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Asymptotic Theory Proofs

In this Supplementary Material we provide the proofs of the theorems stated in the main manuscript. The
proofs rely on empirical process theory (van der Vaart & Wellner 1996; Kosorok 2008). Standard empirical
process theory notation is used throughout this Supplementary Material. Specifically, for any measurable
function f : D 7→ R, where D is the sample space, we define

Pnf =
1

n

n∑
i=1

f(Di),

and
Pf =

∫
D
fdP,

where P is the underlying true probability measure on the Borel σ-algebra on D.

Proof of Theorem 1

Under the null hypothesis H0 : P0,1hj(s, ·) = P0,2hj(s, ·), it follows that,√
n1n2

n1 + n2
Zn1,n2,hj(s) =

√
n1n2

n1 + n2

∫ τ

s

Ŵhj(t)
[
P̂n1,1hj(s, t)− P̂n2,2hj(s, t)

]
dµ(t)

−
√

n1n2

n1 + n2

∫ τ

s

Ŵhj(t) [P0,1hj(s, t)− P0,2hj(s, t)] dµ(t)

=

√
1− n1

n1 + n2

∫ τ

s

[
Ŵhj(t)−Whj(t)

]√
n1

[
P̂n1,1hj(s, t)− P0,1hj(s, t)

]
dµ(t)

+

√
1− n1

n1 + n2

∫ τ

s

Whj(t)
√
n1

[
P̂n1,1hj(s, t)− P0,1hj(s, t)

]
dµ(t)

−
√

n1

n1 + n2

∫ τ

s

[
Ŵhj(t)−Whj(t)

]√
n2

[
P̂n2,2hj(s, t)− P0,2hj(s, t)

]
dµ(t)

−
√

n1

n1 + n2

∫ τ

s

Whj(t)
√
n2

[
P̂n2,2hj(s, t)− P0,2hj(s, t)

]
dµ(t), (1)
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for any s ∈ [0, τ). By conditions C1-C6 and Theorem 2 in (Bakoyannis 2021)

√
np

[
P̂np,phj(s, t)− P0,phj(s, t)

]
=

√
npPnp

γphj(s, t) + ϵ(t), p = 1, 2, (2)

where supt∈[s,τ ] |ϵ(t)| = op(1), and the classes of functions

Fp = {γphj(s, t) : t ∈ [s, τ ]} , p = 1, 2,

are P -Donsker. These facts along with condition C7 lead to the conclusion that

sup
t∈[s,τ ]

∣∣∣[Ŵhj(t)−Whj(t)
]√

np

[
P̂np,phj(s, t)− P0,phj(s, t)

]∣∣∣ = op(1), p = 1, 2.

Therefore, by the assumption that
n1

n1 + n2
→ λ ∈ (0, 1),

as n1 ∧ n2 → ∞, it follows that√
1− n1

n1 + n2

∫ τ

s

[
Ŵhj(t)−Whj(t)

]√
n1

[
P̂n1,1hj(s, t)− P0,1hj(s, t)

]
dµ(t) = op(1)

and √
n1

n1 + n2

∫ τ

s

[
Ŵhj(t)−Whj(t)

]√
n2

[
P̂n2,2hj(s, t)− P0,2hj(s, t)

]
dµ(t) = op(1).

Next, the map ϕ : D[s, τ ] 7→ R, defined as

ϕ(θ) =

∫ τ

s

θ(t)dµ(t), θ ∈ D[s, τ ],

satisfies ∣∣∣∣ϕ(θ + tnhn)− ϕ(θ)

tn
−
∫ τ

s

h(t)dµ(t)

∣∣∣∣ ≤ sup
t∈[s,τ ]

|hn(t)− h(t)|(τ − s) → 0

for all sequences tn → 0 and supt∈[s,τ ] |hn(t)−h(t)| → 0 with θ+ tnhn ∈ D[s, τ ] for all n and, thus, this map
is Hadamard-differentiable at θ ∈ D[s, τ ] with derivative

ϕ′
θ(h) =

∫ τ

s

h(t)dµ(t).

Therefore, by (2), condition C7, the continuous mapping theorem, and the stronger assertion of the functional
delta method (van der Vaart & Wellner 1996), it follows that√

1− n1

n1 + n2

∫ τ

s

Whj(t)
√
n1

[
P̂n1,1hj(s, t)− P0,1hj(s, t)

]
dµ(t) =

√
1− λ

√
n1Pn1

∫ τ

s

Whj(t)γ1hj(s, t)dµ(t) + op(1),

and√
n1

n1 + n2

∫ τ

s

Whj(t)
√
n2

[
P̂n2,2hj(s, t)− P0,2hj(s, t)

]
dµ(t) =

√
λ
√
n2Pn2

∫ τ

s

Whj(t)γ2hj(s, t)dµ(t) + op(1).

Thus, by (1) it follows that√
n1n2

n1 + n2
Zn1,n2,hj(s) =

√
1− λ

√
n1Pn1

∫ τ

s

Whj(t)γ1hj(s, t)dµ(t)

−
√
λ
√
n2Pn2

∫ τ

s

Whj(t)γ2hj(s, t)dµ(t) + op(1).
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By conditions C2, C3, and C5-C7, the Donsker property of the classes Fp, p = 1, 2, and corollary 9.32 in
Kosorok (2008), it follows that the classes

{Whj(t)γphj(s, t) : t ∈ [s, τ ]}, p = 1, 2,

are P -Donsker. By this and Lemma 15.10 in Kosorok (2008) it follows that the classes{∫ t

s

Whj(t)γphj(s, t)dµ(t) : t ∈ [s, τ ]

}
, p = 1, 2,

are P -Donsker and this implies that

√
npPnp

∫ τ

s

Whj(t)γphj(s, t)dµ(t) G
(p)
hj (s), p = 1, 2,

where G
(p)
hj (s) follows a normal distribution with mean zero and variance

P

[∫ τ

s

Whj(t)γphj(s, t)dµ(t)

]2
.

Finally, the independence between the two groups and Slutsky’s theorem complete the proof of the assertion
(i) in Theorem 1. The proof of assertion (ii) follows from similar arguments.

Proof of Theorem 2

Using similar arguments to those used in the proof of Theorem 1 and under the null H0 : P0,1hj(s, ·) =
P0,2hj(s, ·), it follows that√

n1n2

n1 + n2
Ŵhj(t)∆̂n1,n2,hj(s, t) =

√
1− λ

√
n1Pn1Whj(t)γ1hj(s, t)

−
√
λ
√
n2Pn2

Whj(t)γ2hj(s, t) + op(1),

as n1 ∧ n2 → ∞. Now, the first result in assertion (i) follows from the Donsker property of the classes
{Whj(t)γ1hj(s, t) : t ∈ [s, τ ]} and {Whj(t)γphj(s, t) : t ∈ [s, τ ]}, as argued in the proof of Theorem 1, and the
independence between the two groups.

For the second result in assertion (i), define the multiplier process

C̃n1,n2,hj(s, t) =
√
1− λWhj(t)

√
n1Pn1

γ1hj(s, t)ξ1

−
√
λWhj(t)

√
n2Pn2

γ2hj(s, t)ξ2, t ∈ [s, τ ],

and define Ghj(s, ·) ≡
√
1− λG1hj(s, ·) −

√
λG2hj(s, ·), for simplicity. Also, let BL1 denote the set of all

Lipschitz functionals h : D[s, τ ] 7→ [0, 1] with Lipschitz norm bounded by 1 and let Eξ denote conditional
expectation over the random variable ξ conditionally on the data. Now,

sup
h∈BL1

∣∣∣Eξh[Ĉn1,n2,hj(s, ·)]− Eh[Ghj(s, ·)]
∣∣∣ ≤ sup

h∈BL1

∣∣∣Eξh[Ĉn1,n2,hj(s, ·)]− Eξh[C̃n1,n2,hj(s, ·)]
∣∣∣

+ sup
h∈BL1

∣∣∣Eξh[C̃n1,n2,hj(s, ·)]− Eh[Ghj(s, ·)]
∣∣∣ . (3)

To complete the proof of the second result in assertion (i) of Theorem 2 it suffices to show that the right
side of (3) converges to 0 in probability (Kosorok 2008). For the first term in the right side of (3) we have

sup
h∈BL1

∣∣∣Eξh[Ĉn1,n2,hj(s, ·)]− Eξh[C̃n1,n2,hj(s, ·)]
∣∣∣ ≤ sup

h∈BL1

Eξ

∣∣∣h[Ĉn1,n2,hj(s, ·)]− h[C̃n1,n2,hj(s, ·)]
∣∣∣

≤ Eξ

{
sup

h∈BL1

∣∣∣h[Ĉn1,n2,hj(s, ·)]− h[C̃n1,n2,hj(s, ·)]
∣∣∣}⋆

,

(4)
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where the first inequality follows from Jensen’s inequality and the notation Y ⋆ is used to denote the minimal
measurable majorant of the (possibly non-measurable) variable Y (van der Vaart & Wellner 1996; Kosorok
2008). Note that,{

sup
h∈BL1

∣∣∣h[Ĉn1,n2,hj(s, ·)]− h[C̃n1,n2,hj(s, ·)]
∣∣∣}⋆

≤

[
sup

t∈[s,τ ]

∣∣∣Ĉn1,n2,hj(s, t)− C̃n1,n2,hj(s, t)
∣∣∣]⋆

≤
2∑

p=1

{
sup

t∈[s,τ ]

∣∣∣Ŵhj(t)−Whj(t)
∣∣∣

× sup
t∈[s,τ ]

∣∣√npPnp
[γ̂phj(s, t)− γphj(s, t)] ξp

∣∣}⋆

+c1

2∑
p=1

{
sup

t∈[s,τ ]

∣∣√npPnp
[γ̂phj(s, t)− γphj(s, t)] ξp

∣∣}⋆

+

2∑
p=1

{
sup

t∈[s,τ ]

∣∣∣[Ŵhj(t)−Whj(t)
]√

npPnp
γphj(s, t)ξp

∣∣∣}⋆

≡ I(1)n1,n2
+ I(2)n1,n2

+ I(3)n1,n2
, (5)

where c1 is a constant satisfying supt∈[0,τ ] |Whj(t)| ≤ c1, in light of condition C7. By the Donsker property
of the classes Fp, p = 1, 2, the unconditional multiplier central limit theorem (Kosorok 2008), condition C7,
and recognizing that, in empirical process theory, convergence in probability is defined based on the minimal
measurable majorant of a metric (Kosorok 2008), it follows that I

(3)
n1,n2

p→ 0. Next, using similar calculations
to those used in the proof of Theorem 2 in Bakoyannis (2021), it follows that

sup
t∈[s,τ ]

∣∣√npPnp
[γ̂phj(s, t)− γphj(s, t)] ξp

∣∣ p→ 0, p = 1, 2,

and, thus, I
(2)
n1,n2

p→ 0. Similar arguments and condition C7 lead to the conclusion that I
(1)
n1,n2

p→ 0 and,
therefore, by (5) {

sup
h∈BL1

∣∣∣h[Ĉn1,n2,hj(s, ·)]− h[C̃n1,n2,hj(s, ·)]
∣∣∣}⋆

p→ 0.

Now, an application of the dominated convergence theorem and inequality (4) lead to the conclusion that

sup
h∈BL1

∣∣∣Eξh[Ĉn1,n2,hj(s, ·)]− Eξh[C̃n1,n2,hj(s, ·)]
∣∣∣ p→ 0.

For the second term in the right side of (3), condition C7, the independence between the two groups, the
Donsker property of the classes Fp, p = 1, 2, as argued in the proof of Theorem 1, and Theorem 2.9.6 in
van der Vaart & Wellner (1996) imply that

sup
h∈BL1

∣∣∣Eξh[C̃n1,n2,hj(s, ·)]− Eh[Ghj(s, ·)]
∣∣∣ p→ 0

and, thus, by (3) the proof of the second result in assertion (i) of Theorem 2 is complete.
For the conditional weak convergence of the cluster bootstrap (third result in assertion (i)), note that a

cluster bootstrap version of the estimator P̂np,p(s, t) is

P̂∗
np,p(s, t) = R

(s,t]

[
IS + dÂ∗

np,p(u)
]
, p = 1, 2, 0 ≤ s ≤ t ≤ τ,

where Â∗
np,p(t) consists of the elements

Â∗
np,phj(t) =

∫ t

0

∑np

i=1 Onp,i

∑Mip

m=1 dNipm,hj(u)∑np

i=1 Onp,i

∑Mip

m=1 Yipm,h(u)
, h 6= j,



Supplementary Material 5

where (Onp,1, . . . , Onp,np) is a random vector following the multinomial distribution with np trials and
probabilities of success 1/np for each trial, and Â∗

np,phh
(t) = −

∑
j ̸=h Â

∗
np,phj

(t). The cluster bootstrap
versions P̂′∗

np,p(s, t), P̂
∗
np,pj

(s), and P̂ ′∗
np,pj

(s), are defined similarly. Now, denoting conditional expectation
over the multinomial weights O conditionally on the observed data by EO, we have

sup
h∈BL1

∣∣∣∣EOh

{√
n1n2

n1 + n2
Ŵhj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
}
− Eh[Ghj(s, ·)]

∣∣∣∣
≤ sup

h∈BL1

∣∣∣∣EOh

{√
n1n2

n1 + n2
Ŵhj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
}

−EOh

{√
n1n2

n1 + n2
Whj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
} ∣∣∣∣

+ sup
h∈BL1

∣∣∣∣EOh

{√
n1n2

n1 + n2
Whj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
}
− Eh[Ghj(s, ·)]

∣∣∣∣. (6)

For the first term in the right side of (6) we have

sup
h∈BL1

∣∣∣∣EOh

{√
n1n2

n1 + n2
Ŵhj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
}

−EOh

{√
n1n2

n1 + n2
Whj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
} ∣∣∣∣

≤ sup
h∈BL1

EO

∣∣∣∣h{√ n1n2

n1 + n2
Ŵhj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
}

−h

{√
n1n2

n1 + n2
Whj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
} ∣∣∣∣

≤ EO

(
sup

h∈BL1

∣∣∣∣h{√ n1n2

n1 + n2
Ŵhj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
}

−h

{√
n1n2

n1 + n2
Whj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
} ∣∣∣∣
)⋆

, (7)

where the first inequality follows from Jensen’s inequality. Now,(
sup

h∈BL1

∣∣∣∣h{√ n1n2

n1 + n2
Ŵhj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
}

−h

{√
n1n2

n1 + n2
Whj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
} ∣∣∣∣
)⋆

≤

{
sup

t∈[s,τ ]

∣∣∣∣[Ŵhj(t)−Whj(t)]

√
n1n2

n1 + n2
[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
∣∣∣∣
}⋆

. (8)

By the unconditional multiplier central limit theorem (Kosorok 2008), the Hadamard differentiability of
the Nelson–Aalen integral (Kosorok 2008) and the product integral (Andersen et al. 2012), and a double
application of the functional delta method (Kosorok 2008), it follows that√

n1n2

n1 + n2
[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)] 
√
1− λG̃1hj(s, ·)−

√
λG̃2hj(s, ·) in D[s, τ ],

(unconditionally) where G̃phj , p = 1, 2, is a tight zero-mean Gaussian process with covariance function

P [γphj(s, t1)γphj(s, t2)], for t1, t2 ∈ [s, τ ].
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This and condition C7 lead to the conclusion that{
sup

t∈[s,τ ]

∣∣∣∣[Ŵhj(t)−Whj(t)]

√
n1n2

n1 + n2
[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
∣∣∣∣
}⋆

p→ 0.

Now, by (8), the dominated convergence theorem, and (7), it follows that

sup
h∈BL1

∣∣∣∣EOh

{√
n1n2

n1 + n2
Ŵhj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
}

−EOh

{√
n1n2

n1 + n2
Whj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
} ∣∣∣∣ p→ 0.

For second term in the right side of (6), the assumption that

n1

n1 + n2
→ λ ∈ (0, 1),

as n1∧n2 → ∞, the independence between the two groups, a double application of Theorem 2 in Bakoyannis
(2021), and condition C7 along with the bootstrap continuous mapping theorem (Theorem 10.8 in Kosorok
2008), lead to the conclusion that

sup
h∈BL1

∣∣∣∣EOh

{√
n1n2

n1 + n2
Whj(·)[∆̂∗

n1,n2,hj(s, ·)− ∆̂n1,n2,hj(s, ·)]
}
− Eh[Ghj(s, ·)]

∣∣∣∣ p→ 0.

Therefore, by (6), the proof of the third result in assertion (i) of Theorem 2 is complete. Assertion (ii) can
be proven similarly using the same arguments.

Proof of Theorem 3

Under the null hypothesis H0 : P0,1hj(s, ·) = P0,2hj(s, ·), it follows that,

√
nZn,hj(s) =

√
n

∫ τ

s

Ŵhj(t)
[
P̂n,1hj(s, t)− P̂n,2hj(s, t)

]
dµ(t)

−
√
n

∫ τ

s

Ŵhj(t) [P0,1hj(s, t)− P0,2hj(s, t)] dµ(t)

=

∫ τ

s

[
Ŵhj(t)−Whj(t)

]√
n
[
P̂n,1hj(s, t)− P0,1hj(s, t)

]
dµ(t)

+

∫ τ

s

Whj(t)
√
n
[
P̂n,1hj(s, t)− P0,1hj(s, t)

]
dµ(t)

−
∫ τ

s

[
Ŵhj(t)−Whj(t)

]√
n
[
P̂n,2hj(s, t)− P0,2hj(s, t)

]
dµ(t)

−
∫ τ

s

Whj(t)
√
n
[
P̂n,2hj(s, t)− P0,2hj(s, t)

]
dµ(t), (9)

for any s ∈ [0, τ). By (2), the Donsker property of the classes Fp, p = 1, 2, and condition C7 , it follows that

sup
t∈[s,τ ]

∣∣∣[Ŵhj(t)−Whj(t)
]√

n
[
P̂n,phj(s, t)− P0,phj(s, t)

]∣∣∣ = op(1), p = 1, 2,

and, therefore,∫ τ

s

[
Ŵhj(t)−Whj(t)

]√
n
[
P̂n,phj(s, t)− P0,phj(s, t)

]
dµ(t) = op(1), p = 1, 2.
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Similarly to the arguments in the proof of Theorem 1, utilizing the stronger assertion of the functional delta
method (van der Vaart & Wellner 1996), conditions C1-C7, and Theorem 2 in Bakoyannis (2021), it follows
that

√
nZn,hj(s) =

√
nPn

∫ τ

s

Whj(t)[γ1hj(s, t)− γ2hj(s, t)]dµ(t) + op(1),

by (9). By conditions C2, C3, and C5-C7, the Donsker property of the classes Fp, p = 1, 2, and corollary
9.32 in Kosorok (2008), it follows that the class

{Whj(t)[γ1hj(s, t)− γ2hj(s, t)] : t ∈ [s, τ ]},

is P -Donsker. By this and Lemma 15.10 in Kosorok (2008), it follows that the class{∫ t

s

Whj(t)[γ1hj(s, t)− γ2hj(s, t)]dµ(t) : t ∈ [s, τ ]

}
,

is P -Donsker. This, (9), and Slutsky’s theorem imply that
√
nZn,hj(s) Zhj(s),

where Z
(p)
hj (s) follows a normal distribution with mean zero and variance

P

[∫ τ

s

Whj(t)[γ1hj(s, t)− γ2hj(s, t)]dµ(t)

]2
,

which completes the proof of assertion (i) in Theorem 3. The proof of assertion (ii) follows from similar
arguments.
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