Supplementary material to “Simultaneous inference for
Berkson errors-in-variables regression under fixed
design”

Katharina Proksch* Nicolai Bissantz! Hajo Holzmann?

This paper contains supplementary material for the main document Simultaneous inference
for Berkson errors-in-variables regression under fixed design, which was omitted therein for
the sake of brevity. For better reference, we briefly recall the framework and give the relevant
assumptions. All numbers in references to equations, lemmas or assumptions coincide with those
given in the main document, except inequalities (S1), (S2) and (S3).

The Berkson errors-in-variables model with fixed design that we shall consider is given by

Yi=g(w;+4))+¢, (3)

where w; = j/(nay), j = —n,...,n, are the design points on a regular grid, a, is a design pa-
rameter that satisfies a, — 0, na, — oo, and A; and &; are unobserved centered, independent and
identically distributed errors for which Var[e;] = 6% > 0 and E|g;|¥ < oo for some M > 2. The
density f of the errors A; is assumed to be known. Identification of g on a given interval requires
an infinitely supported design density if the error density is of infinite support. This corresponds
to our assumption that asymptotically, the fixed design exhausts the whole real line. If we define
v as the convolution of g and fa(—-), thatis, y(w) = [ g(z) fa(z—w) dz, then E[Y;] = y(w;), and
the calibrated regression model (Carroll et al., 2006) associated with (3) is given by

Yi=y(w;)+n;,  nj=gw;+A;)—vy(w;)+eg;. 4)

Here the errors 1); are independent and centered as well but no longer identically distributed since
their variances v2(w i) = ]E[njz] depend on the design points. To be precise, we have that

vi(w)) = / (g(wj+8) —y(w)))* fa(8)d 8+ 62 > 6> > 0. )

I Proof of Lemma 5 in the main document

Assumption 1. The functions g and f satisfy
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i) ge #"(R)NL'(R) forall r <M and for some m >5/2.
(i1) fa is a bounded, continuous, square-integrable density.

(i11)) The function y decays sufficiently fast in the following sense:
[ @lrePd<e,
lz|>1/ay

for some s > 1/2, where s may depend on n.

Assumption 2. Let ®&; € C?(R) be symmetric, &y (¢) = 1 forallt € [-D,D],0< D < 1, |®(1)| <
1 and @ (1) =0, [t| > 1.

Lemma 5. Let Assumptions 1 and 2 be satisfied. Further assume that i/a, — 0 as n — oo.

(1) Then for bias, we have that

sup [E[g,(x:h)] — g(x)| = 0 <hm—5 N

x€[0,1] nayhP+3

>+ o(ay"PhB),  Ass. 3, (S),
o(ay™*hP),  Ass. 5, (W).

(i1) a) For the variance if Assumption 5, (W) holds and nanh”ﬁ — oo, then we have that

2

B 2
o 1+28 A . 2 SUp,cr vV ()C)
_ < <
S (1+0(ayn)) < nayh Var([g,(x;h)] < = .

(i1) b) If actually Assumption 3, (S) holds and nanhHB — oo, then

2 X i -
VC(TL') (1 + O(Cln)) < nanh1+2ﬁvar[gn<X; h)] = vCEr )

(1+0(h/an)),

Here ¢,C and B are the constants from Assumption 5 respectively 3.

Proof of Lemma 5 in the main document
(1) We have that




where

1 & wﬂ-ﬁ d u—x
Ry1(x)=— / — (y(u)K( ,h)) (wj—2z)dz
! hj;n wj du h U=z !
and
1 & Wﬁﬁ d? Uu—x
Rua(x) = — / —(y(u)K( h)) (w—2)2dz
" 2 ]_Z_n wj du2 h u—vT/j(Z) /
Then,
1 & Wit i Z—X
Rut(x) = Z/ YK () (wy—2)dz
h]:fn Wj h
1 & W.i+ﬁ Z—X
- Z/ 1)K (T;h> (wj—z)dz
j=—n’Wj
::Rn7171(x)+Rn’1’2(x).
Now,
1
an 7—X c—X 1
mmmmwﬂé/%f&m(llm)duﬂﬂbK(,lm>2:0Q;w)'
Analogously,
Ruta)] =0 —
12 nanth“B
Furthermore

1 & it
R <
Riao) < | 3 [

n't j=—nvWj

v © + Pk (L) ]

j=-n

1

1 “ Wit an
+2232/
n-azh’> . w;

j=—n

= [Rn7271 (x)] + Rn7272 (x)

Then, R,21(x) = O <n2a31hZ+B + n2a3lh2+ﬁ> =0 (%) , since h/a, — 0. By Assumption 1

nanh§+ﬁ

(i) Fye #*,s > %, therefore y € L' (R) and hence

€ 1 1 1
< - _ =
Rn7272 = ]’l3+ﬁ (nan)z (||Y||1 + na%) 0 (nza%h:‘;"rﬁ T n3aﬁh3+ﬁ)

1 1 1 1
—0 + =o| —— .
(nanhgﬂg (nanh% n2a2h3+ﬁ>) (nanh%Jrﬁ)




where we used again that i/a, — 0. Hence, in total we find

h/an — h> dz—i—O(nan;%Jrﬁ).

Next, we enlarge the domain of integration and estimate the remainder as follows. By the
Cauchy-Schwarz inequality we obtain

/Z|>aly(z)K( ; h) dz < </|Z|>1| (z)|2dz)2

an

“\/
l2|> L
By Assumption 1 (iii)

) (1_}_Z2)s ) ”
/z>;n' Y(o)Pdz </Z>m| Y(Q)Pdz < G,

By Lemma 4

/{Z|>;n} (K (%C;h))zdzﬁ‘fan {Ziﬁﬂ g)} = O(an|[K(5h)|3)-

Blgu(sh)] = - [ vk (5 550) dz+o(mhﬁ)

0 af,H/zhl’ﬁ) . Ass. 3, (S),
o(at" zh‘ﬁ) . Ass. 5, (W),

Hence,

_|_

Furthermore, by Plancherel’s equality and the convolution theorem,

1 Z—X
— [ K ¥(z g
h/ ) h/ h dz

2 h/q)V (5 )dz—zi/exp(lmd)y( )P (n )(Zh)d

h

L exp<z'xz>d>fA<z><1><>¢f< = oL [ explic)o (0.

Hence,

h/y —hdz

=5z /exp ixz)® dz+—/exp ix7)®,(—2z) (Pr(hz) — 1) dz

/exp ix2) D, (z) (Dr(hz) — 1) dz = g(x) + R(x;h),



where

R(x;h) = % /exp(ixz)ng(z) (Py(hz) — 1) dz.

Finally,

1
1\ \?

R, <% D dz < / d
OIS E P Z‘( z>D/h<1+z2> Z)

UACECCRE

which yields the estimate R(x;h) = O(h’"’% ), uniformly with respect to x
(i1) In the situation of both, (i1)a) and (ii)b), we have

Wi—x
k()
h

1 n
Var[gn(x;h)} = vz(wj)
n*azh? . ].:Z’ "
1 1

1 an Than o =X 2
- /_ L 2) (K<—h h>) dz+ Ry (x),

n

where

Then

R(x) = naihZ i /Wv]wl V2 (w;) [<K<W/‘h—x;h>>2 (K(Z;xh>>2] dz

j=-n

e £ () o e

=1 Ry.1 (%) + Rua(x).

By uniform Lipschitz continuity of v? (see Lemma 3 (ii)), it is immediate that
€ Z—X 2 € )
R <——-[|K (—;h) < K(-,h
’ n72(x)’—n2a%h2/< h ) —nza%hH ( )H

1
=0 (nza%hlJrZB) '

Next, we consider the term R, | for which we will use a Taylor expansion of K?(-;h). To this
end, notice first from (7) that for any /

(_1>l e—itwq)k(t) gl

(l) M =
Kk =g D (—1/n)

dt,



where the functions F; : t — ®(¢) - ¢/ is uniformly bounded by 1 and twice continuously dif-
ferentiable by Assumption 2 for any / € N. It follows that K2(~;h) is smooth with integrable
derivatives of all orders [ € N, since

(KD (wsh) = (K-K)D(wih) = ¥ @ K0 (s )K® (s ),

by the general Leibniz rule. This yields

/ ’(Kz)(l)@v;h)‘ dw < kio (IQ (/ KU (w;h)lzdw) j

1
D 2 < C

by Lemma 4 and the previous discussion. Let M € N be such that M > % — 1. It follows that

R ()] nan,ﬂ(Z / T ><l>(%;h)'(mlnh)l] dz

1\ M+l 1
* (nanh) “a,h?B |
By (S1), we deduce

> | ! |\ M+l
R < .
‘ n,l(x)‘ = nanh1+2ﬁ (nanh + ha, (nanh)

M+1
< € 1 n 1
= nagh' 2B\ nagh -\ 0 gl

Since M > % — 1, we finally obtain

1
|Rn’1()€)| =0 (W—]+m) .

An application of Plancherel’s theorem and Assumption 5 give

2 1\?
ng<1+ﬁ> . (S2)

1 1

Dy
o <IKGRIB= 5

@y, (-/h)
Now, if (S) holds, an application of Lemma 4 yields

E(d%”’))zdho(ﬁff) O (anh®|[K(3h)][3).

sup
x€[0,1]




Thus,

where

anph

<%h [ || (K(zh) dz.

anh

By (24) we have |z- K (z;h)| < % /hP and

2 2
27[3 anh . . h ln(n)
Ruato)l <68 [ [iean|az =0 ("5 ).

aph

since, by (24) and (25) in the proof of Lemma 4 and (S),

2

anh
_2

anh

¢
K(zh)|dz< o5 1<|zl<aﬁh‘

K(z)d:

¢ 1 ¢
<5 (1+ 1<|z_”_d> g (1 +1In(2/anh h)) = O(In(n)/hP).

2]
Assertion (i1)b) now follows.
(i1)a) Under (W)

1

an T - ’
[5 v (k5 ) < supviom [ KGR
1 yEeR

and the second inequality of (ii)a) follows by (S2). Furthermore,

1 1 1 1

[ v k() ez o [ ((5) )

ho?
= —-IK (s h|l3,

(83)

for sufficiently large n by Lemma 4. Now, the first inequality of (ii)a) follows by (S2), which

concludes the proof of this lemma.
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II More general design

For ease of notation, we considered an equally spaced design in the main document. However,
this can be relaxed to more general designs. In this section, we restate the main results (Theorem
1, Theorem 2, Lemma 5) and adjust their proofs to the case where the design is generated by a
known positive design density fp , on [0,0) as follows

L= [ foa0de =1
I’l—|—1_ 0 D.n\Z)Aaz, J=1...,n,
and w; = —w_ ;. Note that, given the latter definition, we have fp ,(z) = (n+1)/nanl|g 1 /4,)(2)-

Furthermore, we require the following regularity assumptions.

Assumption 3.

1. The density fp , is continuously differentiable, fp, € C!(supp(fp.)).
2. There exist constants cp and Cp such that cpa, < fp, < Cpay.
3. The derivative fp, , is uniformly bounded, |5 ,| < axCp .

Regarding our estimator, we need to make the following adjustment to accommodate the

more general design
A( h) 1 i Yj K(wj—x h)
n\X; = ; .
8 nh = fpa(w)) h

This yields the following adjusted Lemma 5 and adjusted proof.

Lemma 6. Let Assumptions 1 and 2 be satisfied. Further assume that #/a, — 0 as n — oo.

(i)  Then for bias, we have that

> . {o(a;‘;+1/2h1ﬁ), Ass. 3, (9),

sup }E[gn(x;h)} —g(x)} =0 <hm5 + o(aHl/zh*B) Ass. 5. (W),

x€[0,1] nayhP+3

(i1) a) For the variance if Assumption 5, (W) holds and nayh'™P — oo, then we have that

2

1 o . 28 su vix) 1
oo (1 0lan) < nagh! 2P Varlgy ()] < 2 L

(i1) b) If actually Assumption 3, (S) holds and nanhHB — oo, then

1 v2(x)

a nayh' B var[g, (x; vz(x) a ;
fD,n(-x) CTL' (1+0( Yl)>S nh+ V [gn( ’h)]g e (1+O(h/ Vl)) fD,n(x)’

Here ¢,C and B are the constants from Assumption 5 respectively 3.

8



Proof of Lemma 6. (i) We have that

E[g,(x:h)] = — ¥ Y(W">>K<th_x;h)

= r(wj) (Wj_x )
_ K h ) dz.
" nh Z /w, foawj)(wjp1 —wj) h -

jfi’l

Next, observe

Toa(wj)(wjt1—w;) = FD,n(WjH) — Fpa(wj) — fDn( Dwier —wj)?,

1
:m fDn( DWwis — wji)?,

where Fp ,, is the primitive of fp ,. This yields

1

fD7n(Wj)(Wj+1 _W]) — E

< 1 +1C 1
= n? 2 P n2a2ep

and thus

fD,n(Wj)(VIVjH —wj) :n<1+0(n17%>>' (S4)

Replacement of 1/ fp ,(w;)(wj;1 —w;) by the latter estimate now yields

;}’(Z)K (%h> dz <1+0( >) + Ry 1(x)+Ry2(x),
£ o (55

= e (o (t57))

For z € [w;,wj;1] we obtain the following estimates by Assumption 3:

where

(wj—2)dz

U=z

and

Ry 2(x (w; —2)*dz.

u=w;(z)

wj—zl < [wj—wju| < 1/(nancp)

. Therefore, the rest of the proof of claim (i) follows along the lines of the proof of Lemma 5 (i).
(i1) In the situation of both, (ii)a) and (ii)b) we have

w;) K(th—x;h>'2

2h2 Z fDn( j)?
:# “jl%([{(Z—Tx;@)zc{z-<1+0(%>)+Rn(x),

Var [g,(x;h)] =

j—n



v =i 8 [ [t (<)~ 5 (6557 Jee

j==n

Then
1 =l pwin Wj—x =X 2
w0 B et [(KC5)) - (6(5550)) e
T V) v
”h2 Zn// ( >> [”fDn(W/ 2(W1+1_W/) JDon Z)}dz'

Using (S4), we further obtain
g nhzz/“”“,;n () (x(57) Jas- (100 ()

B[ (R(EE)) [ - P

j=—n
(g n—1 Wj+1 7—X 2 V2(W)
K<—;h)> —— L dz =Ry 1 (x) + Rua(x) +Ry3(x).
n>aph? jZZn/Wj ( h fon(wj) n1 () + R (%) + Ru3(x)
It holds that
4 5 1
< = . — )
Rn3 )] < 7 IKC Rz =0 (nzanhzﬁH)
Furthermore,

2
Wit 7—X 2 fDn(Z)_fD"(Wj)
x _;h V Z ’ 7 dZ
Ry hz Z / ( ( h )) S Jon(2)fon(w))
’E/W’“( ) [ e
fDJt(Wj)
By uniform Lipschitz continuity of v? (see Lemma 3 (ii)) and fp, (by Assumption 3), it is

immediate that
€ z—x \\* _ ¥ 5
< - - < .
B2 < s | (K( ; ,h)) S el

1
=0 (nza%hwzﬁ) '
Using again that |w; —z| < |wj —wjy1| < 1/(naycp), the rest of the proof of claim (ii) follows
along the lines of the proof of Lemma 5 (ii). [
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III Role of the hyperparameters

In this section, we discuss the setting presented in Example 1 of the main document in more
detail, in order to shed some light on the role of the parameters a, and h, as well as on the
assumptions made for our theoretical considerations. In particular, we show that, in a typical
setting, the conditions listed in Assumption 4 are satisfied if the bandwidth 4 is chosen to be of

I
rate h ~ h* /log(n), where h* ~ <M> *P*™ balances bias and standard deviation of g,(-;h). As

nay
a specific example, we consider the case of a function g € #"(R),m > 5/2, of bounded support,
[—1,1], say, fa as in Definition (8) in the main document with a = 1, i.e.,

falx) =Le M with @ (1) = (1) 2,

and E[sf] < oo, i.e., M = 4. Here, the parameter 3, which gives the degree of ill-posedness of
the problem and which is defined in Assumption 3 in the main document is given by 8 = 2.
The design parameter a, ensures that asymptotically, observations on the whole real line are
available. This is necessary since the function y will typically be of unbounded support, even if
the function g itself is of bounded support as it is the case in this example. To give some more
intuition, we now provide some computations for our specific example, for which it will turn out
that Assumption 1 (iii) is met for any s = O(1/(Inln(n)a,)). We find

/|z|>1/a,, @) e = /z>1/a,, @ (/g(’)fA<f -2 dt>2 dz

-2 s ( [ styexp(-r —z|>dt>2 dz

_l 2s expl—lf — 2
= 30, </r<1g(t) p(=lr ZW’) dz.

If z > 1/a, in the outer integral, we have ¢ < z in the inner integral, implying exp(—|t —z|) =
exp(—z—+1t) and thus

2
/Z>1/an exp(—22)(z)* (/tglg(t)exp(t)dt) dz=%¢ e exp(—22)(2)% dz.

Integration by parts yields

1 1\’ 2 s
ex —22 Z zst: - <1+—) X (——> + — ex _2Z z 1+22 S_le
/Z>1/an p( )< > 2 arzz P An 2 Jjz>1/ay P( ) ( )
<1<1+1)se ( 2>+san/ exp(—22)(1+2%)°d
) 2 XP\ —— A Xp(—4z2 Z Z.
2 a}% P an 2 lz|>1/an P

The latter estimate implies

1\s
1 (1+2)
exp(—22)(2)¥dz < = —— D" _ex <—l>.
/kwn p(-22)(2)**dz < 5y exp (2

11



If s=0(1/(Inln(n)ay,)), we find that

/z>1/an exp(~29)(2)"de <@ (14 ) exp (-2 ). (1)

for sufficiently large n. Taking the logarithm on the right hand side of (1) gives

1

— [anIn(€) +sanIn(1+1/ay) — 2],

an
which tends to —oo if s = O(1/(Inln(n)a,)), implying that <1 + al—z>sexp (—%) — 0. Analo-
gously,

[, vt ([ stepi-nar) a0

if s = O(1/(Inln(n)a,)). If we choose an undersmoothing bandwidth of order & ~ h*/1In(n) and
ay ~ sy ~ 1/In(n), Assumption 4 (ii) becomes

In(n)'=2"28 4 o (m(n)l—zm—zﬁ ) —o(1),

which is satisfied since m > 5/2 and 8 > 0.

IV Extensions: Details

Our theoretical developments for the procedure in Section 5 in the main document actually in-
volve a sample splitting. To this end, let (d,),en be a sequence of natural numbers, d,, — o0 and
dy=o0(n), 1/d,=o(1/In(n)?) and let Z, :={—n,...,n}\{—n+k-d,|1 <k<2n/d,},ie., we
remove each d,-th data point from our original sample. Now, set %} := {Y;|j € _#Z,} as well
as % :={Y;|j € {—n,...,n}\_#Z,}. This way, the asymptotic properties of the estimator based
on the main part of the sample, %7, remain the same. Let further, for j € #,, A; denote the
difference of w; and its left neighbor, that is, A j=1/(na,) if j—1 € _#, and A j=2/(nay,) else.
Define the estimator g,, based on %] by

. 1 wWi—X
gn(x;h):]; Z YjAjK( J/’l ;h).
JE€EIn

We now formulate an analog of Theorem 1 under Assumption 5.

Theorem 1. Let Assumptions 2, 4 (i) and 5 be satisfied. Let further V,, be a nonparametric
estimator of the standard deviation in model (4) based on %5 such that for some sequence of
positive numbers b,, — 0 for which a,, /b, = o(1/1In(n)) we have that

E | \SEIE) |Vn(@)) — v(a)j)|] =o0(1/(In(n)Inln(n))) and V,>& >0 (S7)

for some constant 6 > 0.
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1. There exists a sequence of independent standard normally distributed random variables
(Zn)nez, independent of v, such that for

- \ /nanhl—i—zﬁ

Dn<)€) = V(X) (gn('x’h)_]E[gn(x’h)])a
- \/na B wWi—x
Gn(x) = #}z;—;z f/n((x)j) Aj ZjK( Jh ;h) , (S8)

JG/n7|J‘§nbn

we have that B
Vae(01) r}g{}oP(HDnH < qII@nH(a)) =,

where e () denotes the at-quantile of [|Gy||.

2. If, in addition, \/na,h2"+2B + \/na2**' +1/v/na,h® = o(1/+/In(n)). and if Assumption
1 is satisfied, E[g,(x; /)] in (11) can be replaced by g(x).

Proof of Theorem 1. We require that

1Dy — Gl = 05(1/+/In(n)), (Step 1)
as well as
E[[|Gn]l] = Op(v/In(n)). (Step 2)

Step 1 a: Gaussian Approximation N
Lemmas 7 and 8 are in preparation for the Gaussian approximation where the target process G,
is first approximated by processes Gz"o and G, .

Lemma 7. We shall show that

IVGyiy — ¥ Gl = 0p(1/+/In(n)), )

where

/ 1428 I
% Z V((Dj) Aj ZjK (W] x;h) .

Ghn =
n,0 hv(x) je Il <nb h

Proof. Let & :={Z_,,...,Z,} be iid standard Gaussian random variables as in the proof of
Theorem 1, and ¢, := 1/In(n)Inln(n).

Py s (G20 — Gl > 8//n(m) < Pw( sup. |V(w;) = Ta(w))] > )

|j1<ban

Py (H@Z’o—@nu S 8/\/I(): sup |v(w)) = a(w))| < ) — Pt P

|j1<ban

13



By assumption, P, ; = o(1).

P2 <Py g, <||@270 - @nHI{SUp‘j‘Sbnn V(w))—Tn(wj)[<ca} > 0/ V/ ln(”)>

Y~
=Eg {P,@d% (llGn,o = Galllgsupy < [vO0)~ )| <t > 6/+/In(n)

%]

)] 5

b
<Eg, {Ez% <||Gn’0 = GollTgsupy <4 1vO0)~ 0 <}
by the conditional Markov inequality. Set

. _
Ru(x) 1= (G, (%) = G 0)) L gsupy [V 05)—9ov) <}

and

~ 2hPe, wj—X )
R = Z:K|—:h).

Since dg, (s,1) < dj (s,t) for all 5,7 € [0,1] and for all samples % and E[HﬁnH (%] = E||R,|| =

O(cp\/In(n)) = o(1/+/In(n)), it follows by Lemma 7 that E » 4 [||Ry|| | #5] < E[||R,]|] for all
samples. Therefore, P, » = o(1/+/In(n)) and the claim follows. O

Lemma 8. We have that

VG2t — vGyoll = 0p(1/+/In(n)).

where
Gno(x) - P y V(wj)AijK(wj_x;h). (S9)
SRRTEN T i
nb,<|j|<n
Proof. Let

Ru(x) :==VGoiy — VG =

\/ h1+2B -
L Z V(Wj)AijK <¥,h) .

h JEIn

nb,<|jl<n

Then, since A? <4/(n*a2) and 7, C {-n,...,n},

Var, (0] < 22y lnk ().

nayh nby<|j|<n

From the proof of Lemma 5 we deduce

VarlRal)] <% (hbin * nalnh) = (@) |

An application of the following Lemma 9 concludes this proof.
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Lemma 9. Let (X,,(¢),7 € T) be an almost surely bounded Gaussian process on a compact index
set T with G%’n := ||Var(X,,)|| = o(1/1In(n)?) such that N(T,8,dx,) < (n/8)" for all § < or,,
and some a € (0,o). Then

1Xal[ = 0p(1/+/In(n)).

Proof of Lemma 9. Fix § > 0. An application of Theorem 4.1.2 in Adler and Taylor (2007)
yields, for large enough n € N and a universal constant K

5 kns_\* 2/mlor, (52
(1> ) <2 ) 2 e (- i, )

Now
2
]P)(”XnHT > \/1?1W) < %na-i—laa—lcn—}a—i—l exp <_Gir]l> (exp <_67T7,i>> o(1) .
82
Since Gn_%““ exp (—GT_,D —0as 0,7 —0and (exp (—Gi;)) (O o(n~?) for any fixed
b € (0,00), the claim of the lemma now follows. O

Lemma 10. We have that

|Gy — Dyl = op(1/+/In(n)).

Proof of Lemma 10. Since by assumption (S7), V, is bounded away from zero, it suffices to show
that

192G — VuDy| = 0p(1/4/In(n)).
We estimate
1% G = Dl < ([0 G = VG5 | + VG = VGino| + Vo — ¥ D

— op (1/@) + VG0 — VD

The claim now follows along the lines of the Gaussian approximation in the proof of Theorem
1. O

Step 2: Expectation of the maximum

Lemma 11.

E[Gall = O(v/In(n)).
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Proof. Write E[||G,||] = E[E[[|G,||] | #4] and define

OMhP1/2 2 wj—t
==Y Ziv(w,)K th ),
/nan6 JZ_H J V(W,]> h

where M,, := \/max‘j‘gbnn |V2(wj) — vz(wj)|é + 1. Conditionally on %5, (G,(1),t € [0,1]) is a
Gaussian process and we find for s,z € [0, 1] and for all possible samples %5 the following set of
inequalities hold
~ ~ 2 na,h*P=1 9 2 wi—s wij—t
E[|Gu(s) = Ga(1)|" | #5] < = |';b V2 (w))A7 K T—ih ) =K (= —:h
JI1=n0Op

- 4p2B-1 y [WZ(WJ‘) B vz(wj)"’zg;j) +V2(Wj):| ‘K <W"'h_s;h> -K (W‘/h_t;h>

A2
na,o“ .
n | j|<nby,

X, (1) :

2

2

< E[|Xa(s) = X (1)} | 25].

An application of Lemma 7 yields, for all samples, E[H@nH ‘ %] <E[|X| |%] Therefore,
E[IG, ] < E[ElX, ]| 8] | < CEIGal|-EM,.
An application of Jensen’s inequality and (S7) yield EM,, <2 for sufficiently large n € N. [

Step 3: Anti-Concentration
Following the arguments given in the proof of Theorem 1 concludes the proof of this theorem.
]
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