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This supplementary material contains four components. In Section S.1, some no-

tations, basic properties and three technical lemmas are listed. Section S.2 gives eight

useful conditions. Theorem 1 and 2 are proved in Sections S.3 and S.4 respectively.

S.1. Three Technical Lemmas

NOTATIONS: The following list summarizes some frequently used notations in the

text:

S(λ) = In − ΛW ;

lnL(θ) is the log likelihood of θ = (β>, λ>, σ2)>;

lnL(λ) is the concentrated log likelihood of λ;

M = In −X(X>X)−1X>.

SOME BASIC PROPERTIES: The following statements summarize some basic

properties on network weights matrices and some laws of large numbers and central
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limit theorems for linear and quadratic forms of Kelejian and Prucha (2001). Let

E = (ε1, · · · , εn)>, where ε1, · · · , εn are independent and identically distributed random

variables with mean 0 and finite variance σ2.

(1) Let A = (aij)n×n be an n-dimensional square matrix. Then, E(E>AE) = σ2tr(A)

and var(E>AE) = (µ4 − 3σ4)
n∑
i=1

a2ii + σ4
[
tr(AA>) + tr(A2)

]
;

(2) Suppose the elements aij of the n-dimensional square matrices A are O(1/hn)

uniformly for all i, j. If n × n matrices B are uniformly bounded in row and

column sums, then the elements of AB have the uniform order O(1/hn). For

these cases, tr(AB) = tr(BA) = O(1/hn). Then E(E>AE) = O(n/hn) and

var(E>AE) = O(n/hn). If lim
n→∞

hn/n = 0, (hn
n

)
[
E>AE − E(E>AE)

]
= op(1).

Based on the above two results, we can have the following lemmas.

Lemma 1. Define Qn = E>AE + b>E − σ2tr(A), where A = (aij)n×n ∈ Rn×n and

b = (b1, · · · , bn)> ∈ Rn×1. Suppose the following assumptions are satisfied:

(1) for i, j = 1, · · · , n, aij = aji;

(2) supn≥1‖A‖1 <∞;

(3) for some η1 > 0, supn≥1n
−1‖b‖2+η12+η1

<∞;

(4) for some η2 > 0, supn≥1E|εi|
4+η2 <∞.

Then, we have E(Qn) = 0 and

σ2
Qn

:=var (Qn) = 4σ4

n∑
i=1

i−1∑
j=1

a2ij + σ2

n∑
i=1

b2i +
n∑
i=1

[(
µ4 − σ4

)
a2ii + 2µ3biaii

]
,
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where µj = E(εji ) for j=3,4. Furthermore, suppose

(5) n−1σ2
Qn

> c for some c > 0.

Then, we obtain

Qn/σQn

d→N(0, 1).

This result is directly from Theorem 1 of Kelejian and Prucha (2001).

Lemma 2. Under Conditions (C1)-(C8) in Section S.2 below, we have that, as n→∞,

(i) In(θ0) = −Hn(θ0) ≡ − 1
n
∂2lnL(θ0)
∂θ∂θ>

p→−H(θ0) = I(θ0),

(ii) 1√
n
∂lnL(θ0)

∂θ

d→N(0, I(θ0) + Ω(θ0, µ
3, µ4)).

This result is similar to Lemma 3 in Appendix of Zou et al. (2021) and can be

obtained via the results of Lemma 1.

Lemma 3. Under Conditions (C1)-(C8) in Section S.2 below, we have that, as n→∞,

θ̂ − θ0
p→ 0.

This result is directly from Theorem 3.2 of Lee (2004).

S.2. Eight Useful Conditions

(C1) The {εi} , i = 1, · · · , n, in E = (ε1, · · · , εn)> are i.i.d. with mean 0 and variance

σ2. Its moment E
(
|ε|4+γ

)
for some γ > 0 exists.

(C2) The elements ωij of W are at most of order h−1n , denoted by O (1/hn), uniformly

in all i, j, where the rate sequence {hn} can be bounded or divergent. As a

normalization, ωij=0 for all i.
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(C3) The ratio hn
n
→ 0 as n goes to infinity.

(C4) The matrix S (λ) is nonsingular.

(C5) The sequences of matrices {Wn} are uniformly bounded in both row and column

sums.

(C6) The elements of X are uniformly bounded constants for all n. The lim
n→∞

X>X/n

exists and is nonsingular.

(C7) S−1 (λ) are uniformly bounded in either row or column sums, uniformly in λ in

a compact parameter space B. The true λ0 is in the interior of B.

(C8) Assume H (θ0) is nonsingular and continuous in the interiors of B, I (θ0) =

−H (θ0) = − lim
n→∞

Hn (θ0), and Ω(θ0, µ
3, µ4) = lim

n→∞
Ωn(θ0, µ

3, µ4).

The boundedness of the moment of ε is assumed in Condition (C1), which is looser

than commonly used normal distribution assumption. Conditions (C2) and (C3) are

directly derived from in Lee (2004). Like the condition in Lee and Liu (2010), Condition

(C4) ensures that S(λ) is invertible. Conditions (C5)-(C8) are traditional conditions

for establishing the convergence of the Fisher information matrix and the variance

of the score function and carefully studied in Lee (2004) and Zou et al. (2021). For

instance, Conditions (C6) being a common assumption in linear regression analysis

guarantees that n−1σ−2X>X convergences a positive matrix.

S.3. Proof of Theorem 1
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By the mean value theorem, we have that

∂lnL
(
θ̂
)

∂θ
= 0 =

∂lnL (θ0)

∂θ
+
∂2lnL

(
θ̄
)

∂θ∂θ>

(
θ̂ − θ0

)
,

√
n
(
θ̂ − θ0

)
= −

(
1

n

∂2lnL
(
θ̄
)

∂θ∂θ>

)−1
1√
n

∂lnL (θ0)

∂θ
, (1)

where, θ̄ = aθ̂ + (1− a) θ0 for a ∈ [0, 1], this, together with Lemma 3 θ̂ − θ0
p→ 0, we

have ∥∥θ̄ − θ0∥∥ =
∥∥∥a(θ̂ − θ0)

∥∥∥ ≤ ∥∥∥θ̂ − θ0∥∥∥ p→ 0, (2)

so θ̄ is a consistent estimator of θ0.

For H (θ) is continuous in the interiors of B, together with inequality and Lemma

2, we have

Hn

(
θ̄
)
−H(θ0) = Hn

(
θ̄
)
−H

(
θ̄
)

+H
(
θ̄
)
−H(θ0)

≤ supHn

(
θ̄
)
−H

(
θ̄
)

+H
(
θ̄
)
−H (θ0)

p→ 0.

(3)

By the Slutsky’s theorem, in conjunction with Lemma 2, implies

√
n
(
θ̂ − θ0

)
= −

(
Hn

(
θ̄
))−1 1√

n

∂lnL (θ0)

∂θ

d→N
(
0, I−1 (θ0) + I−1 (θ0) Ω(θ0, µ

3, µ4)I−1 (θ0)
)
,

(4)

where var
(
−
(
Hn

(
θ̄
))−1 1√

n
∂lnL(θ0)

∂θ

)
= I−1 (θ0) [I (θ0) + Ω(θ0, µ

3, µ4)] I−1 (θ0) = I−1 (θ0)

+ I−1 (θ0) Ω(θ0, µ
3, µ4)I−1 (θ0).
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S.4. Proof of Theorem 2

To facilitate this proof, we slightly arrange the notation θ =
(
β>, λ>, σ2

)>
to be

θ =
(
σ2, β>, λ>

)>
=
(
θ>1 , θ

>
2

)>
, where θ1 =

(
σ2, β>

)>
. θ2 = λ = (λ1, · · · , λk)>.

The null hypothesis is equivalent to H0 : R (θ) = Rθ = rc, whereR =
(
0(k−1)×(p+1), R1

)
,

R1 =



1 −1 0

0 1 −1

· · ·
0 0 0

0 0 0

...
. . .

...

0 0 0 · · · 0 1 −1


(k−1)×k

,

tr (R) = k − 1, rc = 0(k−1)×1 ∈ R(k−1)×1.

We employ the similar techniques to those used for proving (4).

Step I: We get the linear-quadratic forms of LR = −2
[
lnL(θ̃)− lnL(θ̂)

]
with

(θ̃ − θ̂). The first-order derivatives condition For unconstrained QMLE θ̂ is

∂lnL(θ̂)

∂θ
= 0,

and the constrained QMLE θ̃ = arg max
θ∈B

{
lnL(θ) + nl> [rc −R(θ)]

}
, we have

∂lnL(θ̃)

∂θ
− nR′(θ̃)>l = 0,

R(θ̃)− rc = 0,

(5)
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where l is the Lagrange multiplier. The second-order Taylor expansion of LR at θ̂ is

LR = −2
[
lnL(θ̃)− lnL(θ̂)

]
= −2(lnL(θ̂)− lnL(θ̂))− 2

∂lnL(θ̂)

∂θ
(θ̃ − θ̂)− (θ̃ − θ̂)>∂

2lnL(θ̄a)

∂θ∂θ>
(θ̃ − θ̂)

= (θ̃ − θ̂)>(−∂
2lnL(θ̄a)

∂θ∂θ>
)(θ̃ − θ̂)

=
√
n(θ̃ − θ̂)>(−Hn(θ̄a))

√
n(θ̃ − θ̂),

(6)

where θ̄a lies between θ̃ and θ̂.

Step II: We explore the relation between
√
n(θ̃ − θ̂) and

√
nl. By (5) and first-

order Taylor expansion of ∂lnL(θ̃)
∂θ

at θ̂, we have

∂lnL(θ̂)

∂θ
+
∂2lnL(θ̄b)

∂θ∂θ>
(θ̃ − θ̂)− nR′(θ̃)>l = 0,

Hn(θ̄b)(θ̃ − θ̂)−R′(θ̃)>l = 0,

where θ̄b lies between θ̃ and θ̂. As n goes to infinity, we have

√
n(θ̃ − θ̂) = H−1n (θ̄b)R

′(θ̃)>
√
nl. (7)

Step III: We get the asymptotic distribution of
√
nl. By (5) and first-order Taylor

expansion of ∂lnL(θ̃)
∂θ

at θ0, we have

R′(θ̃)>l =
1

n

∂lnL(θ̃)

∂θ
=

1

n

∂lnL(θ0)

∂θ
+

1

n

∂2lnL(θ̄c)

∂θ∂θ>
(θ̃ − θ0),

where θ̄c lies between θ̃ and θ0. As n goes to infinity, we have
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H−1n (θ̄c)R
′(θ̃)>

√
nl = H−1n

(
θ̄c
) 1√

n

∂lnL (θ0)

∂θ
+
√
n
(
θ̃ − θ0

)
(8)

Applying the Taylor expansion of R(θ̃)−rc = 0 at θ0, together with H0 : R(θ0)−rc =

0, we have

(R(θ0)− rc) +R′(θ̄d)(θ̃ − θ0) = 0,

R′(θ̄d)
√
n(θ̃ − θ0) = 0,

(9)

where θ̄d lies between θ̃ and θ0, By (8) and (9), we obtain

R′(θ̄d)H
−1
n (θ̄c)R

′(θ̃)>
√
nl = R′(θ̄d)H

−1
n (θ̄c)

1√
n

∂lnL(θ0)

∂θ
+R′(θ̄d)

√
n(θ̃ − θ0)

= R′(θ̄d)H
−1
n (θ̄c)

1√
n

∂lnL(θ0)

∂θ
.

Then employing similar techniques to those used for proving (3), we obtain that

θ̄a, θ̄b, θ̄c, θ̄d are consistent estimator of θ0, and Hn(θ̄a), Hn(θ̄b), Hn(θ̄c) are consistent

estimator of H(θ).

For the sake of simplicity, denote Σ = I(θ0) + Ω(θ0, µ
3, µ4). By Lemma 2 and the

Slustsky theorem, we have

√
nl = (R′(θ̄d)H

−1
n (θ̄c)R

′(θ̃)
>

)−1R′(θ̄d)H
−1
n (θ̄c)

1√
n

∂lnL(θ0)

∂θ

= (R′(θ̃)
>

)−1
1√
n

∂lnL(θ0)

∂θ

d→N

(
0,
[
R′(θ0)Σ

−1R′(θ0)
>
]−1)

,

(10)
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This, in conjunction with (6) and (7), leads to

−H1/2
n (θ̄a)

√
n(θ̃ − θ̂) = −H1/2

n (θ̄a)H
−1
n (θ̄b)R

′(θ̃)>
√
nl

d→N
(
0,Π2

)
,

(11)

where Π2 = I(θ0)
−1/2R′(θ0)

>
[
R′(θ0)Σ

−1R′(θ0)
>
]−1

R′(θ0)I(θ0)
−1/2. Under the null hy-

pothesis H0, tr(R) = k − 1, then we get tr(Π) = k − 1.

LR =
√
n(θ̃ − θ̂)>(−H1/2

n (θ̄a))(−H1/2
n (θ̄b))

√
n(θ̃ − θ̂)

=
(√

n(θ̃ − θ̂)>(−H1/2
n (θ̄a))Π

−1
)

Π2
(

Π−1(−H1/2
n (θ̄b))

√
n(θ̃ − θ̂)

)
.

Let λ1(θ0, µ
3, µ4), · · · , λk−1(θ0, µ3, µ4) be the eigenvalues of Π2. The above results,

together with the continuous mapping theorem and Slutskys theorem, imply that

LR follows a weighted chi-square distribution
∑k−1

r=1 λr(θ0, µ
3, µ4)X 2

r (1) asymptotically.

This completes the first part of the proof.

Under the normal assumption of E , the matrix Ωn(θ0, µ
3, µ4) defined above The-

orem 1 is 0. By Condition (C8), we have Ω(θ0, µ
3, µ4) = 0, which leads to Σ =

I(θ0). Then Π2 = I(θ0)
−1/2R′(θ0)

>
[
R′(θ0)I(θ0)

−1R′(θ0)
>
]−1

R′(θ0)I(θ0)
−1/2 is dempo-

tent. The above results, together with the normality assumption, we obtain

LR =
√
n(θ̃ − θ̂)>(−H1/2

n (θ̄a))(−H1/2
n (θ̄b))

√
n(θ̃ − θ̂)

d→X 2(k − 1),

which completes the entire proof.
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