.126) 0.121 (0.115) 0.110 (0.118)
 MCC 0.852 (0.186) 0.927 (0.070) 0.936 (0.063) 0.941 (0.065)

Lasso�
2

 PDR 0.225 (0.403) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.027 (0.071) 0.174 (0.144) 0.124 (0.112) 0.119 (0.109)
 MCC 0.228 (0.383) 0.905 (0.081) 0.934 (0.061) 0.937 (0.059)

SIS-MCP�
2

 PDR 0.448 (0.288) 0.830 (0.111) 0.935 (0.091) 0.992 (0.037)
 FDR 0.130 (0.166) 0.055 (0.101) 0.009 (0.041) 0.003 (0.023)
 MCC 0.524 (0.310) 0.882 (0.083) 0.961 (0.055) 0.994 (0.028)

PPS�
3

 PDR 0.767 (0.384) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.064 (0.116) 0.049 (0.076) 0.036 (0.069) 0.025 (0.060)
 MCC 0.771 (0.344) 0.975 (0.040) 0.981 (0.037) 0.987 (0.032)

FR�
3

 PDR 0.862 (0.325) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.119 (0.149) 0.056 (0.081) 0.038 (0.072) 0.027 (0.064)
 MCC 0.821 (0.290) 0.970 (0.043) 0.980 (0.038) 0.986 (0.034)

Lasso�
3

 PDR 0.088 (0.270) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
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5  Real data application

In this section, we applied our proposed method PPS and forward regression 
(FR), Lasso and SIS-MCP to the following two recent real data examples. Before 
analysis, all features are standardized so that they have mean zero and variance 
one. For SIS-MCP, the size of features retained after the SIS procedure is set as 
⌊n∕ log n⌋ . SIS-MCP selects no feature when � = �4 in EBIC, for �2, �3 , Lasso and 
SIS-MCP select the same set of features, and hence, we denote them with � = �3 
by Lasso-EBIC and SIS-MCP-EBIC in our tables and figures. Based on the simu-
lation study in Sect. 4, FR and PPS with BIC as the stopping rule always select 
too many spurious features, and hence, we use EBIC with � = �3 for FR and PPS.

5.1  Swedish watchful waiting cohort data

The Swedish Watchful Waiting Cohort (SWWC) data were published in Sboner 
et al. (2010), and it was available from the Gene Expression Omnibus with acces-
sion number GSE16560. Prostate cancer is the most common neoplasm in men. 
This data set consists of 6144 gene expression files from 206 male samples who 

Table 3  (continued)

Method n = 100 n = 200 n = 300 n = 400

 FDR 0.006 (0.028) 0.155 (0.129) 0.103 (0.103) 0.084 (0.106)
 MCC 0.096 (0.272) 0.916 (0.072) 0.946 (0.055) 0.955 (0.057)

SIS-MCP�
3

 PDR 0.355 (0.322) 0.830 (0.111) 0.935 (0.091) 0.992 (0.037)
 FDR 0.066 (0.125) 0.048 (0.089) 0.008 (0.039) 0.002 (0.017)
 MCC 0.429 (0.361) 0.886 (0.080) 0.962 (0.055) 0.995 (0.024)

PPS�
4

 PDR 0.508 (0.437) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.035 (0.091) 0.025 (0.061) 0.011 (0.039) 0.009 (0.034)
 MCC 0.564 (0.407) 0.987 (0.032) 0.994 (0.020) 0.996 (0.018)

FR�
4

 PDR 0.670 (0.425) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.063 (0.116) 0.026 (0.060) 0.013 (0.044) 0.009 (0.034)
 MCC 0.692 (0.381) 0.986 (0.032) 0.993 (0.023) 0.996 (0.018)

Lasso�
4

 PDR 0.023 (0.142) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.000 (0.000) 0.137 (0.123) 0.093 (0.103) 0.068 (0.099)
 MCC 0.028 (0.151) 0.926 (0.068) 0.950 (0.055) 0.964 (0.053)

SIS-MCP�
4

 PDR 0.260 (0.322) 0.830 (0.111) 0.935 (0.091) 0.992 (0.037)
 FDR 0.032 (0.082) 0.047 (0.087) 0.006 (0.036) 0.002 (0.017)
 MCC 0.319 (0.372) 0.887 (0.079) 0.963 (0.054) 0.995 (0.024)



1124 K. Yu, S. Luo 

1 3

Table 4  The averaged PDR, FDR and MCC over 100 replications with standard deviations in the brack-
ets for S2 with v = 0.3

Method n = 100 n = 200 n = 300 n = 400

PPS�
1

 PDR 0.937 (0.194) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.621 (0.081) 0.600 (0.000) 0.600 (0.003) 0.600 (0.000)
 MCC 0.590 (0.126) 0.631 (0.000) 0.632 (0.002) 0.632 (0.000)

FR�
1

 PDR 0.975 (0.126) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.610 (0.050) 0.600 (0.000) 0.600 (0.000) 0.600 (0.000)
 MCC 0.612 (0.081) 0.631 (0.000) 0.631 (0.000) 0.632 (0.000)

Lasso�
1

 PDR 0.833 (0.302) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.596 (0.297) 0.576 (0.122) 0.517 (0.158) 0.480 (0.157)
 MCC 0.475 (0.186) 0.643 (0.094) 0.686 (0.108) 0.713 (0.106)

SIS-MCP�
1

 PDR 0.323 (0.162) 0.517 (0.156) 0.688 (0.145) 0.775 (0.149)
 FDR 0.533 (0.304) 0.498 (0.262) 0.310 (0.282) 0.171 (0.227)
 MCC 0.339 (0.177) 0.488 (0.171) 0.673 (0.191) 0.792 (0.164)

PPS�
2

 PDR 0.638 (0.433) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.171 (0.240) 0.096 (0.129) 0.089 (0.118) 0.090 (0.118)
 MCC 0.636 (0.368) 0.948 (0.072) 0.952 (0.065) 0.952 (0.065)

FR�
2

 PDR 0.815 (0.366) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.213 (0.218) 0.121 (0.140) 0.118 (0.129) 0.114 (0.126)
 MCC 0.739 (0.316) 0.934 (0.079) 0.937 (0.072) 0.939 (0.069)

Lasso�
2

 PDR 0.062 (0.215) 0.948 (0.214) 1.000 (0.000) 1.000 (0.000)
 FDR 0.013 (0.069) 0.315 (0.178) 0.261 (0.169) 0.220 (0.145)
 MCC 0.072 (0.208) 0.773 (0.190) 0.854 (0.100) 0.879 (0.084)

SIS-MCP�
2

 PDR 0.147 (0.196) 0.443 (0.231) 0.678 (0.158) 0.775 (0.149)
 FDR 0.038 (0.113) 0.137 (0.184) 0.059 (0.120) 0.022 (0.069)
 MCC 0.229 (0.281) 0.558 (0.244) 0.792 (0.120) 0.867 (0.098)

PPS�
3

 PDR 0.472 (0.439) 0.990 (0.100) 1.000 (0.000) 1.000 (0.000)
 FDR 0.066 (0.134) 0.037 (0.078) 0.039 (0.076) 0.034 (0.068)
 MCC 0.519 (0.403) 0.970 (0.107) 0.979 (0.040) 0.982 (0.036)

FR�
3

 PDR 0.585 (0.454) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.090 (0.143) 0.043 (0.086) 0.046 (0.082) 0.040 (0.079)
 MCC 0.598 (0.404) 0.977 (0.046) 0.976 (0.043) 0.979 (0.042)

Lasso�
3

 PDR 0.038 (0.167) 0.935 (0.240) 1.000 (0.000) 1.000 (0.000)
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died from prostate cancer during follow-up and 75 survivors. The censoring 
rate is 26.69% , and the median observed survival time was 100 months. We are 
interested in finding the genes related with the survival rate of prostate cancer. 
The genes selected and running times by different methods are summarized in 
Table 8. In Fig. 1, we display the estimated baseline survival curve of the selected 
model in red and the Kaplan–Meier estimator in blue, and the 95% confidence 
regions of the Kaplan–Meier estimator are in dashed lines.

From Table  8, we can see that the PPS, FR and SIS-MCP-EBIC method 
select the same features, while PPS and SIS-MCP-EBIC need much less running 
time than FR. Lasso-EBIC fails to select any feature. Lasso-BIC and SIS-MCP-
BIC method select more features, and DAP3_4041 gene is selected by all these 
methods but Lasso-EBIC, which is also selected in Welchowski et  al. (2019). 
From Fig.  1, the survival curve with features selected by PPS is closer to the 
Kaplan–Meier estimator, while those by SIS-MCP-BIC and Lasso-BIC over-
flow out of its confidence region. From the above analysis, we reasonably believe 

Table 4  (continued)

Method n = 100 n = 200 n = 300 n = 400

 FDR 0.006 (0.041) 0.277 (0.167) 0.230 (0.165) 0.206 (0.135)
 MCC 0.048 (0.174) 0.784 (0.207) 0.872 (0.096) 0.888 (0.077)

SIS-MCP�
3

 PDR 0.100 (0.179) 0.407 (0.252) 0.677 (0.160) 0.775 (0.149)
 FDR 0.014 (0.061) 0.097 (0.159) 0.033 (0.088) 0.018 (0.057)
 MCC 0.160 (0.261) 0.527 (0.281) 0.802 (0.113) 0.868 (0.094)

PPS�
4

 PDR 0.288 (0.380) 0.950 (0.380) 1.000 (0.000) 1.000 (0.000)
 FDR 0.018 (0.071) 0.014 (0.071) 0.020 (0.052) 0.006 (0.028)
 MCC 0.360 (0.386) 0.943 (0.386) 0.990 (0.027) 0.997 (0.015)

FR�
4

 PDR 0.387 (0.439) 0.960 (0.197) 1.000 (0.000) 1.000 (0.000)
 FDR 0.016 (0.052) 0.013 (0.051) 0.020 (0.050) 0.007 (0.031)
 MCC 0.441 (0.424) 0.953 (0.197) 0.990 (0.026) 0.996 (0.016)

Lasso�
4

 PDR 0.005 (0.029) 0.855 (0.349) 1.000 (0.000) 1.000 (0.000)
 FDR 0.000 (0.000) 0.224 (0.161) 0.207 (0.159) 0.193 (0.131)
 MCC 0.012 (0.070) 0.735 (0.300) 0.886 (0.091) 0.895 (0.074)

SIS-MCP�
4

 PDR 0.060 (0.153) 0.377 (0.267) 0.675 (0.163) 0.775 (0.149)
 FDR 0.005 (0.039) 0.064 (0.132) 0.027 (0.074) 0.014 (0.052)
 MCC 0.096 (0.220) 0.499 (0.309) 0.803 (0.113) 0.870 (0.093)
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Table 5  The averaged PDR, FDR and MCC over 100 replications with standard deviations in the brack-
ets for S2 with v = 0.7

Method n = 100 n = 200 n = 300 n = 400

PPS�
1

 PDR 0.382 (0.165) 0.812 (0.241) 0.993 (0.067) 1.000 (0.000)
 FDR 0.840 (0.074) 0.675 (0.096) 0.603 (0.027) 0.600 (0.000)
 MCC 0.235 (0.109) 0.511 (0.154) 0.627 (0.042) 0.632 (0.000)

FR�
1

 PDR 0.882 (0.243) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.646 (0.099) 0.600 (0.000) 0.600 (0.000) 0.600 (0.000)
 MCC 0.553 (0.157) 0.631 (0.000) 0.631 (0.000) 0.632 (0.000)

Lasso�
1

 PDR 0.248 (0.196) 0.333 (0.092) 0.395 (0.113) 0.598 (0.280)
 FDR 0.305 (0.348) 0.290 (0.262) 0.287 (0.255) 0.390 (0.331)
 MCC 0.298 (0.210) 0.462 (0.130) 0.513 (0.099) 0.526 (0.094)

SIS-MCP�
1

 PDR 0.200 (0.128) 0.335 (0.112) 0.363 (0.099) 0.398 (0.111)
 FDR 0.677 (0.292) 0.597 (0.267) 0.483 (0.326) 0.351 (0.336)
 MCC 0.224 (0.156) 0.345 (0.139) 0.401 (0.135) 0.478 (0.151)

PPS�
2

 PDR 0.242 (0.184) 0.577 (0.286) 0.930 (0.197) 0.987 (0.094)
 FDR 0.213 (0.291) 0.182 (0.209) 0.144 (0.157) 0.088 (0.126)
 MCC 0.357 (0.246) 0.662 (0.198) 0.885 (0.155) 0.946 (0.098)

FR�
2

 PDR 0.570 (0.418) 0.990 (0.100) 1.000 (0.000) 1.000 (0.000)
 FDR 0.238 (0.287) 0.122 (0.152) 0.096 (0.110) 0.084 (0.115)
 MCC 0.565 (0.368) 0.929 (0.116) 0.949 (0.060) 0.955 (0.063)

Lasso�
2

 PDR 0.033 (0.085) 0.225 (0.156) 0.345 (0.054) 0.355 (0.056)
 FDR 0.000 (0.000) 0.033 (0.103) 0.029 (0.094) 0.038 (0.111)
 MCC 0.069 (0.169) 0.383 (0.257) 0.576 (0.053) 0.581 (0.055)

SIS-MCP�
2

 PDR 0.118 (0.137) 0.288 (0.132) 0.337 (0.078) 0.367 (0.098)
 FDR 0.074 (0.184) 0.104 (0.187) 0.103 (0.177) 0.035 (0.097)
 MCC 0.213 (0.229) 0.464 (0.191) 0.542 (0.081) 0.588 (0.070)

PPS�
3

 PDR 0.168 (0.176) 0.523 (0.282) 0.885 (0.235) 0.980 (0.114)
 FDR 0.074 (0.210) 0.095 (0.175) 0.068 (0.103) 0.043 (0.087)
 MCC 0.287 (0.270) 0.658 (0.214) 0.897 (0.156) 0.966 (0.093)

FR�
3

 PDR 0.363 (0.396) 0.950 (0.203) 1.000 (0.000) 1.000 (0.000)
 FDR 0.103 (0.235) 0.073 (0.184) 0.034 (0.065) 0.033 (0.069)
 MCC 0.421 (0.388) 0.935 (0.187) 0.982 (0.034) 0.983 (0.037)

Lasso�
3

 PDR 0.020 (0.068) 0.182 (0.163) 0.318 (0.089) 0.352 (0.052)
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that DAP3_4041 could be a vital gene related to the survival of prostate cancer 
and the newly found gene DAP2_5670 deserves more attention for future study. 
DAP3_4041 was identified as an inhibitor of apoptosis and it was found in most 
tumor cells (Stefano et al. 2010; Xu et al. 2015, 2020).

5.2  Gastric Cancer Recurrence data

The Gastric Cancer Recurrence (GCR) data were published and analyzed in Jeeyun 
et al. (2014) and Oh et al. (2018); it was available from the Gene Expression Omni-
bus with accession number GSE26253. Gastric cancer is the second most common 
cause of cancer-related death worldwide. In this data, the locoregional or distant 
recurrence of 432 patient samples after curative surgery plus adjuvant chemoradi-
otherapy is collected. We are interested in the relationship between RNA expres-
sion levels and recurrence event of gastric cancer. Their RNA microarray expression 
measurements have 17418 probes. During the follow-up, 177 patients recurred and 
the other 255 patients did not relapse, which led to a censoring rate of 59% . The 

Table 5  (continued)

Method n = 100 n = 200 n = 300 n = 400

 FDR 0.000 (0.000) 0.016 (0.070) 0.023 (0.083) 0.017 (0.076)
 MCC 0.042 (0.135) 0.317 (0.275) 0.541 (0.134) 0.586 (0.045)

SIS-MCP�
3

 PDR 0.087 (0.126) 0.278 (0.136) 0.335 (0.077) 0.363 (0.096)
 FDR 0.047 (0.154) 0.063 (0.144) 0.096 (0.172) 0.027 (0.084)
 MCC 0.162 (0.221) 0.463 (0.202) 0.543 (0.080) 0.589 (0.067)

PPS�
4

 PDR 0.118 (0.154) 0.483 (0.289) 0.838 (0.267) 0.970 (0.135)
 FDR 0.033 (0.174) 0.038 (0.106) 0.031 (0.080) 0.028 (0.076)
 MCC 0.220 (0.263) 0.634 (0.253) 0.886 (0.172) 0.968 (0.100)

FR�
4

 PDR 0.203 (0.280) 0.877 (0.306) 1.000 (0.000) 1.000 (0.000)
 FDR 0.049 (0.183) 0.013 (0.046) 0.009 (0.034) 0.014 (0.043)
 MCC 0.289 (0.332) 0.886 (0.283) 0.996 (0.018) 0.993 (0.022)

Lasso�
4

 PDR 0.017 (0.065) 0.130 (0.160) 0.287 (0.128) 0.337 (0.063)
 FDR 0.000 (0.000) 0.010 (0.057) 0.009 (0.053) 0.006 (0.041)
 MCC 0.034 (0.125) 0.226 (0.275) 0.491 (0.205) 0.571 (0.088)

SIS-MCP�
4

 PDR 0.068 (0.121) 0.263 (0.144) 0.335 (0.077) 0.362 (0.095)
 FDR 0.022 (0.088) 0.044 (0.123) 0.064 (0.141) 0.024 (0.079)
 MCC 0.126 (0.212) 0.443 (0.225) 0.553 (0.069) 0.588 (0.065)
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Table 6  The averaged PDR, FDR and MCC over 100 replications with standard deviations in the brack-
ets for S3

Method n = 100 n = 200 n = 300 n = 400

PPS�
1

 PDR 0.797 (0.230) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.673 (0.097) 0.597 (0.021) 0.600 (0.000) 0.600 (0.000)
 MCC 0.503 (0.149) 0.633 (0.015) 0.631 (0.000) 0.632 (0.000)

FR�
1

 PDR 0.915 (0.173) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.634 (0.069) 0.600 (0.000) 0.600 (0.000) 0.600 (0.000)
 MCC 0.573 (0.111) 0.631 (0.000) 0.631 (0.000) 0.632 (0.000)

Lasso�
1

 PDR 0.913 (0.211) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.691 (0.162) 0.744 (0.075) 0.774 (0.057) 0.771 (0.063)
 MCC 0.492 (0.135) 0.498 (0.072) 0.470 (0.059) 0.474 (0.064)

SIS-MCP�
1

 PDR 0.168 (0.141) 0.337 (0.182) 0.467 (0.164) 0.592 (0.171)
 FDR 0.641 (0.337) 0.426 (0.341) 0.336 (0.273) 0.229 (0.224)
 MCC 0.235 (0.208) 0.431 (0.232) 0.548 (0.190) 0.666 (0.164)

PPS�
2

 PDR 0.645 (0.324) 0.993 (0.067) 1.000 (0.000) 1.000 (0.000)
 FDR 0.412 (0.240) 0.146 (0.149) 0.088 (0.113) 0.075 (0.116)
 MCC 0.596 (0.251) 0.918 (0.100) 0.953 (0.062) 0.960 (0.064)

FR�
2

 PDR 0.832 (0.275) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.356 (0.229) 0.128 (0.141) 0.090 (0.109) 0.086 (0.117)
 MCC 0.719 (0.228) 0.930 (0.080) 0.952 (0.059) 0.954 (0.065)

Lasso�
2

 PDR 0.092 (0.247) 0.578 (0.447) 0.962 (0.175) 1.000 (0.000)
 FDR 0.037 (0.123) 0.314 (0.307) 0.607 (0.180) 0.586 (0.149)
 MCC 0.108 (0.233) 0.443 (0.299) 0.581 (0.132) 0.633 (0.114)

SIS-MCP�
2

 PDR 0.148 (0.134) 0.312 (0.167) 0.433 (0.161) 0.568 (0.164)
 FDR 0.503 (0.410) 0.327 (0.345) 0.189 (0.250) 0.080 (0.167)
 MCC 0.245 (0.219) 0.450 (0.224) 0.583 (0.179) 0.717 (0.149)

PPS�
3

 PDR 0.520 (0.368) 0.993 (0.067) 1.000 (0.000) 1.000 (0.000)
 FDR 0.426 (0.332) 0.119 (0.148) 0.046 (0.080) 0.031 (0.063)
 MCC 0.520 (0.315) 0.932 (0.099) 0.976 (0.042) 0.984 (0.033)

FR�
3

 PDR 0.685 (0.359) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.319 (0.274) 0.078 (0.109) 0.040 (0.074) 0.028 (0.061)
 MCC 0.656 (0.284) 0.958 (0.059) 0.979 (0.039) 0.985 (0.032)

Lasso�
3

 PDR 0.055 (0.184) 0.418 (0.444) 0.907 (0.265) 0.990 (0.100)
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median observed survival time was 57.35 months. The corresponding results are 
summarized in Table 9 and Fig. 2.

From Table 9, we can see that the PPS and FR select the feature ILMN_1713561 
which is selected by Lasso-BIC and SIS-MCP-BIC too, while Lasso-EBIC and 
SIS-MCP-EBIC select no feature. PPS and FR construct the most parsimonious 
model, but FR requires much more running time. Figure 2 demonstrates a similar 
pattern as Fig.  1 and provides a supportive evidence for the significance of gene 
ILMN_1713561. This gene promotes the metastatic potential of gastric cancer cells 
(Umeda et al. 2022).

6  Conclusion

In this paper, we proposed a new sequential feature selection procedure PPS for 
high-dimensional Cox model. We defined a novel partial profile score to measure 
the correlation between residuals of fitted model and unselected features. Com-
pared with forward regression for high-dimensional Cox model, selecting impor-
tant variables based on this score can release abundant running time at each step. 

Table 6  (continued)

Method n = 100 n = 200 n = 300 n = 400

 FDR 0.014 (0.073) 0.173 (0.248) 0.517 (0.223) 0.530 (0.169)
 MCC 0.077 (0.199) 0.367 (0.343) 0.599 (0.185) 0.665 (0.134)

SIS-MCP�
3

 PDR 0.133 (0.138) 0.307 (0.169) 0.430 (0.161) 0.565 (0.166)
 FDR 0.388 (0.419) 0.298 (0.340) 0.173 (0.245) 0.072 (0.166)
 MCC 0.226 (0.229) 0.450 (0.227) 0.587 (0.178) 0.718 (0.150)

PPS�
4

 PDR 0.382 (0.368) 0.993 (0.067) 1.000 (0.000) 1.000 (0.000)
 FDR 0.460 (0.404) 0.107 (0.143) 0.029 (0.065) 0.017 (0.049)
 MCC 0.421 (0.346) 0.939 (0.096) 0.985 (0.034) 0.991 (0.026)

FR�
4

 PDR 0.545 (0.390) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
 FDR 0.297 (0.331) 0.050 (0.086) 0.019 (0.056) 0.014 (0.046)
 MCC 0.582 (0.322) 0.973 (0.046) 0.990 (0.030) 0.993 (0.024)

Lasso�
4

 PDR 0.030 (0.122) 0.275 (0.399) 0.782 (0.387) 0.988 (0.101)
 FDR 0.004 (0.040) 0.083 (0.176) 0.392 (0.259) 0.485 (0.177)
 MCC 0.049 (0.154) 0.272 (0.349) 0.567 (0.272) 0.696 (0.136)

SIS-MCP�
4

 PDR 0.112 (0.128) 0.297 (0.167) 0.428 (0.161) 0.562 (0.165)
 FDR 0.308 (0.417) 0.274 (0.333) 0.168 (0.241) 0.061 (0.148)
 MCC 0.204 (0.226) 0.449 (0.220) 0.587 (0.176) 0.719 (0.143)
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Table 7  The averaged PDR, FDR and MCC over 100 replications with standard deviations in the brack-
ets for S4

Method n = 100 n = 200 n = 300 n = 400

PPS�
1

 PDR 0.325 (0.233) 0.817 (0.211) 0.943 (0.083) 0.977 (0.058)
 FDR 0.864 (0.104) 0.673 (0.084) 0.622 (0.033) 0.609 (0.023)
 MCC 0.197 (0.153) 0.514 (0.134) 0.596 (0.052) 0.617 (0.037)

FR�
1

 PDR 0.528 (0.298) 0.902 (0.174) 0.982 (0.052) 0.993 (0.033)
 FDR 0.789 (0.119) 0.639 (0.070) 0.607 (0.021) 0.603 (0.013)
 MCC 0.325 (0.192) 0.568 (0.111) 0.620 (0.033) 0.628 (0.021)

Lasso�
1

 PDR 0.315 (0.279) 0.292 (0.214) 0.550 (0.240) 0.808 (0.104)
 FDR 0.424 (0.448) 0.171 (0.253) 0.298 (0.292) 0.566 (0.181)
 MCC 0.212 (0.187) 0.413 (0.208) 0.563 (0.122) 0.574 (0.085)

SIS-MCP�
1

 PDR 0.203 (0.133) 0.332 (0.131) 0.407 (0.117) 0.420 (0.120)
 FDR 0.726 (0.286) 0.653 (0.302) 0.571 (0.333) 0.412 (0.359)
 MCC 0.196 (0.146) 0.296 (0.131) 0.379 (0.168) 0.458 (0.169)

PPS�
2

 PDR 0.143 (0.182) 0.633 (0.334) 0.890 (0.179) 0.958 (0.073)
 FDR 0.173 (0.320) 0.138 (0.189) 0.116 (0.124) 0.105 (0.121)
 MCC 0.242 (0.250) 0.690 (0.285) 0.877 (0.134) 0.924 (0.081)

FR�
2

 PDR 0.225 (0.273) 0.817 (0.269) 0.948 (0.131) 0.992 (0.037)
 FDR 0.242 (0.323) 0.146 (0.164) 0.122 (0.131) 0.103 (0.116)
 MCC 0.295 (0.285) 0.800 (0.241) 0.906 (0.113) 0.941 (0.067)

Lasso�
2

 PDR 0.012 (0.049) 0.072 (0.114) 0.195 (0.197) 0.490 (0.300)
 FDR 0.003 (0.033) 0.005 (0.050) 0.012 (0.064) 0.102 (0.167)
 MCC 0.025 (0.100) 0.150 (0.221) 0.341 (0.265) 0.589 (0.243)

SIS-MCP�
2

 PDR 0.043 (0.099) 0.163 (0.157) 0.290 (0.167) 0.363 (0.158)
 FDR 0.024 (0.106) 0.049 (0.140) 0.072 (0.153) 0.045 (0.121)
 MCC 0.081 (0.173) 0.298 (0.244) 0.475 (0.184) 0.564 (0.160)

PPS�
3

 PDR 0.113 (0.162) 0.535 (0.356) 0.833 (0.256) 0.940 (0.135)
 FDR 0.056 (0.181) 0.073 (0.153) 0.060 (0.102) 0.039 (0.078)
 MCC 0.209 (0.244) 0.635 (0.313) 0.863 (0.191) 0.943 (0.119)

FR�
3

 PDR 0.137 (0.203) 0.687 (0.358) 0.908 (0.202) 0.987 (0.202)
 FDR 0.066 (0.205) 0.061 (0.132) 0.048 (0.094) 0.040 (0.094)
 MCC 0.231 (0.267) 0.742 (0.317) 0.918 (0.148) 0.972 (0.148)

Lasso�
3

 PDR 0.005 (0.029) 0.057 (0.101) 0.140 (0.158) 0.402 (0.305)
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Under mild conditions, we prove that all relevant features are selected before 
irrelevant features and EBIC will reach the minimum point when the selected fea-
tures are exactly the set of true relevant features with probability converging to 1. 

Table 7  (continued)

Method n = 100 n = 200 n = 300 n = 400

 FDR 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.057 (0.126)
 MCC 0.012 (0.070) 0.122 (0.205) 0.266 (0.264) 0.523 (0.287)

SIS-MCP�
3

 PDR 0.027 (0.078) 0.133 (0.161) 0.268 (0.180) 0.353 (0.163)
 FDR 0.010 (0.070) 0.015 (0.066) 0.044 (0.117) 0.025 (0.095)
 MCC 0.053 (0.146) 0.246 (0.257) 0.447 (0.215) 0.561 (0.165)

PPS�
4

 PDR 0.058 (0.099) 0.367 (0.351) 0.728 (0.327) 0.917 (0.181)
 FDR 0.005 (0.050) 0.020 (0.089) 0.022 (0.063) 0.016 (0.047)
 MCC 0.128 (0.200) 0.491 (0.343) 0.800 (0.261) 0.936 (0.157)

FR�
4

 PDR 0.073 (0.126) 0.450 (0.387) 0.812 (0.302) 0.942 (0.170)
 FDR 0.005 (0.050) 0.021 (0.099) 0.017 (0.056) 0.015 (0.045)
 MCC 0.147 (0.224) 0.555 (0.369) 0.857 (0.251) 0.951 (0.153)

Lasso�
4

 PDR 0.003 (0.023) 0.040 (0.086) 0.110 (0.143) 0.305 (0.288)
 FDR 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.030 (0.093)
 MCC 0.008 (0.057) 0.088 (0.180) 0.215 (0.253) 0.431 (0.309)

SIS-MCP�
4

 PDR 0.025 (0.076) 0.093 (0.130) 0.227 (0.186) 0.337 (0.176)
 FDR 0.010 (0.070) 0.012 (0.058) 0.030 (0.097) 0.018 (0.079)
 MCC 0.049 (0.142) 0.185 (0.234) 0.389 (0.248) 0.540 (0.192)

Table 8  The ID of genes selected in Swedish Watchful Waiting Cohort data

Method The ID of genes Running time (s)

PPS DAP2_5670 DAP3_4041 0.18
FR DAP2_5670 DAP3_4041 55.57
Lasso-BIC DAP1_1759 DAP1_4857 DAP1_5047 DAP2_5670

DAP3_1787 DAP3_3482 DAP3_4041 1.33
Lasso-EBIC ∅ 1.33
SIS-MCP-BIC DAP1_1759 DAP1_4857 DAP3_1787 DAP3_4041

DAP4_1762 DAP4_1868 DAP4_2296 DAP4_6068 0.27
SIS-MCP-EBIC DAP2_5670 DAP3_4041 0.27
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Table 9  The ID of genes selected in Gastric Cancer Recurrence data

Method The ID of genes Running time (s)

PPS ILMN_1713561 0.40
FR ILMN_1713561 120.47
Lasso-BIC ILMN_1713561 ILMN_1732158 ILMN_1736078

ILMN_1811790 3.03
Lasso-EBIC ∅ 3.03
SIS-MCP-BIC ILMN_1673548 ILMN_1713561 ILMN_1732158

ILMN_1811790 ILMN_2382679 0.74
SIS-MCP-EBIC ∅ 0.74

(a) SIS-MCP-BIC for SWWC data (b) Lasso-BIC for SWWC data

(c)PPS,FR,SIS-MCP-EBIC for SWWC data

Fig. 1  Survival curves estimated by Cox model with different selected features for the SWWC data
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Extensive simulation results and real data applications demonstrate that PPS has 
an edge over other existing approaches in terms of feature selection.

Appendix

In this section, we provide the detailed technical proofs of our main theorems in 
Sect. 3. Firstly, we need the following Lemma.

Lemma 1 Under condition (A1),(A2),(A4), there exist some constants A1 , A2 , A3 , 
which do not depend on n, such that

(d) SIS-MCP-BIC for GCR data (e) Lasso-BIC for GCR data

(f) PPS,FR for GCR data

Fig. 2  Survival curves estimated by Cox model with different selected features for the GCR data
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Proof of Lemma 1 We now focus on inequality (7). By condition (A2) and (A4), we 
have

Define

then h(u;Y ,Zs) ∈ [−1, 1] for u ∈ [0, �] , the VC index (Van  der Vaart and Wellner 
1996) of the function class {h(u;Y ,Zs), u ∈ [0, �]} is two. By Theorem 1.1 in Tala-
grand (1994), for 𝜖 > 0 , there exists a constant A independent of � such that,

From the combinatorical inequality Cs
p
≤ (ep∕s)s , we have

By choosing an appropriate � of order 
√
� ln p , we verify inequality (7). Inequality 

(8) can be obtained in a similar way.
We now turn to inequality (9).

Under condition (A1), (A2), (A4), recall that � = Pr (X ≥ �) , we have

and r
(1)

ks
(�∗

s
, u) ≤ K exp(KL) for all |s| < 𝜌, u ∈ [0, 𝜏], k ∈ sc . Note that, 

sup|s|≤�,u∈[0,�] |1∕r(0)s
(�∗

s
, u)| and sup|s|≤�,u∈[0,�],k∈sc |r(1)ks

(�∗
s
, u)∕r(0)

s
(�∗

s
, u)| are both 

bounded. Define

(7)Pr

{
sup

|s|≤�,u∈[0,�]
|R(0)

s
(�∗

s
, u) − r(0)

s
(�∗

s
, u)| ≥ A1

√
�
ln p

n

}
≤ exp (−3� ln p),

(8)

Pr

{
sup

|s|≤�,u∈[0,�],k∈sc
|R(1)

ks
(�∗

s
, u) − r

(1)

ks
(�∗

s
, u)| ≥ A2

√
�
ln p

n

}
≤ exp (−3� ln p),

(9)

Pr

{
sup

|s|≤�,u∈[0,�],k∈sc
||||
R
(1)

ks
(�∗

s
, u)

R
(0)
s (�∗

s
, u)

−
r
(1)

ks
(�∗

s
, u)

r
(0)
s (�∗

s
, u)

|||| ≥ A3

√
�
ln p

n

}
≤3 exp (−3� ln p).

exp (�∗T
s
Zs) ≤ exp(‖�∗

s
‖1‖Zs‖∞) ≤ exp(KL).

h(u;Y ,Zs) = (exp(KL))−1Y(u) exp (�∗T
s
Zs),

Pr

�
sup

u∈[0,�]

�n−1
n�
i=1

h(u;Yi,Zis) − E{h(u;Y ,Zs)}� ≥ 1√
n
�

�
≤ A

�
(
A�2

2
)2e−2�

2

.

Pr

�
sup

�s�≤�,u∈[0,�]
�R(0)

s
(�∗

s
, u) − r(0)

s
(�∗

s
, u)� ≥ exp(KL)√

n
�

�
≤

��
s=1

(
ep

s
)s
A

�
(
A�2

2
)2e−2�

2

.

R
(1)

ks
(�∗

s
, u)

R
(0)
s (�∗

s
, u)

−
r
(1)

ks
(�∗

s
, u)

r
(0)
s (�∗

s
, u)

=
R
(1)

ks
(�∗

s
, u) − r

(1)

ks
(�∗

s
, u)

R
(0)
s (�∗

s
, u)

+
(r(0)

s
(�∗

s
, u) − R(0)

s
(�∗

s
, u))r

(1)

ks
(�∗

s
, u)

r
(0)
s (�∗

s
, u)R

(0)
s (�∗

s
, u)

.

r(0)
s
(�∗

s
, u) = E{Y(t) exp (�∗T

s
Zs)} ≥ E{Y(t) exp(−‖�∗

s
‖1‖Zs‖∞)} ≥ � exp(−KL),
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under �c , when n is sufficiently large, sup|s|≤�,u∈[0,�] |1∕R(0)
s
(�∗

s
, u)| is also bounded. 

Consequently, there exist constants c1 and c2 such that

Let A3 = max{2c1A1, 2c2A2} ; we have

This completes the proof of Lemma 1.   ◻

Proof of Theorem 1 For k = 0 , s∗0 = � . Define

it suffices to show that Pr (Am ⊂ s0) → 1 uniformly for m, when s∗m ⊂ s0 and 
|s∗m| < |s0|.

Firstly, we show that, for s∗m ⊂ s0 , s−∗m = s0 ∩ sc
∗m

,

Using conditional independency and condition (A2), we have

� =

{
sup

|s|≤�,u∈[0,�]
|R(0)

s
(�∗

s
, u) − r(0)

s
(�∗

s
, u)| ≥ A1

√
�
ln p

n

}
,

||||||
R
(1)

ks
(�∗

s
, u)

R
(0)
s (�∗

s
, u)

−
r
(1)

ks
(�∗

s
, u)

r
(0)
s (�∗

s
, u)

||||||
≤ c1

|||R
(0)
s
(�∗

s
, u) − r(0)

s
(�∗

s
, u)

||| + c2
|||R

(1)

ks
(�∗

s
, u) − r

(1)

ks
(�∗

s
, u)

|||.

Pr

{
sup

|s|≤�,u∈[0,�],k∈sc
||||
R
(1)

ks
(�∗

s
, u)

R
(0)
s (�∗

s
, u)

−
r
(1)

ks
(�∗

s
, u)

r
(0)
s (�∗

s
, u)

|||| ≥ A3

√
�
ln p

n

}

≤ Pr (�) + Pr

{
sup

|s|≤�,u∈[0,�],k∈sc
||||
R
(1)

ks
(�∗

s
, u)

R
(0)
s (�∗

s
, u)

−
r
(1)

ks
(�∗

s
, u)

r
(0)
s (�∗

s
, u)

|||| ≥ A3

√
�
ln p

n
,�c

}

≤ Pr (�) + Pr

{
sup

|s|≤�,u∈[0,�]
|R(0)

s
(�∗

s
, u) − r(0)

s
(�∗

s
, u)| ≥ A3

2c1

√
�
ln p

n

}

+ Pr

{
sup

|s|≤�,u∈[0,�],k∈sc
|R(1)

ks
(�∗

s
, u) − r

(1)

ks
(�∗

s
, u)| ≥ A3

2c2

√
�
ln p

n

}
≤ 3 exp (−3� ln p).

Am = {k∗ ∶ |�k∗ (s∗m)| = max
k∈sc

∗m

|�k(s∗m)|};

(10)max
k∈s−

∗m

|�k(s∗m)| ≥ Cn�

(
ln p

n

)1∕4

, when n → ∞.
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and for k ∈ s−
∗m

 , s∗m ⊂ s0 , we have

Hence, ∫ �

0
v
(1)

k
(u)du and ∫ �

0
r
(1)

ks∗m
(�∗

s∗m
, u)(r(0)

s∗m
(�∗

s∗m
, u))−1v(0)

s
(u)du have opposite sign 

when condition (A6) is satisfied and r(0)
s∗m
(�∗

s∗m
, t) , v(0)

s
(t) , exp (�∗⊤

s∗m
Zs∗m

) are positive. 
Under condition (A8), for k ∈ s−

∗m
 and s∗m ⊂ s0 , we have

where Cn → ∞ , (10) is therefore established.
Secondly, we show that there exists a constant A such that

By direct calculation, we have

∫
�

0

E{Y(u)Zk�0(u) exp(�
T
0s0
Zs0

)}du = ∫
∞

0

E{E{Y(u)Zk�0(u) exp(�
T
0s0
Zs0

)|Z}}du

= ∫
∞

0

E{Zk�0(u) exp(�
T
0s0
Zs0

)ST (u|Zs0
)SC(u|ZsC0

)}du

= ∫
∞

0

E{ZkfT (u|Zs0
)SC(u|ZsC0

)}du = E{Zk ∫
∞

0

FT (u|Zs0
)fC(u|ZsC0

)du}

= −∫
∞

0

E{ZkST (u|Zs0
)fC(u|ZsC0

)}du

= −∫
∞

0

E{E{ZkST (u|Zs0
)fC(u|ZsC0

)|ZS0�k
}}du

E{Y(u)Zk exp (�
∗T

s∗m
Zs∗m

)} = E{E{Y(u)Zk exp (�
∗T

s∗m
Zs∗m

)|Z}}
= E{Zk exp (�

∗T

s∗m
Zs∗m

)ST (u|Zs0
)SC(u|ZsC0

)}

= E{E{ZkST (u|Zs0
)SC(u|ZsC0

)|ZS0�k
} exp (�∗

T

s∗m
Zs∗m

)}.

�𝛷k(s∗m)� =
�������
�

𝜏

0

⎛
⎜⎜⎝
v
(1)

k
(u) −

r
(1)

ks∗m
(�∗

s∗m
, u)

r
(0)
s∗m
(�∗

s∗m
, u)

v(0)
s
(u)

⎞
⎟⎟⎠
du

�������
≥ �����

𝜏

0

v
(1)

k
(u)du

���� =
�����

𝜏

0

E{Y(u)Zk𝜆0(u) exp(�
⊤
0s0
Zs0

)}du
����

=
�����

𝜏

0

E{ZkfT (u�Zs0
)SC(u�ZsC0

)}du
����

≥Cn𝜌(
ln p

n
)1∕4

(11)Pr

{
sup

k∈sc
∗m
,|s∗m|<𝜌

|𝜓k(s∗m) −𝛷k(s∗m)| ≥ A𝜌

(
ln p

n

)1∕4
}

→ 0.
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When |s∗m| < 𝜌 , by mean value theorem, there exists a �̃s∗m
 between �̂s∗m

 and �∗
s∗m

 
such that

According to the Lemma G in Hong et al. (2019), there exists a A0 such that

Consequently,

The second term

��k(s∗m) −�k(s∗m)�

≤
�������
�k(s∗m) −

1

n

n�
i=1

�
�

0

⎛
⎜⎜⎝
Zik −

R
(1)

ks∗m
(�∗

s∗m
, u)

R
(0)
s∗m
(�∗

s∗m
, u)

⎞
⎟⎟⎠
dNi(u)

�������

+

�������
1

n

n�
i=1

�
�

0

⎛
⎜⎜⎝
Zik −

R
(1)

ks∗m
(�∗

s∗m
, u)

R
(0)
s∗m
(�∗

s∗m
, u)

⎞
⎟⎟⎠
dNi(u) −�k(s∗m)

�������
def
= I + II .

I =

�������
1

n

n�
i=1

�
𝜏

0

⎛
⎜⎜⎝

∑n

j=1
Yj(u)Zjk exp (

��
T

s∗m
Zjs∗m

)

∑n

j=1
Yj(u) exp (

��
T

s∗m
Zjs∗m

)
−

∑n

j=1
Yj(u)Zjk exp (�

∗T
s∗m
Zjs∗m

)
∑n

j=1
Yj(u) exp (�

∗T
s∗m
Zjs∗m

)

⎞⎟⎟⎠
dNi(u)

�������

≤ 1

n

n�
i=1

�
𝜏

0

��������
(��s∗m

− �∗
s∗m
)T

⎧⎪⎨⎪⎩

∑n

j=1
Yj(u)ZjkZjs∗m

exp (�̃
T

s∗m
Zjs∗m

)

∑n

j=1
Yj(u) exp (�̃

T

s∗m
Zjs∗m

)

−

�∑n

j=1
Yj(u)Zjk exp (�̃

T

s∗m
Zjs∗m

)
��∑n

j=1
Yj(u)Zjs∗m

exp (�̃
T

s∗m
Zjs∗m

)
�

(
∑n

j=1
Yj(u) exp (�̃

T

s∗m
Zjs∗m

))2

⎫⎪⎬⎪⎭

��������
dNi(u)

≤ 2K2
√
𝜌‖��s∗m

− �∗
s∗m
‖.

Pr

�
sup

�s∗m�≤�
‖�̂s∗m

− �∗
s∗m
‖ ≤ A0(�

2 ln p

n
)1∕4

�
≥ 1 − 5 exp (−3� ln p).

Pr

{
sup

k∈sc
∗m
,|s∗m|<𝜌

I ≥ 2K2A0𝜌(
ln p

n
)1∕4

}
≤ 5p exp (−3𝜌 ln p) ≤ 5 exp (−2𝜌 ln p).
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For part III , define

Under �c , we have

By Lemma 1, we have

For part IV , when |s∗m| < 𝜌,

Using Bernstein’s inequality, when n is sufficiently large, we obtain

II ≤
�������
1

n

n�
i=1

�
�

0

⎛
⎜⎜⎝
Zik −

R
(1)

ks∗m
(�∗

s∗m
, u)

R
(0)
s∗m
(�∗

s∗m
, u)

⎞
⎟⎟⎠
dNi(u) −

1

n

n�
i=1

�
�

0

⎛
⎜⎜⎝
Zik −

r
(1)

ks∗m
(�∗

s∗m
, u)

r
(0)
s∗m
(�∗

s∗m
, u)

⎞
⎟⎟⎠
dNi(u)

�������

+

�������
1

n

n�
i=1

�
�

0

⎛⎜⎜⎝
Zik −

r
(1)

ks∗m
(�∗

s∗m
, u)

r
(0)
s∗m
(�∗

s∗m
, u)

⎞⎟⎟⎠
dNi(u) −�k(s∗m)

�������
def
= III + IV .

� =

{
sup

|s|≤�,u∈[0,�],k∈sc
||||||
R
(1)

ks
(�∗

s
, u)

R
(0)
s (�∗

s
, u)

−
r
(1)

ks
(�∗

s
, u)

r
(0)
s (�∗

s
, u)

||||||
≥ A3

√
�
ln p

n

}
.

III ≤1

n

n∑
i=1

�
�

0

||||||

R
(1)

ks∗m
(�∗

s∗m
, u)

R
(0)
s∗m
(�∗

s∗m
, u)

−
r
(1)

ks∗m
(�∗

s∗m
, u)

r
(0)
s∗m
(�∗

s∗m
, u)

||||||
dNi(u)

≤ sup
u∈[0,�]

||||||

R
(1)

ks∗m
(�∗

s∗m
, u)

R
(0)
s∗m
(�∗

s∗m
, u)

−
r
(1)

ks∗m
(�∗

s∗m
, u)

r
(0)
s∗m
(�∗

s∗m
, u)

||||||
≤ A3

√
�
ln p

n
.

Pr

{
sup

k∈sc
∗m
,|s∗m|<𝜌

III ≥ A3

√
𝜌
ln p

n

}
≤ 3 exp (−3𝜌 ln p).

||||||�
�

0

Zik −
r
(1)

ks∗m
(�∗

s∗m
, u)

r
(0)
s∗m
(�∗

s∗m
, u)

dNi(u)

||||||

≤ |Zik| + sup
t∈[0,�]

||||||

r
(1)

ks∗m
(�∗

s∗m
, u)

r
(0)
s∗m
(�∗

s∗m
, u)

||||||
≤ K +

K exp (KL)

� exp (−KL)

def
= Kc3.
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When n is sufficiently large,

Consequently, we obtain

Finally, when n is sufficiently large,

conclusion (11) is thus proved. According to condition (A7) and fact (10), for some 
constant q ∈ (0, 1),

where Cn → ∞ ; thus,

uniformly when s∗m ⊂ s0 , which implies that Pr {Am ⊂ s−
∗m

⊂ s0} → 1 uniformly 
when s∗m ⊂ s0 , the proof of Theorem 1 is thus completed.   ◻

Pr

⎧
⎪⎨⎪⎩

�������
1

n

n�
i=1

�
�

0

⎛
⎜⎜⎝
Zik −

r
(1)

ks∗m
(�∗

s∗m
, u)

r
(0)
s∗m
(�∗

s∗m
, u)

⎞
⎟⎟⎠
dNi(u) −�k(s∗m)

�������
≥ 6Kc3

�
�
ln p

n

⎫
⎪⎬⎪⎭

≤ 2 exp

�
−1∕2

36K2c2
3
n� ln p

4nK2c2
3
+ 12K2c2

3

√
n� ln p∕3

�
≤ 2 exp (−4� ln p).

Pr

{
sup

k∈sc
∗m
,|s∗m|<𝜌

IV ≥ 6Kc3

√
𝜌
ln p

n

}
≤ ∑

|s∗m|<𝜌

p∑
k=1

2 exp (−4𝜌 ln p)

≤ p

𝜌−1∑
s=1

(
ep

s
)s2 exp (−4𝜌 ln p) ≤ 2 exp (−2𝜌 ln p).

Pr

{
sup

k∈sc
∗m
,|s∗m|<𝜌

II ≥ (A3 + 6Kc3)

√
𝜌
ln p

n

}
≤ 3 exp (−3𝜌 ln p) + 2 exp (−2𝜌 ln p).

Pr

{
sup

k∈sc
∗m
,|s∗m|<𝜌

|𝜓k(s∗m) −𝛷k(s∗m)| ≥ (2K2A0 + A3 + 6Kc3)𝜌

(
ln p

n

)1∕4
}

≤ 7 exp (−2𝜌 ln p) + 3 exp (−3𝜌 ln p) → 0,

|max
k∈s−

∗m

|�k(s∗m)| −max
k∈sc

0

|�k(s∗m)||
≥ (1 − q)max

k∈s−
∗m

|�k(s∗m)|

≥ (1 − q)Cn�(
ln p

n
)1∕4

Pr

{
max
k∈s−

∗m

|𝜓k(s∗m)| > max
k∈sc

0

|𝜓k(s∗m)|
}

→ 1
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Proof of Theorem  2 Under the condition in the theorem, we have 
lnC

j
p = j ln p(1 + o(1)) when j ≤ Cp0 ; hence, the difference of EBIC values for two 

subsequent models is

where Am ≡ s∗m+1∕s∗m is defined in the proof of Theorem 1. Without loss of gener-
ality, we assume |Am| = 1 . Obviously, �4 ln p∕n = (Cp0)

4� ln n∕n → 0.
For conclusion (1) in the theorem, we note that, similar to Lemma B in Hong 

et al. (2019), if |s| < 𝜌 and r ∈ s− , there exists Cn → ∞ such that

Furthermore, similar to the proof of Theorem 1 in Hong et al. (2019), when |s| < 𝜌 , 
r ∈ s− , with probability converging to 1, there exists constant c4 and c5 such that

when m < m∗ , Am ∈ s0 . Therefore,

with probability converging to 1. Due to the fact that p = O(n𝜅), 𝜅 > 1 , � = Cp0 and 
Cn → ∞ , we have 2(�(�̂s∗m+1

) − �(�̂s∗m
))∕(ln p) → ∞ . That is, Pr (Dm > 0) → 1 , for 

all m such that m < m∗ , this completes the proof of (1) in Theorem 2.
Now we turn to conclusion (2) in the theorem. Note that when s0 ⊆ s , �0s is the 

root of

therefore, �0s = �∗
s
 for s in {s ∶ s0 ⊂ s, |s| ≤ 𝜌} . By the Lemma G in Hong et  al. 

(2019),

holds uniformly for s in {s ∶ s0 ⊂ s, |s| ≤ 𝜌} , and then following the proof (2) of 
Theorem 3 in Luo et al. (2015), the desired result is obtained.   ◻

Dm = EBIC� (s∗m) − EBIC� (s∗m+1)

= 2(�(�̂s∗m+1
) − �(�̂s∗m

)) − |Am|(ln n + 2� ln p)(1 + o(1))

‖�∗
s∪{r}

− (�∗T
s
, 0)⊤‖ ≥ 𝜅−1

max
Cn𝜌(

ln p

n
)1∕4.

�(�̂s∪{r}) − �(�̂s) ≥ c4C
2
n
�2(n ln p)1∕2 − c5�

2(n ln p)1∕2

2(�(�̂s∗m+1
) − �(�̂s∗m

))

ln p
≥ 2c4C

2
n
�2(

n

ln p
)1∕2 − 2c5�

2(
n

ln p
)1∕2

∫
�

0

(
v(1)
s
(t) −

r(1)
s
(�s, t)

r
(0)
s (�s, t)

v(0)
s
(t)

)
dt = 0;

Pr

�
‖�̂s − �0s‖ ≤ A6

�
�2

ln p

n

�1∕4
�

→ 1
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