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Abstract
This paper proposes a blockwise network autoregressive (BWNAR) model by 
grouping nodes in the network into nonoverlapping blocks to adapt networks with 
blockwise structures. Before modeling, we employ the pseudo likelihood ratio cri-
terion (pseudo-LR) together with the standard spectral clustering approach and a 
binary segmentation method developed by Ma et al. (Journal of Machine Learning 
Research, 22, 1–63, 2021) to estimate the number of blocks and their memberships, 
respectively. Then, we acquire the consistency and asymptotic normality of the esti-
mator of influence parameters by the quasi-maximum likelihood estimation method 
without imposing any distribution assumptions. In addition, a novel likelihood ratio 
test statistic is proposed to verify the heterogeneity of the influencing parameters. 
The performance and usefulness of the model are assessed through simulations and 
an empirical example of the detection of fraud in financial transactions, respectively.

Keywords Blockwise network autoregressive model · Blockwise structure · 
Community detection · Likelihood ratio test · Quasi-maximum likelihood estimation

1 Introduction

The network autoregressive (NAR) model reflects the network interaction effect 
through the dependence between nodes to effectively solve complex network 
problems (see, e.g., Wang et al. 2012; Kass-Hout and Alhinnawi 2013). In recent 
years, due to the diversification of network data, the model has been extended 
by a series of academic researchers for improving its practicability and applica-
bility (see, e.g., Moscone et  al. 2017; Huang et  al. 2020; Zhu et  al. 2020; Zou 
et al. 2021). In addition, an increasing number of fields are using data possessing 
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network structure, and the model has gained great popularity in various fields 
(see, e.g., Lin and Weinberg 2014; Fracassi 2017; Chen et al. 2018; Cohen–Cole 
et al. 2018).

To explore the influence effect between the network nodes, a large-scale net-
work is assumed with n nodes. The adjacency matrix A = (aij) ∈ ℝ

n×n represents 
the network structure, where aij = 1 if node i and node j are connected and aij = 0 
otherwise. For completeness, we also define aii = 0 for i = 1,⋯ , n . Moreover, let 
yi be the response collected from node i. Then, for illustration purpose, we intro-
duce the pure NAR model as

where 𝜆 > 0 is the influence parameter, wij = aij∕
∑n

j=1
aij and �i is the random error 

for i, j = 1,⋯ , n . Meanwhile, its matrix form is

where Y = (y1,⋯ , yn)
⊤ ∈ ℝ

n×1 , W = (wij) ∈ ℝ
n×n and E = (𝜀1,⋯ , 𝜀n)

⊤ ∈ ℝ
n×1 . 

Obviously, the pure NAR model takes the connected relationships between nodes 
into consideration and �wijyj represents the influence of node j on node i in the net-
work. Specifically, � represents the common influence coefficient and wij reflects the 
strength of the connection between nodes j and i. Thus, nodes that are closer to one 
node are more influential than those that are farther away.

The NAR model is widely used, but it has the limitation of assuming that 
every node has the same influence in the network. In model (1), all nodes share 
a common influence parameter � . However, in practice, different nodes may have 
different influences on a node in the network (see, e.g., Zhu et al. 2020; Zou et al. 
2021). That is, � becomes �j in the model (1) for j = 1,⋯ , n , which increases 
the number of influence parameters of the model from one to n. When n is large 
enough, it is inestimable, hence some structures are needed to impose on �j s. A 
natural choice is the popularly assumed blockwise structure of the large network 
(see, e.g., Durlauf and Young 2001; Blume et  al. 2015; Moscone et  al. 2017). 
Specifically, the blockwise structure of the network refers to nodes partitioned 
into nonoverlapping blocks, where nodes have higher influence for others in the 
same block and have little or no effect on the nodes of other blocks. This is rea-
sonable since the nodes of the network can always be grouped according to their 
attributes. We next provide some examples to reflect this fact. Individuals submit-
ting similar social information when applying for a loan can be grouped together 
because they are more likely to know each other; individuals from one company 
can be grouped together because they have similar working experience; compa-
nies belonging to the same sector of economic activity and located within the 
same geographic area can be grouped together since they face similar opportu-
nities and constraints. In other words, these examples represent many research-
meaningful networks possessing blockwise structures in real life. This structure 
also exists in other networks, such as institutions (see, e.g., Moscone et al. 2017), 

(1)yi = �

n∑
j=1

wijyj + �i,

(2)Y = �WY + E,
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neuroscience (see, e.g., Luo 2014) and biology (see, e.g., Hao et al. 2012). There-
fore, it is particularly significant to extend model (1) to adapt a network with 
blockwise structure.

Motivated by this challenge, we propose a blockwise network autoregressive 
(BWNAR) model in (8) by grouping the network nodes into nonoverlapping k 
blocks. Corresponding to model (2), its pure form is

where Λ = diag {�g1 ,⋯ , �gn} is the influence parameter matrix with gi ∈ {1,⋯ , k} 
denoting the block label of node i for i = 1,⋯ , n and the detailed definition of other 
terms is listed in Sect. 2.2. Hence, we noticeably observe that each node in the same 
block shares an equal �r for r = 1,⋯ , k , and different blocks are endowed with dis-
similar network influence parameters. In addition, the BWNAR model becomes a 
NAR model when n nodes belong to a block. For the BWNAR model, we use a two-
step method to estimate its parameters. First, we determine the number of blocks 
and their memberships using the pseudo-LR criterion together with the standard 
spectral clustering approach and a binary segmentation method, respectively, since 
Ma et al. (2021) has proven its consistency. Second, without imposing any distribu-
tion assumption on noise term, we adopt the quasi-maximum likelihood estimator 
(QMLE) to estimate the parameters of blocks and establish its asymptotic proper-
ties. Moreover, we provide a test statistic to assess the heterogeneity of the influence 
parameters �r of different blocks and demonstrate its validity.

Our contribution is twofold. First, a blockwise network autoregressive model is 
proposed and particularly exploited for networks with blockwise structure. In this 
model, different network influence coefficients are allocated for different blocks, and 
nodes belonging to the same block utilize the common network influence coefficient. 
Second, we construct a novel test statistic based on the likelihood ratio and prove its 
validity to assess the heterogeneity of the influence parameters �r.

The rest of the paper is organized as follows. In Sect.  2, we firstly employ the 
pseudo-LR criterion together with the standard spectral clustering approach and a 
binary segmentation method to determine the number of blocks and their member-
ships. Then, the BWNAR model is defined and the theoretical properties of QMLE 
are presented in this section. Finally, we give a test statistic based on the likelihood 
ratio to assess the heterogeneity of influence parameters. A Monte Carlo simulation 
and an empirical example of the detection of fraud in financial transactions are given 
in Sects. 3 and 4. Section 5 concludes this paper. The Supplementary Material con-
tains the theoretical proofs.

2  Methodology

2.1  Community detection

Before introducing the BWNAR model, the number of blocks and their memberships 
need to be determined in advance. However, in practice, prior information on the real 

(3)Y = WΛY + E,
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number of blocks and their memberships is usually unavailable. Hence, accurately esti-
mating k and their memberships from network is of crucial importance. In this article, 
we employ the recent theoretical framework from Ma et al. (2021) to consistently esti-
mate the number of blocks and their memberships in a network when the network’s 
node degrees follow a power-law distribution (see, e.g., Kolaczyk 2009). To avoid 
causing any confusion, we next adopt the “community” term to replace “block” in this 
section.

To introduce the procedure of Ma et  al. (2021), we first explain the degree-cor-
rected stochastic block model (DCSBM) proposed by Karrer and Newman (2011). 
Let A = (aij) ∈ ℝ

n×n be the adjacency matrix generated by a DCSBM with actual k 
communities. Specifically, let C = (C1,⋯ ,Ck) ∈ ℝ

k be the community label and 
Z = (Zir) ∈ ℝ

n×k be a matrix reflecting the true community memberships of each 
node, where Zir = 1 if node i belongs to Cr for r = 1,⋯ , k , and Zir = 0 otherwise. 
Define B = (Br1r2

) ∈ ℝ
k×k as symmetric block probability matrix where each entry 

Br1r2
∈ (0, 1] means the probability of connection between communities r1 and r2 for 

r1, r2 = 1,⋯ , k . Let Θ = diag{�1, �2,⋯ , �n} be nonnegative degree parameters. Then, 
the probability matrix of edges P = (Pij) ∈ ℝ

n×n is

where Pij = �i�jBr1r2
 represents the probability of edge between nodes i and j belong-

ing to communities Cr1
 and Cr2

 , respectively. That is, the edges between nodes i and 
j are chosen independently with probability depending on the communities to which 
nodes i and j belong.

Let di =
∑n

j=1
aij denote the degree of node i and d̄ =

∑n

i=1
di∕n be the average 

degree. Denote D = diag(d1 + d̄,… , dn + d̄) as the diagonal matrix with diagonal 
elements di + d̄ for i = 1,⋯ , n . As suggested in Ma et al. (2021), define the regular-
ized graph Laplacian matrix L = D−1∕2AD−1∕2 . Based on a standard spectral clustering 
approach of the first r eigenvectors of L and a binary segmentation (see, e.g., Wang and 
Su 2021) technique on its first r + 1 eigenvectors, we first obtain the estimators of mem-
bership matrices (Ẑr, Ẑb

r+1
) for each r = 1,⋯ , kmax . Here kmax denotes the pre-specified 

largest community number and the superscript “b” denotes the membership matrix that 
is estimated by binary segmentation. Then, we estimate the true number of communi-
ties, k, based on particular pseudo-LR that is to evaluate the deviance of goodness-of-fit 
of DCSBMs estimated with r and r + 1 communities, utilizing the (Ẑr, Ẑb

r+1
) . Specifi-

cally, let 

and the pseudo-LR R(r) is proposed as

(4)P = E(A) = ΘZBZ⊤Θ⊤,

(5)Ln(Ẑ
b
r+1

, Ẑr) =
1

2

∑
i≠j

(
P̂ij(Ẑ

b
r+1

)

P̂ij(Ẑr)
− 1

)2

,
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where P̂ij(Z) is the estimator of Pij for a given membership matrix Z, �n = c�n
2 

and c� = 0.05 as suggested in Ma et al. (2021). The estimated community number 
k̂ = min(r̂1, r̂2) , where r̂1 = argmin1≤r≤kmaxR(r) and r̂2 is the smallest r such that 
R(r) ≤ d̄−1∕2. The consistency of the estimated community number k̂ and their 
memberships were established in Ma et  al. (2021). Accordingly, in the remainder 
article, we assume the community number and their memberships are given prior.

2.2  Blockwise network autoregressive model

In this section, we introduce our Blockwise Network Autoregressive (BWNAR) 
model. We assume the n network nodes can be decomposed into k nonoverlapping 
blocks C1,⋯ , Ck . For each node i, gi denotes its block label, i.e., gi = r as long as 
i ∈ Cr . C1,⋯ , Ck and g1,⋯ , gn are all assumed given in this section. Accordingly, 
the BWNAR model is

where �gj = �r is the influence parameter of block r for 1 ≤ r ≤ k , Xi = (Xi1,⋯ ,Xip)
⊤ 

are p-dimensional covariates of node i, and 𝛽 = (𝛽1,⋯ , 𝛽p)
⊤ ∈ ℝ

p×1 are unknown 
influence parameters. Let Y = (y1,⋯ , yn)

⊤ ∈ ℝ
n×1 and X = (xil) ∈ ℝ

n×p for 
i = 1,⋯ , n and l = 1,⋯ , p be the response and p-dimensional covariates, respec-
tively. Then,

where Λ = diag {�g1 ,⋯ , �gn} ∈ ℝ
n×n , and E = (𝜀1,⋯ , 𝜀n)

⊤ ∈ ℝ
n×1 are distributed 

with mean 0 and covariance �2In , where In ∈ ℝ
n×n is the identity matrix of dimen-

sion n. The estimation of � and �1,⋯ , �k for different blocks are given in next sec-
tion. By utilizing this influence measures, we can identify what kind of blocks pos-
sessing higher network interaction effects.

2.3  Quasi‑maximum likelihood estimation

Since we do not assume the specific distribution on the disturbance E in BWNAR 
model (8), we employ quasi-maximum likelihood estimation (QMLE, Lee 
2004) to estimate the parameters in this section. Let 𝜆 = (𝜆1,⋯ , 𝜆k)

⊤ ∈ ℝ
k×1 , 

S(�) = In −WΛ and E(�, �) = S(�)Y − X� . Then, the normal log-likelihood func-
tion of (8) is

(6)R(r) =

⎧
⎪⎨⎪⎩

Ln(Ẑ
b
r+1

,Ẑr)

𝜂n
r = 1

Ln(Ẑ
b
r+1

,Ẑr)

Ln(Ẑ
b
r
,Ẑr−1)

r ≥ 2
,

(7)yi =

n∑
j=1

wij𝜆gjyj + X⊤
i
𝛽 + 𝜀i,

(8)Y = WΛY + X� + E,
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where 𝜃 = (𝛽⊤, 𝜆⊤, 𝜎2)⊤ ∈ ℝ
p+k+1 is the vector form of parameters and its true value 

is denoted as 𝜃0 = (𝛽⊤
0
, 𝜆⊤

0
, 𝜎2

0
)⊤ . We next adopt the concentrated quasi-likelihood 

approach by concentrating out � and �2 . Given � , the QMLE of � and �2 is

where M = In − X(X⊤X)−1X⊤ . The concentrated log likelihood function of � is

The quasi-maximum likelihood estimation of � is given via �̂� = argmaxλln�(𝜆) . 
Finally, we obtain the QMLE of � and �2 , which are 𝛽 = 𝛽(�̂�) and �̂�2 = �̂�2(𝛽(�̂�), �̂�) , 
respectively. In the following, we use generic notation (gt1,t2 )T1×T2 to denote a matrix 
that has dimensions T1 × T2 and whose (t1, t2)-th element is gt1,t2 for t1 = 1,⋯ , T1 and 
t2 = 1,⋯ , T2 . Before establishing the asymptotic distribution of �̂� , we first introduce 
some notations and equations. For r1, r2 = 1,⋯ , k , the Fisher information matrix of 
(9) is

where

Since the random error vector in model (8) is assumed to be distributed with mean 
0 and covariance �2In , the third and fourth moments, �s = E(�s

i
) for s = 3, 4 , are 

needed and will be involved in the asymptotic distribution of �̂� . Let “ ◦ ” be the Had-
amard product of matrices, Xl be the l-th column of X and en = (1,⋯ , 1)⊤ ∈ ℝ

n . 
Then, the matrix Ωn(�0,�

3,�4) is set to be

(9)

ln�(𝜃) = −
n

2
ln(2𝜋) −

n

2
ln(𝜎2) + ln |S(𝜆)| − 1

2𝜎2
(S(𝜆)Y − X𝛽)⊤(S(𝜆)Y − X𝛽),

𝛽(𝜆) =(X⊤X)−1X⊤S(𝜆)Y ,

�̂�2(𝛽(𝜆), 𝜆) =
1

n
E
⊤(𝜆, 𝛽(𝜆))E(𝜆, 𝛽(𝜆)) =

1

n
Y⊤S⊤(𝜆)MS(𝜆)Y ,

ln�(𝜆) = −
n

2
−

n

2
ln(2𝜋) −

n

2
ln �̂�2(𝛽(𝜆), 𝜆) + ln |S(𝜆)|.

(10)In(𝜃0) ∶= −E

�
1

n

𝜕2 ln�(𝜃0)

𝜕𝜃𝜕𝜃⊤

�
=

⎛⎜⎜⎝

(n𝜎2
0
)
−1
X⊤X I𝛽𝜆,n 0p×1

I𝜆𝛽,n I𝜆𝜆,n I𝜆𝜎2,n

01×p I𝜎2𝜆,n (2𝜎4
0
)
−1

⎞⎟⎟⎠
,

I𝛽𝜆,n = (n𝜎2
0
)−1

{
X⊤WΛ𝜆1

S−1(𝜆0)X𝛽0,⋯ ,X⊤WΛ𝜆k
S−1(𝜆0)X𝛽0

}
, I𝛽𝜆,n = I⊤

𝜆𝛽,n
,

I𝜆𝜆,n = n−1
(
tr
{
WΛ𝜆r1

S−1(𝜆0)WΛ𝜆r2
S−1(𝜆0)

}

+ tr
{
WΛ𝜆r1

S−1(𝜆0)(WΛ𝜆r2
S−1(𝜆0))

⊤
}

+ 𝜎−2
0
(WΛ𝜆r1

S−1(𝜆0)X𝛽0)
⊤
WΛ𝜆r2

S−1(𝜆0)X𝛽0

)

k×k

,

I𝜆𝜎2,n = (n𝜎2
0
)−1

{
tr(WΛ𝜆1

S−1(𝜆0)),⋯ , tr(WΛ𝜆k
S−1(𝜆0))

}⊤
, I𝜆𝜎2,n = I⊤

𝜎2𝜆,n
.
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where

Then, the covariance matrix of 1√
n

�ln�(�0)

��
 is

The asymptotic distribution of �̂� is given in the following theorem.

Theorem 1 Under Conditions (C1)–(C8) in Supplementary Material S.2, as n → ∞ , 
we obtain that

where I(�0) = lim
n→∞

In(�0) and Ω(�0,�
3,�4) = lim

n→∞
Ωn(�0,�

3,�4) , I(�0) and 
Ω(�0,�

3,�4) are positive definite matrices. If �′

i
s are normally distributed, then √

n(�̂� − 𝜃0)
d
−→ N(0, I−1(𝜃0)).

Since both I(�0) and Ω(�0,�3,�4) are unknown, we then need to seek consistent 
estimators to make Theorem  1 available. By I(�0) = lim

n→∞
In(�0) and 

Ω(�0,�
3,�4) = lim

n→∞
Ωn(�0,�

3,�4) , In(�̂�) and Ωn(�̂�, �̂�
3, �̂�4) can be used consistently 

as the estimators of I(�0) and Ω(�0,�3,�4) , respectively, where �̂�s = n−1
∑n

i=1
�̂�s
i
 

for s = 3, 4 . In reality, for more accurate estimation of the covariance of �̂� with 
finite sample, we propose a spatial bootstrap procedure in BWNAR model. Simi-
lar procedure was adopted for the inference of spatial autoregressive (SAR) mod-
els (see, e.g., Anselin 1988, 1990). Let Λ̂ and 𝛽  be the QMLE of Λ and � , Ê be the 
estimated residuals via Ê = (In −WΛ̂)Y − X𝛽  . A bootstrap replication of Y is then 

Ωn(�0,�
3,�4) =

⎛
⎜⎜⎜⎝

0p×p Ω��,n 0p×1
Ω��,n Ω��,n Ω��2,n

01×p Ω�2�,n

�4−3�4
0

4�8
0

⎞
⎟⎟⎟⎠
,

Ω𝛽𝜆,n =
𝜇3

n𝜎4
0

(
tr
[
(Xle

⊤
n
)◦
{
WΛ𝜆r

S−1(𝜆0)
}])

p×k
,Ω𝜆𝛽,n = Ω⊤

𝛽𝜆,n
,

Ω𝜆𝜆,n =
(𝜇4 − 3𝜎4

0
)

n𝜎4
0

(
tr
[{

WΛ𝜆r1
S−1(𝜆0)

}
◦

{
WΛ𝜆r2

S−1(𝜆0)
}])

k×k

+
𝜇3

n𝜎4
0

(
tr
[{

WΛ𝜆r1
S−1(𝜆0)X𝛽0e

⊤
n

}
◦

{
WΛ𝜆r2

S−1(𝜆0)
}])

k×k

+
𝜇3

n𝜎4
0

(
tr
[{

WΛ𝜆r2
S−1(𝜆0)X𝛽0e

⊤
n

}
◦

{
WΛ𝜆r1

S−1(𝜆0)
}])

k×k
,

Ω𝜆𝜎2,n =
1

2n𝜎6
0

[
𝜇3e⊤

n
WΛ𝜆r

S−1(𝜆0)X𝛽0 + (𝜇4 − 3𝜎4
0
)tr(Λ𝜆r

S−1(𝜆0))
]
k×1

, Ω𝜎2𝜆,n = Ω⊤
𝜆𝜎2,n

.

(11)cov

�
1√
n

�ln�(�0)

��

�
= In(�0) +Ωn(�0,�

3,�4).

√
n(�̂� − 𝜃0)

d
−→ N(0, I−1(𝜃0) + I−1(𝜃0)Ω(𝜃0,𝜇

3,𝜇4)I−1(𝜃0)),
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constructed from a set of randomly sampled residuals (with replacement) in con-
junction with the estimated parameters:

where Ê
∗
 is a vector of re-sampled residuals from Ê . The bootstrap resample of �̂� can 

be obtained from QMLE by using the re-sampled response Y∗ , weight matrix W and 
covariates X. With a total of Q replications, we can estimate the covariance of �̂� via ∑Q

q=1
(�̂�∗q − �̄�∗)(�̂�∗q − �̄�∗)⊤∕(Q − 1) , where �̂�∗q is the q-th bootstrap resample of �̂� 

and �̄�∗ =
∑Q

q=1
�̂�∗q∕Q.

2.4  Test for network coefficients

Given the parameter estimator of � and its asymptotic property, we next give the 
hypothesis test to examine the effect of different influence coefficients of blocks. To 
this end, we consider the following null and alternative hypotheses:

Obviously, failure to reject the null hypothesis suggests that the NAR model and its 
associated estimators and properties can be considered. There are three classic large 
sample tests (Wald, Lagrange multiplier, and likelihood ratio test) under the QMLE 
framework. We consider the likelihood ratio test (LR) here. Given �̂� = (𝛽⊤, �̂�⊤, �̂�2)⊤ , 
we obtain the estimated quasi-log-likelihood function ln�(�̂�) = ln�(𝛽⊤, �̂�⊤, �̂�2) . 
Under the null hypothesis of H0 ∶ �1 = ⋯ = �k = �c , we also obtain the constrained 
QMLE, 𝜃 = (𝛽⊤, �̃�⊤, �̃�2)⊤ , and its associated quasi-log-likelihood function ln�(𝜃) . 
Then, the LR test statistic compares the performance of the constrained and uncon-
strained specifications based on the likelihood ratio,

Before showing the theoretical property of LR , we introduce additional nota-
tions and equations as below. We slightly arrange the notation 𝜃 =

(
𝛽⊤, 𝜆⊤, 𝜎2

)⊤ to 
𝜃 =

(
𝜎2, 𝛽⊤, 𝜆⊤

)⊤
=
(
𝜃⊤
1
, 𝜃⊤

2

)⊤ , where 𝜃1 =
(
𝜎2, 𝛽⊤

)⊤ and 𝜃2 = 𝜆 =
(
𝜆1,⋯ , 𝜆k

)⊤ . 
Let R =

(
0(k−1)×(p+1),R1

)
 , where

rc = 0(k−1)×1 ∈ ℝ
(k−1)×1 . Then, the null hypothesis is equivalent to 

H0 ∶ R(�) = R� = rc , the asymptotic distribution of LR is given below.

Theorem  2 Assume that Conditions (C1)–(C8) in Supplementary Material S.2 hold. 
Under the null hypothesis H0 , the quasi-likelihood ratio test statistic LR is asymptotically 

(12)Y∗ = (In −WΛ̂)−1(X𝛽 + Ê
∗
),

(13)
H0 ∶ �1 = ⋯ = �k = �c

H1 ∶ �r1 ≠ �r2 for some r1, r2 = 1, 2,⋯ , k, and r1 ≠ r2.

LR = −2
[
ln�(𝜃) − ln�(�̂�)

]
.

R1 =

⎛⎜⎜⎜⎝

1 −1 0

0 1 −1
⋯

0 0 0

0 0 0

⋮ ⋱ ⋮

0 0 0 ⋯ 0 1 −1

⎞⎟⎟⎟⎠
(k−1)×k

,
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distributed as 
∑k−1

r=1
�r(�0,�

3,�4)X2
r
(1) as n → ∞ , where �r(�0,�3,�4) is the r-th largest 

eigenvalue of the matrix Π2 = I(𝜃0)
−1∕2R�(𝜃0)

⊤
[
R�(𝜃0)Σ

−1R�(𝜃0)
⊤
]−1

R�(𝜃0)I(𝜃0)
−1∕2 , 

Σ = I(�0) + Ω(�0,�
3,�4) and X2

r
(1) are independent Chi-squared random varia-

bles with degree of freedom 1 for r = 1,⋯ , (k − 1) . Furthermore, under the normal 
assumption of E , LR

d
−→ �2(k − 1).

Since �r(�0,�3,�4) is unknown, we can estimate it by 𝜆n,r(𝜃, �̃�3, �̃�4) , where 
𝜆n,r(𝜃, �̃�

3, �̃�4) is the r-th largest eigenvalue of the matrix Π̃2 . Note  
t|hat Π̃2 = (−Hn(𝜃))

−1∕2R�(𝜃)⊤[R�(𝜃)Σ̃−1R�(𝜃)⊤]−1R�(𝜃)(−Hn(𝜃))
−1∕2 , where 

Hn(𝜃) =
1

n

𝜕2lnL(𝜃)

𝜕𝜃𝜕𝜃⊤
 , Σ̃ = In(𝜃) + Ωn(𝜃, �̃�

3, �̃�4) and �̃�s = n−1
∑n

i=1
�̃�s
i
 for s = 3, 4 . In addi-

tion, by above equation and Condition (C8), −Hn(𝜃) , Ωn(𝜃, �̃�
3, �̃�4) and R�(𝜃) are con-

sistent estimators of I(�0) , Ω(�0,�3,�4) and R�(�0), respectively. However, the conver-
gence of LR to its asymptotic distribution may be slow, which may cause size distortion 
in reality. We can also adopt the bootstrap procedure for better approximation of the dis-
tribution LR under the null hypothesis H0 of (13). Similar to the bootstrap procedure 
outlined in Sect. 2.3 for covariance estimation, let Λ̃ and 𝛽  be the restricted QMLE of Λ 
and � under H0 , Ẽ be the restricted estimated residuals. The q-th bootstrap replication of 
response Y under H0 , denotes as Ỹ∗q that is generated via (12) with Λ̂ , 𝛽 and Ê replaced 
by Λ̃ , 𝛽  and Ẽ . Then the q-th bootstrap resample of LR , denoted as LR∗q , can be 
obtained by using Ỹ∗q , W and X. The process is replicated Q times and we can obtain the 
bootstrap estimate of the null distribution of LR via the empirical distribution of 
{LR∗q}

Q

q=1
 and the p-value 

∑Q

q=1
I{LR∗q > LR}∕Q , where I{⋅} is the indicator func-

tion. We reject the null hypothesis if the p-value is smaller than a significant level.
If we reject the null hypothesis of H0 that all �r s for r = 1,⋯ , k are equal, we can conduct 

the following procedure for making pairwise comparisons at the significance level � . First, 
we sort the �r s based on their estimators 𝜆r s. For illustration purpose, we assume 
�̂�1 > �̂�2 > ⋯ > 𝜆k . We then test the equality of �1 versus �j for 
  j = 2,⋯ , k sequentially, via the test statistic T1j = n1∕2(�̂�1 − 𝜆j)∕(e

⊤
1j
W(�̂�)e1j)

1∕2 , where 
W(�0) = I−1(�0) + I−1(�0)Ω(�0,�

3,�4)I−1(�0) is the asymptotic covariance of �̂� that 
defined in Theorem 1, and eij is a p + k + 1-dimensional vector that the i-th element is 1, the 
j-th element is -1 and other elements are 0. Under the null hypothesis of �1 = �j , by Theo-
rem 1, we can show that T1j converges to a standard normal distribution, and we reject the 
null hypothesis if T1j > z1−𝛼 , where z1−� represents the �-th upper quantile of a standard nor-
mal distribution. Let g1 be the smallest index that we reject the null hypothesis of �1 = �j . 
Then, g1 = argminj(T1j > z1−𝛼) and we know that �1,⋯ , �g1−1 are all equal. Subsequently, 
we focus on testing �g1 versus �j for j = g1 + 1,⋯ , k sequentially via the same procedure.

3  Simulation studies

In this section, we conduct simulations to evaluate the finite sample performance of 
our proposed method. The network adjacent matrix A = (aij) ∈ ℝ

n×n is generated by 
the R package randnet to implement the DCSBM. Specifically, the average degree 
is set as 20, the ratio of cross-block edges over within-block edges is 0, and the node 
degrees follow the power law distribution. Then, the weighting matrix W is set to be 
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wij = aij∕
∑n

j=1
aij for i, j = 1,⋯ , n . The corresponding block influence coefficients 

𝜆 = (𝜆1,⋯ , 𝜆k)
⊤ are generated from the uniform distribution U( 0, 1 ). In addition, 

in the covariate vector Xi = (xi1, xi2)
⊤ ∈ ℝ

2 , let xi1 ≡ 1 and xi2 be independent and 
identically generated from the standard normal distribution N( 0, 1 ) for i = 1,⋯ , n . 
Its corresponding regression parameters are 𝛽 = (2, 1)⊤ . The random errors are inde-
pendent and identically generated by two distributions: standard normal distribution 
N(0,  1) and mixture distribution 0.9N(0, 5∕9) + 0.1N(0, 5) . It is worth noting that 
the above model settings satisfy our technical Conditions (C1)–(C8) in Supplemen-
tary Material S.2. Finally, the response vector Y is generated from model (8).

For each setting, we consider three sample sizes and four block numbers: n = 
200, 500, 1000 and k = 1, 2, 3, 4 , respectively. Meanwhile, all simulations are con-
ducted via 1000 realizations. In addition, to assess the performance of parameter 
estimation, we define the vector estimator of �0 as �̂�(h) in the h-th realization. For 
each component of �̂�(h) , the averaged bias of �̂�(h)

j
 is BIAS = 1000−1

∑
h(�̂�

(h)

j
− 𝜃0,j) , 

the true standard deviation of �̂�(h)
j

 is SD = {1000−1
∑

h (�̂�
(h)

j
− 1000−1

∑
h �̂�

(h)

j
)
2
}
1∕2

 
and the root mean squared error is RMSE =

√
SD2 + BIAS2 . Let SE(h) be the esti-

mated standard error of �̂�(h)
j

 calculated with its asymptotic distribution of Theorem 1, 
then, the average of the estimated standard error is SE = 1000−1

∑
h SE

(h) . Let SE(Qh) 
be the estimated standard error of �̂�(h)

j
 by bootstrap calibration (Bootstrap) procedure 

outlined in Sect.  2.3, then, the average of the estimated standard error is 
SEQ = 1000−1

∑
h SE

(Qh).
Table  1 reports the BIAS, SD and RMSE of the QMLE via 1000 realizations 

when the distribution of error is a standard normal distribution. According to 
Table 1, we find that the values of BIAS and SD generally decrease for all param-
eter estimators and all four block numbers when the sample size n increases. It is 
not surprising that RMSE shows the same pattern. The above findings support our 
theoretical result that the QMLE is consistent and asymptotically normal. To dem-
onstrate the performance of bootstrap procedure in covariance matrix estimation, 
Table 1 also provides the estimation of the standard errors using both the asymptotic 
distribution (SE) and bootstrap calibration (SEQ) . It is observed that both the proce-
dures generate similar results, which echos the effectiveness of the bootstrap calibra-
tion in reality. Similarly, the QMLE also works well for mixture distribution of error 
depicted in Table 2.

We next assess the finite sample performance of the quasi-likelihood ratio 
test. Theoretically, the quasi-likelihood ratio test statistic LR is asymptoti-
cally weighted Chi-squared distribution with the weights �r(�0,�3,�4) under 
the null hypothesis. In order to conduct the test, we firstly generate the independ-
ent and identical random variables X2

r,h
 from the Chi-squared distribution with 

1 degree of freedom for r = 1,⋯ , (k − 1) and h = 1,⋯ , 10, 000 . Then, we can 
compute the p-value of the quasi-likelihood ratio test approximately by p-value = 
10000−1

∑
h I
�
LR <

∑k−1

r=1
𝜆n,r(𝜃, �̃�

3, �̃�4)X2
r,h

�
 , where 𝜆n,r(𝜃, �̃�3, �̃�4) is a consistent 

estimator of �r(�0,�3,�4) under the null hypothesis stated Theorem 2. However, the 
convergence of LR to weighted Chi-squared distribution can be slow when the sam-
ple size is small, we also employ the bootstrap testing procedure outlined at the end 
of Sect. 2.4.
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Furthermore, we evaluate the empirical sizes of the quasi-likelihood ratio test 
with the significance levels ranging from 0.01 to 0.30 and examine its empirical 
powers with the significance level 0.05. The empirical size and power are the per-
centages of rejections under H0 and H1 , respectively, via the hypothesis test (13) 
with 1000 realizations. Specifically, the empirical size is the percentage of rejections 
under the setting of �1 = �2 = �3 = �4 , while the empirical power is the percentage 
of rejections under the settings of (�1, �2, �3, �4) = (�1�, 2�1�, 3�1�, 4�1�) , where 
the signal strength 𝜌 > 0 . Figure 1 displays the empirical sizes of the proposed test 
using both the asymptotic distribution (QMLE) and bootstrap calibration (Bootstrap) 
procedures when the sample size n = 200 . We observe that the likelihood ratio test 
based on asymptotic distribution exhibits size distortion while the bootstrap calibra-
tion performs consistently well. In addition, under the mixture normal distribution, 
Fig. 2 depicts the powers of the likelihood ratio test with bootstrap calibration when 
the sample size n = 200, 500, and 1000 and k = 4. We note that, as the increase of 
the signal strength � and sample size n, the powers of the test will increase to 100%. 
The testing results under the other two random error distributions, yield similar find-
ings, so we do not present them here.

Fig. 1  The empirical sizes of the quasi-likelihood ratio test via asymptotic distribution (QMLE) and 
bootstrap calibration (Bootstrap) for the significance levels ranging from 0.01 to 0.30 when the sample 
size n = 200 , under the setting of k = 4 . The Benchmark represents the ideal case when the percentage of 
rejections from 1000 realizations is equal to the significance level. The independent and identically dis-
tributed random errors are simulated from mixture normal distribution 0.9N(0, 5∕9) + 0.1N(0, 5)
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4  Real data analysis

4.1  Data description

To study the effectiveness of the BWNAR model, we consider an application for 
detecting financial frauds, such as loan fraud, credit card fraud and insurance fraud, 
which cause serious consequences in the financial sector. Historically, a large num-
ber of studies had focused on the influence of the attributes of borrowers on fraud 
(see, e.g., Kirkos et al. 2005; Gao and Ye 2007; Panigrahi et al. 2009; Ravisankar 
et  al. 2011; Xu et  al. 2015; Dai et  al. 2016; Malini and Pushpa 2017). Recently, 
some studies revealed that the performance of identifying fraud is improved by com-
bining machine learning and complex networks (see, e.g., Zanin et  al. 2018; Sad-
gali et al. 2019). Unlike the above research, we investigate loan fraud by simultane-
ously considering the network and covariate attributes of borrowers. Specifically, we 
assume that loan fraud tends to occur within professional fraud groups. That is, there 
is a block structure in the network.

In this dataset, information on fraud loans is collected from an internet lending 
platform in China, where borrowers with incomplete information and those who 
have not applied for loans are omitted. This results in a total of n = 5083 borrow-
ers. Next, to efficiently identify the groups of fraud borrowers in the network, we 
construct an adjacency matrix A = (aij) ∈ ℝ

n×n via defining aij = 1 if borrowers i 
and j have the same register phone number or bank card, or have called or sent mes-
sages to each other, and aij = 0 otherwise. Hence, there are 31, 774 edges and the 

Fig. 2  The empirical powers of the quasi-likelihood ratio test by using bootstrap calibration at a 
nominal level of 0.05 under the setting of k = 4 with the sample size n = 200, 500 and 1000, respec-
tively. The signal strengths � = 0.2, 0.4, 0.6, 0.8 and 1.0, which correspond to the settings of 
(�1, �2, �3, �4) = (�1�, 2�1�, 3�1�, 4�1�) , respectively. The independent and identically distributed ran-
dom errors are simulated from mixture normal distribution 0.9N(0, 5∕9) + 0.1N(0, 5)
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average degree is 12.5, where the degree of borrower i means the number of borrow-
ers j associated with borrower i. Furthermore, Fig. 3 shows the degree distribution 
of this network, which is right skewed and it approximately follows a power-law dis-
tribution. Finally, we consider the probability of default (PD) caused by fraud as the 
response, which is measured by the probability that the borrowers failed to repay the 
debt that has been overdue for more than 3 months. There are 845 borrowers with a 
high probability of default in this dataset. In addition, the 16 covariates are depicted 
in detail in Table 3 and are divided into 4 categories, and we segment variables with 
the weight of evidence (WOE) method.

4.2  Empirical results

Before we adopt our BWNAR model, we first employ the community detection 
method mentioned in Sect.  2.1 to determine the optimal number of blocks and 
their memberships of each block. The outcome is k̂ = 44 , which means 44 blocks 
exist in the dataset. Then, we fit the data by model (8) with the 44 blocks, and 
Tables 4 and 5 report the results of parameter estimators, their associated standard 
errors and t-statistics as well as the p-values. The standard errors of the estima-
tors are obtained by using both the asymptotic distribution (QMLE) and bootstrap 
calibration (Bootstrap) outlined in Sect. 2.3. We observe from Tables 4 and 5 that 
both procedures produce similar standard errors and p-values, which indicates 
that the Conditions (C1)–(C8) in Supplementary Material S.2 are reasonable for 
the data. In addition, the pairwise comparisons between �̂�r s for r = 1,⋯ , 44 at the 
significance level 0.05 show that all �̂�r s are significantly different.

From the results, we notice that, there are 8 significant covariates at 5% sig-
nificance level (Table 4). We discover that the top 3 factors, which are positively 
and significantly related to fraud risk, are the ID number of borrower in the loan 
blacklist, the borrowers’ loan application count at nonbank institutes in the last 

Fig. 3  Degree distribution of loan applicant network
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12 months and the grade of merchants. This implies that the borrowers have high 
repayment and default risk because they have applied to many financial compa-
nies. These findings are consistent with the intuition in real business scenarios.

For different blocks, we sort �̂�r s for r = 1,⋯ , 44 and obtain �̂�(1) ≥ ⋯ ≥ �̂�(44) . 
Figure  4 and Table  5 depict the sorted influences. Furthermore, Table  5 shows 
interesting findings, that the influential power of blocks is positive and signifi-
cantly related to the fraud risk. Specifically, the top 10 influential blocks have an 
average 24% fraud risk, while the last 10 have an average 9% . These findings are 
not surprising since a block has a greater influence, indicating that relationships 
between members in the block is complex, resulting in a higher fraud risk of the 
block.

To visualize the influential power, we explore the network structure in block 10 
representing the top 10 blocks that have high influential power and high risk and 
block 36 representing the last 10 blocks that have low influential power and low 
risk. Each node in Fig. 5 is a borrower. The left panel of Fig. 5 reveals the entire 
network structure with 129 borrowers with 6,  267 connections. It is obvious the 
block consists of two groups. The membership of each group has a larger degree, 
resulting in the node having a greater number of connections; that is, the borrower 
is more trustworthy. All borrowers may be attracted by good loans and internal 

Table 4  The estimation of the coefficient � , its standard error (SE), t-statistic and p-value in BWNAR 
model (8) for loan dataset. The standard errors are obtained via both asymptotic distribution (QMLE) 
and bootstrap calibration (Bootstrap)

Covariates QMLE Bootstrap

Estimate SE t-statistic p-value SE t-statistic p-value

AD_Bankcard_withdraw_amt_
m12

0.0328 0.0386 0.8486 0.1981 0.0353 0.9281 0.1767

AD_Income − 0.0020 0.0219 − 0.0899 0.4642 0.0187 − 0.1055 0.4580
AD_Phone_bill_m5 − 0.3892 0.1381 − 2.8192 0.0024 0.1162 − 3.3493 0.0004
CH_hit_p2p_bad_loan_list 0.7554 0.3586 2.1069 0.0176 0.3342 2.2608 0.0119
CH_loan_apply_cnt_m3 − 0.0568 0.0235 − 2.4162 0.0079 0.0205 − 2.7732 0.0028
CH_loan_apply_cnt_nonbank_m12 0.1195 0.0238 5.0198 0.0000 0.0226 5.3008 0.0000
CH_loan_apply_cnt_nonbank_m3 0.0060 0.0359 0.1671 0.4337 0.0319 0.1879 0.4255
CH_loan_apply_org_cnt_non-

bank_m12
0.0465 0.0327 1.4201 0.0778 0.0296 1.5689 0.0584

SI_phone_contact_no 0.0612 0.0213 2.8805 0.0020 0.0185 3.3134 0.0005
SI_phone_contact_workmate_

no_m3
0.0624 0.0262 2.3791 0.0087 0.0228 2.7408 0.0031

SI_phone_nonactive_time 0.0291 0.0215 1.3560 0.0876 0.0184 1.5799 0.0571
SI_phone_used_time − 0.0160 0.0159 − 1.0065 0.1571 0.0142 − 1.1303 0.1292
LN_loan_amount 0.0130 0.0122 1.0675 0.1429 0.0089 1.4536 0.0731
LN_merchant_type 0.0190 0.0162 1.1684 0.1214 0.0143 1.3251 0.0926
LN_merchent_grade 0.0672 0.0172 3.9046 0.0000 0.0152 4.4158 0.0000
LN_pct_down_payment 0.0432 0.0095 4.5450 0.0000 0.0085 5.1095 0.0000
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recommendations. The connections presented in the right panel reveal that the bor-
rowers are from a large block but do not know each other.

In short, the best strategy is to lend the loan to borrowers who are connected with 
the most influential blocks rather than noninfluential blocks. That is, we effectively 
identify fraud borrowers by our BWNAR model.

Fig. 4  The scatter plots of network influence coefficients for the 44 blocks

Fig. 5  The network structures of community 36 (left) and community 10 (right)
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5  Conclusion

In this work, we proposed the BWNAR model, which divides nodes into nonoverlap-
ping blocks to analyze a network with blockwise structure. The number of blocks and 
their memberships in the network were first determined. Then, QMLE was employed 
to estimate the parameters of BWNAR model, and the asymptotic properties of esti-
mators were investigated. Third, to confirm the heterogeneity of the influence param-
eters, a novel test statistic was proposed. Finally, we illustrated the performance of the 
BWNAR model via simulation studies and an application of the detection of fraud in 
financial transactions. It was found that fraudulent groups have a risk relationship, but 
ordinary loan applicants do not, which is consistent with reality.

There are five interesting extensions of this work for future research. The first 
extension is to analyze a blockwise network simultaneously combining the influence 
of cross-block and within-block nodes. For the assumption of non-overlapping group-
ing, the statement that the nodes are grouped into overlapping blocks is second exten-
sion. Developing a fast algorithm with theoretical justification is the third extension, 
for getting rid of the predicament of slow calculation of QMLE in the larger network. 
Fourth, a whole procedure to simultaneously estimate the group numbers together 
with its memberships and the model parameters is a further extension for the subop-
timal but simple two-step method. The last extension is to generalize the BWNAR 
model to a dynamic blockwise network. We believe that these efforts are valuable and 
worth further investigation in order to broaden the application of the BWNAR model.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10463- 022- 00822-w.
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