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Abstract

This paper proposes a blockwise network autoregressive (BWNAR) model by
grouping nodes in the network into nonoverlapping blocks to adapt networks with
blockwise structures. Before modeling, we employ the pseudo likelihood ratio cri-
terion (pseudo-LR) together with the standard spectral clustering approach and a
binary segmentation method developed by Ma et al. (Journal of Machine Learning
Research, 22, 1-63, 2021) to estimate the number of blocks and their memberships,
respectively. Then, we acquire the consistency and asymptotic normality of the esti-
mator of influence parameters by the quasi-maximum likelihood estimation method
without imposing any distribution assumptions. In addition, a novel likelihood ratio
test statistic is proposed to verify the heterogeneity of the influencing parameters.
The performance and usefulness of the model are assessed through simulations and
an empirical example of the detection of fraud in financial transactions, respectively.

Keywords Blockwise network autoregressive model - Blockwise structure -
Community detection - Likelihood ratio test - Quasi-maximum likelihood estimation

1 Introduction

The network autoregressive (NAR) model reflects the network interaction effect
through the dependence between nodes to effectively solve complex network
problems (see, e.g., Wang et al. 2012; Kass-Hout and Alhinnawi 2013). In recent
years, due to the diversification of network data, the model has been extended
by a series of academic researchers for improving its practicability and applica-
bility (see, e.g., Moscone et al. 2017; Huang et al. 2020; Zhu et al. 2020; Zou
et al. 2021). In addition, an increasing number of fields are using data possessing
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network structure, and the model has gained great popularity in various fields
(see, e.g., Lin and Weinberg 2014; Fracassi 2017; Chen et al. 2018; Cohen—Cole
et al. 2018).

To explore the influence effect between the network nodes, a large-scale net-
work is assumed with n nodes. The adjacency matrix A = (a;) € R™" represents
the network structure, where a; = 1if node i and node j are connected and a; = 0
otherwise. For completeness, we also define a; = 0 for i = 1, ---, n. Moreover, let
y; be the response collected from node i. Then, for illustration purpose, we intro-
duce the pure NAR model as

n
i = Azwijyj+€i’ e

J=1

where 4 > 0 is the influence parameter, w; = a;/ Z;;l a; and g, is the random error
fori,j =1, ---,n. Meanwhile, its matrix form is

Y = AWY + &, 2

where Y = (y;,,y,)T € R W= (w;) ER™ and &= (g, - ,e,)T € R™L
Obviously, the pure NAR model takes the connected relationships between nodes
into consideration and Aw;y; represents the influence of node j on node i in the net-
work. Specifically, 4 represents the common influence coefficient and w;; reflects the
strength of the connection between nodes j and i. Thus, nodes that are closer to one
node are more influential than those that are farther away.

The NAR model is widely used, but it has the limitation of assuming that
every node has the same influence in the network. In model (1), all nodes share
a common influence parameter 4. However, in practice, different nodes may have
different influences on a node in the network (see, e.g., Zhu et al. 2020; Zou et al.
2021). That is, A becomes /lj in the model (1) for j=1,---,n, which increases
the number of influence parameters of the model from one to n. When r is large
enough, it is inestimable, hence some structures are needed to impose on /ljs. A
natural choice is the popularly assumed blockwise structure of the large network
(see, e.g., Durlauf and Young 2001; Blume et al. 2015; Moscone et al. 2017).
Specifically, the blockwise structure of the network refers to nodes partitioned
into nonoverlapping blocks, where nodes have higher influence for others in the
same block and have little or no effect on the nodes of other blocks. This is rea-
sonable since the nodes of the network can always be grouped according to their
attributes. We next provide some examples to reflect this fact. Individuals submit-
ting similar social information when applying for a loan can be grouped together
because they are more likely to know each other; individuals from one company
can be grouped together because they have similar working experience; compa-
nies belonging to the same sector of economic activity and located within the
same geographic area can be grouped together since they face similar opportu-
nities and constraints. In other words, these examples represent many research-
meaningful networks possessing blockwise structures in real life. This structure
also exists in other networks, such as institutions (see, e.g., Moscone et al. 2017),
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neuroscience (see, e.g., Luo 2014) and biology (see, e.g., Hao et al. 2012). There-
fore, it is particularly significant to extend model (1) to adapt a network with
blockwise structure.

Motivated by this challenge, we propose a blockwise network autoregressive
(BWNAR) model in (8) by grouping the network nodes into nonoverlapping k
blocks. Corresponding to model (2), its pure form is

Y =WAY + &, 3)

where A = diag {4, ,, 4, } is the influence parameter matrix with g; € {1, -, k}
denoting the block label of node ifori=1,---,n and the detailed definition of other
terms is listed in Sect. 2.2. Hence, we notlceably observe that each node in the same
block shares an equal 4, for r = 1, ---, k, and different blocks are endowed with dis-
similar network influence parameters. In addition, the BWNAR model becomes a
NAR model when n nodes belong to a block. For the BWNAR model, we use a two-
step method to estimate its parameters. First, we determine the number of blocks
and their memberships using the pseudo-LR criterion together with the standard
spectral clustering approach and a binary segmentation method, respectively, since
Ma et al. (2021) has proven its consistency. Second, without imposing any distribu-
tion assumption on noise term, we adopt the quasi-maximum likelihood estimator
(QMLE) to estimate the parameters of blocks and establish its asymptotic proper-
ties. Moreover, we provide a test statistic to assess the heterogeneity of the influence
parameters 4, of different blocks and demonstrate its validity.

Our contribution is twofold. First, a blockwise network autoregressive model is
proposed and particularly exploited for networks with blockwise structure. In this
model, different network influence coefficients are allocated for different blocks, and
nodes belonging to the same block utilize the common network influence coefficient.
Second, we construct a novel test statistic based on the likelihood ratio and prove its
validity to assess the heterogeneity of the influence parameters 4,.

The rest of the paper is organized as follows. In Sect. 2, we firstly employ the
pseudo-LR criterion together with the standard spectral clustering approach and a
binary segmentation method to determine the number of blocks and their member-
ships. Then, the BWNAR model is defined and the theoretical properties of QMLE
are presented in this section. Finally, we give a test statistic based on the likelihood
ratio to assess the heterogeneity of influence parameters. A Monte Carlo simulation
and an empirical example of the detection of fraud in financial transactions are given
in Sects. 3 and 4. Section 5 concludes this paper. The Supplementary Material con-
tains the theoretical proofs.

2 Methodology
2.1 Community detection

Before introducing the BWNAR model, the number of blocks and their memberships
need to be determined in advance. However, in practice, prior information on the real
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number of blocks and their memberships is usually unavailable. Hence, accurately esti-
mating k and their memberships from network is of crucial importance. In this article,
we employ the recent theoretical framework from Ma et al. (2021) to consistently esti-
mate the number of blocks and their memberships in a network when the network’s
node degrees follow a power-law distribution (see, e.g., Kolaczyk 2009). To avoid
causing any confusion, we next adopt the “community” term to replace “block” in this
section.

To introduce the procedure of Ma et al. (2021), we first explain the degree-cor-
rected stochastic block model (DCSBM) proposed by Karrer and Newman (2011).
Let A = (a;) € R™" be the adjacency matrix generated by a DCSBM with actual k
communities. Specifically, let C = (Cy, -, C}) € R* be the community label and
Z =(Z;,) € R™ be a matrix reflecting the true community memberships of each
node, where Z;,. = 1 if node i belongs to C, for r =1, ---, k, and Z;. = 0 otherwise.
Define B = (B, ,,) € Rk as symmetric block probability matrix where each entry
B, . € (0,1] means the probability of connection between communities r; and r, for
ri,rp =1,k Let® = diag{6,, 6,, --- , 6, } be nonnegative degree parameters. Then,
the probability matrix of edges P = (P) e IR”X"

P=EA)=0ZBZ'O", “)

where P; = 6,0;B, . represents the probability of edge between nodes i and j belong-
ing to communltles C -, and C, , respectively. That is, the edges between nodes i and
Jj are chosen independently with probability depending on the communities to which
nodes i and j belong.

Let d; = Z _, a;; denote the degree of node i and d = z d;/n be the average
degree. Denote D dlag(d ,+d,....d, +d) as the diagonal matrlx with diagonal
clements d; +d fori=1,---,n. As suggested in Ma et al. (2021), define the regular-
ized graph Laplacian matrix L = D~'2AD~'/2, Based on a standard spectral clustering
approach of the first r eigenvectors of L and a binary segmentation (see, e.g., Wang and
Su 2021) technique on its first r + 1 eigenvectors, we first obtain the estimators of mem-
bership matrices (Z,., Zf ) foreachr =1, k,,,,. Here k,,,, denotes the pre-specified
largest community number and the superscript “b” denotes the membership matrix that
is estimated by binary segmentation. Then, we estimate the true number of communi-
ties, k, based on particular pseudo-LR that is to evaluate the deviance of goodness-of-fit
of DCSBMs estimated with » and r + 1 communities, utilizing the (Z,, Zf o ). Specifi-

cally, let

Pty \
LG 2)=+ ~1), 5
i ?) ;( Pyz,) > ©

and the pseudo-LR R(r) is proposed as
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L,(2b

1)

r=1
R(r) = o s (6)
L (Zr+] ’) r Z 2
L (ZV Z,,l)

where P ;/(Z) is the estimator of P; for a given membership matrix Z, n, = c,1n2
and ¢, = 0 05 as suggested in Ma et al. (2021). The estimated community number
k= mln(r],rz) where 7, = argmin, ., ‘R(r) and 7, is the smallest r such that
R(r) < d~'/%. The consistency of the estimated community number k and their
memberships were established in Ma et al. (2021). Accordingly, in the remainder

article, we assume the community number and their memberships are given prior.

2.2 Blockwise network autoregressive model

In this section, we introduce our Blockwise Network Autoregressive (BWNAR)
model. We assume the n network nodes can be decomposed into k nonoverlapping
blocks C,, ---, C;. For each node i, g; denotes its block label, i.e., g; = r as long as
ieC,.Cy,,C,and g,-,g, are all assumed given in this section. Accordingly,
the BWNAR model is

ZWU Ay + X P+ e, (7

where /lgj = A, 1s the influence parameter of block rfor1 <r <k, X; = (X;;, -+ ,Xip)T

are p-dimensional covariates of node i, and g = (f,, -, ﬁp)T € RP*! are unknown
influence parameters. Let Y = (y;,-,y,)" € R™ and X = (x;) € R™ for
i=1,---,nand [ =1,---,p be the response and p-dimensional covariates, respec-

tively. Then,
Y = WAY + Xp + €, ®)

where A = diag {4, ,,4, } € R™", and £ = (g, ,€,)" € R™! are distributed
with mean 0 and covariance 0'21 where I, € R™" is the identity matrix of dimen-
sion n. The estimation of f and /11 , -+, A for different blocks are given in next sec-
tion. By utilizing this influence measures, we can identify what kind of blocks pos-
sessing higher network interaction effects.

2.3 Quasi-maximum likelihood estimation

Since we do not assume the specific distribution on the disturbance £ in BWNAR
model (8), we employ quasi-maximum likelihood estimation (QMLE, Lee
2004) to estimate the parameters in this section. Let 4 = (4;, -, 4,)7 € R¥
S(A) =1,— WA and &4, f) = S(A)Y — Xp. Then, the normal log-likelihood func-
tion of (8) is
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In£(0) = —g In27) — g In(62) + In |S(A)| — ﬁ(su)y — XA (S(DY — Xp),
9

where § = (87, AT, 6%)T € RP***1is the vector form of parameters and its true value
is denoted as 6, = (ﬂOT , Al,62)T. We next adopt the concentrated quasi-likelihood
approach by concentrating out # and 62. Given 4, the QMLE of f and 62 is

) =X"X)'XTS(A)Y,
&2((A), A) =%€T(A, BONEQ, (A)) = %YTSW)MS(A)Y,

where M = I, — X(X"X)™'X". The concentrated log likelihood function of 4 is

In#(}) = _E - —1 Qr)— = ln 82(B(A), 1) +1n|S(A)|.

The quasi-maximum likelihood estimation of 4 is given via 1 = argmax, InZ(4).
Finally, we obtain the QMLE of g and o2, which are § = f(4) and 62 = 62((1), A),
respectively. In the following, we use generic notation (g, , )7, xr, to denote a matrix
that has dimensions 7} X T, and whose (;, #,)-th element is g, for t; =1,---,T)and
t, =1,---,T,. Before establishing the asymptotic distribution of 0, we first introduce
some notations and equations. For ry,r, = 1, -, k, the Fisher information matrix of
) is

L6y :=— 50007 Lign Livw Leoan | (10)

241
<1azln£(00)> (o) XX L O
Oy Loan 2097

where

Lpsn = (6) " {XTWA, ST (A)X By, -+ . XTWA, ST )X By} 1gi =115,

Lo =0 (”’{ WA, s (A)WA;, 571 (A) }
+ tr{ WA, S (WA, S (Ag)" }
! 3

+ 0,2 (WA, S~ ()X By WA, S (/IO)X[J()) ,
kxk

L2, = (nog) " {or(WA,; S (49)), -+ ,tr(WAAkS‘l(/lo))}T, Loz =102,
Since the random error vector in model (8) is assumed to be distributed with mean
0 and covariance 0'21 the third and fourth moments, y° = E(e‘) for s = 3,4, are
needed and will be involved in the asymptotic distribution of 4. Let “o” be the Had-
amard product of matrices, X, be the I-th column of X and e, = (1,-+,1)T € R,
Then, the matrix Q,,(,, 4>, u*) is set to be
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PXp
Q, 0y, 1%, 1"y = | apn i 94/162,"
where

3
Qpin =n”73(tr[(Xze,Do{WALS“Mo)}] ) e Lpn =0

o, ZM@[{ wa, 5o o { WA, s7Gn)]).

n(TO
L2 (o {5 ne] o w5},
+ n”—% (zr[{ WA, S Go)Xboe }o{ WA, S7 (o) }] )kxk,
Qi =5 0T WAL S G+ ' = 3000, 5™ o0 ot = X
Then, the covariance matrix of \}; 01[1;(90)
cov<%w> = 1,(00) + 9, (6. 1. 1. (an

The asymptotic distribution of @ is given in the following theorem.

Theorem 1 Under Conditions (C1)—(C8) in Supplementary Material S.2, as n — oo,
we obtain that

\/n(0 — 6,) L NO.T! (0) + 171 (00, 1>, uHI™' (B,)),

where 1(6,) = llm 1,0, and Q04 1, u*) = llm Q. 0y, 1, u*), 10, and

Q0. 13, u*) dare posmve definite matrices. If 6 s are normally distributed, then
/10 — 63) — N(O,17'(8,)).

Since both I(6,) and €(6,, 13, u*) are unknown, we then need to seek consistent
estimators to make Theorem 1 available. By 1(6,) = hm I,(6,) and
Q0. 13, ) = lim Q, (8, 1°, u*), 1,(0) and Q, (8, #°, 4*) can be used. consistently
as the estimators of 1(6,) and €(6,, w3, u*), respectively, where fi* = n 121‘:1 &
for s = 3,4. In reality, for more accurate estimation of the covariance of 6 with
finite sample, we propose a spatial bootstrap procedure in BWNAR model. Simi-
lar procedure was adopted for the inference of spatial autoregressive (SAR) mod-
els (see, e.g., Anselin 1988, 1990). Let A and § be the QMLE of A and f, £ be the
estimated residuals via &€ = (I, — WA)Y — Xf. A bootstrap replication of Y is then
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constructed from a set of randomly sampled residuals (with replacement) in con-
junction with the estimated parameters:

Y* =, - WA X+ &), (12)

where & is a vector of re-sampled residuals from &. The bootstrap resample of & can
be obtained from QMLE by using the re-sampled response Y*, weight matrix W and
covariates X. With a total of Q replications, we can estimate the covariance of 0 via
E(?:]_(é*q - é*)(?*q —6%)T/(Q — 1), where %4 is the g-th bootstrap resample of 0
and 0% = 32 6%1/Q.

2.4 Test for network coefficients

Given the parameter estimator of € and its asymptotic property, we next give the
hypothesis test to examine the effect of different influence coefficients of blocks. To
this end, we consider the following null and alternative hypotheses:

Hy: Aj==4=4,

H, : 4, #4,, forsomer,r,=12,-k andr; #r,. (13)
Obviously, failure to reject the null hypothesis suggests that the NAR model and its
associated estimators and properties can be considered. There are three classic large
sample tests (Wald, Lagrange multiplier, and likelihood ratio test) under the QMLE
framework. We consider the likelihood ratio test (LR) here. Given § = (7, AT, 62)7,
we obtain the estimated quasi-log-likelihood function InZ (9) = In? (ﬁT, iT, 82).
Under the null hypothesis of H, : 4; = --- = 4, = 4., we also obtain the constrained
QMLE, 0 = (f7,17,82)T, and its associated quasi-log-likelihood function InZ(8).
Then, the LR test statistic compares the performance of the constrained and uncon-
strained specifications based on the likelihood ratio,

LR = =2[In£(f) — In£(9)).

Before showing the theoretical property of LR, we introduce additional n(%ta-
tions and equations as below. We slightly arrange the notation 6 = ( AT, AT, 62) to
2 aT 4T\ T T oT\T 2 AT\ T T
0=(c%p",AT) =(67.0]) , where 6, = (6%, 87) and 0, = A= (A, &) .
LetR = (O(k—l)x(p+l)’Rl)’ where
1-10 000
R, = 0 1: -1 . O(:)O
000 -+ 01-1 =Dk
re=0g_pg € REDXL Then, the null hypothesis is equivalent to
H, : R(0) = RO = r,, the asymptotic distribution of LR is given below.

Theorem 2 Assume that Conditions (C1)—(C8) in Supplementary Material S.2 hold.
Under the null hypothesis H, the quasi-likelihood ratio test statistic LR is asymptotically
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distributed asz YA (0o, u, y4)X2(l)asn — 0o, where A, (0, 4>, u *Yis the r-th largest
ezgenvalue of the matrzx 2 = 1(60) 2R ()" [R’(HO)Z 1R’(@O) | lR’(GO)I(HO)‘l/Z,

T =1(6,) + Q6,, 1, u*) and X (1) are mdependent Chi-squared random varia-
bles with degree of fr%edom 1 for r=1,--,(k = 1). Furthermore, under the normal
assumption of €, LR — y*(k — 1).

Since Ar(GO, . u*) is unknown, we can estimate it by A,,(8, 73, i*), where
/lw(é, i%, fi*) is the r-th largest eigenvalue of the matrix [1%. Note
tlhat H2 = (=H,(0))~ 1/2R’(0)T[R’(0)2 lR’(G)T] 'R'(0)(—H,,(6))~'/, where
H,6) =" 2;;{;?, $=1,0)+Q,0, i, i*and 7 =n"! Z & for s = 3,4. In addi-
tion, by above equation and Cond1t10n (C8), —H (9) Q (9 4) and R’(0) are con-
sistent estimators of 1(6,), Q(6,, w3, u*) and R’ 6y), respectlvely. However, the conver-
gence of LR to its asymptotic distribution may be slow, which may cause size distortion
in reality. We can also adopt the bootstrap procedure for better approximation of the dis-
tribution £R under the null hypothesis H, of (13). Similar to the bootstrap procedure
outlined in Sect. 2.3 for covariance estimation, let A and f be the restricted QMLE of A
and g under Hy, € be the restricted estimated residuals. The g-th bootstrap replication of
response Y under H, denotes as Y*4 that is generated via (12) with A, § and 5 replaced
by A, f and . Then the g-th bootstrap resample of LR, denoted as LR™, can be
obtained by using ¥*9, W and X. The process is replicated Q times and we can obtain the
bootstrap estimate of the null distribution of LR via the empirical distribution of
{ER*q}Szl and the p-value Egzl I{LR* > LR}/Q, where I{-} is the indicator func-
tion. We reject the null hypothesis if the p-value is smaller than a significant level.

If we reject the null hypothesis of Hy that all A,s forr = 1, -+, k are equal, we can conduct
the following procedure for making pairwise comparisons at the significance level a. First,
we sort the A,s based on their estimators As. For illustration purpose, we assume
A > /12 -> 4. We then test the equality of A, versus A;  for

j= k sequentially, via the test statistic 7; = n'2(4, = 1, )/ (el W(49)elj)1/2 where
W(QO) =1 1(90) + 17100, 13, uHI'(8,) is the asymptotic covariance of 6 that
defined in Theorem 1, and e;;is a p + k + 1-dimensional vector that the i-th element is 1, the
Jj-th element is -1 and other elements are 0. Under the null hypothesis of 4, = 4;, by Theo-
rem 1, we can show that T'; converges to a standard normal distribution, and we reject the
null hypothesis if 7'y; > z,_,, where z, _,, represents the a-th upper quantile of a standard nor-
mal distribution. Let g, be the smallest index that we reject the null hypothesis of 4, = 4;.
Then, g, = argminy(7}; > z,_,) and we know that 4,, ---, 4, _, are all equal. Subsequently,

> 78
we focus on testing 4, versus 4;for j = g, + 1, -+, k sequentially via the same procedure.

3 Simulation studies

In this section, we conduct simulations to evaluate the finite sample performance of
our proposed method. The network adjacent matrix A = (a;) € R™" is generated by
the R package randnet to implement the DCSBM. Specifically, the average degree
is set as 20, the ratio of cross-block edges over within-block edges is 0, and the node
degrees follow the power law distribution. Then, the weighting matrix W is set to be
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1052 B. Xiao et al.

=a;/ 2] ya; fori,j=1,-,n. The corresponding block influence coefficients
()t], AT are generated from the uniform distribution U( 0, 1 ). In addition,
in the covariate vector X; = (x;,X;)" € R?, let x; = 1 and x,, be independent and
identically generated from the standard normal distribution N( 0, 1 ) fori =1, -+, n.
Its corresponding regression parameters are f = (2, 1)T. The random errors are inde-
pendent and identically generated by two distributions: standard normal distribution
N(O, 1) and mixture distribution 0.9N(0,5/9) + 0.1N(0, 5). It is worth noting that
the above model settings satisfy our technical Conditions (C1)—(C8) in Supplemen-
tary Material S.2. Finally, the response vector Y is generated from model (8).

For each setting, we consider three sample sizes and four block numbers: n =
200, 500, 1000 and k = 1,2, 3,4, respectively. Meanwhile, all simulations are con-
ducted via 1000 realizations. In addition, to assess the performance of parameter
estimation, we define the vector estimator of 6’2 as O™ in the h-th realization. For
each component of %, the averaged bias of 9( )is BIAS = 1000~ ¥, ( H(h) 0, )

the true standard deviation of 0( Vis SD = {1000~ ¥, (6" — 10007 ¥, 9(’”) }
and the root mean squared error is RMSE = 1/SD? + BIAS?2. Let SE® be the esti-
mated standard error of 6(}’) calculated with its asymptotic distribution of Theorem 1,
then, the average of the estlmated standard error is SE = 1000~" 3, SE®. Let SE/?”
be the estimated standard error of Q(h) by bootstrap calibration (Bootstrap) procedure
outlined in Sect. 2.3, then, the average of the estimated standard error is
SEQ = 1000~ 3, SE@".

Table 1 reports the BIAS, SD and RMSE of the QMLE via 1000 realizations
when the distribution of error is a standard normal distribution. According to
Table 1, we find that the values of BIAS and SD generally decrease for all param-
eter estimators and all four block numbers when the sample size n increases. It is
not surprising that RMSE shows the same pattern. The above findings support our
theoretical result that the QMLE is consistent and asymptotically normal. To dem-
onstrate the performance of bootstrap procedure in covariance matrix estimation,
Table 1 also provides the estimation of the standard errors using both the asymptotic
distribution (SE) and bootstrap calibration (SEQ). It is observed that both the proce-
dures generate similar results, which echos the effectiveness of the bootstrap calibra-
tion in reality. Similarly, the QMLE also works well for mixture distribution of error
depicted in Table 2.

We next assess the finite sample performance of the quasi-likelihood ratio
test. Theoretically, the quasi-likelihood ratio test statistic LR is asymptoti-
cally weighted Chi-squared distribution with the weights A,(6,, 4>, #*) under
the null hypothesis. In order to conduct the test, we firstly generate the independ-
ent and identical random variables )(Q from the Chi- squared distribution with
1 degree of freedom for r =1, - (k— 1) and A =1,---,10,000. Then, we can
compute the p-value of the qua51 hkehhood ratio test approximately by p-value =
10000~ X, I{LR < Z 4,0, @2, iHX7, ), where 4,,(0, 1%, i*) is a consistent
estimator of 4,(6,, u°, ;44) under the null hypothesis stated Theorem 2. However, the
convergence of LR to weighted Chi-squared distribution can be slow when the sam-
ple size is small, we also employ the bootstrap testing procedure outlined at the end
of Sect. 2.4.
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Blockwise network autoregressive model 1053

Furthermore, we evaluate the empirical sizes of the quasi-likelihood ratio test
with the significance levels ranging from 0.01 to 0.30 and examine its empirical
powers with the significance level 0.05. The empirical size and power are the per-
centages of rejections under Hy and H,, respectively, via the hypothesis test (13)
with 1000 realizations. Specifically, the empirical size is the percentage of rejections
under the setting of 4; = 4, = A; = A,, while the empirical power is the percentage
of rejections under the settings of (A, 45, A5, 44) = (4;p,24,p,34,p,44,p), where
the signal strength p > 0. Figure 1 displays the empirical sizes of the proposed test
using both the asymptotic distribution (QMLE) and bootstrap calibration (Bootstrap)
procedures when the sample size n = 200. We observe that the likelihood ratio test
based on asymptotic distribution exhibits size distortion while the bootstrap calibra-
tion performs consistently well. In addition, under the mixture normal distribution,
Fig. 2 depicts the powers of the likelihood ratio test with bootstrap calibration when
the sample size n = 200, 500, and 1000 and k = 4. We note that, as the increase of
the signal strength p and sample size n, the powers of the test will increase to 100%.
The testing results under the other two random error distributions, yield similar find-
ings, so we do not present them here.

45
40 D
35

30 S =

25 o
20 O A&

15 o

Percentage of Rejections(%)
ﬁL

10 o

0 0.05 0.1 0.15 0.2 0.25 0.3

Significance Level

--- Benchmark -0~ QMLE Bootstrap

Fig.1 The empirical sizes of the quasi-likelihood ratio test via asymptotic distribution (QMLE) and
bootstrap calibration (Bootstrap) for the significance levels ranging from 0.01 to 0.30 when the sample
size n = 200, under the setting of k = 4. The Benchmark represents the ideal case when the percentage of
rejections from 1000 realizations is equal to the significance level. The independent and identically dis-
tributed random errors are simulated from mixture normal distribution 0.9N(0,5/9) + 0.1N(0, 5)
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The empirical powers with bootstrap
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Fig.2 The empirical powers of the quasi-likelihood ratio test by using bootstrap calibration at a
nominal level of 0.05 under the setting of k = 4 with the sample size n = 200,500 and 1000, respec-
tively. The signal strengths p = 0.2, 0.4, 0.6, 0.8 and 1.0, which correspond to the settings of
(A1, Ay, Az, Ag) = (Ayp,24,p,34,p,44,p), respectively. The independent and identically distributed ran-
dom errors are simulated from mixture normal distribution 0.9N(0,5/9) + 0.1N(0, 5)

4 Real data analysis
4.1 Data description

To study the effectiveness of the BWNAR model, we consider an application for
detecting financial frauds, such as loan fraud, credit card fraud and insurance fraud,
which cause serious consequences in the financial sector. Historically, a large num-
ber of studies had focused on the influence of the attributes of borrowers on fraud
(see, e.g., Kirkos et al. 2005; Gao and Ye 2007; Panigrahi et al. 2009; Ravisankar
et al. 2011; Xu et al. 2015; Dai et al. 2016; Malini and Pushpa 2017). Recently,
some studies revealed that the performance of identifying fraud is improved by com-
bining machine learning and complex networks (see, e.g., Zanin et al. 2018; Sad-
gali et al. 2019). Unlike the above research, we investigate loan fraud by simultane-
ously considering the network and covariate attributes of borrowers. Specifically, we
assume that loan fraud tends to occur within professional fraud groups. That is, there
is a block structure in the network.

In this dataset, information on fraud loans is collected from an internet lending
platform in China, where borrowers with incomplete information and those who
have not applied for loans are omitted. This results in a total of n = 5083 borrow-
ers. Next, to efficiently identify the groups of fraud borrowers in the network, we
construct an adjacency matrix A = (a;) € R™" via defining a; = 1 if borrowers i
and j have the same register phone number or bank card, or have called or sent mes-
sages to each other, and a; = 0 otherwise. Hence, there are 31, 774 edges and the
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Blockwise network autoregressive model 1059

average degree is 12.5, where the degree of borrower i means the number of borrow-
ers j associated with borrower i. Furthermore, Fig. 3 shows the degree distribution
of this network, which is right skewed and it approximately follows a power-law dis-
tribution. Finally, we consider the probability of default (PD) caused by fraud as the
response, which is measured by the probability that the borrowers failed to repay the
debt that has been overdue for more than 3 months. There are 845 borrowers with a
high probability of default in this dataset. In addition, the 16 covariates are depicted
in detail in Table 3 and are divided into 4 categories, and we segment variables with
the weight of evidence (WOE) method.

4.2 Empirical results

Before we adopt our BWNAR model, we first employ the community detection
method mentioned in Sect. 2.1 to determine the optimal number of blocks and
their memberships of each block. The outcome is k= 44, which means 44 blocks
exist in the dataset. Then, we fit the data by model (8) with the 44 blocks, and
Tables 4 and 5 report the results of parameter estimators, their associated standard
errors and z-statistics as well as the p-values. The standard errors of the estima-
tors are obtained by using both the asymptotic distribution (QMLE) and bootstrap
calibration (Bootstrap) outlined in Sect. 2.3. We observe from Tables 4 and 5 that
both procedures produce similar standard errors and p-values, which indicates
that the Conditions (C1)—(C8) in Supplementary Material S.2 are reasonable for
the data. In addition, the pairwise comparisons between A s for r = 1, ---, 44 at the
significance level 0.05 show that all A s are significantly different.

From the results, we notice that, there are 8 significant covariates at 5% sig-
nificance level (Table 4). We discover that the top 3 factors, which are positively
and significantly related to fraud risk, are the ID number of borrower in the loan
blacklist, the borrowers’ loan application count at nonbank institutes in the last
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Fig. 3 Degree distribution of loan applicant network
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Blockwise network autoregressive model 1061

Table4 The estimation of the coefficient f, its standard error (SE), t-statistic and p-value in BWNAR
model (8) for loan dataset. The standard errors are obtained via both asymptotic distribution (QMLE)
and bootstrap calibration (Bootstrap)

Covariates QMLE Bootstrap

Estimate SE t-statistic  p-value SE t-statistic  p-value
AD_Bankcard_withdraw_amt_ 0.0328  0.0386 0.8486  0.1981 0.0353 0.9281  0.1767

ml2

AD_Income —0.0020 0.0219 —0.0899 0.4642 0.0187 —0.1055 0.4580
AD_Phone_bill_m5 —0.3892 0.1381 —2.8192 0.0024 0.1162 —3.3493 0.0004
CH_hit_p2p_bad_loan_list 0.7554 03586 2.1069  0.0176 0.3342 22608  0.0119
CH_loan_apply_cnt_m3 —0.0568 0.0235 —2.4162 0.0079 0.0205 -2.7732 0.0028

CH_loan_apply_cnt_nonbank_m12 0.1195  0.0238 5.0198  0.0000 0.0226 5.3008  0.0000
CH_loan_apply_cnt_nonbank_m3 0.0060  0.0359 0.1671  0.4337 0.0319 0.1879  0.4255

CH_loan_apply_org_cnt_non- 0.0465  0.0327 1.4201 0.0778 0.0296 1.5689  0.0584
bank_m12

SI_phone_contact_no 0.0612  0.0213 2.8805  0.0020 0.0185 3.3134  0.0005

SI_phone_contact_workmate_ 0.0624  0.0262 2.3791  0.0087 0.0228 2.7408  0.0031
no_m3

SI_phone_nonactive_time 0.0291  0.0215 1.3560  0.0876 0.0184 1.5799  0.0571

SI_phone_used_time —0.0160 0.0159 -1.0065 0.1571 0.0142 —-1.1303 0.1292

LN_loan_amount 0.0130  0.0122 1.0675  0.1429 0.0089 1.4536  0.0731

LN_merchant_type 0.0190 0.0162 1.1684  0.1214 0.0143 1.3251  0.0926

LN_merchent_grade 0.0672  0.0172 3.9046  0.0000 0.0152 4.4158  0.0000

LN_pct_down_payment 0.0432  0.0095 4.5450  0.0000 0.0085 5.1095  0.0000

12 months and the grade of merchants. This implies that the borrowers have high
repayment and default risk because they have applied to many financial compa-
nies. These findings are consistent with the intuition in real business scenarios.

For different blocks, we sort /Alrs for r =1, ---,44 and obtain im > e > /Al(44).
Figure 4 and Table 5 depict the sorted influences. Furthermore, Table 5 shows
interesting findings, that the influential power of blocks is positive and signifi-
cantly related to the fraud risk. Specifically, the top 10 influential blocks have an
average 24% fraud risk, while the last 10 have an average 9%. These findings are
not surprising since a block has a greater influence, indicating that relationships
between members in the block is complex, resulting in a higher fraud risk of the
block.

To visualize the influential power, we explore the network structure in block 10
representing the top 10 blocks that have high influential power and high risk and
block 36 representing the last 10 blocks that have low influential power and low
risk. Each node in Fig. 5 is a borrower. The left panel of Fig. 5 reveals the entire
network structure with 129 borrowers with 6, 267 connections. It is obvious the
block consists of two groups. The membership of each group has a larger degree,
resulting in the node having a greater number of connections; that is, the borrower
is more trustworthy. All borrowers may be attracted by good loans and internal
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Fig.4 The scatter plots of network influence coefficients for the 44 blocks
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Fig.5 The network structures of community 36 (left) and community 10 (right)

recommendations. The connections presented in the right panel reveal that the bor-
rowers are from a large block but do not know each other.

In short, the best strategy is to lend the loan to borrowers who are connected with
the most influential blocks rather than noninfluential blocks. That is, we effectively
identify fraud borrowers by our BWNAR model.
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5 Conclusion

In this work, we proposed the BWNAR model, which divides nodes into nonoverlap-
ping blocks to analyze a network with blockwise structure. The number of blocks and
their memberships in the network were first determined. Then, QMLE was employed
to estimate the parameters of BWNAR model, and the asymptotic properties of esti-
mators were investigated. Third, to confirm the heterogeneity of the influence param-
eters, a novel test statistic was proposed. Finally, we illustrated the performance of the
BWNAR model via simulation studies and an application of the detection of fraud in
financial transactions. It was found that fraudulent groups have a risk relationship, but
ordinary loan applicants do not, which is consistent with reality.

There are five interesting extensions of this work for future research. The first
extension is to analyze a blockwise network simultaneously combining the influence
of cross-block and within-block nodes. For the assumption of non-overlapping group-
ing, the statement that the nodes are grouped into overlapping blocks is second exten-
sion. Developing a fast algorithm with theoretical justification is the third extension,
for getting rid of the predicament of slow calculation of QMLE in the larger network.
Fourth, a whole procedure to simultaneously estimate the group numbers together
with its memberships and the model parameters is a further extension for the subop-
timal but simple two-step method. The last extension is to generalize the BWNAR
model to a dynamic blockwise network. We believe that these efforts are valuable and
worth further investigation in order to broaden the application of the BWNAR model.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10463-022-00822-w.
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