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Abstract
Some quasi-arithmetic means of random variables easily give unbiased strongly 
consistent closed-form estimators of the joint of the location and scale parameters of 
the Cauchy distribution. The one-step estimators of those quasi-arithmetic means of 
the Cauchy distribution are considered. We establish the Bahadur efficiency of the 
maximum likelihood estimator and the one-step estimators. We also show that the 
rate of the convergence of the mean-squared errors achieves the Cramér–Rao bound. 
Our results are also applicable to the circular Cauchy distribution .
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1 Introduction

In the parameter estimation of the location � ∈ ℝ and the scale 𝜎 > 0 of the Cauchy 
distribution, it is difficult to balance efficiency with computational difficulty. So far, var-
ious approaches have been taken. The maximal likelihood estimation (MLE) has been 
considered by Haas et al. (1970); Copas (1975); Ferguson (1978); Gabrielsen (1982); 
Reeds (1985); Saleh et  al. (1985); Bai and Fu (1987); Vaughan (1992); McCullagh 
(1992, 1993, 1996); Matsui and Takemura (2005). The order statistics, which includes 
analysis for central values and quantiles, is used in Ogawa (1962a, 1962b); Rothenberg 
et al. (1964); Barnett (1966); Bloch (1966); Chan (1970); Balmer et al. (1974); Cane 
(1974); Rublik (2001); Zhang (2009); Kravchuk and Pollett (2012). Other approaches 
are taken by Howlader and Weiss (1988); Higgins and Tichenor (1977, 1978); Boos 
(1981); Gürtler and Henze (2000); Besbeas and Morgan (2001); Onen et al. (2001); 
Kravchuk (2005); Cohen Freue (2007). Results obtained before 1994 are thoroughly 
surveyed in the book by Chapter 16 in Johnson et al. (1994).

In Akaoka et al. (2021b), the authors suggest new estimators of the parameters of the 
Cauchy distribution in the case that neither the location � nor the scale � is known by 
dealing with quasi-arithmetic means of independent and identically distributed (i.i.d.) 
random variables. For the parameter estimation of the Cauchy distribution, some of the 
quasi-arithmetic means of a sample have closed-forms, and are unbiased and strongly 
consistent, under McCullagh’s parametrization McCullagh (1993, 1996). Those quasi-
arithmetic means are easy to construct and analyze rigorously. Indeed, in Akaoka et al. 
(2021a), the authors construct confidence discs for � + �i without numerical analysis.

Considering the one-step estimators of 
√
n-consistent estimators is a useful way to 

obtain efficient estimators. It is well known that under some conditions, they achieve 
the Cramér–Rao bound via the central limit theorem for the one-step estimators (See 
Section 7.3 in Lehmann (1999)). Our one-step estimators are simple and easy to cal-
culate, according that the initial estimators, which are quasi-arithmetic means here, are 
simple and easy to calculate. We also show that our one-step estimators and the MLE 
are efficient in the Bahadur sense, which concerns large deviation estimates. Our proof 
of the case of the MLE depends on Arcones (2006), Shen (2001) and the explicit for-
mula of the Kullback–Leibler divergence between the Cauchy distributions recently 
obtained by Chyzak and Nielsen (2019). We also show that the rate of the convergence 
of the mean-squared errors achieves the Cramér–Rao bound. Our results are also appli-
cable to the circular Cauchy distribution, which are closely connected with the Cauchy 
distribution via the Möbius transformations.

This paper is organized as follows. In Sect. 2, we give some preliminary results for 
tail estimates of quasi-arithmetic means. In Sect. 3, we establish the Bahadur efficiency 
of the MLE. In Sect. 4, we establish the Bahadur efficiency and the rate of the con-
vergence of the mean-squared errors of the one-step estimators of the quasi-arithmetic 
means, which are the main results of this paper. In Sect. 5, we give an application of 
parameter estimation for the circular Cauchy distribution. Section 6 is devoted to proofs 
of the results in Sects. 2, 3, 4 and 5. In Appendix, we give numerical computations for 
the mean-squared errors of the one-step estimators in Sect. 4.
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Bahadur efficiency of MLE and one-step estimator

1.1  Framework

Let ℍ be the upper-half plane and ℍ = ℍ ∪ℝ . Let i be the imaginary unit. We often 
denote � ∶= � + �i . For � = � + �i , we let

For � ∈ ℂ , we denote its complex conjugate by �.
Let (Xi)i be an i.i.d. sequence of random variables with distribution C(�, �) on 

a probability space. We often denote the distribution following P� by C(�).
We deal with the quasi-arithmetic means of the i.i.d. random variables. This 

has the form that

where U is a domain containing ℍ ⧵ {�} for some � ∈ {x + yi ∶ y ≤ 0} and 
f ∶ U → ℂ is a continuous injective holomorphic function such that f

(
ℍ ⧵ {�}

)
 is 

convex, limz→�(z − �)f (z) = 0 and furthermore f has sublinear growth at infinity, 
specifically, lim|z|→∞ f (z)∕|z| = 0.

We remark that f is not only in the C∞ class but also holomorphic on a domain 
containing ℍ ⧵ {�} . By the residue theorem,

If Im(𝛼) < 0 , then, ℍ ⧵ {�} = ℍ . On the other hand, if Im(�) = 0 , then, 
ℍ ⧵ {𝛼} ⊊ ℍ . See Akaoka et al. (2021b) for more details.

In this paper we additionally assume that there exists a constant 𝜆 > 0 such that

Akaoka et al. (2021b) deals with quasi-arithmetic means with its generators of the 
form

or

each of which corresponds to the geometric mean and a modification of the har-
monic mean. We remark that � ∈ ℝ is allowed when we deal with the case that 
f (x) = log(x + �) . (1) and (2) hold for the case that f (x) = log(x + �), � ∈ ℍ and 
that f (x) = 1∕(x + �), � ∈ ℍ . We remark that the quasi-arithmetic means with gen-
erator f (x) = 1∕(x + �) are identical with the quasi-arithmetic means with generator

P�(dx) = p(x;�)dx, p(x;�) = p(x;(�, �)) ∶=
�

�

1

(x − �)2 + �2
.

f −1

(
1

n

n∑
j=1

f (Xj)

)
,

(1)E[f (X1)] = f (�).

(2)E
[
exp

(
𝜆||f (X1)

||
)]

< +∞.

f (x) = log(x + �), � ∈ ℍ,

f (x) =
1

x + �
, � ∈ ℍ,
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See Example 1.2 (ii) in Akaoka et al. (2021b) for more details.

2  Large deviations for quasi‑arithmetic means

We first give a decay rate of quasi-arithmetic means. We assume that (1) and (2) 
hold.

Theorem 1 There exist positive constants c1 and c2 such that for every � ∈ (0, �) and 
every n ≥ 2,

This also plays a crucial role in the proof of the Bahadur efficiency of the one-
step estimator with initial estimator.

By the contraction principle, we have the following:

Theorem 2 The quasi-arithmetic means f −1
�

1

n

∑n

j=1
f (Xj)

�
 satisfy the large devia-

tion principle with rate function

where z ∈ ℍ.

See Dembo and Zeitouni (2010) for the basic terminologies and results of the 
theory of large deviations.

Under the consideration of Eq.(1.5) in Akaoka et  al. (2021b), we conjecture 
that

The right-hand side is called an inaccuracy rate. The quasi-arithmetic mean 
f −1

�
1

n

∑n

j=1
f (Xj)

�
 can be regarded as an M-estimator. Let �(x, �) ∶= f (x) − f (�) . 

Then, � = f −1
�

1

n

∑n

j=1
f (Xj)

�
 if and only if 

∑n

j=1
�(Xj, �) = 0.

f (x) =
x + �

x + �
=

x − �

x − �
, � = −�.

P

(||||||
f −1

(
1

n

n∑
j=1

f (Xj)

)
− 𝜃

||||||
> 𝜖

)
≤ c1 exp

(
−c2n𝜖

2
)
.

I(z) = sup
�1,�2∈ℝ

(
�1Re(f (z)) + �2Im(f (z))

− logE
[
exp

(
�1Re(f (z)) + �2Im(f (z))

)])
,

lim
𝜖→+0

1

𝜖2
lim
n→∞

1

n
P

(||||||
f −1

(
1

n

n∑
j=1

f (Xj)

)
− 𝜃

||||||
> 𝜖

)
= −

|f �(𝜃)|2
Var(f (X1))

.
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The inaccuracy rates for one-dimensional M-estimators are considered by 
Jurečková and Kallenberg (1987). Multidimensional large deviation principles for 
M-estimators are considered by Arcones (2006). Theorem 3.5 in Arcones (2006) 
is not applicable to the case the both of the location and the scale are unknown. 
We do not pursue further properties for large deviations for complex-valued 
M-estimators here.

3  Bahadur efficiency of the maximum likelihood estimator

Let �̂�n be the maximal likelihood estimator (MLE) of � = � + �i . Copas (1975) 
showed that the joint likelihood function for the location and scale parameters of 
the Cauchy distribution is unimodal. Let

The MLE �̂�n = �̂�n(X1,… ,Xn) is a unique solution of the following equation for �:

This is the likelihood equation in the complex form. See Corollary 2.8 in Oka-
mura and Otobe (2021) for more details and Proposition 2.2 in Okamura and Otobe 
(2021) for another expression for the likelihood equation in the complex form. For 
n ≤ 4 , the solution of the likelihood equation has a closed form (Ferguson (1978)). 
However, for n ≥ 5 , we do not have any algebraic closed-form formula (Okamura 
and Otobe (2021)).

Let the Kullback–Leibler divergence be

Proposition 3 (Chyzak and Nielsen (2019)) For �, �� ∈ ℍ,

We remark that a version of (3) already appears in Eq.(18) in McCullagh 
(1996). See also the discussions around (8) and (9) below. Let

The quantity |�−��|2
4Im(�)Im(��)

 in (3) is the maximal invariant for the action of SL(2,ℝ) to 
ℍ × ℍ defined by

h(x, t) ∶=
x − t

x − t
, x ∈ ℍ, t ∈ ℍ.

n∑
j=1

h(Xj, �) =

n∑
j=1

Xj − �

Xj − �
= 0.

K(P�� |P�) ∶= ∫
ℝ

p(x;��) log
p(x;��)

p(x;�)
dx, � ∈ ℍ.

(3)K(P�� |P�) = log

(
1 +

|� − ��|2
4Im(�)Im(��)

)
.

SL(2,ℝ) ∶=

{(
a b

c d

)
∶ a, b, c, d ∈ ℝ, ad − bc = 1

}
.
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See also McCullagh (1993, 1996). In particular we see that

Let

Then, by (3),

This does not depend on the location � . In particular,

Bahadur et al. (1980) showed that for every consistent estimator Tn for each �,

See Eq. (4) in Arcones (2006) or Proposition 1 in Shen (2001). It is a natural ques-
tion whether we can show that

in the case that (Tn)n is the MLE. Kester and Kallenberg (1986) gave an example of 
the MLE which does not satisfy (6).

The following theorem along with the above estimate indicates that the MLE is 
best in the sense of Bahadur efficiency.

Theorem 4 (Bahadur efficiency of the MLE)

Bai and Fu (1987) considered the MLE of location � in the case that the scale 
parameter � is known. In that case the likelihood equation is given by

A ⋅ (z,w) =

(
az + b

cz + d
,
aw + b

cw + d

)
, A =

(
a b

c d

)
∈ SL(2,ℝ), z,w ∈ ℍ.

K(PA⋅�� |PA⋅�) = K(P�� |P�).

b(𝜖, 𝜃) ∶= inf
{
K(P𝜃� |P𝜃) ∶ 𝜃� ∈ ℍ, |𝜃� − 𝜃| > 𝜖

}
.

(4)b(�, �) = log

(
1 +

�2

4Im(�)(Im(�) + �)

)
.

(5)lim
�→+0

b(�, �)

�2
=

1

4Im(�)2
.

lim inf
n→∞

logP(|Tn − 𝜃| > 𝜖)

n
≥ −b(𝜖, 𝜃).

(6)lim inf
n→∞

logP(|Tn − 𝜃| > 𝜖)

n
= −b(𝜖, 𝜃),

lim sup
𝜖→+0

lim sup
n→∞

logP(|�̂�n − 𝜃| > 𝜖)

nb(𝜖, 𝜃)
= −1.

(7)
n∑
j=1

Xj − �

(Xj − �)2 + �2
= 0
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and this equation for � has multiple solutions (Reeds (1985)), so from this equation 
itself, we cannot see which � of the solutions gives the maximum of the log-likeli-
hood. Eq. (2.12) and (2.13) in Bai and Fu (1987) shows that

where

However, by Theorem 3.2 in Arcones (2006), it holds that �(�) ≠ b(�, �i).
Our strategy of the proof of Theorem 4 is to firstly establish that P(|�̂�n − 𝜃| > 𝜖) 

decays exponentially for every 𝜖 > 0 , and then to adopt Theorem 3 in Shen (2001). 
McCullagh (1996) obtains for an asymptotic pointwise lower bound for the den-
sity function pn(�) of the MLE �̂�n with respect to an invariant measure on ℍ for the 
action of the special linear group SL2(ℝ) , under the assumption of existence of the 
continuous density function. However it might not lead any estimates for the upper 
bound of P

(|�̂�n − 𝜃| > 𝜖
)
.

We still conjecture that the rate function in Theorem  3.8 in Arcones (2006) is 
correct, although it is not applicable to the Cauchy distribution in its form. The rate 
function is defined by

where � , � ∈ ℍ and E� denotes the expectation with respect to P� . Let � = �1 + i�2 . 

This might be the limit of − log pn(�)∕n , where � ∶=
(�1 − �)2 + (�2 − �)2

4�2�
.

In p.801 in McCullagh (1996), it is stated that

Since it holds that for Borel measurable set A,

we would naturally expect that for sufficiently small 𝜖 > 0,

By Eq.(33) in Arcones (2006), we see that K(P� |P�) ≥ I�(�) , which is consist-
ent with (8) and (9). If the conjecture Eq.(18) in McCullagh (1996) is true, then, 
K(P� |P�) = I�(�) . Furthermore, we can show that IA⋅�(A ⋅ �) = I�(�) for every 

lim
n→∞

logP(|�̂�n − 𝜇| > 𝜖)

n
= −𝛽(𝜖),

�(�) =
�2

4�2

�
1 + O(

√
�)
�
.

I�(�) ∶= − inf
�1,�2∈ℝ

logE�
[
exp

(
�1Re(h(x, �)) + �2Im(h(x, �))

)]
,

(8)lim inf
n→∞

log pn(�)

n
≥ − log

(
1 +

(�1 − �)2 + (�2 − �)2

4�2�

)
= −K

(
P� |P�

)
.

P𝜃(�̂�n ∈ A) = ∬A

1

4𝜋t2
2

pn

(
(t1 − 𝜇)2 + (t2 − 𝜎)2

4t2𝜎

)
dt1dt2,

(9)log pn(𝜒)

n
≈

logP𝜃(�̂�n ∈ B(𝛾 , 𝜖))

n
≈ −I𝜃(𝛾), n → ∞.



902 Y. Akaoka et al.

1 3

A ∈ SL(2,ℝ) by the same technique as in the proof of Lemma 2.3 in Okamura 
(2020).

4  Bahadur efficiency of the one‑step estimator of quasi‑arithmetic 
means

For ease of notation, we let

Let

Let In(�) = In(�, �) ∶=
n

2�2
I2 , that is, the Fisher information matrix for the Cauchy 

sample of size n. Now we regard Yn as an ℝ2-valued random variable. Then, a ver-
sion of the one-step estimator of Yn is given by

Now we rewrite this in terms of the complex parametrization. By recalling the defi-
nition of h,

Now we see that

The main feature is that the initial estimators (Yn)n and the one-step estimators 
(Zn)n have closed-form. Therefore it is easy to compute and do not need numerical 
approximations, which is contrary to the MLE (�̂�n)n . If Var(f (X1)) < +∞ , then, by 
the central limit theorem for (Yn) , which is stated in Theorem 1.5 in Akaoka et al. 
(2021b), (Yn)n is a 

√
n-consistent estimator. Then it holds that

(10)Yn ∶= f −1

(
1

n

n∑
i=1

f (Xi)

)
.

� (x;�) = � (x;(�, �)) ∶=

(
�

��
log p(x;(�, �))

�

��
log p(x;(�, �))

)
.

Zn ∶= Yn − In(Yn)
−1

n∑
j=1

� (Xj;Yn).

� (x;�) =
1

Im(�)|x − �|2
(
Im((x − �)2)
Re((x − �)2)

)
=

1

Im(�)

(
Im(h(x, �))
Re(h(x, �))

)
.

(11)Zn = Yn +
2Im(Yn)i

n

n∑
j=1

h(Xj, Yn) = Yn +
2Im(Yn)i

n

n∑
j=1

Xj − Yn

Xj − Yn

.

(12)
√
n(Zn − �) ⇒ N

�
0,

1

2�2
I2

�
, n → ∞,
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where ⇒ means the convergence in distribution, I2 denotes the identity matrix of 
degree 2, and, N(⋅, ⋅) is the 2-dimensional normal distribution. See Section 7.3 in 
Lehmann (1999) for details.

The one-step estimators are easily obtained by efficient estimators. In general, 
the difficulty arising from multiple roots of the likelihood equations, as in (7) 
above, is overcome by a one-step estimator which only requires a 

√
n-consistent 

estimator in the initial point. The following is the main result of this paper.

Theorem 5 (Bahadur efficiency of the one-step estimator) If (2) holds, then,

The proof is done by estimating Zn − �̂�n . This is different from the considera-
tion of one-step estimators by Janssen et al. (1985) in the one-dimensional case. We 
might be able to consider it for not only the Cauchy distribution but also other distri-
butions, if the tail of the starting point estimator decays exponentially fast.

Let (Tn)n be a sequence of complex-valued unbiased estimators of � + �i , where 
Tn is an unbiased estimator for samples of size n. Then, Re(Tn) and Im(Tn) are unbi-
ased estimators of � and � , respectively. By the Cramér–Rao inequality,

The following theorem shows (Zn)n achieves the lower bound of (13), although it 
may not be unbiased.

Theorem 6 (Variance asymptotics for the one-step estimator) If

and

then,

in particular,

(14) is identical with Eq.(1.5) in Akaoka et al. (2021b) and is verified for the case 
that f (x) = log(x + �), � ∈ ℍ and f (x) = x − �

x − �
, � ∈ ℍ in Theorems 4.2 and 4.4 in 

Akaoka et al. (2021b). The proof is done by establishing the uniform integrability 

lim sup
𝜖→+0

lim sup
n→∞

logP
(|Zn − 𝜃| > 𝜖

)
nb(𝜖, 𝜃)

≤ −1.

(13)nVar(Tn) ≥ 4Im(�)2.

E
[||f (X1)

||2
]
< +∞

(14)lim
n→∞

nVar
(
Yn
)
=

Var(f (X1))

|f �(�)|2 ,

lim
n→∞

nE
[||Zn − �||2

]
= 4 Im(�)2,

lim
n→∞

nVar
(
Zn
) ≤ 4 Im(�)2.
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for 
�√

n(Zn − �)
�

n
 . Numerical computations for nE

[||Zn − �||2
]
∕Im(�)2 and related 

discussions are given in Appendix.

5  Parameter estimation for the circular Cauchy distribution

In this section, we apply the results in Sect.  4 to parameter estimations for the 
circular Cauchy distribution. The circular Cauchy distribution, also known as 
the wrapped Cauchy distribution, appears in the area of directional statistics. It 
is regarded as a distribution on the unit circle. It is connected with the Cauchy 
distribution via the Möbius transformations. Such connection is considered by 
McCullagh (1992, 1996). Recently, in Kato and McCullagh (2020), an extension 
to the high-dimensional sphere is investigated in terms of the Möbius transforma-
tions. The maximum likelihood estimation of the circular Cauchy distribution is 
attributed to that of the Cauchy distribution. Due to the connection, we can apply 
our results in Sect. 4 to the circular Cauchy distribution in a simple manner.

Let 𝔻 ∶= {z ∈ ℂ ∶ |z| < 1} . The circular Cauchy distribution Pcc
w

 with param-
eter w ∈ � is the continuous distribution on [0, 2�) with density function

where we have used McCullagh (1996). We estimate the parameter w.
In this section we let �� ∶ ℍ → 𝔻 be the function defined by

Then �� is a bijection and its inverse is given by

Let X̃n, n ≥ 1, be i.i.d. random variables following the circular Cauchy distribution 
Pcc
w

 . Let Xn ∶= �−1
�
(exp(iX̃n)) . They are i.i.d. random variables following the Cauchy 

distribution with parameter �−1
�
(w) . Let Yn be the quasi-arithmetic mean of Xn with 

a generator f defined by (10). Let Zn be the one-step estimator of Yn defined by (11).
Let Wn ∶= ��(Zn) . Then, by straightforward computations,

Lemma 7 For w1,w2 ∈ � and � ∈ ℍ,

The following are main results in this section, which correspond to Theorems 5 
and 6, respectively.

pcc(x;w) ∶=
1

2�

1 − |w|2
| exp(ix) − w|2 ,

��(z) ∶= h(z, �) =
z − �

z − �
.

�−1
�
(w) =

� − �w

1 − w
, w ∈ �.

K(Pcc
w1
|Pcc

w2
) = K

(
P�−1

�
(w1)

|P�−1
�
(w2)

)
= log

(
1 +

|w1 − w2|2
(1 − |w1|2)(1 − |w2|2)

)
.
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Theorem 8 
where we let

Theorem 9 
The estimator Wn has a simple closed-form, contrary to the MLE for the circu-

lar Cauchy distribution. These assertions are somewhat easy consequences of Theo-
rems 5 and 6 .

Remark 10 Section 4.3 in Kato and McCullagh (2020) deals with a one-step estima-
tor different from ours, which is applicable to the higher dimensional case.

6  Proofs

6.1  Proofs of assertions in Section 2

Proof of Theorem  1 Since f −1 is injective and holomorphic on an open neighbor-
hood of f (�) , we see that there exists a constant c3 = c3(𝜇, 𝜎) > 0 such that for every 
� ∈ (0, �) and every n ≥ 2,

By (1) and (2), we can apply the Cramér–Chernoff method and have that there exist 
positive constants c4 and c5 such that for every � ∈ (0, �) and every n ≥ 2,

and

lim sup
𝜖→+0

lim sup
n→∞

logP(|Wn − w| > 𝜖)

n�b(𝜖,w)
≤ −1,

�b(𝜖,w) ∶= inf
{
K(Pcc

w
|Pcc

w� ) ∶ |w − w�| > 𝜖
}
.

lim sup
n→∞

nVar(Wn) ≤ lim
n→∞

nE
[|Wn − w|2] = (

1 − |w|2)2.

P

(||||||
f −1

(
1

n

n∑
j=1

f (Xj)

)
− 𝜃

||||||
> 𝜖

)
≤ P

(|||||
1

n

n∑
i=1

f (Xi) − f (𝜃)
|||||
> c3𝜖

)

≤ P

(|||||
1

n

n∑
i=1

Re(f (Xi)) − Re(f (𝜃))
|||||
>

c3𝜖

2

)

+ P

(|||||
1

n

n∑
i=1

Im(f (Xi)) − Im(f (𝜃))
|||||
>

c3𝜖

2

)
.

P

(|||||
1

n

n∑
i=1

Re(f (Xi)) − Re(f (𝜃))
|||||
>

c3𝜖

2

)
≤ c4 exp(−c5n𝜖

2),
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Now we have the assertion.   ◻

6.2  Proofs of assertions in Section 3

Let H(t) ∶= E[h(X, t)] for X following C(�) . Then, by the Cauchy integral formula,

It is continuous on H . H(t) = 0 if and only if t = �.

Lemma 11 There exists a compact set K of ℍ and a constant � ∈ (0, 1) such that 
� ∈ K and

Proof Let F�(z) ∶= h(z, �) and

We see that each Km is a compact subset of ℍ and � ∈ K1 . By the definition of H, we 
see that

Let

This is decreasing with respect to m. Let

Since |h(xj, t)| = 1 , we see that

Hence,

P

(|||||
1

n

n∑
i=1

Im(f (Xi)) − Im(f (𝜃))
|||||
>

c3𝜖

2

)
≤ c4 exp(−c5n𝜖

2).

H(t) =
� − t

� − t
= h(�, t).

P(�̂�n ∉ K) = O(𝛼n).

Km ∶= F−1
�

({
z ∈ ℂ ∶ |z|2 ≤ m

m + 1

})
, m ≥ 1.

inf
t∉K1

|H(t)| > 0.

R(k)
m
(x1,… , xk) ∶= sup

t∉Km

1

k

||||||

k∑
j=1

(
h(xj, t)

H(t)
− 1

)||||||
, x1,… , xk ∈ ℝ.

R(k)(x1,… , xk) ∶= lim
m→∞

R(k)
m
(x1,… , xk).

|R(k)
m
(x1,… , xk)| ≤ 1 +

1

inft∉K1
|H(t)| .
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Since

we see that if a ∈ ℝ ⧵ {xj} , then,

and furthermore,

Therefore,

and,

Furthermore, if x1,… , xk are distinctive, then,

Therefore we see that if x1,… , xk are distinctive, then,

Let k0 be an integer such that

Now by following the argument in the proof of Theorem 3.8 in Arcones (2006), we 
see that for every � ∈ (0, 1),

|R(k)(x1,… , xk)| ≤ 1 +
1

inft∉K1
|H(t)| .

h(xj, t)

H(t)
− 1 =

2Im(t)(xj − �)

(xj − t)(� − t)
,

lim
t→a

h(xj, t)

H(t)
− 1 = 0,

lim|t|→∞;t∈ℍ

h(xj, t)

H(t)
− 1 = 0.

lim
t→a

k∑
j=1

(
h(xj, t)

H(t)
− 1

)
= 0, a ∈ ℝ ⧵ {x1,… , xk},

lim
t→∞

k∑
j=1

(
h(xj, t)

H(t)
− 1

)
= 0.

lim sup
t→a

||||||

k∑
j=1

(
h(xj, t)

H(t)
− 1

)||||||
≤ 1 +

1

inft∉K1
|H(t)| , a ∈ {x1,… , xk}.

|R(k)(x1,… , xk)| ≤ 1

k

(
1 +

1

inft∉K1
|H(t)|

)
.

k0 > 2 +
1

inft∉K1
|H(t)| .
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By this and the fact that {(X(j−1)k0+1
,… ,Xjk0

)}j are independent,

By the bounded convergence theorem,

Since X1,… ,Xk0
 are distinctive almost surely,

By recalling the definition of k0 , if we take sufficiently small � and sufficiently large 
m,

Now we have the assertion for the case that n is a multiple of k0 . Even if n is not a 
multiple of k0 , with remark the fact that h(x, t)

H(t)
 is uniformly bounded, we see that for 

a positive constant C,

where ⌊n∕k0⌋ denotes the integer part of n∕k0 .   ◻

Remark 12 Although we have used the techniques in the proof of Theorem 3.8 in 
Arcones (2006), Condition (v) in Theorem 3.8 in Arcones (2006) does not hold in 
our case. Our main idea is introducing R(k)

m

(
X1,… ,Xk

)
 for general k.

Let h1(x, t) ∶= Re(h(x, t)) and h2(x, t) ∶= Im(h(x, t)) . As a function of t ∈ K , 
1

n

∑n

j=1
hi(Xj, t) is a �∞(K)-valued random variable.

Let

{
n∑
j=1

R
(k0)
m

(
X(j−1)k0+1

,… ,Xjk0

) ≤ n(1 − 𝜖)

}
⊂
{
�̂�k0n ∈ Km

}
.

P(�̂�k0n ∉ Km) ≤ P

(
n∑
j=1

R
(k0)
m

(
X(j−1)k0+1

,… ,Xjk0

)
> n(1 − 𝜖)

)

≤ exp(−n(1 − 𝜖))E

[
exp

(
n∑
j=1

R
(k0)
m

(
X(j−1)k0+1

,… ,Xjk0

))]

=
(
exp(−(1 − 𝜖))E

[
exp

(
R
(k0)
m

(
X1,… ,Xk0

))])n

.

lim
m→∞

E
[
exp

(
R
(k0)
m

(
X1,… ,Xk0

))]
= E

[
exp

(
R(k0)

(
X1,… ,Xk0

))]
.

E
[
exp

(
R(k0)

(
X1,… ,Xk0

))] ≤ exp

(
1

k0

(
1 +

1

inft∉K1
|H(t)|

))
.

exp(−(1 − 𝜖))E
[
exp

(
R
(k0)
m

(
X1,… ,Xk0

))]
< 1.

P(�̂�n ∉ Km) ≤ C
�
exp(−(1 − 𝜖))E

�
exp

�
R
(k0)
m

�
X1,… ,Xk0

����⌊n∕k0⌋
,
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Let L∗ be the dual space of L . Let

Let �∞(K) be the set of bounded continuous functions on K. Let P∗ and P∗ be the 
inner and outer measures of a probability measure P, respectively.

Lemma 13 Assume that i = 1 or 2. For each non-empty compact subset K of ℍ , �
1

n

∑n

j=1
hi(Xj, t)

�
n
 follows the large deviation principle in �∞(K) . Specifically, there 

exists a good rate function I on �∞(K) such that (i) {I ≤ c} is compact in �∞(K) for 
every c > 0,

(ii) for every open subset U of �∞(K),

and, (iii) for every closed subset F of �∞(K),

Furthermore,

Proof It suffices to check the conditions in Theorem  2.5 in Arcones (2006). We 
remark that for every x ∈ ℝ and every t ∈ ℍ,

This implies conditions (i) and (ii) in Theorem 2.5 in Arcones (2006).
Let s, t ∈ ℍ and |s − t| ≤ |t|∕4 . Since

we see that

Hence condition (iii) in Theorem 2.5 Arcones (2006) holds.   ◻

Proposition 14 For every 𝜖 > 0 , there exists a constant � ∈ (0, 1) such that

L ∶=
{
f ∶ ℝ → ℝ || ∃𝜆 < +∞ such that E

[
exp(𝜆|f (X1)|)

]
< +∞

}
.

J(l) ∶= sup
f∈L

(
l(f ) − logE[exp(f (X1))]

)
, l ∈ L

∗.

lim inf
n→∞

1

n
logP∗

(
1

n

n∑
j=1

hi(Xj, t) ∈ U

)
≥ − inf

z∈U
I(z),

lim inf
n→∞

1

n
logP∗

(
1

n

n∑
j=1

hi(Xj, t) ∈ F

)
≤ − inf

z∈F
I(z).

Ii(z) = inf
{
J(l) ∶ l ∈ L

∗, l
(
hi(⋅, t)

)
= z(t) for every t ∈ K

}
, z ∈ 𝓁∞(K).

|hi(x, t)| ≤ |h(x, t)| = 1.

(15)h(x, s) − h(x, t) =
x − s

(x − s)(x − t)
(s − t) +

t − s

x − t
, x ∈ ℝ,

(16)|h(x, s) − h(x, t)| ≤ 2
|s − t|
Im(t)

.
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Proof By Lemma 11, there exists a compact set K of ℍ and � ∈ (0, 1) such that

Let

Then,

Hence it suffices to show that there exists a constant � ∈ (0, 1) such that

Let H1(t) and H2(t) be the real and imaginary parts of H(t), respectively. Since

we see that

Let

Then F = F1 ∪ F2 . Therefore,

Let

These are closed subsets of �∞(Fi ∩ K) , i = 1, 2 . We see that

P
(|||�̂�n − 𝜃

||| ≥ 𝜖
)
= O(𝛽n).

P
(
�̂�n ∉ K

)
= O(𝛼n).

F ∶= {t ∈ ℍ ∶ |t − �| ≥ �}.

P
(|||�̂�n − 𝜃

||| ≥ 𝜖
) ≤ P

(
�̂�n ∉ K

)
+ P

(
�̂�n ∈ K ∩ F

)
.

P
(
�̂�n ∈ K ∩ F

)
= O(𝛽n).

𝜖0 ∶= inf
t∈F

|H(t)| > 0,

{
t ∈ F ∶ ||H1(t)

|| ≤ 𝜖0∕4
}
⊂
{
t ∈ F ∶ ||H2(t)

|| ≥ 𝜖0∕4
}
.

F1 ∶=
{
t ∈ F ∶ ||H1(t)

|| ≥ �0∕4
}
, and F2 ∶=

{
t ∈ F ∶ ||H1(t)

|| ≤ �0∕4
}
.

P
(
�̂�n ∈ K ∩ F

) ≤ P∗

(
there exists t ∈ F ∩ K such that

1

n

n∑
j=1

h(Xj, t) = 0

)

≤ P∗

(
there exists t ∈ F1 ∩ K such that

1

n

n∑
j=1

h1(Xj, t) = 0

)

+ P∗

(
there exists t ∈ F2 ∩ K such that

1

n

n∑
j=1

h2(Xj, t) = 0

)
.

Ci ∶=

{
z ∈ �∞(Fi ∩ K) ∶ inf

t∈Fi∩K
|z(t)| = 0

}
, i = 1, 2.
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Then, by Lemma 13, we see that for i = 1, 2,

By Eq. (31) in Arcones (2006), we see that

Since hi is bounded, it holds that

By this and the fact that logE
[
exp

(
�hi(X1, t)

)]
= 0 if � = 0 , we see that

Let

Then, Ii(t) > 0, t ∈ Fi ∩ K and this function is lower-semicontinuous. Hence,

By this, (17), and (18),

Thus we have the assertion.   ◻

P∗

(
there exists t ∈ Fi ∩ K such that

1

n

n∑
j=1

hi(Xj, t) = 0

)

= P∗

(
1

n

n∑
j=1

hi(Xj, t) ∈ Ci

)
.

(17)

lim sup
n→∞

1

n
logP∗

(
1

n

n∑
j=1

hi(Xj, t) ∈ Ci

)

≤ − inf
z∈Ci

inf
{
J(l) ∶ l ∈ L

∗, l
(
hi(⋅, t)

)
= z(t) for every t ∈ Fi ∩ K

}

= − inf

{
J(l) ∶ l ∈ L

∗, inf
t∈Fi∩K

|||l
(
hi(⋅, t)

)||| = 0

}
.

(18)

− inf

{
J(l) ∶ l ∈ L

∗, inf
t∈Fi∩K

|||l
(
hi(⋅, t)

)||| = 0

}

= − inf
t∈Fi∩K

inf
{
J(l) ∶ l ∈ L

∗, l
(
hi(⋅, t)

)
= 0

}

= sup
t∈Fi∩K

inf
�∈ℝ

logE
[
exp

(
�hi(X1, t)

)]
.

d

d�

||||�=0 logE
[
exp

(
�hi(X1, t)

)]
= Hi(t) ≠ 0, t ∈ Fi ∩ K.

inf
𝜆∈ℝ

logE
[
exp

(
𝜆hi(X1, t)

)]
< 0, t ∈ Fi ∩ K.

Ii(t) ∶= − inf
�∈ℝ

logE
[
exp

(
�hi(X1, t)

)]
, t ∈ Fi ∩ K.

inf
t∈Fi∩K

Ii(t) > 0.

lim sup
n→∞

1

n
logP∗

(
1

n

n∑
j=1

hi(Xj, t) ∈ Ci

)
≤ − inf

t∈Fi∩K
Ii(t) < 0, i = 1, 2.
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Proof of Theorem 4 We adopt Theorem 3 in Shen (2001). The condition being LD-
consistent in the statement of Theorem 3 in Shen (2001) is equivalent with Proposi-
tion 14. Let �(x, �) ∶= log p(x;(�, �)) . Then, we can show conditions (C1) and (C2) 
in Theorem 3 in Shen (2001) by some calculations for the first and second orders of 
the partial derivatives of � with respect to � and � . Now we can apply Theorem 3 
in Shen (2001), and then, the assertion follows from this and Proposition 2 in Shen 
(2001).   ◻

6.3  Proofs of assertions in Section 4

Proof of Theorem 5 We see that for every C1 ∈ (0, 1) and 𝜖 > 0,

By (4),

By this and Theorem 4, we see that for every 𝜂 > 0 , there exists 𝜖0 > 0 such that for 
every � ∈ (0, �0) and c1 ∈ (0, �0),

where the large order depends on c1 , � and �.
By this and (5), it suffices to show that for sufficiently small 𝜖 > 0

By using the fact that �̂�n is MLE and (15), we see that

Hence,

P
(||Zn − 𝜃|| > 𝜖

) ≤ P
(|Zn − �̂�n| > c1𝜖

)
+ P

(|�̂�n − 𝜃| > (1 − c1)𝜖
)
.

lim
c1→+0

b((1 − c1)�, �) = b(�, �).

P
(|||�̂�n − 𝜃

||| > (1 − c1)𝜖
)
= O(exp (−n(b(𝜖, 𝜃) − 𝜂))),

(19)P
(|||Zn − �̂�n

||| > 𝜖
)
= O

(
exp(−n𝜖3∕2)

)
.

Zn − �̂�n = Yn − �̂�n +
2Im(Yn)i

n

n�
j=1

⎛
⎜⎜⎝
Xj − Yn

Xj − Yn

−
Xj − �̂�n

Xj − �̂�n

⎞⎟⎟⎠

=
Yn − �̂�n

n

n�
j=1

Xj − Yn

Xj − Yn

+
Yn − �̂�n

n

n�
j=1

Xj − �̂�n

Xj − �̂�n

−
Yn − �̂�n

n

n�
j=1

Xj − �̂�n

Xj − �̂�n

Xj − Yn

Xj − Yn

.
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By Theorems 1 and 4 , we see that there exists a constant c2 > 0 such that for suf-
ficiently small 𝜂 > 0,

and

Hence, there exists a constant c3 > 0 such that for sufficiently small 𝜂 > 0,

By the Cramér–Chernoff method, we also obtain that there exists a constant c4 > 0 
such that for sufficiently small 𝜂 > 0,

and

In the above we have used that

both of which follow from the Cauchy integral formula.
By (16), we see that

P
����Zn − �̂�n

��� > 𝜖
� ≤ P

�
�Yn − �̂�n� ⋅

������
1

n

n�
j=1

Xj − Yn

Xj − Yn

������
>

𝜖

3

�

+ P

⎛
⎜⎜⎝
�Yn − �̂�n� ⋅

�������
1

n

n�
j=1

Xj − �̂�n

Xj − �̂�n

�������
>

𝜖

3

⎞
⎟⎟⎠

+ P

⎛
⎜⎜⎝
�Yn − �̂�n� ⋅

�������
1

n

n�
j=1

Xj − �̂�n

Xj − �̂�n

Xj − Yn

Xj − Yn

�������
>

𝜖

3

⎞
⎟⎟⎠
.

(20)P
(||Yn − 𝜃|| > 𝜂

)
= O(exp(−c2n𝜂

2))

(21)P
(|||�̂�n − 𝜃

||| > 𝜂
)
= O(exp(−c2n𝜂

2)).

(22)P
(|||Yn − �̂�n

||| > 𝜂
)
= O(exp(−c3n𝜂

2)).

(23)P

(||||||
1

n

n∑
j=1

Xj − 𝜃

Xj − 𝜃

||||||
> 𝜂

)
= O(exp(−c4n𝜂

2)).

(24)P

⎛⎜⎜⎝

������
1

n

n�
j=1

�
Xj − 𝜃

Xj − 𝜃

�2������
> 𝜂

⎞⎟⎟⎠
= O(exp(−c4n𝜂

2)).

E

�
Xj − �

Xj − �

�
= E

⎡⎢⎢⎣

�
Xj − �

Xj − �

�2⎤⎥⎥⎦
= 0,
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and

By these estimates, (22), (23), and (20), we see that there exists a constant c5 > 0 
such that for sufficiently small 𝜖 > 0,

In the same manner, by noting (22), (23), and (21), we see that there exists a con-
stant c6 > 0 such that for sufficiently small 𝜖 > 0,

We remark that

By this, (16) and the fact that |Xj − �| = |Xj − �| , we see that

||||||
1

n

n∑
j=1

Xj − Yn

Xj − Yn

||||||
≤
||||||
1

n

n∑
j=1

Xj − �

Xj − �

||||||
+ 2

|Yn − �|
Im(�)

|||||||
1

n

n∑
j=1

Xj − �̂�n

Xj − �̂�n

|||||||
≤
||||||
1

n

n∑
j=1

Xj − 𝜃

Xj − 𝜃

||||||
+ 2

|||�̂�n − 𝜃
|||

Im(𝜃)
.

P

(
|||Yn − �̂�n

||| ⋅
||||||
1

n

n∑
j=1

Xj − Yn

Xj − Yn

||||||
>

𝜖

3

)

≤ 2P

(|||Yn − �̂�n
||| >

√
𝜖

6

)
+ P

(||||||
1

n

n∑
j=1

Xj − 𝜃

Xj − 𝜃

||||||
>

√
𝜖

6

)

+ P

(
2
|Yn − 𝜃|
Im(𝜃)

>

√
𝜖

6

)

= O
(
exp(−c5n𝜖)

)
.

P

⎛⎜⎜⎝
���Yn − �̂�n

��� ⋅
�������
1

n

n�
j=1

Xj − �̂�n

Xj − �̂�n

�������
>

𝜖

3

⎞⎟⎟⎠
= O

�
exp(−c6n𝜖)

�
.

Xj − �̂�n

Xj − �̂�n

Xj − Yn

Xj − Yn

−

�
Xj − 𝜃

Xj − 𝜃

�2

=

⎛⎜⎜⎝
Xj − �̂�n

Xj − �̂�n

−
Xj − 𝜃

Xj − 𝜃

⎞⎟⎟⎠
Xj − Yn

Xj − Yn

+

�
Xj − Yn

Xj − Yn

−
Xj − 𝜃

Xj − 𝜃

�
Xj − 𝜃

Xj − 𝜃
.
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By these estimates, we see that for every 𝜖 > 0,

We remark that for sufficiently small 𝜖 > 0,

By these estimates and (24), (20), (21) and (22), we see that there exists a constant 
c7 > 0 such that for sufficiently small 𝜖 > 0,

Thus we have (19) and this completes the proof.   ◻

Proof of Theorem 6 We see that

|||||||
1

n

n∑
j=1

Xj − �̂�n

Xj − �̂�n

Xj − Yn

Xj − Yn

|||||||
≤
||||||
1

n

n∑
j=1

(
Xj − 𝜃

Xj − 𝜃

)2||||||
+ 2

|Yn − 𝜃|
Im(𝜃)

+ 2
|�̂�n − 𝜃|
Im(𝜃)

+ 4
|Yn − 𝜃| ⋅ |�̂�n − 𝜃|

Im(𝜃)2
.

P

⎛⎜⎜⎝
�Yn − �̂�n� ⋅

�������
1

n

n�
j=1

Xj − �̂�n

Xj − �̂�n

Xj − Yn

Xj − Yn

�������
>

𝜖

3

⎞
⎟⎟⎠

≤ 4P

����Yn − �̂�n
��� >

�
𝜖

12

�
+ P

⎛
⎜⎜⎝

������
1

n

n�
j=1

�
Xj − 𝜃

Xj − 𝜃

�2������
>

�
𝜖

12

⎞
⎟⎟⎠

+ P

�
2
�Yn − 𝜃�
Im(𝜃)

>

�
𝜖

12

�
+ P

�
2
��̂�n − 𝜃�
Im(𝜃)

>

�
𝜖

12

�

+ P

�
4
�Yn − 𝜃� ⋅ ��̂�n − 𝜃�

Im(𝜃)2
>

�
𝜖

12

�
.

P

(
4
|Yn − 𝜃| ⋅ |�̂�n − 𝜃|

Im(𝜃)2
>

√
𝜖

12

)

≤ P

(
2
|Yn − 𝜃|
Im(𝜃)

> 1

)
+ P

(
4
|Yn − 𝜃| ⋅ |�̂�n − 𝜃|

Im(𝜃)2
>

√
𝜖

12
, 2

|Yn − 𝜃|
Im(𝜃)

≤ 1

)

≤ P

(
2
|Yn − 𝜃|
Im(𝜃)

>

√
𝜖

12

)
+ P

(
2
|�̂�n − 𝜃|
Im(𝜃)

>

√
𝜖

12

)
.

P

⎛⎜⎜⎝
�Yn − �̂�n� ⋅

�������
1

n

n�
j=1

Xj − �̂�n

Xj − �̂�n

Xj − Yn

Xj − Yn

�������
>

𝜖

3

⎞⎟⎟⎠
= O

�
exp(−c7n𝜖)

�
.
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By (16),

We see that

Hence,

Now we should recall that the generators of quasi-arithmetic means are restricted to 
the cases that f (x) = log(x + �), � ∈ ℍ and f (x) =

x − �

x − �
, � ∈ ℍ . By Theo-

rem 4.2(iii) and Theorem 4.4(iii) in Akaoka et al. (2021b) and (14), we can apply 

Theorem  3.6 in Billingsley (1999) and have that 
����

√
n(Yn − �)

���
2
�

n

 is uniformly 

integrable. By the central limit theorem,

By the Cauchy integral formula, we also see that E
�����

1√
n

∑n

j=1

Xj−�

Xj−�

����
�
= 1 . Therefore 

we can apply Theorem  3.6 in Billingsley (1999) again and have that �����
1√
n

∑n

j=1

Xj−�

Xj−�

����
2
�

n

 is uniformly integrable. Therefore, 
����

√
n(Zn − �)

���
2
�

n

 is also 

uniformly integrable By this and (12), we have the assertion.   ◻

6.4  Proofs of assertions in Section 5

Proof of Theorem 8 We first remark that for sufficiently small 𝜖 > 0,

Zn − � = Yn − � +
2Im(Yn)i

n

n∑
j=1

(
Xj − Yn

Xj − Yn

−
Xj − �

Xj − �

)
+

2Im(Yn)i

n

n∑
j=1

Xj − �

Xj − �
.

||||||
Yn − � +

2Im(Yn)i

n

n∑
j=1

(
Xj − Yn

Xj − Yn

−
Xj − �

Xj − �

)||||||
≤ 9||Yn − �||.

||||||
2Im(Yn)i

n

n∑
j=1

Xj − �

Xj − �

||||||
≤ 2||Yn − �|| + 2Im(�)

||||||
1

n

n∑
j=1

Xj − �

Xj − �

||||||
.

√
n�Zn − �� ≤ 11

√
n�Yn − �� + 2Im(�)√

n

������

n�
j=1

Xj − �

Xj − �

������
.

1√
n

n�
j=1

Xj − �

Xj − �
⇒ N

�
0,

1

2
I2

�
, n → ∞.

b̃(�,w) = log

(
1 +

�2

(1 − |w|2)(1 − (|w| + �)2)

)
.
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Hence,

Let � ∶= �−1
�
(w) . By the complex mean-value theorem (see Theorem 2.2 in Evard 

and Jafari (1992)),

Let

Then, by (25) and (5),

Now the assertion follows from this and Theorem 5.   ◻

Proof of Theorem 9 Let � ∶= �−1
�
(w) . We see that

We also have that supz∈ℍ |��
�
(z)| ≤ 2Im(�) and supz∈ℍ |���

�
(z)| ≤ 4Im(�).

By using Theorem 2.2 in Evard and Jafari (1992) again,

Let 𝜖 > 0 . Then,

By the final part of the proof of Theorem  6, limn→∞ P(|Zn − 𝜃| > 𝜖) = 0 and {
n|Zn − �|2}

n
 is uniformly integrable. Hence,

(25)lim
�→+0

b̃(�,w)

�2
=

1

(1 − |w|2)2 .

P(|Wn − w| > 𝜖) ≤ P

(
|Zn − 𝜃| > 𝜖

supz;|z−𝜃|≤𝜖 |𝜙�
𝛼
(z)|

)
.

�� ∶=
�

supz;|z−�|≤� ||��
�
(z)||

.

lim
�→+0

b̃(�,w)

b(��, �)
= lim

�→+0

b̃(�,w)

�2
(��)2

b(��, �)

�2

(��)2
=

4Im(�)2||��
�
(�)||2

(1 − |w|2)2 = 1.

nE
[||��(Zn) − ��(�) − ��

�
(�)(Zn − �)||2

]

= E

[
n|Zn − �|2||||

��(Zn) − ��(�)

Zn − �
− ��

�
(�)

||||
2
]
.

||||
��(Zn) − ��(�)

Zn − �
− ��

�
(�)

|||| ≤ 4Im(�)min
{
1, |Zn − �|}.

E

[
n|Zn − 𝜃|2||||

𝜙𝛼(Zn) − 𝜙𝛼(𝜃)

Zn − 𝜃
− 𝜙�

𝛼
(𝜃)

||||
2
]

≤ 4Im(𝛼)E
[
n|Zn − 𝜃|2, |Zn − 𝜃| > 𝜖

]

+ 4Im(𝛼)𝜖2E
[
n|Zn − 𝜃|2, |Zn − 𝜃| ≤ 𝜖

]
.
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Hence,

Since we can take 𝜖 > 0 arbitrarily small, we see that

Hence,

The assertion now follows from this and

  ◻

Numerical computations

We perform simulation studies in the R Core Team (2021) to illustrate the prop-
erties of the one-step estimators (Zn)n . The version of R is 4.1.1. We deal with 
nE[|Zn − �|2]∕Im(�)2 = nE[|Zn − (� + �i)|2]∕�2 appearing in Theorem 6.

For the generators of quasi-arithmetic means, we consider the following four 
cases that f1(x) = log x , f2(x) = log(x + i) , f3(x) = 1∕(x + i) and f4(x) = 1∕(x + 2i) . 
For the location and the scale, we consider the following four cases that 
(�, �) = (0, 10), (10, 1), (0, 10), (10, 10). For the sizes of samples, we consider the 
following five cases that n = 10, 50, 100, 500, 1000.

In each choice of the triplet (�, �, n) , we compute the average of the values 
n|Zn − �|2∕Im(�)2 for 106 samples of size n generated by the rcauchy() function 
in R. See Table 1 for results. In this section, we round off the outputs to three deci-
mal places.

By these numerical computations in Table 1, we conjecture that

lim
n→∞

E
[
n|Zn − 𝜃|2, |Zn − 𝜃| > 𝜖

]
= 0.

lim sup
n→∞

E

[
n|Zn − �|2||||

��(Zn) − ��(�)

Zn − �
− ��

�
(�)

||||
2
]

≤ 4Im(�)�2 sup
n

E
[
n|Zn − �|2].

lim
n→∞

nE
[||��(Zn) − ��(�) − ��

�
(�)(Zn − �)||2

]
= 0.

lim
n→∞

nE
[|��(Zn) − ��(�)|2

]

= 4Im(�)2|��
�
(�)|2.

4Im(�−1
�
(w))2|��

�
(�−1

�
(w))|2 = (

1 − |w|2)2.

nE[|Zn − �|2] ≥ 4 Im(�)2
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for every n. We remark that the Cramér–Rao bound cannot be applied, because Zn 
might not be unbiased.

We now consider the case of the MLE �̂�n . Let z ∈ ℍ . For every y ∈ ℝ and every 
t > 0 , z is the maximal likelihood estimate of {x1,… , xn} if and only if tz + x is the 
maximum likelihood estimate of {tx1 + y,… , txn + y} . Furthermore, the joint distri-
bution of (tX1 + y,… , tXn + y) under Py+ti is identical with the joint distribution of 
(X1,… ,Xn) under Pi . Hence, the distribution of t�̂�n + y under Pi is identical with the 

distribution of �̂�n under Pti+y . Hence, the distribution of 
�̂�n − 𝜇

𝜎
 is identical with that 

Table 1  Tables for 
simulated values for 
nE[|Z

n
− (� + �i)|2]∕�2

n f
1

f
2

f
3

f
4

(�, �) = (0, 1)

10 5.453 6.551 4.614 5.129
50 4.144 4.397 4.083 4.208
100 4.056 4.186 4.034 4.097
500 4.016 4.043 4.013 4.025
1000 4.008 4.022 4.007 4.013
(�, �) = (10, 1)

10 45.014 38.179 91.065 39.535
50 29.718 22.231 48.523 20.440
100 19.742 14.915 35.411 14.386
500 7.420 6.393 13.280 6.572
1000 5.714 5.206 8.867 5.313
(�, �) = (0, 10)

10 5.463 5.463 25.377 9.934
50 4.138 4.152 5.672 4.239
100 4.063 4.072 4.571 4.076
500 4.009 4.011 4.077 4.007
1000 4.005 4.006 4.037 4.003
(�, �) = (10, 10)

10 7.066 6.795 40.737 15.413
50 4.491 4.442 9.545 5.266
100 4.238 4.214 6.367 4.559
500 4.052 4.047 4.403 4.104
1000 4.028 4.026 4.200 4.055

Table 2  Tables for 
simulated values for 
V
n
= nE[|�̂�

n
− (𝜇 + 𝜎i)|2]∕𝜎2

n V
n

10 5.732
50 4.254
100 4.117
500 4.029
1000 4.015
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of �̂�n under � = i . Therefore, we can assume the distribution is the standard Cauchy 
distribution.

For numerical computations for nE[|�̂�n − 𝜃|2]∕Im(𝜃)2 = nE[|�̂�n − (𝜇 + 𝜎i)|2]∕𝜎2 , 
as in Kravchuk and Pollett (2012), we use the nlminb() function in R. Here we 
assume that the real and imaginary parts of the initial point of the algorithm are 
given by the one-step estimator Zn associated with f3 . The results are summarized in 
Table 2.

By Table 2, we conjecture that

which is compatible with the asymptotic expansion for the MLE.
The one-step estimators (Zn)n do not have such invariance as the MLE has, so 

the value of nE[|Zn − �|2]∕Im(�)2 depends on the value of � . As in the case that 
(�, �) = (10, 1) in Table 1, if the ratio between the location and the scale is large, 
then the performances of the one-step estimators could be bad in particular for 
samples of small sizes. We consider adjusting the median in the definition of Yn as 
in Kravchuk and Pollett (2012).

Let Mn be the median of {X1,… ,Xn} . Let

Let

which is the one-step estimator of (Ỹn)n . Although we are not sure whether 
the conclusion of Theorem  4.2 holds or not for (Z̃n)n , we deal with 
nE[|Z̃n − �|2]∕Im(�)2 = nE[|Z̃n − (� + �i)|2]∕�2 . (Table 3)

By these numerical computations, when we consider the median-adjusting, the 
logarithmic functions f (x) = log(x + �) , which are f1 and f2 , are better than the 
Möbius transformations f (x) = 1∕(x + �) , which are f3 and f4 , as the generators 
of the quasi-arithmetic means. Since (Mn − �)∕� is the median of {(Xj − �)∕�}j,

and

n
E[|�̂�n − 𝜃|2]

Im(𝜃)2
= 4 + O(n−1), n → ∞,

Ỹn ∶= Mn + f −1

(
1

n

n∑
j=1

f
(
Xj −Mn

))
.

Z̃n ∶= Ỹn +
2Im(Ỹn)i

n

n∑
j=1

h(Xj, Ỹn),

Ỹn − �

�
=

Mn − �

�
+ f −1

1

(
1

n

n∑
j=1

f1

(
Xj − �

�
−

Mn − �

�

))

Z̃n − �

�
=

Ỹn − �

�
+

2Im
(
(Ỹn − �)∕�

)
i

n

n∑
j=1

h

(
Xj − �

�
,
Ỹn − �

�

)
,
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the distribution of 
Z̃n − �

�
 is identical with that of Z̃n under � = i . Therefore, for f1 , 

(Z̃n)n has such invariance as the MLE has, and hence, it suffices to consider the 
standard Cauchy distribution only. Furthermore, the performances of (Z̃n)n in the 
case of the logarithmic functions f1 and f2 are similar to that of the case of MLE in 
Table 2.

However, there are no theoretical guarantees of these performances. We 
are not sure whether (Ỹn)n is consistent or not, and, Ỹn for f1 works well only 
if the sample size n is even. If n is odd, then, Im(Ỹn) = 0 . It would be over-
come by changing the definition of the median slightly. One way is to adopt 
(x(n−1)∕2 + x(n+1)∕2 + x(n+3)∕2)∕3 for {x1 < … < xn} . Here we do not discuss this 
issue further. See also Subsection 5.7 in Akaoka et al. (2021a) for some delicate 
issues for median-adjusting.

Acknowledgements The authors wish to express their gratitude to referees for their many helpful com-
ments and suggestions to improve the paper, in particular, for suggesting numerical computations in 
Appendix and notifying the authors of a recent reference Kato and McCullagh (2020) concerning the 
circular Cauchy distribution.

Table 3  Tables for 
simulated values for 
nE[|Z̃

n
− (� + �i)|2]∕�2

n f
1

f
2

f
3

f
4

(�, �) = (0, 1)

10 5.884 6.669 5.954 5.621
50 4.279 4.429 4.168 4.247
100 4.129 4.204 4.075 4.116
500 4.032 4.047 4.021 4.029
1000 4.016 4.024 4.011 4.015
(�, �) = (10, 1)

10 5.891 6.665 5.904 5.654
50 4.284 4.436 4.173 4.253
100 4.134 4.211 4.079 4.120
500 4.028 4.043 4.017 4.025
1000 4.009 4.017 4.004 4.008
(�, �) = (0, 10)

10 5.887 5.878 81.877 27.160
50 4.273 4.268 5.270 4.316
100 4.137 4.134 4.439 4.148
500 4.025 4.024 4.091 4.028
1000 4.013 4.013 4.047 4.014
(�, �) = (10, 10)

10 5.881 5.872 81.176 27.085
50 4.276 4.271 5.264 4.315
100 4.136 4.133 4.438 4.149
500 4.030 4.030 4.096 4.033
1000 4.019 4.018 4.053 4.020
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