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Abstract
For 1 ≤ i ≤ r , let F

i
 be the cumulative incidence function (CIF) corresponding to 

the ith risk in an r-competing risks model. We assume a discrete or a grouped time 
framework and obtain the maximum likelihood estimators (m.l.e.) of these CIFs 
under the restriction that F

i
(t)∕F

i+1(t) is nondecreasing, 1 ≤ i ≤ r − 1. We also 
derive the likelihood ratio tests for testing for and against this restriction and obtain 
their asymptotic distributions. The theory developed here can also be used to inves-
tigate the association between a failure time and a discretized or ordinal mark vari-
able that is observed only at the time of failure. To illustrate the applicability of our 
results, we give examples in the competing risks and the mark variable settings.

Keywords Competing risks · Cumulative incidence function · Likelihood ratio test · 
Chi-bar squared distribution

1 Introduction

In a competing risks setting, a unit or a subject is exposed to several risks at the 
same time but their actual failure (or death) is due to exactly one of them. In a study 
with a mark variable, interest is in exploring the association between the failure time 
of a subject and the level of a mark variable that is measured only when the subject 
fails (or dies). What is observed is (T , �), where T is the time of failure and � is the 
cause of failure or the level of the mark variable at the time of failure.

In these situations, statistical inferences are typically based the CIFs, the sub-sur-
vival functions (SSF) or the cause specific hazard rates (CSHR) corresponding to 
these risks. The CIF due to the ith risk is a sub-distribution function that is defined 
as
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with F(t) =
r∑

i=1

Fi(t) being the distribution function of T. Here, r is the number of 

competing risk or the number of the levels of the mark variable. Its corresponding 
SSF and CSHR are defined, respectively, as

and

Note that S(t) =
r∑

i=1

Si(t) and �(t) =
r∑

i=1

�i(t) represent the survival function and haz-

ard rate of T, respectively. In the continuous case, the ith CIF can be expressed in 
terms of the CSHR by the following relation:

Similar relations hold also in the discrete case.
Many tests are available for comparing the CIFs corresponding to competing risks. 

For the case of r = 2, El Barmi et al. (2004) and Aly et al. (1994) used Kolmogorov-
Smirnov type statistics for this situation in the continuous case while El Barmi and 
Kochar (2002) developed a LRT for the same problem in the discrete or grouped data 
situation. Extensions of these tests to the r-sample case ( r ≥ 3 ) have also been consid-
ered in El Barmi and Mukerjee (2006) and in El Barmi et al. (2006) in the general and 
the discrete/grouped data case, respectively.

Most of the methods that have been developed in the literature for comparing the 
CIFs are based on their differences. However, when interest is in the comparison of the 
conditional distributions of T given the different risks, these difference are not suitable. 
In this case, as pointed out in Dauxois and Kirmani (2003), interest should be in the 
temporal functions �i(t) ≡ Fi(t)∕Fi+1(t), i = 1, 2,… , r − 1 , since �i(t) is proportional 
to hi(t) ≡ P[T ≤ t|� = i]∕P[T ≤ t|� = i + 1] and it is nondecreasing if and only if hi(t) 
is also nondecreasing. This is the case if and only if the conditional distribution of T 
given � = i is stochastically larger than the conditional distribution of T given � = i + 1 
in the reversed hazard rate ordering. This implies, in particular, that the distribution T 
given � = i is stochastically larger than the conditional distribution of T given � = i + 1 . 
For more on the reversed hazard rate and stochastic orderings, see Shaked and Shanthi-
kumar (2006).

The aim of this paper is to develop in the discrete/grouped data case the LRTs of H0 
against H1 − H0 and H1 against H2 − H1 where

(1)Fi(t) = P[T ≤ t, � = i], i = 1, 2,… , r,

Si(t) = P[T ≥ t, � = i], i = 1, 2,… , r,

𝜆i(t) = lim
Δt→0

1

Δt
P [t ≤ T < t + Δt, 𝛿 = i | T ≥ t].

(2)Fi(t) =
∫

t

0

�i(u)S(u) du, i = 1, 2,… , r.

H0 ∶ �
i
(t) is constant, i = 1, 2,… , r − 1,

H1 ∶ �
i
(t) is nondecreasing in t , i = 1, 2,… , r − 1,
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and H2 imposes no constraints on these CIFs. We note that H0 holds if and only 
if T and � are independent. We will also consider testing H∗

0
∶ F1 = F2 = … = Fr 

against H1 − H∗
0
.

Discrete failure times arise in competing risk and mark variable studies when the 
recorded times to failure are grouped in intervals. A discrete mark variable can result 
by grouping a continuous mark variable in intervals or observing an ordinal categorical 
variable at time of failure.

To our knowledge, very little attention has been given to the problem of testing 
for or against H1 . The only test that we are aware of is a nonparametric test, devel-
oped in the general case for H0 against H1 − H0 when r = 2 , in Dauxois and Kirmani 
(2003). Recently, Al-Kandari and El Barmi (2022) derived the nonparametric m.l.e.s 
of the CIFs under H1 in the continuous case and showed that they are inconsistent. 
They also developed projection type estimators that are consistent, studied the weak 
convergence of the resulting process and proposed a test for H∗

0
 against H1 − H∗

0
.

Besides many applications in the health sciences, our procedure has potential 
applications in industrial accelerated life tests. For example, when comparing dif-
ferent brands of a component from two different suppliers, the components may be 
tested in series. The components are functioning in the same environment and their 
times to failure are generally dependent. The system in this case will fail as soon 
as one of the components fails. The theory we develop here will allow us to test 
whether these components are of the same quality against the ordered alternative, 
thus leading to early identification of weak components.

The rest of the paper is organized as follows. In Sect. 2, we obtain the m.l.e.s of 
the CIFs under H0,H1 and H2. In Sect. 3, we derive the LRT statistics for testing H0 
against H1 − H0 and H1 against H2 − H1 and study their asymptotic distributions. To 
illustrate the theory given in the previous sections, we shall present, in Sect. 4, two 
examples, one from a competing risks study using some data from Hoel (1972) and 
one from a clinical trial study designed to investigate the association between sur-
vival and a mark variable. Throughout we use d

−→ to denote convergence in distribu-
tion and we assume that 0/0=0.

2  Maximum likelihood estimation

Suppose that n individuals are exposed to r risks and that their times and causes of 
failure form a random sample from (T , �) . Assume that the failures can only occur at 
the discrete time points t1 < t2 < … < tm and let pij and dij represent the probability 
of failure and the number of failures from the ith cause at time tj , respectively. We 
also assume that the time point tm is large enough that all individuals have died by 
this time.

Then

(3)Fi(tj) = P(T ≤ tj, � = i) =

j∑
�=1

pi� , i = 1, 2,… , r, j = 1, 2,… ,m.
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In this section, we derive the m.l.e.s of these CIFs under the hypotheses H0 and H1.
For i = 1, 2,… , r, let �i = (pi1, pi2,… , pim)

T . The likelihood function is given by

since, in this case, {dij, 1 ≤ i ≤ r, 1 ≤ j ≤ m} has a multinomial distribution with 
parameters n and {pij, 1 ≤ i ≤ r, 1 ≤ j ≤ m}.

Clearly the unrestricted m.l.e. of pij is p̂ij =
dij

n
, the relative frequency of the event 

{T = tj, � = i}, and the unconstrained m.l.e. of Fi(tj) is F̂i(tj) =

j∑
�=1

p̂i� .

To find the m.l.e.s of the pij s under H0 and H1 , we reparametrize the problem by 
letting

so that, for i = 1, 2,… , r,

In terms of this new parametrization, H0 and H1 are equivalent to

and the likelihood function is

where �j = (�1j, �2j,… , �rj)
T , j = 1, 2,… ,m,

L(�1, �2,… , �r) ∝

r∏
i=1

m∏
j=1

p
dij

ij

�ij =
Fi(tj)

Fi(tj+1)
, i = 1, 2,… , r, j = 1, 2,… ,m − 1, and �im = Fi(tim), i = 1, 2,… , r,

(4)pi1 =

r∏
�=1

�ij and pij = (1 − �i,j−1)

m∏
�=j

�ij, j = 2, 3,… ,m.

H0 ∶ �1j = �2j = … = �rj, j = 1, 2,… ,m − 1,

r∑
i=1

�im = 1,

H0 ∶ �1j ≤ �2j ≤ … ≤ �rj, j = 1, 2,… ,m − 1,

r∑
i=1

�im = 1,

L ∝

m−1∏
j=1

r∏
i=1

(1 − �ij)
di,j+1�

j∑
�=1

di�

ij
×

r∏
i=1

�
di+
im

≡

m∏
j=1

Lj(�j)

Lj(�j) =

r∏
i=1

(1 − �ij)
di,j+1�

j∑
�=1

di�

ij
, j = 1, 2,… ,m − 1, Lm(�m) =

r∏
i=1

�
di+
im
,
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and di+ =

m∑
�=1

dij, i = 1, 2,… , r. As such, L factors into m terms and a careful inspec-

tion of the constraints corresponding to the hypotheses H0,H1 and H2 shows that 
maximizing L under these hypotheses is equivalent to maximizing each term sepa-
rately from the remaining terms.

It straightforward to see that, under H2, Lj is maximized at 
�
(2)

j
= (�̂�

(2)

1j
, �̂�

(2)

2j
,… , �̂�

(2)

rj
)T where, for 1 ≤ i ≤ r,

Under H0, Lj is maximized at �(0)

j
= (�̂�

(0)

1j
, �̂�

(0)

2j
,… , �̂�

(0)

rj
)T where ,for 1 ≤ i ≤ r,

Under H1 , maximizing Lj, j = 1, 2,… ,m − 1 , is the classical bioassay problem, as 
discussed in Robertson et al. (1988), p. 32. Its solution is given by

the least squares projection of �̂(2)

j
 onto the cone I = {� ∈ �r ∶ z1 ≤ z2 ≤ … ≤ zr} 

with weights �j =
(
F̂1(tj+1), F̂2(tj+1),… , F̂r(tj+1)

)T
. In addition, Lm is maximized by 

�̂�
(1)

im
=

di+1

n
= F̂i(tm), i = 1, 2,… , r. In passing, we mention that several algorithms 

have been developed for computing the least squares projection E�j

[
�̂
(2)

j
|I
]
 . They 

include the pool-adjacent-violators algorithm (PAVA) and they are discussed at 
length in Robertson et al. (1988). We have the following theorem

Theorem  1 The m.l.e. of (�1, �2,… , �r) under Hs, s = 0, 1, is given by (
�̂
(s)

1
, �̂

(s)

2
,… , �̂(s)

r

)
 where, for i = 1, 2,… , r,

�̂�
(2)

ij
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

j�
�=1

di�

j+1�
�=1

di�

=
F̂i(tj)

F̂i(tj+1)
, j = 1, 2,… ,m − 1,

di+

n
= F̂i(tm), j = m.

�̂�
(0)

ij
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r�
i=1

j�
�=1

di�

r�
i=1

j+1�
�=1

di�

=

r�
i=1

di+1F̂i(tj)

r�
i=1

di+F̂i(tj+1)

, j = 1, 2,… ,m − 1,

di+

n
= F̂i(tm), j = m.

�
(1)

j
=
(
�̂�
(1)

1j
, �̂�

(1)

2j
,… , �̂�

(1)

rj

)T

= E�j

[
�̂
(2)

j
|I
]
,
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In addition, the m.l.e. of Fi(tj) is F̂(s)

i
(tj) =

r∑
j=1

p̂
(s)

ij
.

Proof The m.l .e.s in (5) are obtained by plugging the m.l.e.s of the �ij s under 
Hs, s = 0, 1, into (4).   ◻

3  Likelihood ratio tests

In this section, we derive the LRTs for testing H0 against H1 − H0 and H1 against 
H2 − H1. We will also show that their limiting distributions are of chi-bar squared 
type and give the expression of the weighting values.

3.1  Testing H
0
 against H

1
− H

0

We begin by testing H0 against H1 − H0 . The LRT in this case rejects H0 for small 
values of

because the m.l.e. of �m is the same under both H0 and H1. Equivalently, it rejects H0 
for large values of the statistic

Expanding log(�̂�(1)
ij
) and log(�̂�(0)

ij
) about �̂�(2)

ij
 and log

(
1 − �̂�

(1)

ij

)
 and log

(
1 − �̂�

(0)

ij

)
 

about 1 − �̂�
(2)

ij
 using a Taylor expansion with a second remainder, we get, using the 

properties of the isotonic regression (see Robertson et al. 1988),

(5)p̂
(s)

i1
=

r∏
�=1

𝜃
(s)

ij
and p

(s)

ij
=
(
1 − 𝜃

(s)

i,j−1

) m∏
�=j

𝜃
(s)

ij
, j = 2, 3,… ,m.

Λ01 =

m�
j=1

Lj(�̂
(0)

j
)

m�
j=1

Lj(�̂
(1)

j
)

=

m−1�
j=1

r�
i=1

⎡⎢⎢⎣
�̂�
(0)

ij

�̂�
(1)

ij

⎤⎥⎥⎦

j�
�=1

dij⎡⎢⎢⎣
1 − �̂�

(0)

ij

1 − �̂�
(1)

ij

⎤⎥⎥⎦

di,j+1

T01 = − 2 log(Λ01)

= 2

m�
j=1

r�
i=1

⎡
⎢⎢⎢⎣

�
j�

�=1

dij

�
log

⎧
⎪⎨⎪⎩

�̂�
(1)

ij

�̂�
(0)

ij

⎫
⎪⎬⎪⎭
+ dij log

⎧
⎪⎨⎪⎩

1 − �̂�
(1)

ij

1 − �̂�
(0)

ij

⎫
⎪⎬⎪⎭

⎤
⎥⎥⎥⎦
.
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where

and

When H0 is true, the right hand sides of (6) and (7) go to zero almost surely. This 
implies that T01 is asymptotically equivalent to

where the last equality holds because

by the properties of isotonic regression (see Robertson et al., 1988). The right hand 
side of (8) can be expressed as

Using the central limit theorem, we get

T01 =

m−1�
j=1

r�
i=1

��∑j

�=1
di�

𝛼2
1,ij

+
di,j+1

𝛼2
2,ij

��
�̂�
(2)

ij
− �̂�

(0)

ij

�2

−

�∑j

�=1
di�

𝛼2
3,ij

+
di,j+1

𝛼2
4,ij

��
�̂�
(1)

ij
− �̂�

(0)

ij

�2

�

=

m−1�
j=1

r�
i=1

nF̂i(tj+1)

⎡
⎢⎢⎢⎣

⎧
⎪⎨⎪⎩

�̂�
(2)

ij

𝛼2
1,ij

+
1 − �̂�

(2)

ij

𝛼2
2,ij

⎫
⎪⎬⎪⎭

�
�̂�
(2)

ij
− �̂�

(0)

ij

�2

−

⎧
⎪⎨⎪⎩

�̂�
(2)

ij

𝛼2
3,ij

+
1 − �̂�

(2)

ij

𝛼2
4,ij

⎫
⎪⎬⎪⎭

�
�̂�
(1)

ij
− �̂�

(0)

ij

�2
⎤
⎥⎥⎥⎦

(6)max
{
|𝛼1,ij − �̂�

(2)

ij
|, |𝛼2,ij − (1 − �̂�

(2)

ij
)|
}
≤ |�̂�(0)

ij
− �̂�

(2)

ij
|

(7)max
{
|𝛼3,ij − �̂�

(2)

ij
|, |𝛼4,ij − (1 − �̂�

(2)

ij
)|
}
≤ |�̂�(1)

ij
− �̂�

(2)

ij
|.

(8)

m−1∑
j=1

r∑
i=1

nF̂i(tj+1)

�̂�
(0)

ij

(
1 − �̂�

(0)

ij

)
[(

�̂�
(2)

ij
− �̂�

(0)

ij

)2

−
(
�̂�
(1)

ij
− �̂�

(0)

ij

)2
]

=

m−1∑
j=1

r∑
i=1

nF̂i(tj+1)

�̂�
(0)

ij

(
1 − �̂�

(0)

ij

)
(
�̂�
(1)

ij
− �̂�

(0)

ij

)2

r∑
i=1

F̂i(tj+1)
(
�̂�
(2)

ij
− �̂�

(0)

ij

)2

=

r∑
i=1

F̂i(tj+1)
(
�̂�
(2)

ij
− �̂�

(1)

ij

)2

+

r∑
i=1

F̂i(tj+1)
(
�̂�
(1)

ij
− �̂�

(0)

ij

)2

m−1�
j=1

r�
i=1

F̂i(tj+1)

�̂�
(0)

ij

�
1 − �̂�

(0)

ij

�
�√

n
�
�̂�
(1)

ij
− 𝜃ij

�
−
√
n
�
�̂�
(0)

ij
− 𝜃ij

��2
.
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where Σ =
(
�i1j1,i2j2

)
 with �i1j1,i2j2 = pi1j1 (�i1j1,i2j2 − pi2j2 ). Here, �i1j1,i2j2 is the Kro-

necker delta. i.e. �i1j1,i2j2 = 1 if (i1, j1) = (i2, j2) and 0 otherwise.
Straightforward but tedious application of the delta method gives under 

H0 ∶ �1j = �2j = … = �rj ≡ �
(0)

j
, j = 1, 2,… ,m − 1,

r∑
i=1

�im = 1,

where �(0)

j
= (�

(0)

j
, �

(0)

j
,… , �

(0)

j
)T ,Γ = diag (Γ1,Γ2,… ,Γm−1) where

with �i,jj = �
(0)

j
(1 − �

(0)

j
)∕Fi(tj+1), j = 1, 2,… ,m − 1. This implies that, if 

Xij, 1 ≤ i ≤ r, 1 ≤ j ≤ m − 1, are independent random variables such that Xij has 
N(0, �i,jj),�j = (X1j,X2j,… ,Xrj)

T and �j = (F
1
(tj+1),F2

(tj+1),… ,Fr(tj+1))
T
,

j = 1, 2,… ,m − 1, then

where

and

(9)
√
n
�
�̂T
1
− �T

1
, �̂T

2
− �T

2
,… , �̂T

r
− �T

r

�T d
−→N(�,Σ)

(10)
√
n

⎡
⎢⎢⎢⎢⎣

�̂
(2)

1
− �

(0)

1

�̂
(2)

2
− �

(0)

2

⋮

�̂
(2)

m−1
− �

(0)

m−1

⎤
⎥⎥⎥⎥⎦

d
−→N(�,Γ)

Γi = diag (�i,11, �i,22,… , �i,rr)

m−1�
j=1

r�
i=1

F̂i(tj+1)

�̂�
(0)

ij
(1 − �̂�

(0)

ij
)

�√
n(�̂�

(1)

ij
− 𝜃ij) −

√
n(�̂�

(0)

ij
− 𝜃ij)

�2

d
−→

m−1�
j=1

r�
i=1

Fi(tj+1)

𝜃
(0)

ij
(1 − 𝜃

(0)

ij
)

�
E�j

�
�j�I

�
i
− X̄j

�2

d
−→

m−1�
j=1

r�
i=1

�
E�j

�
�j�I

�
i
− X̄j

�2�
Var (Xij)

�−1

≡

m−1�
j=1

T01,j

X̄j =

∑r

i=1
wijXij∑r

i=1
wij

T01,j =

r∑
i=1

[
E�j

[
�j|I

]
i
− X̄j

]2[
Var (Xij)

]−1
, j = 1, 2,… ,m − 1.
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Since, under H0, the time until failure T and the cause of failure � are independent, 
�j = F(tj+1)� where � = (P(� = 1),P(� = 2),… ,P(� = r))T . Careful scrutiny then 
shows that

where X̃ij are independent zero mean normal variates with Var (X̃ij) = 1∕qi for all 
(i, j), �̃j = (X̃1j, X̃2j,… , X̃rj)

T and

The T01,j s are independent and the exact distribution of T01,j is given in Robertson 
et al. (1988). It is a chi-bar squared distribution, that is, a mixture of chi-squared dis-
tributions, mixed over their degrees of freedom. Specifically, for all t > 0,

where �2
0
≡ 0 and P(�, r, �) is the probability that the least squares projection of 

�̃j with weights � onto I  has exactly � levels. Putting all this together leads to the 
following theorem that shows that the asymptotic null distribution of T01 is a chi-
bar-squared distribution. Its weights on the various chi-squared tail probabilities are 
obtained by convoluting the r sequences of level probabilities corresponding to the 
T01,js.

Theorem 2 If � = (F1,F2,… ,Fr) satisfies H0 , for any t > 0,

where

and �2
0
≡ 0.

Clearly the null limiting distribution of T01 depends only on the distribution of 
� through the weights P(�, r, �). These weights, also known as a level probabili-
ties, are sums of products of normal orthant probabilities. In general, they do not 
exist in a closed form. However, when q1 = q2 = … = qr , they do not depend on 
� in which case it is omitted. In addition, they satisfy in this case the following 
recurrence relations:

T01,j =

r∑
i=1

qi

[
E�j

[
�̃j|I

]
i
− ̄̃Xj

]2
, j = 1, 2,… ,m − 1,

̄̃Xj =

∑r

i=1
qiX̃ij∑r

i=1
qi

.

(11)P(T01,j ≥ t) =

r∑
�=1

P(�, r, �)P(�2
�−1

≥ t)

(12)lim
n→∞

P(T01 ≥ t) =

r(m−1)∑
�=m−1

P∗(�, r, �)P(�2
�−(m−1)

≥ t)

P∗(�, r, �) =
∑

1≤�1,�2,…,�r ,�1+�2+…+�r=�

m−1∏
j=1

P(�, r, �)



1076 H. El Barmi 

1 3

where P(0, r − 1) = P(r, r − 1) = 0. For more on this, see Robertson et al. (1988).

Remark 1 When r = 2, it is easy to show that

and

where F̂ = F̂1 + F̂2 and ∧ and ∨ are used to denote the max-
imum and the minimum, respectively. In this case 
P(1, 2, �) = P(1, 2, �) = 1∕2,P(T01,j ≥ t) =

1

2
P(�2

1
≥ t), j = 1, 2,… ,m − 1, and

This implies that the LRT statistic is asymptotically distribution free over H0 . In 
passing we mention that, in general, the test procedures that involve inequality con-
straints do not result in asymptotically distribution free (similar) tests. As a result 
they tend to be conservative over much of the null hypothesis region.

Remark 2 The weight P∗(�, r, �) depends on the unknown distribution of �. It can be 
approximated by P∗(�, r, �̂(0)) where �̂(0) = (d1+∕n, d2+∕n,… , dr+∕n)

T is the m.l.e. 

of � under H0. The expression 
r(m−1)∑
�=m−1

P∗(�, r, �̂(0))P(𝜒2
�−(m−1)

≥ t) converges as n goes 

to infinity to the right hand side of (12) and it does provide in general a good approx-
imation for it. Numerical simulations can be used to approximate its weights. For 
more discussion on this, see Robertson et al. (1988).

Consider now testing H∗
0
 against H1 − H∗

0
. In terms of the new parameterization 

H∗
0
 reduces to �1j = �2j = … = �rj, j = 1, 2,… ,m. The m.l.e of �j under H∗

0
 , denoted 

by �̃(0)
= (𝜃

(0)

1j
, 𝜃

(0)

2j
,… , 𝜃

(0)

rj
)T , is given by

and �̂�(0)
ij

 is defined before. This implies that the LRT rejects H∗
0
 for large values of

P(�, r) =
1

r
P(� − 1, r − 1) +

r − 1

r
P(�, r − 1)

(13)�̂�
(1)

1j
= �̂�

(2)

1j
∧
ŵ1j�̂�

(2)

1j
+ ŵ2j�̂�

(2)

2j

ŵ1j + ŵ2j

=
F̂1(tj+1)

F̂2(tj+1)
∧
F̂(tj+1)

F̂(tj+1)

(14)�̂�
(1)

1j
= �̂�

(2)

2j
∨
ŵ1j�̂�

(2)

1j
+ ŵ2j�̂�

(2)

2j

ŵ1j + ŵ2j

=
F̂2(tj+1)

F̂2(tj+1)
∨
F̂(tj+1)

F̂(tj+1)

lim
n→∞

P(T01 ≥ t) =

m−1∑
�=0

(
m − 1

�

)
2−m+1P(�2

�
≥ t).

𝜃
(0)

ij
=

{
�̂�
(0)

ij
, j = 1, 2,… ,m − 1,

1

r
, j = m,
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where T01 is also defined before. When H∗
0
 is true, (8) and an application of a Taylor 

expansion with a second order remainder of log
(
�̂�
(2)

im

)
 around 1/r show that asymp-

totically, T∗
01

 is equivalent to:

In addition, if {Xim, i = 1, 2,… , r} is a random sample from N
(
0,

1

r

(
1 −

1

r

))
, then

and T01,m is independent of the T01,j, 1 ≤ j ≤ m − 1. Since, under 
H∗

0
, q1 = q2 = … = qr = 1∕r, the weights in (11) do not depend on � and hence

This leads to the following theorem.

Theorem 3 If � = (F1,F2,… ,Fr) satisfies H∗
0
 , for any t > 0,

where

and �2
0
≡ 0.

3.2  Testing H
1
 against H

2
− H

1

Next, we consider the problem of testing H1 as a null hypothesis against H2 − H1 
where H2 imposes no restrictions on the parameters. The likelihood ratio test 
rejects H1 in this case for large values of

T∗
01

= T01 − 2

r∑
�=1

di+ log

(
1∕r

�̂�
(2)

im

)
,

(15)

m−1∑
j=1

r∑
i=1

nF̂i(tj+1)

�̂�
(0)

ij
(1 − �̂�

(0)

ij
)

(
�̂�
(1)

ij
− �̂�

(0)

ij

)2

+

r∑
i=1

1

1

r

(
1 −

1

r

)
(
�̂�
(2)

im
−

1

r

)2

.

r∑
i=1

1

(1∕r)(1 − 1∕r)

(
�̂�
(2)

im
− 1∕r

)2 d
−→T01,m ≡

r∑
i=1

1

(1∕r)(1 − 1∕r)

(
Xim − 1∕r

)2
∼ 𝜒2

r−1

P(T01,j ≥ t) =

r∑
�=1

P(�, r)P(�2
�−1

≥ t).

(16)lim
n→∞

P(T̃01 ≥ t) =

r(m−1)∑
�=m−1

P̃(�, r)P(𝜒2
�+r−m

≥ t)

P̃(�, r) =
∑

1≤�1,�2,…,�r ,�1+�2+…+�r=�

m−1∏
j=1

P(�, r)
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because the m.l.e. of �m is the same under both H1 and H2. Equivalently, it rejects H0 
for large values of of the statistic

Define on D = {1, 2,… , r} the quasi-order ⪯
�i

 which requires that j1 ⪯�i
j2 when 

j1 ≤ j2 and �ij1 = �ij2 . Define also I
�i

 to be the cone of isotonic functions on D 
with respect to the quasi-order ⪯

�i
 . In what follows we assume the Xij has now 

N(0, �ij(1 − �ij)∕Fi(tj+1)) and define P
�i
(�, r,�j) to be the probability that E

[
�j|I�i

]
 , 

the least squares projection of �j onto I
�i

 with weights �j has exactly � levels.
For � = (F1,F2,… ,Fr), let P�(A) denote the probability of the event A when 

F1,F2,… ,Fr are the true population CIFs. We have the following distributional 
result.

Theorem 4 If � = (F1,F2,… ,Fr) satisfies H1 , for any t > 0,

where �(�) and �(�) are the values of (�T
1
,�T

2
,… ,�T

m−1
)T and (�T

1
,�T

2
,… ,�T

m−1
)T 

corresponding to �,

and �2
0
≡ 0. In addition,

where

Λ01 =

m�
j=1

Lj(�̂
(1)

j
)

m�
j=1

Lj(�̂
(2)

j
)

=

m−1�
j=1

r�
i=1

⎡
⎢⎢⎣
�̂�
(1)

ij

�̂�
(2)

ij

⎤
⎥⎥⎦

j�
�=1

dij⎡
⎢⎢⎣
1 − �̂�

(1)

ij

1 − �̂�
(2)

ij

⎤
⎥⎥⎦

di,j+1

T01 = − 2 log(Λ12)

=2

m�
j=1

r�
i=1

⎡
⎢⎢⎢⎣

�
j�

�=1

dij

�
log

⎧
⎪⎨⎪⎩

�̂�
(2)

ij

�̂�
(1)

ij

⎫
⎪⎬⎪⎭
+ dij log

⎧
⎪⎨⎪⎩

1 − �̂�
(2)

ij

1 − �̂�
(1)

ij

⎫
⎪⎬⎪⎭

⎤
⎥⎥⎥⎦
.

(17)lim
n→∞

P�(T12 ≥ t) =

r(m−1)∑
�=m−1

P
�(�)(�, r,�(�))P(�

2
r(m−1)−�

≥ t)

P
�(�)(�, r,�) =

∑
1≤�1,�2,…,�r ,�1+�2+…+�r=�

m−1∏
j=1

P
�j(�)

(�, r,�j(�))

(18)lim
n→∞

P�(T12 ≥ t) ≤

r(m−1)∑
�=m−1

P∗(�, r,�)P(�2
r(m−1)−�

≥ t)

P∗(�, r,�) =
∑

1≤�1,�2,…,�r ,�1+�2+…+�r=�

m−1∏
j=1

P(�, r,�j(�))
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and P(�, r,�j(�)) is the probability that the least squares projec-
tion of (X̃1j, X̃2j,… , X̃rj)

T , a zero mean normal vector with disper-
sion diag (1∕F1(tj+1), 1∕F2(tj+1),… , 1∕Fr(tj+1)) , onto I  with weights 
(F1(tj+1),F2(tj+1),… ,Fr(tj+1))

T has � levels.

Proof Expanding log(�̂�(1)
ij
) about �̂�(2)

ij
 and log(1 − �̂�

(1)

ij
) about 1 − �̂�

(2)

ij
 using a Taylor 

expansion with a second remainder, we get, using the properties of the isotonic 
regression (see (Robertson et al. 1988)),

where

When H1 is true, the right hand side of (19) goes to zero almost surely. This implies 
that T12 is asymptotically equivalent to

Arguing as in the proof of Theorem 5.2.1 in Robertson et al. (1988), we find that 
(20) is equal, for large n with probability one, to

and converges in distribution to

where, for 1 ≤ j ≤ m − 1,

Now Lemma A on page 321 in Robertson et al. (1988) implies that

where �̃ = (X̃1j, X̃2j,… ,Xrj)
T and X̃ij s are independent zero mean normal variates 

with Var (X̃ij) = 1∕Fi(tj+1). Since T12,j s are independent and

T12 =

m−1�
j=1

r�
i=1

�∑j

�=1
di�

𝛽2
1,ij

+
di,j+1

𝛽2
2,ij

��
�̂�
(1)

ij
− �̂�

(2)

ij

�2

(19)max
{
|𝛽1,ij − �̂�

(2)

ij
|, |𝛽2,ij − (1 − �̂�

(2)

ij
)|
}
≤ |�̂�(1)

ij
− �̂�

(2)

ij
|.

(20)
m−1∑
j=1

r∑
i=1

nF̂i(tj+1)

�̂�
(2)

ij
(1 − �̂�

(2)

ij
)

(
�̂�
(1)

ij
− �̂�

(2)

ij

)2

.

m−1�
j=1

r�
i=1

F̂i(tj+1)

�̂�
(2)

ij
(1 − �̂�

(2)

ij
)

�
E�̂j

�√
n(�̂

(1)

j
− �j)�I�i

�
i
−
√
n(�̂�

(2)

ij
− 𝜃ij)

�2

m−1∑
j=1

r∑
i=1

Fi(tj+1)

�ij(1 − �ij)

(
E�j

[
�j|I�i

]
i
− Xij

)2

≡

m−1∑
j=1

T12,j

T12,j =

r∑
i=1

Fi(tj+1)

�ij(1 − �ij)

(
E�j

[
�j|I�i

]
i
− Xij)

)2

.

T12,j =

r∑
i=1

Fi(tj+1)
(
E�j

[
�̃j|I�i

]
i
− X̃ij)

)2

, j = 1, 2,… ,m − 1,



1080 H. El Barmi 

1 3

for any t > 0 (see (Robertson et al., 1988)), (17) follows by a direct computation of 

P�

(
m−1∑
j=1

T12,j > t

)
.

To show (18), notice that I  is a subset of I
�i

 for all i.. Hence

Since

and the T̃12,j are independent, (18) follows also by computing P�

(
m−1∑
j=1

T̃12,j > t

)
.   ◻

Corollary 1 :When r = 2, if � satisfies H1 , then

where �2
0
≡ 0 and M = card {j, �1j = �2j}. Moreover

Proof Plugging (13) and (14) into (20) shows that T12 is equivalent to

where

Using (9) and the delta method, it is easy to show that , when �1j = �2j ≡ �j, then

P�(T12,j ≥ t) =

r∑
i=1

P
�i(�)

(�, r,�j(�))P(�
2
�−1

≥ t)

T̃12,j =

r∑
i=1

Fi(tj+1)
(
E�j

[
�̃j|I

]
i
− X̃ij)

)2

≤

r∑
i=1

Fi(tj+1)
(
E�j

[
�̃j|I�i

]
i
− X̃ij)

)2

≡ T12.

P�(T̃12,j ≥ t) =

r∑
i=1

P(�, r,�j(�))P(𝜒
2
�−1

≥ t)

lim
n→∞

P�(T12 > t) =

M∑
�=0

(
M

�

)
1

2M
P(𝜒2

�
> t)

(21)lim
n→∞

P�(T12 > t) ≤

m−1∑
�=0

(
m − 1

�

)
1

2m−1
P(𝜒2

�
> t).

(22)
m−1�
j=1

w̃j

�√
n(�̂�

(2)

2j
− �̂�

(2)

1j
) ∨ 0

�2

w̃j =
F̂1(tj+1)F̂2(tj+1)

F̂(tj+1)

⎡⎢⎢⎣

2�
�=1

F̂2(tj+1)

�̂�
(2)

1j
(1 − �̂�

(2)

1j
)
+

F̂1(tj+1)

�̂�
(2)

2j
(1 − �̂�

(2)

2j
)

⎤⎥⎥⎦
, j = 1, 2,… ,m.

√
n[�̂�

(2)

2j
− �̂�

(2)

1j
]
d
−→Yj
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where Yj has a normal distribution with mean zero and variance 
�j(1 − �j)F(tj+1)

F1(tj+1)F2(tj+1)
 . 

Otherwise it converges to −∞. In addition the Yj s are independent. This implies that 
(22) converges in distribution to

where Zj, j = 1, 2,… ,m − 1, are independent standard normals. The first conclusion 
follows immediately by computing P

�∑
{j;𝜃1j=𝜃2j}

�
Zj ∨ 0

�2
> t

�
. To show (21), 

notice that, since M ≤ m − 1,

The result now follows since

  ◻

This corollary provides an upper bound on the Type I error and give a method for 
investigating the behavior of lim

n→∞
P�(T12 ≥ t) for various � that satisfy H1. In shows 

in particular that, for � that satisfies 𝜃1j < 𝜃2j , for all j, lim
n→∞

P�(T12 ≥ t) = 0.

4  Examples

In this section, we discuss two numerical examples that are designed to illustrate the 
theory developed in Sects. 2 and 3.

4.1  Example 1

For our first illustration, we consider the mortality data on RFM strain male mice as 
reported in Hoel (1972). We consider two risks with the second risk being cancer 
and take the first risk a combination of all other risks. The failure times are grouped 
into m = 6 categories. Thus, r = 2 since we have two risks and m = 6 time periods. 
The data as well as the m.l.e.s of the pij s under the different hypotheses are give in 
Table 1.

Since r = 2, the null limiting distribution of the LRT statistic, T01 , for testing H0 
against H1 − H0 is given in Remark 1. Its value is 1.619 corresponding-to a p-value 
of 0.63. To test H1 against H2 − H1 , the value of T12 = 6.857 corresponding to a 

∑
{j;�1j=�2j}

F1(tj+1)F2(tj+1)

�j(1 − �j)F(tj+1)

[
Yj ∨ 0

]2
=

∑
{j;�1j=�2j}

[
Zj ∨ 0

]2

∑
{j;�1j=�2j}

[
Zj ∨ 0

]2
≤

m−1∑
i=1

[
Zj ∨ 0

]2
.

P

(
m−1∑
i=1

[
Zj ∨ 0

]2
≥ t

)
=

m−1∑
�=0

(
m − 1

�

)
1

2m−1
P(𝜒2

�
> t).
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p-value of 0.0638 based on (21). Evidently, unless H1 holds, one should not test H0 
against H1 − H0. We include here for illustration purposes.

4.2  Example 2

In our second example, we consider some data from a randomized study conducted 
by the Adult AIDS Clinical Trials Group (AACTG) to evaluate two combination 
antiretroviral treatments in terms of their ability to suppress HIV viral load. The 
failure time,T, in this case was defined as the time from randomization until plasma 
HIV levels rose above 1000 copies/ml. At failure a measure of acquired mutational 
distance during the trial was obtained. This distance is a measure of the accumulated 
HIV genetic resistance due to treatment exposure and is only obtained when a sub-
ject fails. Gilbert et al. (2004) normalize this distance so that it lies in the interval 
[0, 1]. For our purposes we discretize the normalized distance measure, call which 
we call V, and consider r = 3 groups. A subject is classified as belonging to group 1 
if V ∈ (0, 1∕3] , to group 2 if V ∈ (1∕3, 2∕3] and to group 3 if V ∈ (2∕3, 1]. We also 
consider m = 3 failure time intervals and j = 1 if T ∈ (0, 5], j = 2 if T ∈ (5, 20] and 
j = 3 if T ∈ (20;50].

The data and the m.l.e.s of the pij s are given in the following two tables (Tables 2, 
3).

Hence, we have r = 3 and m = 3 , In this case the data satisfies H1 since the m.l.e.s 
under H1 and H2 are equal. The value of the test statistic for testing H0 against 
H1 − H0 is 0.8959. To compute the p-value in this case, we use simulations to esti-
mate the weights in (12) after replacing � by �̂(0) , its m.l.e. under H0. The estimated 
weights are (0.1241, 0.3497, 0.3524, 0.1507, 0.0231) and the estimated p-value is 
0.51.

Table 1  Estimated probabilities under H
0
 , H

1
 and H

2

No. Interval d
1j d

2j p̂
(2)

1j
p̂
(2)

2j
p̂
(0)

1j
p̂
(0)

2j
p̂
(1)

1j
p̂
(1)

2j

1 (0, 350] 15 18 0.1515 0.1818 0.1313 0.2020 0.1211 0.2158
2 (0, 350] 6 7 0.0606 0.0707 0.0517 0.0796 0.0485 0.0839
3 (0, 350] 6 4 0.0606 0.0404 0.0398 0.0612 0.0485 0.0480
4 (0, 350] 8 18 0.0808 0.1818 0.1035 0.1592 0.1012 0.1614
5 (0, 350] 2 12 0.0202 0.1212 0.0557 0.0857 0.0545 0.0869
6 (0, 350] 2 1 0.0202 0.0101 0.0119 0.0184 0.0202 0.0101

Table 2  Estimated probabilities 
under H

2

Interval d
1j d

2j d
3j p̂

(2)

1j
p̂
(2)

2j
p̂
(2)

3j

(0, 5] 5 7 7 0.1111 0.1556 0.1556
(5, 20] 6 5 4 0.1333 0.1111 0.0889
(20, 50] 4 4 3 0.0889 0.0889 0.0667
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Table 3  Estimated probabilities under H
0
 and H

1

Interval d
1j d

2j d
3j p̂

(0)

1j
p̂
(0)

2j
p̂
(0)

3j
p̂
(1)

1j
p̂
(1)

2j
p̂
(1)

3j

(0, 5] 5 7 7 0.1407 0.1501 0.1314 0.1111 0.1556 0.1556
(5, 20] 6 5 4 0.1111 0.1185 0.1037 0.1333 0.1111 0.0889
(20, 50] 4 4 3 0.0815 0.0869 0.0667 0.0889 0.0889 0.0667
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