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Abstract
In this work, we propose nonparametric two-sample tests for population-averaged 
transition and state occupation probabilities for continuous-time and finite state 
space processes with clustered, right-censored, and/or left-truncated data. We con-
sider settings where the two groups under comparison are independent or depend-
ent, with or without complete cluster structure. The proposed tests do not impose 
assumptions regarding the structure of the within-cluster dependence and are appli-
cable to settings with informative cluster size and/or non-Markov processes. The 
asymptotic properties of the tests are rigorously established using empirical process 
theory. Simulation studies show that the proposed tests work well even with a small 
number of clusters, and that they can be substantially more powerful compared to 
the only, to the best of our knowledge, previously proposed nonparametric test for 
this problem. The tests are illustrated using data from a multicenter randomized con-
trolled trial on metastatic squamous-cell carcinoma of the head and neck.

Keywords Cluster randomized trial · Informative cluster size · Multistate model · 
Multicenter · Two-sample test

1 Introduction

Continuous-time stochastic processes (Capasso and Bakstein, 2015) with finite state 
spaces play an important role in modern medicine and public health. For example, 
in cancer clinical trials evaluating interventions for the underlying multistate disease 
processes, the patient event history often involves the states: “cancer,” “response to 

 * Giorgos Bakoyannis 
 gbakogia@iu.edu

1 Department of Biostatistics and Health Data Science, Indiana University, 410 West 10th Street, 
Suite 3000, Indianapolis, IN 46202, USA

2 Department of Biostatistics, Virginia Commonwealth University, 830 East Main Street, 
Richmond, VA 23219, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-021-00819-x&domain=pdf


838 G. Bakoyannis, D. Bandyopadhyay 

1 3

treatment,” “disease progression,” and “death.” Given that “response to treatment” 
is an outcome that is endorsed by regulatory agencies, such as the United States 
Food and Drug Administration, for drug evaluation in cancer trials (US Food and 
Drug Administration et al., 2018), a key outcome in these trials is determining the 
probability of being in the “response” state as a function of time (Temkin, 1978; 
Begg and Larson, 1982; Ellis et al., 2008). However, response is a transient state, 
and its probability is not a monotonic function of time. Hence, standard methods 
for survival and competing risks data are not applicable for inference in these set-
tings. When the data are independent, nonparametric estimation of transition and 
state occupation probabilities in general Markov processes can be performed using 
the Aalen–Johansen (A–J) estimator (Aalen and Johansen, 1978; Andersen et  al., 
2012). Datta and Satten (2001) showed that the A–J estimator is consistent for the 
estimation of state occupation probabilities, even for general non-Markov processes. 
However, estimation of transition probabilities requires appropriate extensions to 
this estimator (de Uña-Álvarez and Meira-Machado, 2015; Titman, 2015; Putter and 
Spitoni, 2018). Construction of simultaneous confidence bands and nonparametric 
tests for transition and state occupation probabilities can be performed using the 
methods by Tattar and Vaman (2014), Bluhmki et al. (2018), Bluhmki et al. (2019), 
and Bakoyannis (2020).

In many settings, such as in multicenter studies and cluster randomized trials 
(Campbell et al., 2007), the independent observations assumption is violated. Thus, 
the aforementioned methods are inappropriate for such settings. To the very best 
of our knowledge, only Bakoyannis (2021) has addressed the problem of nonpar-
ametric population-averaged estimation and two-sample testing for general multi-
state processes with cluster-correlated, right-censored, and/or left-truncated data. 
The methodology by Bakoyannis (2021) does not impose assumptions regarding 
the structure of the within-cluster dependence and, also, allows for informative 
cluster size, or ICS (Seaman et al., 2014a) scenarios, a commonplace in biomedical 
research, where the outcome of a cluster member is associated with the cardinality 
of that cluster. For the two-sample testing problem specifically, Bakoyannis (2021) 
proposed a nonparametric Kolmogorov–Smirnov (KS)-type test for the special case 
of dependent groups, where all clusters in the study include observations from both 
groups under comparison (complete cluster structure). However, this KS-type test 
may not be the most powerful for alternative hypotheses with non-crossing transi-
tion or state occupation probability functions, which is quite common in practice. 
Furthermore, this test is not applicable to situations where the two groups of clusters 
are either independent, such as in cluster randomized trials, or dependent with some 
clusters involving observations from one group only (incomplete cluster structure). 
Last but not least, a statistically significant difference based on the KS-type test does 
not necessarily imply that one group spends more time in a particular state (e.g., 
tumor response in a cancer clinical trial), which is often a hypothesis of primary 
interest in applications.

In this paper, we propose nonparametric two-sample tests for multistate processes 
with clustered, right-censored, and/or left-truncated data, and for settings with inde-
pendent or dependent groups, with or without complete cluster structure. For each 
setting, we propose a linear test, an L2-norm-based test, and a KS-type test. Our 
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testing procedures do not impose parametric assumptions and assumptions regarding 
the within-cluster dependence, allow for informative cluster sizes, and are applicable 
to both Markov and non-Markov processes. The asymptotic null distributions of the 
tests are established using empirical process theory (Shorack and Wellner 2009), 
and rigorous methodology for the calculation of p values is proposed in all cases. 
The L2-norm and KS-type tests are argued to be consistent against any fixed alterna-
tive hypothesis, including alternatives with crossing transition and state occupation 
probability functions. Unlike the KS-type test by Bakoyannis (2021) which requires 
resampling methods for the calculation of p values, our linear test is asymptotically 
normal under the null and inference can be performed using a consistent closed-form 
variance estimator. Furthermore, in contrast to the KS-test, a statistically significant 
result based on the linear test, with a special choice of weight function, implies that 
one group spends more time in a particular state than the other, which is quite use-
ful in practice. Extensive simulation studies under complex scenario show that the 
proposed tests work well even with a small number of clusters, and that they can be 
substantially more powerful compared to the test by Bakoyannis (2021) in settings 
with non-crossing transition and state occupation probability functions. Finally, the 
tests are applied to data from a multicenter randomized controlled trial on metastatic 
squamous-cell carcinoma of the head and neck (SCC-HN).

The structure of this paper is as follows. In Sect. 2, we introduce some nota-
tions and provide a review of the methodology for nonparametric population-
averaged estimation with clustered multistate processes. In Sect. 3, we describe 
the proposed testing procedures along with their asymptotic properties. Sec-
tions 4 and 5 present the results from our simulation experiments and an illustra-
tion of the tests using the motivating multicenter SCC-HN data. Finally, the paper 
concludes with a discussion in Sect.  6. The outlines of the asymptotic theory 
proofs are provided in the Supplementary Materials.

2  Review of nonparametric estimation with clustered data

Let {X(t) ∶ t ∈ [0, �]} be a continuous-time nonhomogeneous Markov process 
with a finite state space S = {1,… , S} , absorbing state subspace T ⊂ S , and 
� ∈ (0,∞) . The Markov assumption is used for simplicity of presentation here, 
and will be relaxed in the end of this section. If the process does not involve 
absorbing states, we set T = � . The subspace of transient states Tc may include 
both non-recurrent states (e.g., for the illness-death model without recovery) 
and recurrent states (e.g., for the illness-death model with recovery). Let Ñhj(t) , 
h ∈ T

c , j ∈ S , be the counting process that represents the number of direct transi-
tions from state h to state j, with h ≠ j , that occurred in the interval [0, t]. Also, 
let Ỹh(t) , h ∈ T

c , t ∈ [0, �] be the indicator function with Ỹh(t) = 1 if the process is 
at the transient state h just before time t, and Ỹh(t) = 0 otherwise. The stochastic 
behavior of the process can be described by the S × S transition probability matrix 
�0(s, t) , 0 ≤ s < t ≤ 𝜏 , with elements P0,hj(s, t) defined as
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where Fs− = 𝜎⟨{Ñhj(u) ∶ 0 ≤ u < s, h ≠ j}⟩ is the history of transitions just before 
time s. The conditional independence of the transition probabilities from the prior 
history of transitions constitutes the Markov property. The stochastic behavior of the 
process can also be described by the transition intensities, which are defined as

The definition of a0,hj(t) for the case with h = j is a consequence of the fact that each 
row of the matrix �0(s, t) is summing to 1. Another useful quantity is the cumulative 
transition intensity, defined as

Finally, the state occupation probability for a particular state j ∈ S is defined as 
P0,j(t) = P(X(t) = j) . This probability can be expressed as a function of transition 
probabilities:

In a clustered data setting, let Xim(⋅) be the mth process in the ith cluster, for 
i = 1,… , n and m = 1,… ,Mi . For the sake of generality, we consider the situa-
tion where cluster size Mi has the ICS property, that is Mi is associated with Xim(⋅) . 
However, all methods in this manuscript are trivially applicable to simpler situa-
tions where Mi is non-informative, or fixed. Here, we consider the situation where 
processes from the same cluster are potentially dependent, but processes from dif-
ferent clusters are independent. No assumptions regarding the structure of the 
within-cluster dependence are imposed in this work. In practice, one observes the 
right-censored and (potentially) left-truncated versions of the processes Ñim,hj(t) 
and Ỹim,h(t) , h ∈ T

c , j ∈ S , denoted by Nim,hj(t) and Yim,h(t) . Nim,hj(t) is the number 
of observed direct transitions h → j , with h ≠ j , for the mth process in the ith clus-
ter, that occurred by time t and before the corresponding right censoring time Rim 
and after the left truncation time Lim . Similarly, Yim,h(t) is the indicator function that 
the mth process in the ith cluster is at state h and under observation just before t. 
Here, we consider the situation where there is no information about transitions that 
occurred prior to the left truncation time, when left truncation is present. However, 
when left truncation is induced by cross-sectional sampling, there is such informa-
tion available, and alternative methods that utilize this information are expected 
to be more efficient (see, e.g., de Uña-Álvarez and Mandel, 2018). The processes 
{
∑Mi

m=1
Nim,hj(t) ∶ t ∈ [0, �]}, h ≠ j, and {

∑Mi

m=1
Yim,h(t) ∶ t ∈ [0, �]}, h ∈ T

c
, are 

assumed to be independent and identically distributed for i = 1,… , n . Assum-
ing the existence of the latent processes Ni(Mi+1),hj

(⋅),… ,Nim0,hj
(⋅) , h ≠ j , 

P0,hj(s, t) = P(X(t) = j|X(s) = h,Fs−)

= P(X(t) = j|X(s) = h), h, j ∈ S, 0 ≤ s < t ≤ 𝜏,

a0,hj(t) =

�
lim�↓0

1

�
P0,hj(t, t + �) if h ≠ j

−
∑

j≠h a0,hj(t) if h = j.

A0,hj(t) = ∫
t

0

a0,hj(u)du, h ∈ T
c, j ∈ S, t ∈ [0, �].

P0,j(t) =
∑
h∉Tc

P0,h(0)P0,hj(0, t), j ∈ S, t ∈ [0, �].
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where m0 is an upper bound for the cluster size (see regularity condition C2 
below), and Yi(Mi+1),h

(⋅),… , Yim0,h
(⋅) , h ∈ T

c , the latter assumption is implied if 
(Ni1,hj(⋅),… ,Nim0,hj

(⋅),Mi) , h ≠ j , and (Yi1,h(⋅),… , Yim0,h
(⋅),Mi) , h ∈ T

c , are identi-
cally distributed for i = 1,… , n , in addition to the independence assumption across 
clusters. The aforementioned latent processes do not contribute to our estimators or 
tests, but are assumed to exist for technical reasons, similarly to previous work on 
clustered data with random cluster sizes (see, e.g., Cai et al., 2000). These latent pro-
cesses can be seen as data of potential candidate study units that could be included 
in the ith cluster (e.g., future patients that will attend the ith clinic). Independent 
and identically distributed observations assumptions across clusters are standard in 
the literature of statistical methods for clustered data with varying cluster sizes (see, 
e.g., Cai et al., 2000; Zhang et al., 2011; Liu et al., 2011; Zhou et al., 2012).

There are two populations of interest under informative cluster size: (i) the 
population of all cluster members (ACM) and (ii) the population of typical cluster 
members (TCM) (Seaman et al., 2014b; Bakoyannis, 2021). The ACM population 
consists of all the processes from all the clusters, while the TCM population is 
a subset of the ACM population consisting of a single (randomly selected) rep-
resentative processes from every cluster. Clearly, larger clusters are over-repre-
sented in the ACM population, while every cluster is equally represented in the 
TCM population. The state occupation probability for the ACM population is 
defined as

for any m = 1,… ,M1 , where I(⋅) is the indicator function. Note that, in light of cor-
ollary 2.3.5 in Athreya and Lahiri (2006), any set function of the form 
h(A) = E[MI(A)]∕EM defined on a probability space (Ω,F,P) , where M is a 
bounded random variable with M > 0 almost surely, is a probability measure. There-
fore, P0,j(t) is a well-defined probability. The state occupation probability for the 
TCM population is defined as P�

0,j
(t) = EI[X1m(t) = j] , for any m = 1,… ,M1 . The 

transition probabilities for the ACM population, P0,hj(s, t) , and the TCM population, 
P�
0,hj

(s, t) , are defined as

and

for any m = 1,… ,M1 . The corresponding transition probability matrices �0 = (P0,hj) 
and ��

0
= (P�

0,hj
) can also be expressed (by the Kolmogorov forward equations) as the 

product integrals (Bakoyannis, 2021) 

P0,j(t) =
E{M1I[X1m(t) = j]}

EM1

P0,hj(s, t) =
E{M1I[X1m(t) = j,X1m(s) = h]}

E{M1I[X1m(s) = h]}
, h, j ∈ S, 0 ≤ s ≤ t ≤ �,

P�
0,hj

(s, t) =
E{I[X1m(t) = j,X1m(s) = h]}

E{I[X1m(s) = h]}
, h, j ∈ S, 0 ≤ s ≤ t ≤ �,
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P0(s, t) =
(s,t]

[IS + dA0(u)] , 0 ≤ s ≤ t ≤ τ,

where �0 is the cumulative transition intensity matrix for the ACM population that 
consists of the elements

and A0,hh(t) = −
∑

h≠j A0,hj(t) , and 

P0(s, t) =
(s,t]

[IS + dA0(u)] , 0 ≤ s ≤ t ≤ τ,

where �′
0
 is the cumulative transition intensity matrix for the TCM population that 

consists of the elements

and A�
0,hh

(t) = −
∑

h≠j A�
0,hj

(t).
The transition probability matrix �0 for the ACM population can be estimated 

nonparametrically using the moment-based estimator (Bakoyannis, 2021) 

P̂n(s, t) =
(s,t]

IS + dÂn(u) , 0 ≤ s ≤ t ≤ τ,

where  denotes the product integral, �S is the S × S identity matrix, and �̂n(t) is the 
matrix consisting of the elements

and Ân,hh(t) = −
∑

j≠h Ân,hj(t) . The transition probability matrix �′
0
 for the TCM pop-

ulation can be estimated nonparametrically using the weighted moment-based esti-
mator (Bakoyannis, 2021) 

P̂n(s, t) =
(s,t]

IS + dÂn(u) , 0 ≤ s ≤ t ≤ τ,

where �̂�
n
(t) is the matrix consisting of the elements

A�
0,hj

(t) = �
t

0

dE[Ñ1m,hj(u)]

E[Ỹ1m,h(u)]
, h ≠ j,

Ân,hj(t) = �
t

0

∑n

i=1

∑Mi

m=1
dNim,hj(u)∑n

i=1

∑Mi

m=1
Yim,h(u)

, h ≠ j,

A0,hj(t) = �
t

0

dE[M1Ñ1m,hj(u)]

E[M1Ỹ1m,h(u)]
, h ≠ j,
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and Â�
n,hh

(t) = −
∑

j≠h Â�
n,hj

(t) . Based on the estimated transition probabilities, the 
nonparametric estimators of the state occupation probabilities for the ACM and 
TCM populations are (Bakoyannis, 2021)

where �̂�n = n−1
∑n

i=1
M−1

i

∑Mi

m=1

∑
h∈Tc Yim,h(0+) , and

respectively. Note that �̂�n is an estimator of the probability �0 that a process is not 
left-truncated. Clearly, the state occupation probability estimators are valid, only if 
�0 is bounded away from zero, i.e., in settings where not all observations are left-
truncated. If there is no left truncation, then �̂�n = 1 . It is important to note that P̂n,j(t) 
and P̂�

n,j
(t) are uniformly consistent, even if the process {X(t) ∶ t ∈ [0, �]} is not 

Markov (Datta and Satten, 2001; Bakoyannis, 2021). However, this is not true for 
�̂n(s, t) and �̂�

n
(s, t) , when s > 0 . In non-Markov settings, one can instead use the 

landmark versions of �̂n(s, t) and �̂�
n
(s, t) (Putter and Spitoni, 2018; Bakoyannis, 

2021), which can be obtained by imposing a simple modification in Nim,hj(t) and 
Yim,h(t) (for more details see Bakoyannis, 2021).

From a practical standpoint, selecting the most appropriate target population 
in situations with random and informative cluster size requires a careful considera-
tion of the scientific goal of the study. As an example, consider a multicenter clini-
cal trial on metastatic squamous-cell carcinoma of the head and neck with the goal 
of comparing the efficacy of the combination of chemotherapy and panitumumab 
versus chemotherapy alone. In such a trial, evaluating the effect of the combined 
treatment on the population-averaged probability of tumor response over the ACM 
population (i.e., the population of all clinic patients) is more relevant if the goal is 
to understand the effect of treatment on a typical patient from the population of all 
patients in all clinics. This analysis could provide evidence to regulatory agencies 
for broad public policy decisions and recommendations regarding the approval of 
the combined treatment. On the other hand, the population-averaged probability of 
response over the TCM population (i.e., the population of typical clinic patients) 
is more relevant for understanding the average treatment effect on a typical patient 
from a typical clinic setting. This could be beneficial from a health services research 
perspective in order to study the effectiveness of the combined treatment in the aver-
age-performing clinic. In addition, evaluating the population-averaged probability of 
death over the TCM population, would provide evidence for the burden of death 
from the particular disease in the average clinic. From this example, it is evident that 

Â�
n,hj

(t) = �
t

0

∑n

i=1
M−1

i

∑Mi

m=1
dNim,hj(u)∑n

i=1
M−1

i

∑Mi

m=1
Yim,h(u)

, h ≠ j,

P̂n,j(t) =
�
h∈Tc

�∑n

i=1

∑Mi

m=1
Yim,h(0+)

�̂�n
∑n

i=1
Mi

�
P̂n,hj(0, t),

P̂�
n,j
(t) =

�
h∈Tc

⎡
⎢⎢⎣

∑n

i=1
1

Mi

∑Mi

m=1
Yim,h(0+)

n�̂�n

⎤
⎥⎥⎦
P̂�
n,hj

(0, t),
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if the unit of main scientific interest is the cluster member, then inference about the 
ACM population is more relevant. In contrast, if the cluster is the main unit of inter-
est, then inference about the TCM population is more desirable.

3  Nonparametric two‑sample testing

In this section, we address the problem of comparing transition and state occupation 
probabilities for a particular transition h → j of the process X(t) between two groups, 
say groups 1 and 2. Depending on what is the most scientifically relevant population-
averaged quantity in a given setting, the null hypothesis is either 
H0 ∶ P0,1hj(s, ⋅) = P0,2hj(s, ⋅) , or H0 ∶ P�

0,1hj
(s, ⋅) = P�

0,2hj
(s, ⋅) , for some s ∈ [0, �) . The 

corresponding two-sided alternative hypotheses are H1 ∶ P0,1hj(s, ⋅) ≠ P0,2hj(s, ⋅) and 
H1 ∶ P�

0,1hj
(s, ⋅) ≠ P�

0,2hj
(s, ⋅) . Alternatively, one may be interested in comparing the 

state occupation probabilities for a particular state j ∈ S between the two groups. The 
null hypothesis in this case is either H0 ∶ P0,1j = P0,2j , or H0 ∶ P�

0,1j
= P�

0,2j
 . Testing 

such hypotheses can be based on a sample of clusters of observations of the process of 
interest, which satisfies the requirements described in Sect.  2. Here, we denote the 
counting and indicator processes for the mth observation in the pth group in the ith 
cluster as Nipm,hj(t) , h ≠ j , and Yipm,h(t) , h ∈ T

c . We also denote the probability that a 
process in group p is not left-truncated by �0,p , the number of observations in the ith 
cluster in the pth group by Mip , and the transition intensities for the ACM and TCM 
populations for group p as A0,phj(t) and A�

0,phj
(t) , respectively. Finally, we define the fol-

lowing influence functions that appear in the asymptotic null distributions of the pro-
posed test statistics:

where Uipm,lq(t) = Nipm,lq(t) − ∫
(0,t]

Yipm,l(u)dA0,plq(u) and �i,phh(s, t) = −
∑

j≠h �i,phj(s, t),

where U�
ipm,lq

(t) = Nipm,lq(t) − ∫
(0,t]

Yipm,l(u)dA
�
0,plq

(u) and � �
i,phh

(s, t) = −
∑

j≠h � �i,phj(s, t),

�i,phj(s, t) =
�
l∈Tc

�
q∈S

Mip�
m=1

�
t

s

P0,phl(s, u−)P0,pqj(u, t)

E
�∑M1p

m=1
Y1pm,l(u)

� dUipm,lq(u), h ≠ j,

� �
i,phj

(s, t) =
�
l∈Tc

�
q∈S

1

Mip

Mip�
m=1

�
t

s

P�
0,phl

(s, u−)P�
0,pqj

(u, t)

E
�
M−1

1p

∑M1

m=1
Y1pm,l(u)

�dU�
ipm,lq

(u), h ≠ j,
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and

The next subsections present appropriate hypothesis testing procedures for (i) 
independent groups and (ii) dependent groups. For simplicity of presentation, we 
consider the case where the process {X(t) ∶ t ∈ [0, �]} is Markov. However, the 
inference procedures presented here are also applicable to non-Markov processes, 
with the exception of using the landmark versions of the transition probability esti-
mators and the landmark versions of Nipm,hj(t) and Yipm,h(t) , when s > 0 , in the test-
ing procedures for P0,phj(s, t) and P�

0,phj
(s, t) (for more details see Bakoyannis, 2021).

3.1  Independent groups

In the independent-groups case, one observes two groups of clusters, with sizes n1 
and n2 . An example of this situation is a cluster randomized trial where a new inter-
vention is applied to a random group of clusters (e.g., clinics) only, while standard 
of care is used in the remaining clusters of the study. Based on two independent 
groups of clusters, the estimators of the pointwise between-group difference with 
respect to the population-averaged transition probabilities are defined as

where P̂np,phj
 , p = 1, 2 , is the estimator of P0,phj from the pth group, and

�i,pj(t) =
�
h∈Tc

�
P0,ph(0)�i,phj(0, t)

+ P0,phj(0, t)

� Mip�
m=1

Yipm,h(0+) − EY1pm,h(0+)

�0,pEM1p

− P0,ph(0)

�
Mi − EM1p

EM1p

+

∑
h∈Tc M

−1
ip

∑Mip

m=1
Yipm,h(0+) − �0,p

�0,p

���
,

� �
i,pj
(t) =

�
h∈Tc

�
P�
0,ph

(0)� �
i,phj

(0, t) +
P�
0,phj

(0, t)

�0,p

�
1

Mip

Mip�
m=1

Yipm,h(0+)

− E

⎡
⎢⎢⎣

1

M1p

M1p�
m=1

Y1pm,h(0+)

⎤
⎥⎥⎦

− P�
0,ph

(0)

⎡⎢⎢⎣
�
h∈Tc

1

Mip

Mip�
m=1

Yipm,h(0+) − �0,p

⎤
⎥⎥⎦

��
.

Δ̂n1,n2,hj
(s, t) =

[
P̂n1,1hj

(s, t) − P̂n2,2hj
(s, t)

]
, t ∈ [s, 𝜏],

Δ̂�
n1,n2,hj

(s, t) =
[
P̂�
n1,1hj

(s, t) − P̂�
n2,2hj

(s, t)
]
, t ∈ [s, 𝜏],
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where P̂′
np,phj

 , p = 1, 2 , is the estimator of P′
0,phj

 from the pth group, for some 
s ∈ [0, �) . Similarly, define the differences between the population-averaged state 
occupation probabilities as

where P̂np,pj
 , p = 1, 2 , is the estimator of P0,pj from the pth group, and

where P̂′
np,pj

 , p = 1, 2 , is the estimator of P′
0,pj

 from the pth group. The correspond-
ing nonparametric cluster bootstrap realizations of the above differences are denoted 
by Δ̂∗

n1,n2,hj
(s, t) , Δ̂�∗

n1,n2,hj
(s, t) , Δ̂∗

n1,n2,j
(t) , and Δ̂�∗

n1,n2,j
(t) . These can be calculated by 

randomly sampling clusters with replacement, and calculating the desired estimator 
using the resulting bootstrap dataset. Explicit expressions for the bootstrap versions 
of the estimators are provided in the proof of Theorem  2 in the Supplementary 
Material. Based on these differences, we define the following linear test statistics:

and

where Ŵhj(t) , Ŵ �
hj
(t) , Ŵj(t) and Ŵ �

j
(t) are appropriate weight functions (see condition 

C7 below), and the integrator �(t) = t induces the Lebesgue measure defined on the 
Borel �-algebra on [0, �] . Essentially, these linear test statistics represent the areas 
under the weighted difference curves Δ̂n1,n2,hj

(s, ⋅) , Δ̂�
n1,n2,hj

(s, ⋅) , Δ̂n1,n2,j
 , or Δ̂�

n1,n2,j
 . In 

particular, the test statistics Zn1,n2,j and Z′
n1,n2,j

 with the weight functions 
Ŵj(t) = Ŵ �

j
(t) = 1 represent the between-group difference in state-specific life expec-

tancy. The importance of the weight functions lies on the fact that they can restrict 
the comparison interval to a set of times where both groups under comparison have 
nonzero observations at risk for the transition of interest. An example of such a 
weight function is

Δ̂n1,n2,j
(t) =

[
P̂n1,1j

(t) − P̂n2,2j
(t)
]
, t ∈ [0, 𝜏],

Δ̂�
n1,n2,j

(t) =
[
P̂�
n1,1j

(t) − P̂�
n2,2j

(t)
]
, t ∈ [0, 𝜏],

Zn1,n2,hj(s) = ∫
𝜏

s

Ŵhj(t)Δ̂n1,n2,hj
(s, t)d𝜇(t), for some s ∈ [0, 𝜏),

Z�
n1,n2,hj

(s) = ∫
𝜏

s

Ŵ �
hj
(t)Δ̂�

n1,n2,hj
(s, t)d𝜇(t), for some s ∈ [0, 𝜏),

Zn1,n2,j = ∫
𝜏

0

Ŵj(t)Δ̂n1,n2,j
(t)d𝜇(t),

Z�
n1,n2,j

= ∫
𝜏

0

Ŵ �
j
(t)Δ̂�

n1,n2,j
(t)d𝜇(t),

Ŵhj(t) = I

[ ∏
l∈L(h,j)

Ȳ1,l(t)Ȳ2,l(t) > 0

]
,
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where L(h, j) = {d ∈ S ∶ d is a transient state that can be visited during the transi-
tion h → j} and Ȳp,h(t) = n−1

p

∑np

i=1

∑Mip

m=1
Yipm,h(t) , for the group p = 1, 2 . Similarly, 

this type of weight can be defined for the state occupation probabilities as

The weights Ŵ �
hj
(t) and Ŵ �

j
(t) are defined similarly by replacing Ȳp,h(t) with 

n−1
p

∑np

i=1
M−1

ip

∑Mip

m=1
Yipm,h(t) , p = 1, 2 . The weight functions can also be used to 

assign less weight to observation times with a smaller number of observations at 
risk, where the estimated difference tends to be unstable. An example of such 
weight function is

and

The corresponding weights Ŵ �
hj
(t) and Ŵ �

j
(t) can be defined similarly by replacing 

Ȳp,h(t) with n−1
p

∑np

i=1
M−1

ip

∑Mip

m=1
Yipm,h(t) , p = 1, 2 . In practice, we suggest the use of 

this latter type of weight functions.
In what follows, we assume the following regularity conditions: 

 C1. The potential left truncation Lipm and right censoring Ripm times are inde-
pendent of the underlying counting processes {Ñipm,hj(t) ∶ h ≠ j, t ∈ [0, 𝜏]} , 
the initial state indicators Ỹipm,h(0+) , h ∈ T

c , and the cluster size 
Mip . Also, Lipm and Ripm are identically distributed in the sense that 
E[{I(Lipm,1 = 0) + I(Lipm < t)}I(Ripm ≥ t)] = E[{I(Lip1 = 0) + I(Lip1 < t)}I(Rip1 ≥ t)]  , 
t ∈ [0, �] , for any i = 1,… , np , p = 1, 2 , and m = 1,… ,Mip.

 C2. The cluster size is bounded in the sense that there exists a (fixed) positive integer 
m0 such that P(M > m0) = 0.

 C3. The underlying counting processes are identically distributed conditionally on 
cluster size, which implies that E{Ñipm,hj(t)|Mip} = E{Ñip1,hj(t)|Mip} for any 
m = 1,… ,Mip and h ≠ j . Also, E{Ñipm,hj(𝜏)}

2 < ∞ for all h ≠ j.
 C4. The underlying at-risk processes are identically distributed conditionally on 

cluster size, which implies that E{Ỹipm,h(t)|Mip} = E{Ỹip1,h(t)|Mip} for any 
i = 1,… , np , p = 1, 2 , m = 1,… ,Mip and h ∈ S . Also, there exists a convex and 
compact set Jh ⊂ [0, 𝜏] such that inft∈Jh E{

∑Mip

m=1
Yipm,h(t)} > 0 for all h ∈ T

c , and 
∫
(0,t]∩Jc

h

dA0,hj(t) = 0 for all h ∈ T
c and j ≠ h.

Ŵj(t) = I

[ ∏
l∈∪h∈Tc L(h,j)

Ȳ1,l(t)Ȳ2,l(t) > 0

]
.

Ŵhj(t) =

∏
l∈L(h,j) Ȳ1,l(t)Ȳ2,l(t)∑

l∈L(h,j)

�
Ȳ1,l(t) + Ȳ2,l(t)

� ,

Ŵj(t) =

∏
l∈∪h∈Tc L(h,j)

Ȳ1,l(t)Ȳ2,l(t)∑
l∈∪h∈Tc L(h,j)

�
Ȳ1,l(t) + Ȳ2,l(t)

� .
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 C5. The cumulative transition intensities {A0,phj(t) ∶ p = 1, 2, h ≠ j, t ∈ [0, �]} and 
{A�

0,phj
(t) ∶ p = 1, 2, h ≠ j, t ∈ [0, �]} are continuous functions.

 C6. Strengthen condition C4 to require inft∈[0,𝜏] E{
∑Mip

m=1
Yipm,h(t)} > 0 for all h ∈ T

c.
 C7. The weight functions Ŵhj(t) , Ŵ �

hj
(t) , Ŵj(t) and Ŵ �

j
(t) are uniformly consistent (in 

probability) for the non-negative, uniformly bounded, and cadlag fixed functions 
Whj(t) , W �

hj
(t) , Wj(t) and W �

j
(t).

It is important to note that the weight functions introduced earlier satisfy condition C7. 
This follows from the fact that the classes of functions {

∑Mp

m=1
Ypm,h(t) ∶ t ∈ [0, �]} and 

{M−1
p

∑Mp

m=1
Ypm,h(t) ∶ t ∈ [0, �]} , p = 1, 2 , h ∈ T

c , are P-Donsker in light of condi-
tions C2 and C3 (see Web Appendix in Bakoyannis, 2021), which implies that these 
classes are also P-Glivenko–Cantelli, conditions C5 and C6, and the continuous map-
ping theorem (Kosorok, 2008).

Theorem 1 states the asymptotic null distributions of the linear tests as n1 ∧ n2 → ∞ . 
In what follows, weak convergence is denoted by ⇝.

Theorem 1 Suppose that conditions C1–C7 hold and that n1∕(n1 + n2) → � ∈ (0, 1) 
as n1 ∧ n2 → ∞ . Then, under the null hypothesis and for any h ∈ T

c , j ∈ S , and 
s ∈ [0, �) , the following hold 

 (i) 
√

n1n2

n1+n2
Zn1,n2,hj(s) ⇝ Ghj(s) as n1 ∧ n2 → ∞ , where Ghj(s) ∼ N(0,�2

hj
(s)) with 

 (ii) 
√

n1n2

n1+n2
Zn1,n2,j ⇝ Gj as n1 ∧ n2 → ∞ , where Gj ∼ N(0,�2

j
) with 

The proof of Theorem 1 is provided in the Supplementary Material. Consistent 
(in probability) estimators of the asymptotic variances in Theorem 1 are

and

�2

hj
(s) = (1 − �)E

[
∫

�

s

Whj(t)�1,1hj(s, t)d�(t)

]2

+ �E

[
∫

�

s

Whj(t)�1,2hj(s, t)d�(t)

]2
.

�2
j
= (1 − �)E

[
∫

�

0

Wj(t)�1,1j(t)d�(t)

]2
+ �E

[
∫

�

0

Whj(t)�1,2j(t)d�(t)

]2
.

�̂�2

hj
(s) =

n2

(n1 + n2)n1

n1∑
i=1

[
∫

𝜏

s

Ŵhj(t)�̂�i,1hj(s, t)d𝜇(t)

]2

+
n1

(n1 + n2)n2

n2∑
i=1

[
∫

𝜏

s

Ŵhj(t)�̂�i,2hj(s, t)d𝜇(t)

]2
,
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where �̂�i,phj(s, t) and �̂�i,pj(t) are the empirical versions of the influence functions 
�i,phj(s, t) and �i,pj(t) , p = 1, 2 . These empirical versions can be obtained by replac-
ing unknown parameters with their consistent estimates and expectations with sam-
ple averages over clusters. Alternatively, by Theorem 2 in Bakoyannis (2021) and 
the bootstrap continuous mapping theorem (Theorem 10.8 in Kosorok, 2008), these 
variances can be estimated as sample variances based on a number of nonparametric 
cluster bootstrap realizations ∫ 𝜏

s
Ŵhj(t)[Δ̂

∗
n1,n2,hj

(s, t) − Δ̂n1,n2,hj
(s, t)]d𝜇(t) and 

∫ 𝜏

0
Ŵj(t)[Δ̂

∗
n1,n2,j

(t) − Δ̂n1,n2,j
(t)]d𝜇(t) , respectively. Based on any of these variance 

estimators and Theorem 1, it is easy to construct an asymptotic Z-test for testing the 
null hypothesis of interest as usual. Using the same arguments as those used in the 
proof of Theorem 1, it can also be shown that a similar version of this theorem holds 
for the test statistics Z�

n1,n2,hj
(s) and Z′

n1,n2,j
.

Even though the linear tests are expected to have a good power for alternatives 
with non-crossing probability functions, these tests may not be the best choice for 
situations where the two probability functions under comparison cross at one or 
more time points. For such situations, we propose the L2-norm-based tests

and

and the KS-type tests

and

The corresponding tests for Δ̂�
n1,n2,hj

(s, t) and Δ̂�
n1,n2,j

(t) , denoted by Q�
n1,n2,hj

(s) , 
K�
n1,n2,hj

(s) , and Q′
n1,n2,j

 , K′
n1,n2,j

 , are defined in the same manner. We must note that 
the KS-type tests have the same structure as that in Bakoyannis (2021), however, 
with different asymptotic null distributions. Unlike the linear tests, the L2-norm 
and the KS-type tests are not asymptotically normal under the null hypothesis. 

�̂�2

j
=

n2

(n1 + n2)n1

n1∑
i=1

[
∫

𝜏

0

Ŵj(t)�̂�i,1j(t)d𝜇(t)

]2

+
n1

(n1 + n2)n2

n2∑
i=1

[
∫

𝜏

0

Ŵhj(t)�̂�i,2j(t)d𝜇(t)

]2
,

Qn1,n2,hj
(s) =

{
∫

𝜏

s

[
Ŵhj(t)Δ̂n1,n2,hj

(s, t)
]2
d𝜇(t)

}1∕2

, for some s ∈ [0, 𝜏),

Qn1,n2,j
=

{
∫

𝜏

0

[
Ŵj(t)Δ̂n1,n2,j

(t)
]2
d𝜇(t)

}1∕2

,

Kn1,n2,hj
(s) = sup

t∈[s,𝜏]

|||Ŵhj(t)Δ̂n1,n2,hj
(s, t)

|||, for some s ∈ [0, 𝜏),

Kn1,n2,j
= sup

t∈[0,𝜏]

|||Ŵj(t)Δ̂n1,n2,j
(t)
|||.
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Conducting hypothesis testing with these tests can be based on a resampling tech-
nique that utilizes the estimated multiplier processes

for some s ∈ [0, �) , where �ip , p = 1, 2 , i = 1,… , np , are independent standard nor-
mal variables, and

Similarly, one can define the estimated multiplier processes Ĉn1,n2,hj
(s, t) and 

Ĉ�
n1,n2,j

(t) which correspond to the tests for Δ̂�
n1,n2,hj

(s, t) and Δ̂�
n1,n2,j

(t) . Alternatively, 
one can use the nonparametric cluster bootstrap (Cameron et al., 2008) for infer-
ence. Theorem  2 provides the basis for conducting hypothesis testing based on 
the L2-norm-based and KS-type tests.

Theorem 2 Suppose that conditions C1–C7 hold and that n1∕(n1 + n2) → � ∈ (0, 1) 
as n1 ∧ n2 → ∞ . Then, under the null hypothesis and for any h ∈ T

c , j ∈ S , and 
some s ∈ [0, �) , the following hold 

 (i) 
�

n1n2

n1+n2
Ŵhj(⋅)Δ̂n1,n2,hj

(s, ⋅) ⇝
√
1 − 𝜆�1hj(s, ⋅) −

√
𝜆�2hj(s, ⋅) in D[s, �] as 

n1 ∧ n2 → ∞ , where �phj(s, ⋅) , p = 1, 2 , are two independent tight zero-mean 
G a u s s i a n  p r o c e s s e s  w i t h  c o v a r i a n c e  f u n c t i o n s 
Whj(t1)Whj(t2)E[�1,phj(s, t1)�1,phj(s, t2)] , for t1, t2 ∈ [s, �] . Moreover, 

 conditionally on the observed data and 

 conditionally on the observed data.

Ĉn1,n2,hj
(s, t) =

�
n2

n1 + n2
Ŵhj(t)

1√
n1

n1�
i=1

�̂�i,1hj(s, t)𝜉i1

−

�
n1

n1 + n2
Ŵhj(t)

1√
n2

n2�
i=1

�̂�i,2hj(s, t)𝜉i2, t ∈ [s, 𝜏],

Ĉn1,n2,j
(t) =

�
n2

n1 + n2
Ŵj(t)

1√
n1

n1�
i=1

�̂�i,1j(t)𝜉i1

−

�
n1

n1 + n2
Ŵj(t)

1√
n2

n2�
i=1

�̂�i,2j(t)𝜉i2, t ∈ [0, 𝜏].

Ĉn1,n2,hj
(s, ⋅) ⇝

√
1 − 𝜆�1hj(s, ⋅) −

√
𝜆�2hj(s, ⋅) in D[s, 𝜏],

�
n1n2

n1 + n2
Ŵhj(⋅)[Δ̂

∗
n1,n2,hj

(s, ⋅) − Δ̂n1,n2,hj
(s, ⋅)] ⇝

√
1 − 𝜆�1hj(s, ⋅)

−
√
𝜆�2hj(s, ⋅) in D[s, 𝜏],
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 (ii) 
�

n1n2

n1+n2
ŴjΔ̂n1,n2,j

⇝
√
1 − 𝜆�1j −

√
𝜆�2j in D[0, �] as n1 ∧ n2 → ∞ , where �pj , 

p = 1, 2 , are two independent tight zero-mean Gaussian processes with covar-
iance functions Wj(t1)Wj(t2)E[�1,pj(t1)�1,pj(t2)] , for t1, t2 ∈ [0, �] . Moreover, 

 conditionally on the observed data and 

 conditionally on the observed data.

The proof of Theorem  2 is provided in the Supplementary Material. Using the 
same arguments to those used in the proof of Theorem 2, it can be easily shown 
that a similar version of this theorem holds for the differences Δ̂�

n1,n2,hj
(s, ⋅) and 

Δ̂�
n1,n2,j

 . Theorem 2 along with the continuous mapping theorem leads to following 
asymptotic null distributions of the test statistics:

and

The asymptotic null distributions of the test statistics Q�
n1,n2,hj

(s) , Q′
n1,n2,j

 , K�
n1,n2,hj

(s) , 
and K′

n1,n2,j
 are similar to those listed above. These asymptotic null distributions are 

quite intractable and of limited usefulness for hypothesis testing in practice. How-
ever, Theorem  2 and the continuous mapping theorem provide a way to generate 
realizations from these asymptotic null distributions. Calculation of the p value 
based on the statistics Qn1,n2,hj

(s) and Kn1,n2,hj
(s) can be achieved via the multiplier 

process Ĉn1,n2,hj
(s, t) using the following algorithm. 

Algorithm 1. Choose a large integer B (say B = 1000 ) and for each b = 1,… ,B 
repeat the steps 

 Step 1. Simulate sets of independent standard normal variables {�(b)
ip
}n
i=1

 , p = 1, 2.
 Step 2. Based on {�(b)

ip
}n
i=1

 , p = 1, 2 , calculate a realization 

Ĉn1,n2,j
⇝

√
1 − 𝜆�1j −

√
𝜆�2j in D[0, 𝜏],

�
n1n2

n1 + n2
Ŵj(Δ̂

∗
n1,n2,j

− Δ̂n1,n2,j
) ⇝

√
1 − 𝜆�1j −

√
𝜆�2j in D[0, 𝜏],

�
n1n2

n1 + n2
Qn1,n2,hj

(s) ⇝

�
∫

�

s

�√
1 − ��1hj(s, t) −

√
��2hj(s, t)

�2
d�(t)

�1∕2

,

�
n1n2

n1 + n2
Qn1,n2,j

⇝

�
∫

�

0

�√
1 − ��1j(t) −

√
��2j(t)

�2
d�(t)

�1∕2

,

�
n1n2

n1 + n2
Kn1,n2,hj

(s) ⇝ sup
t∈[s,�]

���
√
1 − ��1hj(s, t) −

√
��2hj(s, t)

���,

�
n1n2

n1 + n2
Kn1,n2,j

⇝ sup
t∈[s,�]

���
√
1 − ��1j(t) −

√
��2j(t)

���.
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Once this process is complete, the p value can be approximated, depending on the 
type of test, as either

or

Alternatively, one can use the easier to implement cluster bootstrap using the fol-
lowing algorithm.
Algorithm  2. Choose a large integer B (say B = 1000 ) and for each b = 1,… ,B 
repeat the steps 

 Step 1. Generate a cluster bootstrap estimated difference Δ̂∗(b)

n1,n2,hj
(s, t).

 Step 2. Based on Δ̂∗(b)

n1,n2,hj
(s, t) , calculate the cluster bootstrap 

Once this process is complete, the p value can be approximated, depending on the 
type of test, as either

or

Similar algorithms can be used for the remaining test statistics.
The L2-norm-based and KS-type tests are consistent against any fixed alternative 

hypothesis. This statement is a consequence of Theorem 2, the uniform consistency 
of the population-averaged transition probability and state occupation probability 
estimators (Bakoyannis, 2021), the continuity of these tests in the differences 

Ĉ
(b)

n1,n2,hj
(s, t) =

�
n2

n1 + n2
Ŵhj(t)

1√
n1

n1�
i=1

�̂�i,1hj(s, t)𝜉
(b)

i1

−

�
n1

n1 + n2
Ŵhj(t)

1√
n2

n2�
i=1

�̂�i,2hj(s, t)𝜉
(b)

i2
, t ∈ [s, 𝜏].

1

B

B∑
b=1

I

({
�

𝜏

s

[
Ĉ
(b)

n1,n2,hj
(s, t)

]2
d𝜇(t)

}1∕2

≥
√

n1n2

n1 + n2
Qn1,n2,hj

(s)

)
,

1

B

B∑
b=1

I

[
sup
t∈[s,𝜏]

|||Ĉ
(b)

n1,n2,hj
(s, t)

||| ≥
√

n1n2

n1 + n2
Kn1,n2,hj

(s)

]
.

Ŵhj(t)
[
Δ̂

∗(b)

n1,n2,hj
(s, t) − Δ̂n1,n2,hj

(s, t)
]
, t ∈ [s, 𝜏].

1

B

B∑
b=1

I

[(
�

𝜏

s

{
Ŵhj(t)

[
Δ̂

∗(b)

n1,n2,hj
(s, t) − Δ̂n1,n2,hj

(s, t)
]}2

d𝜇(t)

)1∕2

≥ Qn1,n2,hj
(s)

]
,

1

B

B∑
b=1

I

{
sup
t∈[s,𝜏]

||||Ŵhj(t)
[
Δ̂

∗(b)

n1,n2,hj
(s, t) − Δ̂n1,n2,hj

(s, t)
]|||| ≥ Kn1,n2,hj

(s)

}
.
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Δ̂n1,n2,hj
(s, t) , Δ̂n1,n2,j

(t) , Δ̂�
n1,n2,hj

(s, t) , and Δ̂�
n1,n2,j

(t) , and Lemma 14.15 in van  der 
Vaart (2000).

3.2  Dependent groups

In many situations, the two groups under comparison are not independent. Such a situa-
tion arises in a multicenter randomized controlled trial, where, within each cluster (e.g., 
clinic), some cluster members receive the intervention of interest, and the remaining 
cluster members may receive placebo. For the situation with dependent groups, we 
have that Mi1 +Mi2 = Mi , i = 1,… , n . In this case, there are two possibilities; (i) all 
clusters include processes from both groups, i.e., Mi1 ∧Mi2 > 0 a.s., i = 1,… , n , (com-
plete cluster structure) and (ii) a subset of clusters include processes from one group 
only (incomplete cluster structure). We remind the reader that Bakoyannis (2021) only 
proposed a KS-type test for the situation with dependent groups with complete cluster 
structure.

3.2.1  Complete cluster structure

In this subsection, we assume that Mi1 ∧Mi2 > 0 almost surely. Based on this study 
setup, define the estimators of the pointwise between-group difference with respect to 
the population-averaged transition probabilities as

where P̂n,phj , p = 1, 2 , is the estimator of P0,phj from the pth group and

where P̂′
n,phj

 , p = 1, 2 , is the estimator of P′
0,phj

 from the pth group, for some 
s ∈ [0, �) . Similarly, define the differences between the population-averaged state 
occupation probabilities as

where P̂n,pj , p = 1, 2 , is the estimator of P0,pj from the pth group, and

where P̂′
n,pj

 , p = 1, 2 , is the estimator of P′
0,pj

 from the pth group. The corresponding 
nonparametric cluster bootstrap realizations of the above differences are denoted by 
Δ̂∗

n,hj
(s, t) , Δ̂�∗

n,hj
(s, t) , Δ̂∗

n,j
(t) , and Δ̂�∗

n,j
(t) . It is important to note that these nonparamet-

ric cluster bootstrap realizations are generated by randomly sampling n clusters with 
replacement. Based on these differences, we define the following linear test 
statistics:

Δ̂n,hj(s, t) =
[
P̂n,1hj(s, t) − P̂n,2hj(s, t)

]
, t ∈ [s, 𝜏],

Δ̂�
n,hj

(s, t) =
[
P̂�
n,1hj

(s, t) − P̂�
n,2hj

(s, t)
]
, t ∈ [s, 𝜏],

Δ̂n,j(t) =
[
P̂n,1j(t) − P̂n,2j(t)

]
, t ∈ [0, 𝜏],

Δ̂�
n,j
(t) =

[
P̂�
n,1j

(t) − P̂�
n,2j

(t)
]
, t ∈ [0, 𝜏],
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and

where the weights are defined as in Sect. 3.1. Theorem 3 states the asymptotic null 
distributions of these linear tests for the dependent-groups case with complete clus-
ter structure.

Theorem 3 Suppose that conditions C1–C7 hold. Then, under the null hypothesis 
and for any h ∈ T

c , j ∈ S , and some s ∈ [0, �) , the following hold 

 (i) 
√
nZn,hj(s) ⇝ Zhj(s) as n → ∞ , where Zhj(s) ∼ N(0, �2

hj
(s)) and 

 (ii) 
√
nZn,j ⇝ Zj as n → ∞ , where Zj ∼ N(0, �2

j
) and 

The proof of Theorem  3 is given in the Supplementary Material. Consistent (in 
probability) estimators of the asymptotic variances in Theorem 3 are

and

Alternatively, by Theorem  2 in Bakoyannis (2021) and the bootstrap continuous 
mapping theorem (Theorem  10.8 in Kosorok, 2008), these variances can be esti-
mated as sample variances based on a number of nonparametric cluster bootstrap 
realizations ∫ 𝜏

s
Ŵhj(t)[Δ̂

∗
n,hj

(s, t) − Δ̂n,hj(s, t)]d𝜇(t) and ∫ 𝜏

0
Ŵj(t)[Δ̂

∗
n,j
(t) − Δ̂n,j(t)]d𝜇(t) , 

Zn,hj(s) = ∫
𝜏

s

Ŵhj(t)Δ̂n,hj(s, t)d𝜇(t), for some s ∈ [0, 𝜏),

Z�
n,hj

(s) = ∫
𝜏

s

Ŵ �
hj
(t)Δ̂�

n,hj
(s, t)d𝜇(t), for some s ∈ [0, 𝜏),

Zn,j = ∫
𝜏

s

Ŵj(t)Δ̂n,j(t)d𝜇(t),

Zn,j = ∫
𝜏

s

Ŵ �
j
(t)Δ̂�

n,j
(t)d𝜇(t),

�2
hj
(s) = E

{
∫

�

s

Whj(t)[�1,1hj(s, t) − �1,2hj(s, t)]d�(t)

}2

.

�2
j
= E

{
∫

�

0

Wj(t)[�1,1j(t) − �1,2j(t)]d�(t)

}2

.

�̂�2
hj
(s) =

1

n

n∑
i=1

{
∫

𝜏

s

Ŵhj(t)[�̂�i,1hj(s, t) − �̂�i,2hj(s, t)]d𝜇(t)

}2

,

�̂�2
j
=

1

n

n∑
i=1

{
∫

𝜏

0

Ŵj(t)[�̂�i,1j(t) − �̂�i,2j(t)]d𝜇(t)

}2

.
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respectively. Based on any of these variance estimators and Theorem 3, it is easy to 
construct an asymptotic Z-test for testing the null hypothesis of interest as usual. 
Using the same arguments as those used in the proof of Theorem 3, it can also be 
shown that a similar version of this theorem holds for the test statistics Z�

n,hj
(s) and 

Z′
n,j

.
As for the case with independent groups, we define the L2-norm-based tests

and

The KS-type tests by Bakoyannis (2021) are Kn,hj(s) = supt∈[s,𝜏] |Ŵhj(t)Δ̂n,hj(s, t)| , for 
some s ∈ [0, �) , and Kn,j = supt∈[0,𝜏] |Ŵj(t)Δ̂n,j(t)| . The corresponding tests for 
Δ̂�

n,hj
(s, t) and Δ̂�

n,j
(t) , denoted by Q�

n,hj
(s) , K�

n,hj
(s) , and Q′

n,j
 , K′

n,j
 , are defined in a simi-

lar manner. Conducting hypothesis testing with these tests can be based on a resam-
pling scheme that utilizes the estimated multiplier processes

for some s ∈ [0, �) , where �i , i = 1,… , n , are independent standard normal varia-
bles, and

Similarly, one can define the estimated processes Ĉn,hj(s, t) and Ĉ�
n,j
(t) which corre-

spond to the tests for Δ̂�
n,hj

(s, t) and Δ̂�
n,j
(t) . Under conditions C1–C7 and by Theo-

rem 3 in Bakoyannis (2021), these processes converge weakly, conditionally on the 
observed data, to the null limiting processes of the corresponding test statistics. This 
fact along with the continuous mapping theorem can be used for the calculation of p 
values via similar algorithms to those described in Sect. 3.1. Finally, using the same 
arguments to those presented in the end of Sect. 3.1, the L2-norm-based and KS-type 
tests are consistent for any fixed alternative hypothesis.

3.2.2  Incomplete cluster structure

Here, we relax the assumption that Mi1 ∧Mi2 > 0 almost surely, and allow some 
clusters to have observations from one group only. Suppose that n1 clusters involve 
processes from group 1 only, n2 clusters involve processes from group 2 only, and n 
clusters include processes from both groups. As in previous research on the simpler 

Qn,hj(s) =

{
∫

𝜏

s

[
Ŵhj(t)Δ̂n,hj(s, t)

]2
d𝜇(t)

}1∕2

, for some s ∈ [0, 𝜏),

Qn,j =

{
∫

𝜏

0

[
Ŵj(t)Δ̂n,j(t)

]2
d𝜇(t)

}1∕2

.

Ĉn,hj(s, t) = Ŵhj(t)
1√
n

n�
i=1

[�̂�i,1hj(s, t) − �̂�i,2hj(s, t)]𝜉i t ∈ [s, 𝜏],

Ĉn,j(t) = Ŵj(t)
1√
n

n�
i=1

[�̂�i,1j(t) − �̂�i,2j(t)]𝜉i t ∈ [0, 𝜏].
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location problem with incompletely paired observations (Fong et al., 2018), we assume 
that the unobserved groups in some clusters are missing completely at random (Little 
and Rubin, 2019). Under this setting, we propose three hybrid tests that utilize the tests 
for independent and dependent groups with complete cluster structure. The proposed 
hybrid test statistics for the hypothesis H0 ∶ P0,1hj(s, ⋅) = P0,2hj(s, ⋅) are

and

The hybrid tests for the other null hypotheses have a similar structure. Theorem 4 
provides the basis for conducting hypothesis testing based on the above tests.

Theorem 4 Suppose that conditions C1–C7 hold and that n1∕(n1 + n2) → � ∈ (0, 1) 
as n1 ∧ n2 → ∞ . Then, under the null hypothesis and for any h ∈ T

c , j ∈ S , and 
some s ∈ [0, �) , it follows that as n1 ∧ n2 ∧ n → ∞

 (i) 
��

n1n2

n1+n2

Zn1,n2,hj
(s)

�̂�hj(s)

�2
+
�√

n
Zn,hj(s)

�̂�hj(s)

�2
⇝ 𝜒2

2
.

 (ii) Both random sequences {∫ 𝜏

s
[Ĉn1,n2,hj

(s, t)]2d𝜇(t)}1∕2 + {∫ 𝜏

s
[Ĉn,hj(s, t)]

2d𝜇(t)}1∕2 
and 

 converge weakly, conditionally on the observed data, to the asymptotic null 
distribution of 

�
n1n2

n1+n2
Qn1,n2,hj

(s) +
√
nQn,hj(s).

 (iii) Both random sequences supt∈[s,𝜏] |Ĉn1,n2,hj
(s, t)| + supt∈[s,𝜏] |Ĉn,hj(s, t)| and 

 converge weakly, conditionally on the observed data, to the asymptotic null 
distribution of 

�
n1n2

n1+n2
Kn1,n2,hj

(s) +
√
nKn,hj(s).

��
n1n2

n1 + n2

Zn1,n2,hj(s)

�̂�hj(s)

�2
+

�√
n
Zn,hj(s)

�̂�hj(s)

�2
,

�
n1n2

n1 + n2
Qn1,n2,hj

(s) +
√
nQn,hj(s),

�
n1n2

n1 + n2
Kn1,n2,hj

(s) +
√
nKn,hj(s).

(
∫

𝜏

s

{
Ŵhj(t)

[
Δ̂∗

n1,n2,hj
(s, t) − Δ̂n1,n2,hj

(s, t)
]}2

d𝜇(t)

)1∕2

+

(
∫

𝜏

s

{
Ŵhj(t)

[
Δ̂∗

n,hj
(s, t) − Δ̂n,hj(s, t)

]}2

d𝜇(t)

)1∕2

sup
t∈[s,𝜏]

||||Ŵhj(t)
[
Δ̂∗

n1,n2,hj
(s, t) − Δ̂n1,n2,hj

(s, t)
]||||

+ sup
t∈[s,𝜏]

||||Ŵhj(t)
[
Δ̂∗

n,hj
(s, t) − Δ̂n,hj(s, t)

]||||
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Theorem 4 follows from Theorems 1–3, Theorem 3 in Bakoyannis (2021), the con-
tinuous mapping theorem, the bootstrap continuous mapping theorem (Kosorok, 
2008), and the assumption of independence across clusters. In light of Theorem 4, 
it is easy to conduct hypothesis testing based on the hybrid tests for situations with 
incomplete cluster structure. Calculation of the p value based on the multiplier pro-
cesses and the cluster bootstraps in parts (ii) and (iii) of the latter theorem can be 
performed using similar algorithms to those provided in Sect. 3.1.

4  Simulation studies

A series of simulation experiments was conducted to evaluate the small-sample 
performance of the proposed tests and compare them with the KS-type test for 
dependent groups with complete cluster structure by Bakoyannis (2021). The simu-
lation setup was similar to that in Bakoyannis (2021). Specifically, we considered a 
non-Markov illness-death model with state space S = {1, 2, 3} and absorbing state 
T = {3} , in a study with clustered observations and ICS. In this simulation study, 
we choose n = 20, 40, 80 clusters, which are considered as small, or relatively small 
numbers of clusters. The cluster sizes Mi , i = 1,… , n , were simulated from the dis-
crete uniform distributions U(5, 15) or U(10, 30) , producing scenarios with 5 to 15 
or 10 to 30 observations per cluster, respectively. To induce within-cluster depend-
ence and simulate non-Markov processes, we generated cluster-specific frailties vi , 
i = 1,… , n , from the Gamma distribution with shape and scale parameters equal 

Table 1  Simulation results for two independent groups (scenario 1) regarding the empirical type I error 
of the proposed linear test (Linear), L2-norm-based test ( L2 ), and Kolmogorov–Smirnov-type test (KS) 
for H

0

∶ P
0,112

(0.5, ⋅) = P
0,212

(0.5, ⋅) and H
0

∶ P
�
0,112

(0.5, ⋅) = P
�
0,212

(0.5, ⋅) at the � = 0.05 level. Signifi-
cance levels were calculated based on either the empirical influence functions (IF) or the nonparametric 
cluster bootstrap (CB)

n: Number of clusters, F
M

 : Distribution of the cluster size

n
1

= n
2

FM Method P
0,p12(0.5, ⋅) , p = 1, 2 P�

0,p12
(0.5, ⋅) , p = 1, 2

Linear L2 KS Linear L2 KS

20 U[5, 15] IF 0.055 0.055 0.044 0.057 0.054 0.044
CB 0.049 0.048 0.033 0.054 0.051 0.040

U[10, 30] IF 0.063 0.067 0.055 0.071 0.068 0.055
CB 0.062 0.056 0.051 0.069 0.061 0.049

40 U[5, 15] IF 0.051 0.053 0.044 0.048 0.044 0.041
CB 0.049 0.052 0.042 0.049 0.043 0.035

U[10, 30] IF 0.051 0.043 0.050 0.049 0.038 0.051
CB 0.050 0.042 0.042 0.049 0.038 0.047

80 U[5, 15] IF 0.047 0.049 0.043 0.052 0.053 0.049
CB 0.046 0.046 0.038 0.054 0.053 0.046

U[10, 30] IF 0.049 0.053 0.047 0.048 0.047 0.045
CB 0.052 0.054 0.047 0.045 0.049 0.041
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Table 2  Simulation results for two independent groups (scenario 1) regarding the empirical power of 
the proposed linear test (Linear), L2-norm-based test ( L2 ), and Kolmogorov–Smirnov-type test (KS) for 
H

0

∶ P
0,112

(0.5, ⋅) = P
0,212

(0.5, ⋅) and H
0

∶ P
�
0,112

(0.5, ⋅) = P
�
0,212

(0.5, ⋅) at the � = 0.05 level. Significance 
levels were calculated based on either the empirical influence functions (IF) or the nonparametric cluster 
bootstrap (CB)

n: Number of clusters; F
M

 : Distribution of the cluster size

n
1

= n
2

FM Method P
0,p12(0.5, ⋅) , p = 1, 2 P�

0,p12
(0.5, ⋅) , p = 1, 2

Linear L2 KS Linear L2 KS

20 U[5, 15] IF 0.261 0.218 0.156 0.257 0.214 0.144
CB 0.251 0.216 0.136 0.252 0.209 0.138

U[10, 30] IF 0.368 0.327 0.254 0.346 0.297 0.222
CB 0.360 0.310 0.216 0.337 0.290 0.201

40 U[5, 15] IF 0.460 0.406 0.310 0.444 0.380 0.278
CB 0.457 0.397 0.303 0.441 0.373 0.265

U[10, 30] IF 0.648 0.612 0.504 0.625 0.589 0.477
CB 0.638 0.603 0.476 0.619 0.576 0.464

80 U[5, 15] IF 0.747 0.704 0.577 0.703 0.658 0.530
CB 0.743 0.699 0.559 0.700 0.659 0.522

U[10, 30] IF 0.898 0.875 0.791 0.875 0.848 0.759
CB 0.897 0.878 0.791 0.878 0.852 0.761

Table 3  Simulation results for two independent groups (scenario 1) regarding the empirical type I error 
of the proposed linear test (Linear), L2-norm-based test ( L2 ), and Kolmogorov–Smirnov-type test (KS) 
for H

0

∶ P
0,12

(⋅) = P
0,22

(⋅) and H
0

∶ P
�
0,12

(⋅) = P
�
0,22

(⋅) at the � = 0.05 level. Significance levels were cal-
culated based on either the empirical influence functions (IF) or the nonparametric cluster bootstrap (CB)

n: Number of clusters; F
M

 : Distribution of the cluster size

P
0,p2(⋅) , p = 1, 2 P�

0,p2
(⋅) , p = 1, 2

n
1

= n
2

FM Method Linear L2 KS Linear L2 KS

20 U[5, 15] IF 0.060 0.062 0.055 0.065 0.066 0.052
CB 0.061 0.058 0.051 0.067 0.066 0.051

U[10, 30] IF 0.061 0.069 0.054 0.065 0.061 0.054
CB 0.064 0.066 0.050 0.066 0.057 0.048

40 U[5, 15] IF 0.044 0.048 0.048 0.040 0.036 0.038
CB 0.043 0.045 0.048 0.038 0.036 0.035

U[10, 30] IF 0.056 0.053 0.046 0.052 0.048 0.047
CB 0.056 0.052 0.048 0.051 0.050 0.048

80 U[5, 15] IF 0.053 0.053 0.045 0.057 0.049 0.041
CB 0.049 0.054 0.042 0.061 0.056 0.041

U[10, 30] IF 0.055 0.056 0.055 0.044 0.049 0.048
CB 0.053 0.053 0.050 0.044 0.048 0.047
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to 1, and simulated illness-death processes using the conditional (on the frailty) 
cumulative transition intensities A0,12(t;vi) = [0.25 + 0.25 × I{mi ≤ E(M1)}]vit , 
A0,23(t;vi) = 0.5vit , and A0,13(t;vi) = 0.25vit , i = 1,… , n . The dependence of 
A0,12(t;vi) on the cluster size induced scenarios with ICS. In addition, we simu-
lated independent right censoring times from the uniform distribution U(0,  3). 
Two main scenarios according to the study design were considered: 1) a clus-
ter randomized trial where the two groups were independent and 2) a multicenter 
randomized trial where the two groups were dependent with a complete cluster 
structure. In both scenarios, we used a 1:1 group allocation ratio. In this simula-
tion study, we focused on the between-group comparison of the population-
averaged transition probabilities P�

0,12
(0.5, t) and P0,12(0.5, t) , and the popula-

tion-averaged state occupation probabilities P0,2(t) and P�
0,2
(t) . Data under the 

alternative hypothesis were simulated using the cumulative transition intensity 
A0,p12(t;vi) = [0.25 + 0.5 × I(p = 2) + 0.25 × I{mi ≤ E(M1)}]vit , p = 1, 2 , which 
depends on treatment arm p. Estimation of the transition probabilities was per-
formed using the landmark version of the proposed estimators as described in 
Sect.  2. For each scenario, we simulated 1000 datasets and, in each dataset, we 
tested the null hypothesis of interest with the proposed tests. The KS-type test by 
Bakoyannis (2021) is not applicable in scenario 1 with independent groups and, 
thus, was only considered in scenario 2 (dependent groups). The calculation of the 
p values from the linear tests was based on the corresponding asymptotic normal 
distribution under the null, where the variance was estimated by both the closed-
form estimators that utilize the empirical versions of the influence functions and 
the nonparametric cluster bootstrap with 1000 replications. For the calculation of 

Table 4  Simulation results for two independent groups (scenario 1) regarding the empirical power of 
the proposed linear test (Linear), L2-norm-based test ( L2 ), and Kolmogorov–Smirnov-type test (KS) for 
H

0

∶ P
0,12

(⋅) = P
0,22

(⋅) and H
0

∶ P
�
0,12

(⋅) = P
�
0,22

(⋅) at the � = 0.05 level. Significance levels were calcu-
lated based on either the empirical influence functions (IF) or the nonparametric cluster bootstrap (CB)

n: Number of clusters; F
M

 : Distribution of the cluster size

n
1

= n
2

FM Method P
0,p2(⋅) , p = 1, 2 P�

0,p2
(⋅) , p = 1, 2

Linear L2 KS Linear L2 KS

20 U[5, 15] IF 0.526 0.494 0.400 0.517 0.476 0.374
CB 0.524 0.492 0.385 0.518 0.471 0.363

U[10, 30] IF 0.613 0.576 0.497 0.601 0.565 0.474
CB 0.610 0.566 0.489 0.601 0.566 0.470

40 U[5, 15] IF 0.804 0.775 0.699 0.778 0.744 0.655
CB 0.796 0.768 0.691 0.779 0.742 0.656

U[10, 30] IF 0.900 0.880 0.826 0.890 0.871 0.812
CB 0.902 0.877 0.818 0.892 0.868 0.805

80 U[5, 15] IF 0.969 0.966 0.935 0.964 0.961 0.914
CB 0.970 0.967 0.935 0.964 0.959 0.910

U[10, 30] IF 0.995 0.993 0.987 0.995 0.995 0.985
CB 0.995 0.993 0.984 0.995 0.995 0.981
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Table 5  Simulation results for two dependent groups (scenario 2) regarding the empirical type I error of 
the proposed linear test (Linear), L2-norm-based test ( L2 ), and Kolmogorov–Smirnov-type test (KS) for 
H

0

∶ P
0,112

(0.5, ⋅) = P
0,212

(0.5, ⋅) and H
0

∶ P
�
0,112

(0.5, ⋅) = P
�
0,212

(0.5, ⋅) at the � = 0.05 level. Significance 
levels were calculated based on either the empirical influence functions (IF) or the nonparametric cluster 
bootstrap (CB)

n: Number of clusters; F
M

 : Distribution of the cluster size
∗Kolmogorov–Smirnov-type test by Bakoyannis (2021)

n FM Method P
0,p12(0.5, ⋅) , p = 1, 2 P�

0,p12
(0.5, ⋅) , p = 1, 2

Linear L2 KS∗ Linear L2 KS∗

20 U[5, 15] IF 0.050 0.049 0.046 0.055 0.048 0.040
CB 0.045 0.042 0.041 0.055 0.042 0.038

U[10, 30] IF 0.066 0.056 0.042 0.071 0.055 0.046
CB 0.060 0.048 0.037 0.068 0.052 0.043

40 U[5, 15] IF 0.051 0.057 0.052 0.048 0.047 0.043
CB 0.049 0.052 0.037 0.050 0.046 0.040

U[10, 30] IF 0.041 0.036 0.040 0.046 0.037 0.042
CB 0.038 0.038 0.037 0.045 0.040 0.038

80 U[5, 15] IF 0.046 0.040 0.048 0.046 0.040 0.046
CB 0.047 0.041 0.049 0.042 0.038 0.044

U[10, 30] IF 0.050 0.055 0.059 0.054 0.057 0.052
CB 0.051 0.054 0.061 0.057 0.054 0.050

Table 6  Simulation results for two dependent groups (scenario 2) regarding the empirical power of the 
proposed linear test (Linear), L2-norm-based test ( L2 ), and Kolmogorov–Smirnov-type test (KS) for 
H

0

∶ P
0,112

(0.5, ⋅) = P
0,212

(0.5, ⋅) and H
0

∶ P
�
0,112

(0.5, ⋅) = P
�
0,212

(0.5, ⋅) at the � = 0.05 level. Significance 
levels were calculated based on either the empirical influence functions (IF) or the nonparametric cluster 
bootstrap (CB)

n: number of clusters; F
M

 : distribution of the cluster size
∗Kolmogorov–Smirnov-type test by Bakoyannis (2021)

n FM Method P
0,p12(0.5, ⋅) , p = 1, 2 P�

0,p12
(0.5, ⋅) , p = 1, 2

Linear L2 KS∗ Linear L2 KS∗

20 U[5, 15] IF 0.202 0.169 0.108 0.205 0.161 0.093
CB 0.198 0.158 0.092 0.197 0.150 0.089

U[10, 30] IF 0.406 0.335 0.218 0.349 0.290 0.193
CB 0.395 0.311 0.188 0.345 0.268 0.164

40 U[5, 15] IF 0.391 0.327 0.233 0.340 0.287 0.214
CB 0.388 0.308 0.221 0.339 0.272 0.206

U[10, 30] IF 0.626 0.553 0.410 0.580 0.523 0.364
CB 0.622 0.544 0.386 0.577 0.508 0.346

80 U[5, 15] IF 0.660 0.606 0.428 0.598 0.535 0.356
CB 0.658 0.599 0.414 0.589 0.530 0.351

U[10, 30] IF 0.913 0.868 0.723 0.867 0.823 0.644
CB 0.911 0.868 0.713 0.862 0.815 0.639
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Table 7  Simulation results for two dependent groups (scenario 2) regarding the empirical type I error of 
the proposed linear test (Linear), L2-norm-based test ( L2 ), and Kolmogorov–Smirnov-type test (KS) for 
H

0

∶ P
0,12

(⋅) = P
0,22

(⋅) and H
0

∶ P
�
0,12

(⋅) = P
�
0,22

(⋅) at the � = 0.05 level. Significance levels were calcu-
lated based on either the empirical influence functions (IF) or the nonparametric cluster bootstrap (CB)

n: number of clusters; F
M

 : distribution of the cluster size
∗Kolmogorov–Smirnov-type test by Bakoyannis (2021)

n FM Method P
0,p2(⋅) , p = 1, 2 P�

0,p2
(⋅) , p = 1, 2

Linear L2 KS∗ Linear L2 KS∗

20 U[5, 15] IF 0.069 0.063 0.045 0.060 0.051 0.049
CB 0.068 0.054 0.042 0.061 0.051 0.050

U[10, 30] IF 0.063 0.052 0.040 0.067 0.051 0.044
CB 0.061 0.053 0.039 0.065 0.047 0.040

40 U[5, 15] IF 0.058 0.055 0.044 0.056 0.045 0.037
CB 0.057 0.057 0.041 0.056 0.046 0.039

U[10, 30] IF 0.061 0.056 0.048 0.059 0.055 0.044
CB 0.060 0.050 0.046 0.057 0.053 0.046

80 U[5, 15] IF 0.042 0.051 0.048 0.049 0.047 0.049
CB 0.040 0.050 0.046 0.050 0.047 0.047

U[10, 30] IF 0.057 0.055 0.053 0.059 0.058 0.059
CB 0.056 0.055 0.053 0.060 0.061 0.055

Table 8  Simulation results for two dependent groups (scenario 2) regarding the empirical power of the 
proposed linear test (Linear), L2-norm-based test ( L2 ), and Kolmogorov–Smirnov-type test (KS) for 
H

0

∶ P
0,12

(⋅) = P
0,22

(⋅) and H
0

∶ P
�
0,12

(⋅) = P
�
0,22

(⋅) at the � = 0.05 level. Significance levels were calcu-
lated based on either the empirical influence functions (IF) or the nonparametric cluster bootstrap (CB)

n: Number of clusters; F
M

 : Distribution of the cluster size
∗Kolmogorov–Smirnov-type test by Bakoyannis (2021)

n FM Method P
0,p2(⋅) , p = 1, 2 P�

0,p2
(⋅) , p = 1, 2

Linear L2 KS∗ Linear L2 KS∗

20 U[5, 15] IF 0.489 0.449 0.352 0.464 0.430 0.331
CB 0.486 0.445 0.339 0.462 0.433 0.337

U[10, 30] IF 0.791 0.737 0.634 0.748 0.714 0.598
CB 0.781 0.743 0.625 0.744 0.719 0.601

40 U[5, 15] IF 0.809 0.771 0.666 0.755 0.719 0.612
CB 0.809 0.773 0.659 0.750 0.709 0.603

U[10, 30] IF 0.971 0.962 0.905 0.956 0.931 0.874
CB 0.970 0.958 0.906 0.955 0.927 0.873

80 U[5, 15] IF 0.973 0.965 0.916 0.949 0.934 0.870
CB 0.972 0.965 0.917 0.949 0.933 0.864

U[10, 30] IF 1.000 1.000 0.995 1.000 0.998 0.991
CB 1.000 0.999 0.994 0.999 0.996 0.990
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p values from the L2-norm-based and the KS-type tests, we used both the multiplier 
processes that depend on the empirical influence functions, with 1000 simulated sets 
{�i}

n
i=1

 of standard normal variables, and the cluster bootstrap with 1000 bootstrap 
replications.

Simulation results under scenario 1 (independent groups) are presented in 
Tables 1, 2, 3 and 4. The empirical type I error rates of the tests were close to the 
0.05 level in all cases for both transition (Table 1) and state occupation probabilities 
(Table 3). This indicates that the approximation of the null distributions of the tests 
by their corresponding asymptotic distributions was particularly good, even in cases 
with a small number of clusters. As expected, the empirical power (Tables  2,  4) 
increased with sample size. The linear and the L2-norm-based tests exhibited a sub-
stantially larger power compared to the KS-type test. The linear test was also some-
what more powerful compared to the L2-norm-based test, particularly in cases with 
smaller sample sizes. In addition, the weighted by cluster size tests exhibited slightly 
lower power levels compared to their unweighted counterparts. This is attributed to 
the additional variability of the cluster sizes in the weights.

Simulation results under scenario 2 (dependent groups) are summarized in 
Tables 5, 6, 7 and 8. The results from scenario 2 were similar to those from scenario 
1. The empirical type I error rates (Tables 5, 7) were close to the nominal level, even 
in cases with a small number of clusters and the empirical power levels (Tables 6, 
8) increased with sample size. The linear and the L2-norm-based tests were substan-
tially more powerful compared to the KS-type test by Bakoyannis (2021). Further-
more, the linear test was somewhat more powerful compared to the L2-norm-based 
test.

In summary, our simulation experiments provide numerical evidence that the pro-
posed tests work well even with a small number of clusters and under ICS and non-
Markov processes. In addition, our tests are substantially more powerful compared 
to the KS-type test by Bakoyannis (2021).
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Fig. 1  Multicenter SPECTRUM study: Overall population-averaged state occupation probabilities, with 
the 95% simultaneous confidence bands
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5  Data application

The proposed tests were applied to the data from the multicenter SPECTRUM 
trial (Vermorken et al., 2013), an open-label Phase III randomized trial, conducted 
to evaluate the efficacy of the combination of chemotherapy with panitumumab, 
compared to chemotherapy alone, in terms of the probability of tumor response 
in patients with recurrent or metastatic squamous-cell carcinoma of the head and 
neck. In the subset of the data which was available to us, there were 72 clinics and 
479 patients. Of these patients, 243 were in the chemotherapy group and 236 in 
the chemotherapy plus panitumumab group. These groups were dependent with a 
complete cluster structure, that is each of the 72 clinics involved patients from both 
groups. Throughout the follow-up period, 126 patients experienced response at some 
point, 422 patients experienced a disease progression or died, and 57 patients were 
right-censored. No left truncation was present in this dataset. The data were ana-
lyzed under the illness-death model, with tumor response being the transient state of 
interest and progression or death being the absorbing state. The estimates of the pop-
ulation-averaged state occupation probabilities over the ACM population (i.e., the 
population of all clinic patients) from the full sample are depicted in Fig. 1. These 
estimates illustrate the history of disease under treatment. The population-averaged 
probabilities of tumor response by treatment group, both for the ACM and the TCM 
(i.e., typical clinic patients) populations, are depicted in Fig. 2. In both populations, 
the population-averaged probability of being in tumor response appears to be higher 
in the chemotherapy plus panitumumab group. Also, Fig. 2 provides some evidence 
for ICS in this dataset, as the state occupation probabilities for the two populations 
appear to be different. More precisely, since larger clinics tend to dominate the ACM 
population, larger clinics appear to have a higher probability of response in general. 

p−value = 0.112
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Fig. 2  Population-averaged state occupation probabilities of tumor response by treatment group in the 
multicenter SPECTRUM study, along with the p value from the linear test for dependent groups
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In addition, the difference between the two groups appears to be more pronounced 
in larger clinics. According to the linear test for dependent groups, the more pro-
nounced difference in the ACM population is not statistically significant (p value = 
0.112). The corresponding p values for the L2-norm-based and the KS-type test for 
dependent data were 0.114 and 0.176, respectively. The p value from the Kolmogo-
rov–Smirnov-type test was larger and this is in accordance with the results from our 
simulation experiments. As expected, the linear test for the TCM population, where 
the difference between the two groups appears less pronounced, does not provide a 
statistically significant result (p value = 0.604).

6  Discussion

In this work, we addressed the issue of nonparametric two-sample testing for popu-
lation-averaged transition and state occupation probabilities for multistate processes 
with clustered, right-censored, and/or left-truncated data. We proposed tests for sit-
uations with both independent and dependent groups, with and without complete 
cluster structure. For each case, we proposed a linear test, an L2-norm-based test, 
and a KS-type test. The proposed tests do not impose assumptions regarding the 
structure of the within-cluster dependence, and are applicable under ICS, and for 
both Markov and non-Markov processes. These characteristics are crucial in many 
applications, such as the SPECTRUM trial analyzed in Sect. 5. The asymptotic null 
distributions of the tests were established using empirical process theory. Rigorous 
procedures for the calculation of p values were proposed, and the L2-norm-based 
and KS-type tests were argued to be consistent against any fixed alternative hypoth-
esis. Simulation experiments under complex settings showed that the proposed tests 
work well, even under a small number of clusters. In addition, even though the lin-
ear tests may not be consistent against alternatives with crossing transition and state 
occupation probability functions, they were shown to be substantially more power-
ful compared to the KS-type tests under alternatives with non-crossing probabilities. 
The tests were illustrated using a motivating dataset from a multicenter randomized 
controlled trial.

The nonparametric literature on multistate processes with independent data is 
rich (Aalen and Johansen, 1978; Glidden, 2002; Tattar and Vaman, 2014; Bluhmki 
et al., 2018, 2019; Bakoyannis, 2020). However, to the best of our knowledge, only 
Bakoyannis (2021) has proposed a two-sample nonparametric procedure for multi-
state processes with clustered data. Nevertheless, this test has two important limita-
tions. First, by virtue of being a KS-type test, it may not be the most powerful test for 
situations with non-crossing transition and state occupation probability functions. 
Second, this test is only applicable to situations with dependent groups with com-
plete cluster structure. It is not applicable for problems with independent groups, 
such as cluster randomized trials, or with dependent groups with incomplete cluster 
structure. In this work, we have addressed all these limitations. We proposed a linear 
test and an L2-norm-based test that can be substantially more powerful compared 
to the KS-type test by Bakoyannis (2021) in settings with non-crossing probabil-
ity functions, as shown in our simulation experiments. Furthermore, we addressed, 
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for the first time, the issue of nonparametric two-sample comparison for clustered 
multistate processes, where the two groups under comparison are either independ-
ent or dependent with incomplete cluster structure. From an applied standpoint, the 
linear test may be preferable over the L2-norm-based and KS-type tests, because a 
statistically significant difference based on the former implies that one group spends 
more time in a particular state. This is not necessarily true for the L2-norm-based 
and KS-type tests.

In this article, we assumed that right censoring is independent of the multistate 
process of interest and the cluster size, which may be violated in practice. To address 
this, our work can be extended by incorporating inverse probability of censoring 
weighting techniques to account for dependent censoring (Datta and Satten, 2002). 
In this case, the influence functions of the test statistics will involve the influence 
functions of the chosen estimator for the model of the censoring distribution. There 
is a number of additional practically important issues that were not addressed in this 
work. First, statistical study design issues remain, such as sample size calculation 
for trials with clustered multistate processes. Second, many trials involve stratified 
randomization or minimization and this needs to be taken into account into the test-
ing procedure (Kahan and Morris, 2012). Third, there are trials that involve more 
than two interventions. Fourth, there may be an association between different clus-
ters, as for example between two clinics in close proximity. Finally, multistate event 
processes may often depend on time-dependent covariates (Studer et al., 2018), and 
covariate-dependent testing can be crucial there. These issues require further meth-
odology development, and constitute interesting topics for future research.
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