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Proof of Proposition 1
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Note that [|C|| = sup,cgo|jyj,=1 [v" C|. Let Sf/zl be a 1/2 net of the unit sphere SP~! in
the Euclidean distance in R?. According to the proof of Lemma 3 in Cai et al. (2010),

d, = C’ard(Sf/Ql) < 5P

Let v1,...,vq, be the centers of the d, elements in the net. Therefore, for any v in 5771,
it can be shown that ||v — v;lls < 1/2 for some j and ||C||z < sup;y, [v] C| + [|Cl2/2.
Above all lead to
IC|l2 < 2sup \U;TFC|.
J<dp
For o € R?, denote Cj(a) = + Ly SN wTaH(a) and
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When |3 — B2 < ay, it leads to

ICll2 <2sup sup  [Cj(a)|. (1)

J<dp [la—B|2<an

For every i, we divide the interval [5; — a,, 5; + a,] into n™ small subintervals and each
has length 2a,,/n™, where M is a large positive number. Therefore, there exist a set of
points {ay, 1 <1 <nMP} € RP such that for any « in the ball [la — 8|2 < an,

loc = ull, < 2y/pan/n™

for some 1 <1 < nMP. Let A(a) = a — B and it can be proved that
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Note that xH'(x) and H'(x) are Lipschitz continuous. When |la — 8|2 < a, and
o — aully < 2y/Pa,/n™ for some 1 <1 < nP,
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Similarly, we can prove that
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Therefore, it leads to
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Since max;; E|z;;]* < oo, by letting M large enough, we have

sup - sup | Cj(a)| = supsup |Cj(au)| = Op(n™7), (3)
J

i lla=Bll2<an

for any v > 0. It is enough to show that sup,sup, |C;(a;)| satisfies the bound in the

Proposition 1.



We first prove the proposition under (C3)*. Let Z;; = z;;I[{|z;| < N*}, @, =
(i1, 2ip) T, €k = Yi — by, — 27 B, A(b) = by, — by, and |by, — by, | < b, fori=1,... N
and kK =1,..., K. Denote CAZ'j(oz) =~ Sy vI#;H (o) and

=1 "7

i) = (2= A(bk)h— ﬂA(O‘))—I{eik > 04 —hA(bk)H,Cik — A(by) - A{A(Oé))

Using Chebyshev’s inequality, we have

N p
P((supsup|C;(an)| # supsup |Cy(a)] ) < 377 Pllay| > N%) = O(p/N) = o(1).
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Denote fi(-|x), ..., fx(-|x) as the corresponding conditional density functions of €y, . .., ex

given &, which are local-scale functions for f(-|) in Condition (C1). Since the condition-
al density functions fi(-|x),. .., fx(-|x) are Lipschitz continuous, they are also bounded.
By Condition (C2) that H(x) is bounded,

E[H(Eik - A(bk)h— if?iTA(a)> ~ I{en > 0} wir
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< Oh(@m(a)/h + A(by) /B + 1),
and
E[Eik _hA(bk)H,<€z‘k — A(bk)h— :fziTA(Oz)) ZL‘i]Q - Ch<|§:fA(Oé)/h|2 i 1>' (5)

Based on (4), (5) and the definition of H(«), it leads to
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where we use the inequalities that

sup E(07#;,)" <8 sup E(07x;)* +8 sup EZ]@ x| I{|zy] > N*})*
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According to (2) and noting that H(x), H'(z) and zH'(x) are bounded, we can obtain

that
e H ()| < Cll@:lla(1+ [|2l|2loe — Bll2/R) < C/BN" + CpN*||a — Bl|2/h.

Under Condition (C3)*,
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log(KN) =
plog(KN) DN

Using Benstein’s inequality, for any v > 0, there exists a constant C' such that

sgp SlllpP<|6'j(Ozl) - Eé’j(alﬂ >C NLI#(KN» O ((kN)™7).

This leads to
(6)

It remains to give a bound for EC; (). Let Fi(-|x) be the conditional distribution of ¢
given x. Denote t = hx + &I A(a) + A(by,) and we have
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Similarly,
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These two equalities imply that uniformly in a and j,
|EC;(0)] < C(K1h* + Kol |A(0)[|5 + K3A(br)?).

Hence
supsup |ECj(ay)| = Op(h* + a2 + b?2). (7)
il
Combining that with (1), (3) and (6), this completes the proof of the proposition under
Condition (C3)*.
We now prove the proposition under condition (C3). To bound C;(oy) — EC;(cy)

under condition (C3), we introduce the following exponential inequality from Cai and
Liu (2011).

LEMMA 1 Let Sy,...,Sy be independent random variables with mean zero. Suppose
that there exist somet > 0 and By such that Z]kvz1 ES,%@”S” < B]ZV. Then for0 < x < By

N
P(Z Sy, > (JtBNx> < exp (—z%),
k=1

where Cp, =t +t71.

According to a,, = O(h) and (2), denote | Zszl U;‘-Fazi]-](aﬂ < C|U]T€Ez'|(1+|(Oé—,8)Tm,-|/||oc—
Bll2) := Sij, which implies that
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Let By = CvVNh and z = \/yplog(KN). By Lemma 1 and the fact that y/plog(KN) =
o(V Nh), for sufficiently large C', it can be shown that

phlog(KN)

=) = O ((KN)T7).

sup sgpP(]Cj(al) — ECj(y)| > C
j

Combining that with (1), (3) and (7), we complete the proof of the proposition under
condition (C3).



Proof of Proposition 2

Based on the proof of Lemma 3 in Cai et al. (2010), we have [Qn—@Q|| < 5sup;<;, ] (Qn—
Q)v;|, where {v;,1 <1i < b,} are some non-random vectors with [|v;||o = 1 and b, < 5P.
Now let

T

1 K N vi — b 1 K N b aTa
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Therefore, when ||8 — B2 < an,

IQn — QI <5sup sup |Q;(er) —vj Quyl. (8)
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Because H'(x) is Lipschitz continuous, we get

1 ., (yi—b, —xla 1,y — b, —xl oy o7
- _ - < T — an)l.
‘hH< h ) hH< h )’—Ch [ (= )]

Therefore,

C\/pKa,
sup —sup Q) — vy Quj| — supsup |Q; () — vj Qu| < {W ZH il
i lla=Bll2<an il

Since max;; E ]x¢j|3 < 00, by letting M large enough, we have for any v > 0,

sup sup |Q,(a) — vJTij\ — sup S?p 1Q,(ar) — v]-Tij| = Op(n™7). 9)

7 la—pll2<an

We now prove the proposition under under (C3)*. Similarly to the proof of Proposition
1, denote z;; = x;;I{|z;j| < N*} and
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We can prove that
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As the proof of (5), we have




Using Bernstein’s inequality, for any v > 0, there exists a constant C' such that

supsup P(1Q;(on) = B(Qy(en)] = 0\ ) —o(kN) ). ()
Moreover,

= fe(Olz;) + O(h + |&] A(cr) + A(bg))).

Therefore,

J
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P p
< CKmax(Y _ EalI{|z;| > N*)V? + CKmax Y~ Eaf,I{|zy| > N*}  (12)
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+CK(h+||a— B2+ Aby)) < Cr(h + ap + by).

Combining (12) with (8), (9), (10) and (11), we can get the desired inequality un-
der under (C3)*. We now prove the proposition under condition (C3). Let S;; =

25:1(11?%)2}]’(Qk*m?A,(f)*A(bk)) and we have

E(Sy)2emISil < B(8;;)2eCme =0 = O(h).
Let By = CvNh and x = \/yplog(K N). By Lemma 1 again, it leads to
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Combining (8), (9), (12) and (13), the desired inequality under under (C3) is obtained.

Proof of Theorems 1-3
For independent random vectors {a;, 1 <1 < N} with sup;; Elz;]* = O(1), let

K N

SNK = ZZCEZ(I{Q’“ Z 0} + T — 1)
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Since E||Syk|[* = O(Np), it leads to
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By (14) and Propositions 1-2, it is easy to show that the result holds. For ¢ = 1, let
an = /p/n, b, = \/1/n, since we assume that |3 — B2 = Op(+y/p/n) and |b,, — b, | =
Op(\/l/_n) for k=1,..., K. Suppose the theorem holds for ¢ = g — 1 with some g > 2.
Noting that p = O (n/(log(KN))?), we have

\/Ph D (log(K N))/N = O(y/p/N),

Then for ¢ = ¢ with initial estimator (by,,...,br,8) = (Z;Sf_l), . .7[;5%—1)73(9_1))7 it
can be seen that a, = O(h() and b, = O(h\9). Hence, we have proved Theorem
1. Theorem 2 follows directly from Theorem 1 by the Lindeberg-Feller central limit
theorem. In addition, Theorem 2 is a special situation of Theorem 3, which can be

confirmed similarly as Theorem 2.
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