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Abstract

Statistical analysis of large-scale dataset is challenging due to the limited memory
constraint and computation source and calls for the efficient distributed methods. In
this paper, we mainly study the distributed estimation and inference for composite
quantile regression (CQR). For computational and statistical efficiency, we propose
to apply a smoothing idea to the CQR loss function for the distributed data and then
successively refine the estimator via multiple rounds of aggregations. Based on the
Bahadur representation, we derive the asymptotic normality of the proposed multi-
round smoothed CQR estimator and show that it also achieves the same efficiency of
the ideal CQR estimator by analyzing the entire dataset simultaneously. Moreover,
to improve the efficiency of the CQR, we propose a multi-round smoothed weighted
CQR estimator. Extensive numerical experiments on both simulated and real data
validate the superior performance of the proposed estimators.

Keywords Bahadur representation - Composite quantile regression - Divide-and-
conquer - Multiple rounds - Kernel smoothing - Weighted composite quantile
regression

1 Introduction

With the rapid development of science and technologies, massive data are increas-
ingly being collected and stored in the distributed environment with many machines.
Naturally, the traditional method, which processes all of data simultaneously in one
central machine, is not practical due to the storage space, limited computational
source and privacy problem. As a common and effective way to reduce the com-
putational burden, the parallel and distributed estimation has attracted increasing
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attention in the statistical and machine learning literature. See Boyd et al. (2011),
Dekel et al. (2012), Zhang et al. (2013) and the references therein. Among these
distributed estimation methods, the divide-and-conquer (DC) approach has become
the simplest and most popular method to deal with these challenges. The general DC
framework firstly divides the entire dataset of sample size N on m machines with
size n = N/m, then computes the local statistical estimator on each machine with
smaller sample size n and outputs the calculation results, and finally combines the
local estimators from each machine to obtain the global estimator. In this way, the
information of entire dataset can be utilized. However, constructing the local calcu-
lation algorithm and combining the local results from each machine to make estima-
tion statistically and computationally efficient are the main obstacles of implement-
ing the DC method. In many existing DC studies, such as Chen and Xie (2014), Lee
et al. (2017) and Battey et al. (2018), the global estimator is obtained by a simple
average of the local estimators computed on each machine, which is called as the
naive method in DC framework.

Various statistical models have been investigated based on the DC framework,
examples include density parameter estimation (Li et al. 2013), M-estimator (Shi
et al. 2018), least squares estimator (Fan et al. 2007) and so on. Since the large-scale
data are collected from different locations and times, the homoscedasticity assump-
tion may not hold such that the ordinary M-estimator and least squares estimator do
not perform well. Volgushev et al. (2019) studied distributed inference for quantile
regression (QR; Koenker and Bassett 1978) to provide more robust estimation and
a complete picture of effects of the covariates on the response variable. However,
the distributed QR estimator is hampered by the following three issues. Firstly, the
loss function of the QR model is not differentiable at some points, which may cause
some problems in the subsequent asymptotic analysis and computation. Secondly,
the QR estimator is less efficient for certain light-tailed distributions (Zou and Yuan
2008; Gu and Zou 2020). Thirdly, the QR estimator considers only one quantile at a
time and may not fully grasp the distributional information to produce more efficient
estimation.

To address the first problem, Chen et al. (2019) circumvented the non-differ-
entiability of the loss function by smoothing the indicator part of check function
via a kernel function (Horowitz 1998; Whang 2006; Heller 2007; Kaplan and Sun
2017) and then developed a multi-round distributed approach for the QR estima-
tion. The idea of smoothing the non-smooth QR loss function was firstly intro-
duced by Horowitz (1998) and then has been widely applied to different areas
of QR problem. For example, Whang (2006) applied the smoothed empirical
likelihood method for the QR problem, Kaplan and Sun (2017) considered the
smoothed estimating equations for instrumental QR and so on. However, differ-
ent from adopting the traditional smoothing approach for calculating a one-stage
estimator in the existing literature, we use this smoothing technique to construct
multi-round smoothed estimators, which heavily rely on the first-order optimal-
ity condition of the loss function (Chen et al. 2019). To solve the last two prob-
lems, in this paper we consider the composite quantile regression (CQR; Zou and
Yuan 2008), which is a mixture of the objective functions from different quantile
regression models and can provide gains in estimation efficiency over the single
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QR. Furthermore, Zou and Yuan (2008), Kai et al. (2010, 2011) and many others
demonstrated that the CQR estimator is potentially much more efficient than the
M-estimator and least squares estimator. In addition, different from the CQR esti-
mation based on a sum of different quantile regressions with equal weights, Jiang
et al. (2012) considered weighted composite quantile regression (WCQR) as a
more efficient alternative to the regular CQR estimator. Given some appropriate
weights, the WCQR estimator outperforms the CQR estimator when compar-
ing asymptotic relative efficiency theoretically and numerically (Zhao and Lian
2016).

Distributed data with heteroscedasticity and demands for great computation
and estimation efficiency encourage us to develop robust and efficient CQR and
WCQR estimation methods. To the best of our knowledge, the multi-round dis-
tributed approach in conjunction with the smoothing idea has not previously been
investigated for the CQR and WCQR models for the distributed data. Thus, we
are motivated to adopt these approaches and establish theoretical properties for
the smoothed CQR and WCQR estimators, which will significantly expand the
applicability of Chen et al. (2019). Our contributions of this paper are in three
aspects.

(1) We propose a multi-round smoothed CQR estimator for the distributed data. To
illustrate our idea, we first apply the smoothing technique to the loss function
of CQR based on the entire data, then set the derivatives of the smoothed loss
function to zero and ultimately derive the explicit expressions of the CQR esti-
mator, which only rely on initial value and individual data points. Motivated by
the above concise formulation, we propose to design the local calculation form
on each machine and construct the final estimator by adding up the local results
as the components of derived CQR estimator expressions. The proposed estima-
tion approach can use the last iteration result as the consistent initial value and
successively refine the estimator via multiple rounds to improve the efficiency.

(2) We show the proposed multi-round smoothed CQR estimator has the following
outstanding merits. Firstly, it can achieve the same efficiency as the ideal CQR
estimator computed based on the entire data. Secondly, our proposed estimator
improves the naive DC CQR framework. In statistical theory, since the local
estimators are biased with the bias O(1/n), the naive DC CQR estimator works
on a small number of machines m = o(1/N) and requires the large sample size on
each machine to achieve the same asymptotic distribution as pooling the entire
data together. However, these conditions are easily to be violated in practice,
while our proposed method removes this strict constraint and achieves the same
asymptotic efficiency through multiple rounds. Finally, our method only needs to
solve one optimization problem to obtain the initial estimator during the whole
process and the iterative process converges rapidly due to the consistent initial
value and simple calculation formulas.

(3) To further improve the estimation efficiency based on the CQR model, a multi-
round smoothed WCQR estimator for the distributed data is also proposed. Our
simulation results based on m = (5, 10,25, 50) and n = (50, 100, 2000) show that
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our proposed multi-round smoothed CQR and WCQR estimators with only a
few rounds of aggregations can achieve the same efficiency as the correspond-
ing ideal CQR and WCQR estimators computed on the entire data and perform
better than the naive DC estimators.

The rest of this paper is organized as follows. In Sect. 2, we propose the multi-
round smoothed CQR estimator for the distributed data and give the asymptotic
properties. In Sect. 3, we study the multi-round smoothed WCQR estimator.
Sects. 4 and 5 show the simulation studies and an application of a real dataset.
We summarize this paper in Sect. 6 and display our future work. All the proofs of
theoretical results are given in the Supplementary Material.

2 Multi-round smoothed CQR estimation
2.1 Smoothed CQR estimator for the entire data

Given independent and identically distributed samples (x;,y,), i=1,...,N, we
consider the linear model as follows:

yi=x?ﬂ+€i, i=1,...,N,

where y; is a univariate response, xl.T = (X5 .- ,xl-p) is a vector of p-dimensional
covariates, f = (f, ... ,ﬁp)T is a true but unknown parameter vector, €; is an unob-
served random variable. For multiple quantile levels 0 < 7; < -+ < 7% < 1, when all
of data fit into one machine, the ideal CQR estimator (le, ,bTK, ) can be esti-
mated by solving

K N
(érl’...’l;fk’ﬁ)z argmln 2{ prk(y[_bfl\_xlTﬂ)}9 (1)
beyseby B =1 ~ i=1

where P () = ull {u > 0} + 7, — 1) is the check function, /{-} is the indicator func-
tion, and b, is the 7;-th quantile of error term . We usually use 7, = k/(K + 1) for
k=1,...,K. The main challenge in the above CQR estimation is that the check
function is piecewise linear and not differentiable such that the first-order optimiza-
tion method can not be performed directly on (1).

To illustrate our smoothing idea, we first propose the smoothed CQR estimator
based on the entire data and then extend this technique to the distributed data in
Sect. 2.2. Motivated by Chen et al. (2019), we approximate the indicator function
I{u > 0} with a smooth kernel function H(u/h), where h — 0 is the bandwidth.
The smooth function satisfies H(+o0) = 1 and H(—o0) = 0 such that H(u/h) =1
when u > 0 and H(u/h) =0 when u < 0. If it is possible to analyze the entire
dataset, the smoothed loss function of the CQR model can be written as
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by by

L argnblil’lﬂg{g(yi_bfk _xirﬁ)[H(”_bﬂT_xiT% +Tk—1]}. 2)

By the first-order optimality conditions on (2), the ideal smoothed CQR estimator
(bn’ ,bTK, p) satisfies

K N T T T
oL yi_brk_x,'ﬁ yi_brk_x,'ﬁ yi_br,(_x,'ﬁ
oL _ H(—) -1 H/( >}= ,
% ;le{ - +1—-1+ - - 0

N T T T
oL _ yi_b‘rk_xiﬁ yi_b‘rk_xiﬂ , yi_brk_xiﬁ _
=2 {n( )+ 14— (—— =) } =0,

fork=1,...,K. Here, H'() denotes the first-order derivative. Given a set of con-
sistent initial estimator (l;_[l, by, p), it is straightforward to deduce snnple and
explicit closed-form expressions of the smoothed CQR estimator (br| s T s ﬂ) for
the entire data as follows:

p=w'M, b =V'U, k=1,...K, 3)

where
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After obtalnmg (b by . D), we can employ it as a set of new initial estimator
(b e T ,ﬁ) to recalculate (3) until convergence.

Unfortunately, due to the storage, computation capacity and privacy, it is imprac-
tical to compute (3) in one machine based on the whole data. Recently, the DC
method has become popular in statistical literature to handle the distributed data. A
typical approach is one-shot simple averaging DC CQR, which is also called as the
naive DC CQR method. In specific, assume that the total data indices {1, ..., N} are
divided into m subsets {H,, ..., H,,} with equal size n = N/m and denote the data
in the j-th local machine by D; = {x;,y; : i € H;}, j =1, ..., m. The naive DC CQR
method will firstly compute the classical CQR estlmator ,6 on each D; and then cal-
culate the final CQR estimator by taking a simple average, i.e., B e = Z ﬂ /m.

However, as we mentioned in Sect. 1, the naive DC CQR estimator ,B Ave 1S sub-
optimal and our simulation results in Sect. 4 show that it does not perform well in
most of the cases. Next, we will introduce the multi-round smoothed CQR estimator
for the distributed data to overcome the existing problems in statistical and compu-
tational efficiency.
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2.2 The proposed estimator

As we discussed in Sect. 2.1, the smoothed CQR estimator for the entire data in (3)
is constructed by the quantities W, M, V, and U, defined in (4). While these for-
mulas only involve the summation of matrices and vectors computed for each indi-
vidual data point x; and y;. This concise formulation makes it simple to adopt the
distributed method and greatly facilitates the distributed computing. Therefore, we
propose the multi-round smoothed CQR estimator for the distributed data based on
(3). We are able to compute the initial estimator using the traditional CQR estima-
tion method based on a small part of samples, e.g., D,. The specific calculation steps
can be described as follows:

S1: In the first iteration, using the traditional CQR estimation method, we obtain
the initial value (le, ., T s ,6) based on D,.
S2: For each batch of data Dj, 1 < j < m, define the following quantities .

K x! b —x"B —b_ —x'f
Tk i _ 1 ’ Vi Tk i
W= kzl‘z A < h, ) V"J"ZEH( h, )
= IED, J J zeDj J J
M ZZ { ( —x,-TB>+ 1+yi_l~’rkH,()’i_z’rk_x,-Tﬁ>}
X _ - ,
k=1 o h; h;
= tED I J J
yi_l;‘rk_x?l; yi_x?-)g yi_Bfk_xiTB
ka:Z{H( I >+Tk_1+ ™ H/< I, )}
ieD J J i

J

Notice that (W_,»,M_ is Vk_,-, U kj) can be calculated separately on the j-th machine
and only the summed statistics (W_/-,M s ij, U k_,-) have to be stored and trans-
ferred to the central machine, j=1,...,mandk=1,...,K

S3:  After receiving (Wj,Mj, ij, Ukj) from all the machines, the central machine
can aggregate them and compute

! = (Z Wj)_l(zMj)’ B(fi) = (Z ij)_l(z Ukj), k=1,...,K. 3)
J=1 Jj=1 j=1 i=1

S4:  After the first round (b(l) (1) ,6 ) can be treated as the new initial esti-
mator (b .. ) and then sent to all the machines to repeat the steps
SZ S3 descrlbed above to construct the second round estimator, denoted as
ﬂ . The algorithm is repeated g times unt11 the g-th round estimator ﬂ con-
verges with a given threshold &, and ﬂ is taken to be the final estimator. The
details of the entire inference procedure are presented in Algorithm 1. We
name the final estimator ﬁ ” in the distributed environment as the multi-round
smoothed CQR (MSCQR) estimator.

For each iteration, we can choose different bandwidths hj with the same order
on different machines for j = 1,...,m in the step S2. This will not change the final
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asymptotic results of expressions (5). Therefore, in Sect. 2.3, we denote & as a common
bandwidth for the proof of theoretical results. Since the initial estimator is consistent
and calculation formulas are simple, these make the convergence fast.

Algorithm 1 Multi-round smoothed CQR estimation for the distributed data.
Input: Data batches Dy, ..., D, smooth function H(z/h), quantiles 7, ..., 7k, conver-

gence threshold 6.
Output: 3@
1: Set g = 1.

2: Calculate the initial value based on D; using traditional CQR method:

K
(Em . ..,BTK,é) = arg min Z { Zﬂrk(yi — by, — 5‘7?/3)}

brysensbry B k=1 = ieD;

3: forj=1,...,mdo

4: Compute the bandwidth %; on dataset D; using (l~7717 e INJTK, B)

5: Compute (W;, M;) on dataset D; using (br,, . .., br,, 3) with the bandwidth h;.

6: for k=1,...,K do

7 Compute (Vj;, Uy;) on dataset D; using (Bm .. ,ETK,,B) with the bandwidth
h;.

8: end for

9: end for

10: Compute

m m m m

B =W)X M), b9 =3 Vi)' U k=1...K
J=1 J=1 j=1 j=1
11: while (|39 — 8|, > §) do
122 (bryy o br, B) = (B2, 09 B9),
13: g=g+1
14: Repeat from 3.

15: end while

2.3 Asymptotic theories
In this subsection, our )main objectives are to provide a Bahadur representation of the
MSCQR estimator ” and to establish correspondingly asymptotic normality result.

Firstly, from (3), we show that the difference between the smoothed CQR estimator
after the first round and its true parameter can be equivalently rearranged as:

B-B=0,Py, (6)

s
1 K N Ty [ Yi~by =X B
where Qy = - >, o, XX H (T and
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N _G _+Tf i T i T
D L B B L)

Let f(-|]x) be the conditional density function of the noise e given x. Define
1 vk N K

P = N zk=1 Z,‘:] xi{l{yi - ka —x?ﬁ > 0} +7,—1}and Q@ = Zk:l E(xfo(ka |x)).

Then we state some regularity conditions for theoretical development and show that

P,, and Q) can be close to their corresponding population quantities P and  when

N is large.

(C1) The function f(-|x) is Lipschitz continuous (|f(x;|x) — f(x,[x)| < Clx; — x,|
for any x;,x, € R and some constant C > 0). There also exist constants c,
and ¢, such that 0 < ¢; < 4, (0Q) < 4,x(0) < ¢; < 0.

(C2) The smooth function H(-) is twice differentiable and its second derivative
H®(.) is bounded. Moreover, we assume the bandwidth # = o(1).

(C3)  p=o(Nh/(log(KN))as well as supg _; Ee"®®” < oo for some 77 > 0.

(C3)*  p=o((N'"*h/1og(KN))'/?) for some « > 0 as well as sup; E|x,;|* < oo for
some a > 2/k and supyg _; E@Tx)* < .

Condition (C1) contains the smoothness of the conditional density function f(-|x),
which can be used to obtain the upper bounds of inequalities in the proof of Proposi-
tions 1 and 2, and involves a normal eigenvalue condition related to covariates x. Con-
dition (C2) is a mild condition on H(-) for the smooth approximation and can be easily
satisfied by a properly chosen H(-). Conditions (C3) and (C3)* illustrate the relation-
ship between the dimension p and sample size N, and the moment conditions on covari-
ates x are also presented. However, Condition (C3) has weaker constraints compared
with Condition (C3)*. Both Conditions (C3) and (C3)* can reach the same theoretical
conclusions in the Propositions 1 and 2. Under these conditions, we derive the follow-
ing asymptotic analysis of P, and Q) respectively. The proofs are relegated to the Sup-
plementary Material.

Proposition 1 Under conditz;ons (Cl), (C%) and (C3) (or (C3)*), assume that the ini-
tial estimator (ETI, e I;Tk, B) satisfies || — Bll, = Op(a,) and IETA —b, | =0pb,)
fork=1,...,K, in which a, = O(h) and b,, = O(h). We have

T log(kN
IPy — Pll, = 0[,(\/1%() +a+ b +h2).

Proposition 2 Under the same conditions in Proposition 1, we have

plog(kN)

10y -l = 04 (\/ =

+an+bn+h).

Combining Propositions 1 and 2, the expression (6) with some algebraic manipu-
lations, we have

B-B=0"'P+ry, )
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. _ p*log(KN) phlog(KN) 2 2 2
with [y [, = Op( /22800 4 o8N 1 21 2y g2,
Remark 1 When h shrinks at an appropriate rate, we find that the dominant item of r,,
shrinks from a,, to ai, while the initial estimator only can attain || — B||, = Op(a,,).
This result indicates that an iterative refinement of the initial estimator will signifi-
cantly improve the estimation accuracy of . Therefore, our proposed method could
obtain the MSCQR estimator to achieve the desirable estimate efficiency by succes-
sively refining the initial estimator only based on data from the first machine after ¢
iterations.

Remark 2 The similar process as Propositions 1 and 2 can be applied to 13,k for
k=1,...,K, we have

N
2~ 1 !
b by =5 DAY = by —x]p 20} + 7, = I/E(f(b 1) + 7,

i=1

. ’ _ p?logN phlog N 2 2
with [ [, = Op (/222 + (/222X 4 2 432 4+ 1),

According to our Algorithm 1, the previous discussions only involve the
asymptotic behaviors after one round aggregation. Based on the above arguments,
the theoretical results for our MSCQR estimator ﬁ ” in Algorithm 1 can also be
concluded. By a recursive argument based on (7) and setting the obtained estima-
tor as the new 1n1t(1z%1 value (b e 1 ,ﬁ) we establish the following Bahadur
representation of f ', where the main term is still Q~'P.

Theorem 1 Under the same conditions in Proposition 1, the initial _estima-

tor (b . T,,B) in the ﬁrst iteration  satisfies || — Bll, = Op(\/p/n) and
|b bnl = OP(\/I/n)fork =1,...,Kand p = O(n/(log(KN))?). We have

B -Bp=0"P+ry, (8)

. h@ log(KN)
with Iyl = Op (/2120 ),

Remark 3 The classical initial CQR estimator based on a single machine will satisfy

||ﬁ - Bll, = OP(W) and |l~)Tk - brk| = OP(\/W). Furthermore, we should point
out that any initial estimator satisfying the above conditions in Theorem 1 can be
used in the first iteration and the same Bahadur representation in Theorem1 holds.
The condition p = O(n/(log(KN))?) is used for balancing the terms in ry in (7).

By applying the central limit theorem to (8), we der(ive the following result on
the asymptotic distribution of the MSCQR estimator f !

Theorem 2 Under the conditions in Theoreml, for the MSCQR estimator ﬁ(q), we
have
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K
VNGB - )= N(0. Y min(z, 5)(1 — max(z, 7, )@ ElxxT107"),

kk'=1

with Q = Zszl E(xx"f(b, |x)) as n and N — .

Remark 4 In order to construct confidence intervals for B(q), the consistent estimators
of Q and E[xx”] are needed. Motivated by Proposmon 2 and Chen et al. (2019), we
propose to use Q) in the g-th iteration and Z /N to estimate Q and E[xx"],
respectively. It is convenient to obtain Q) and Z XX, T /N, since they can be sepa-
rately calculated on each machine when computmg the MSCQR for the distributed
data and then taken for a simple summation.

Remark 5 Theorem?2 shows that ﬁ(q) achieves the same asymptotic efficiency as B
in (1) computed directly on the entire samples. When p is fixed, although the naive
DC CQR method also can achieve the same efficiency, it requires a small number
of machines, i.e., m = o(\/ﬁ), to achieve better performance. However, in some
applications such as sensor networks, the number of batches can be large. While our
proposed approach removes the restriction by applying multiple rounds of aggrega-
tions. Since these three methods achieve the same asymptotic distribution, we could
use the same asymptotic variance as the MSCQR when constructing the confidence
intervals of above mentioned methods.

3 Multi-round smoothed WCQR estimation

The above CQR estimator is investigated based on a sum of different quantile regres-
sions with equal weights and may not be optimal. Let @ = (@, ..., wg)! be a vector
of weights and the components in the weight vector @ are allowed to be negative.
Jiang et al. (2012) proposed the WCQR estimator (b, , ..., b, , B) by solving

(Z;(:l bw ﬂ )= argmln Z { Zwk'on i —be, —xl.T,B)}.

by B =1 "~ i=1

Similarly, the multi-round smoothed WCQR (MSWCQR) estimator for the distrib-
uted data can also be obtained by using our proposed four-step method in Sect. 2.
Given the consistent and suitable initial estimator (13?’] s E‘T"K, B ), in the step S2,

we define
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~()

K T _pe —xT —pe —xT
wkxix' Vi T, xlﬂ 1 Vi T x,ﬁ
W B L W P s L
! k;g:', hy hj ’ g{ hi hy
K ) T A% %) 7w T A%
” )’i_bT _xiﬂ '_b yi_bf _xiﬁ
M=y 3y wkx,.{H(—*h_ ) +r— 1+ — H’( m )}
k=1 ieD J J J
yl'_gf _x,vTﬁm yi—x.Tﬁw yi_Bf: _xiTﬁw
Ug= 2 {H< kh. >+T"_1+ ™ H/< kh. )}
iED,- J J J

and then in the step S3 we obtain

qo) < w—lm oy fa(l) _ < w—rm ® _
B =W QM. BV = YV (YU, k=1....K.
J=1 =1 i=1 j=1
The MSWCQR for the distributed data algorithm is shown in Algorithm 2.

Theorem 3 Under the conditions in Theoreml and Zk | o, = 1, for the MSWCQR
estimator ﬁ , we have

K
VNG™ = )= V(0. 3w min( z)(1 - max(z, 5))@”) ™ Eler 1@ ).
kk'=1

with Q° = ZkK:] o Exx"f(b, |x)) as n and N — co.

T
Remark 6 Q“ can be estimated by QY = ﬁ Zle Zl  oxx H' (‘Txﬂ )

As pointed in Jiang et al. (2016), the optimal weight ,,,, is

pt = Q_lf ,
where  f=(f(b,),....f(b, )" and Q is a KxK matrix with
Qe = min(zy, 7 )(1 — max(rk, 7)) for k=1,....K. In practice, ®,, = Q'f can
be estimated by @, = Q~ = (@, ....00)". Furthermore the usual nonparamet-

ric density estimation methods, such as kernel smoothing based on the estimated
residuals, can provide a consistent estimator f.
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Algorithm 2 Multi-round smoothed WCQR estimation for the distributed data.
Input: Data batches Dy, ..., D,,, smooth function H(z/h), quantiles 1, ..., Tk, weights

w1, ..., Wk, convergence threshold §.
Output: 3<@.
1: Set g = 1.
2: Given consistent initial estimator (b“;17 s b .B9).
3: forj=1,...,mdo
4: Compute the bandwidth h¢ on dataset D; using (bT17 b ﬂ“’)
5: Compute (W, M) on dataset D; using (b 02 ,3%) with the bandwidth

SR

hy.

6: for k=1,...,K do

7 Compute (V;, Uy;) on dataset D; using (l;fl, cey Eﬁk,,@“’) with the bandwidth
he.

8: end for

9: end for

10: Compute

m m m

B9 = Z 7O My, B9 = ZV“’) ZUk] =1,... K.
j=1 j=1 Jj=1
11: while (\|,éw<9> B2 >6)
2 (5B B) = (657 7...,5:),59%@@»
13: g=g+1
14: Repeat from 3.
15: end while

4 Simulations

In this section, we provide simulation experiments to illustrate the performance of
our proposed estimators. The data are generated from a linear regression model

T .
Vi =xl.ﬂ+ei, for i=1,...,N,

where x; = (x;, ... ,xl-p)T is generated from a p-dimensional normal distribution with
mean being (0, ..., 0)" and covariance matrix X being a p X p symmetric matrix with
%, =4x0.50 J'forl <j £j < p. The true value of § = 1,. The errors ¢; are gen-
erated independently from the following homogeneous and quadratlc heteroscedas—
tic distributions: (1) €; ~ N(0,4%); (2) ¢; ~ t(2); (3) €; ~ exp(1); (4) €; ~ x*(2); (5)
€; = (0.5 + 0.5(x;)?)e; and e; ~ N(0, 1); (6) €; = (0.5 + 0.5(x;;)*)e; and e; ~ #(2); (7)
€ =05+ O.S(xil)Z)el- and e; ~ exp(1); (8) ; = (0.5 + O.S(xil)z)e,- and e; ~ 72Q).
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In the simulations, let 7, = k/(1 + K) for k =1,...,K and we consider K =5,
m = (5,10,25,50), (n,p) = (50, 10), (100, 20) and (2000, 50). The Gaussian ker-
nel is employed as the smooth function H(-). All of the simulations are based on
500 replications. Furthermore, we include the following four competitors in the
simulations.

(D ﬁ(q): the proposed MSCQR estimator on the distributed data;

2 Bani the central CQR estimator, which is computed on the entire data using
traditional CQR model;

3) B ve: the naive DC CQR estimator on the distributed data, which is computed by
taking a simple average of traditional local CQR estimators on each machine;

4 B . the subsample CQR estimator, which is only computed on the dataset in
one single machine using traditional CQR model.

The corresponding four WCQR estimators ,B ﬁ Cen’ ,6 et ,B% are also computed.
Here, the estimators ﬁ ﬁCen, B  Aves ,BSM,] are used to compute the optimal weights,
respectively. Thus, eight different estimators are included. For our proposed estima-
tors, we choose the bandwidth ; = 1.5¢0, (Kn) 173 on j-th machine, where 0, means

the sample standard deviation of &=y — b - xTﬂ €D, k=1,.

4.1 RMSE and MAD

To access the accuracy of our proposed estimators in terms of estimation errors, we
compute root of mean square error (RMSE) and mean absolute deviation (MAD) of

B:

p
1 ~

RMSE = MAD = - Y |3 - B
LS -0

P
1> G-,
L= =

When (n, p) = (50, 10) and (100, 20), the simulated RMSEs and MADs with eight
different errors for the CQR and WCQR estimators are given in Tables 1, 2, 3 and
4. When (n, p) = (2000, 50), due to the computation time issue, we only present the
simulated RMSEs and MADs for the CQR estimators under four errors in Table 5.
A few conclusions can be drawn from the simulation results.

(1) Asshown in Tables 1 and 2, for any given number of machines m, as expected,
the RMSEs and MADs of the subsample CQR estimator ,BASM,, are the largest
because it only uses the local data on one machine. The naive DC estimator  Ave
can reduce the RMSEs and MADs of (i «» DY averaging; however, these values
of B 4ve are still larger than those of and ,BC Under the normal error, the
RMSESs and MADs of our proposed estimator B are comparable with these of
the central estimator ﬁCen, while our proposed CQR estimator has the smallest
RMSEs and MADs in the other errors, which is in accord with our Remark 5.
The similar phenomenon was also reported by Chen et al. (2019) for the multi-
round QR model. As the number of machines m increases, the RMSEs and
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Table 1 Simulated RMSEs
%10 under eight errors with
(n,p) = (50,10)

@ Springer

2@

"B

ﬂ Cen

ﬁAve

ﬁSub

20(q)

p

AW

ﬁ Cen

A0
ﬁ Ave

AW
ﬁSub

€ ~ N(0,42)
5  1.623
10 1.171
25 0.717
50 0.510
€ ~12)

5 0.551
10 0.381
25 0.238
50 0.165
€; ~ exp(1)
5 0276
10 0.182
25 0.117
50 0.083
€~ x*Q2)
5 0.547
10 0.372
25 0.231
50 0.163

€ ~ (0.5 + 0.5(x;;)>)N(0, 1)

5 0.800
10 0.523
25 0374
50 0.224

1.593
1.149
0.703
0.501

0.596
0.412
0.259
0.178

0.320
0.215
0.138
0.098

0.608
0.415
0.261
0.183

0.860
0.603
0.375
0.259

1.808
1.296
0.812
0.582

0.723
0.512
0.320
0.228

0.380
0.269
0.171
0.121

0.732
0.513
0.332
0.233

1.078
0.785
0.501
0.345

€ ~ (0.5 + 0.5(x;))*)(2)

5 1211
10 0.717
25 0.547
50 0.400

1.147
0.794
0.507
0.348

1.561
1.102
0.711
0.499

€ ~ (0.5 + 0.5(x;;)?exp(1)

5 0612
10 0.470
25 0.306
50 0.198

0.705
0.477
0.298
0.208

0.997
0.713
0.451
0.321

€ ~ (0.5 + 0.5(x;)) x2(2)

5 1.298
10 0.812
25 0.517
50 0.400

1.317
0.850
0.526
0.366

1.916
1.308
0.837
0.587

4.036
4.009
4.077
4.006

1.614
1.573
1.542
1.576

0.834
0.856
0.835
0.837

1.638
1.626
1.649
1.601

2.404
2.366
2.356
2.445

3.408
3.424
3.360
3.353

2.130
2.170
2.175
2.190

4.124
3.950
3.992
3.989

1.625
1.169
0.716
0.508

0.557
0.385
0.241
0.167

0.194
0.127
0.079
0.056

0.387
0.259
0.158
0.112

0.776
0.501
0.357
0.212

1.163
0.633
0.460
0.267

0.440
0.322
0.190
0.103

0.882
0.520
0.299
0.209

1.596
1.152
0.704
0.500

0.579
0.400
0.248
0.171

0.202
0.128
0.079
0.055

0.375
0.245
0.149
0.104

0.747
0.506
0.307
0.212

0.908
0.605
0.383
0.255

0.309
0.198
0.119
0.082

0.564
0.372
0.228
0.158

1.856
1.317
0.829
0.635

0.753
0.535
0.334
0.238

0.293
0.206
0.129
0.091

0.555
0.383
0.246
0.170

1.062
0.753
0.480
0.351

1.467
1.033
0.691
0.509

0.508
0.365
0.227
0.167

1.162
0.767
0.515
0.359

4.010
3.977
4.028
3.975

1.697
1.678
1.636
1.678

0.682
0.709
0.690
0.695

1.333
1.297
1.320
1.257

2.503
2.494
2.480
2.598

3.453
3.458
3.409
3.445

1.329
1.367
1.359
1.412

2.765
2.680
2.590
2.600
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Table 2 Simulated MADs (x10)
under homogeneous errors with
(n,p) = (50,10)

m E\(q)

ﬂ Cen

ﬁAve

ﬁSub

20(q)

p

AW

ﬁ Cen

AD

ﬁ Ave

AW

ﬁSub

€; ~ N(0,4%)
5 1.341
10 0.964
25 0.589
50 0417
€ ~ 1(2)

5 0454
10 0.314
25 0.196
50 0.137
€; ~ exp(1)
5 0.229
10 0.149
25 0.096
50 0.068
€~ 1)
5 0447
10 0.308
25 0.190
50 0.134

1.319
0.946
0.578
0.409

0.491
0.340
0.213
0.147

0.264
0.176
0.113
0.080

0.497
0.342
0.215
0.151

1.488
1.068
0.672
0.477

0.593
0.419
0.264
0.189

0.314
0.222
0.141
0.099

0.601
0.423
0.273
0.191

€, ~ (0.5 +0.50x;))N(0, 1)

5 0.638
10 0.523
25 0.295
50 0.176

0.690
0.603
0.300
0.206

0.874
0.785
0.407
0.279

€ ~ (0.5 4 0.5(x;))t(2)

5 0976
10 0.573
25 0.441
50 0.321

0.926
0.638
0.405
0.280

1.277
0.899
0.580
0.406

€~ (05+ 0.5(x,-1)2)exp(1)

5 0574
10 0.387
25 0.248
50 0.162

0.575
0.386
0.240
0.168

0.813
0.579
0.367
0.261

&~ (0.5+0506,))7*)

5 1.056
10 0.657
25 0419
50 0.322

1.061
0.684
0.421
0.294

1.566
1.068
0.684
0.478

3.321
3.295
3.340
3.301

1.334
1.293
1.271
1.297

0.689
0.706
0.688
0.690

1.352
1.336
1.356
1.317

1.954
2.366
1.900
1.987

2.758
2.795
2.735
2.733

1.757
1.765
1.770
1.787

3.353
3.236
3.250
3.240

1.346
0.965
0.586
0.415

0.459
0.317
0.197
0.138

0.160
0.104
0.065
0.046

0.318
0.213
0.131
0.092

0.614
0.501
0.279
0.166

0.938
0.502
0.368
0.212

0.471
0.266
0.155
0.084

0.719
0.421
0.243
0.169

1.324
0.949
0.578
0.410

0.477
0.329
0.204
0.141

0.167
0.105
0.065
0.045

0.307
0.202
0.123
0.086

0.589
0.506
0.242
0.165

0.723
0.479
0.301
0.201

0.252
0.161
0.097
0.066

0.458
0.302
0.185
0.129

1.535
1.085
0.687
0.520

0.619
0.438
0.276
0.197

0.241
0.169
0.106
0.074

0.455
0.315
0.203
0.140

0.856
0.753
0.390
0.284

1.198
0.842
0.563
0.415

0.430
0.298
0.186
0.136

0.950
0.625
0.420
0.291

3.295
3.284
3.305
3.275

1.402
1.380
1.349
1.385

0.565
0.584
0.567
0.574

1.098
1.059
1.083
1.033

2.036
2.494
2.006
2.114

2.806
2.824
2.781
2.809

1.105
1.107
1.102
1.148

2.247
2.186
2.123
2.108
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Table 3 Simulated RMSEs (X
10) under homogeneous errors
with (r, p) = (100, 20)
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2@

"op

ﬂ Cen

ﬁAve

ﬁSub

20(q)

p

AW

ﬁ Cen

A0
ﬁ Ave

AW
ﬁSub

€; ~ N(0,4%)
5 1.198
10 0.845
25 0.538
50 0.377
€ ~ 1(2)

5  0.398
10 0.270
25 0.170
50 0.119
€; ~ exp(1)
5 0.198
10 0.133
25 0.084
50 0.059
€~ 1)
5  0.39%
10 0.273
25 0.167
50 0.118

1.177
0.830
0.530
0.370

0.430
0.293
0.184
0.129

0.234
0.158
0.101
0.070

0.444
0.308
0.190
0.135

1.308
0.931
0.593
0.415

0.509
0.354
0.225
0.159

0.274
0.191
0.124
0.086

0.527
0.379
0.235
0.168

€, ~ (0.5 +0.50x;))N(0, 1)

5 0.507
10 0.352
25 0216
50 0.152

0.594
0.412
0.253
0.179

0.744
0.527
0.330
0.235

€ ~ (0.5 4 0.5(x;))t(2)

5 0.69
10 0.485
25 0.298
50 0.206

0.793
0.552
0.338
0.234

1.040
0.750
0.472
0.331

€~ (05+ 0.5(x,-1)2)exp(1)

5 0378
10 0.262
25 0.159
50 0.137

0.482
0.332
0.201
0.143

0.666
0.479
0.294
0.211

&~ (0.5+0506,))7*)

5 0771
10 0.516
25 0321
50 0.222

0.873
0.590
0.363
0.249

1.242
0.871
0.555
0.390

2.900
2.880
2.932
2914

1.125
1.125
1.121
1.127

0.609
0.607
0.602
0.608

1.146
1.189
1.173
1.165

1.651
1.657
1.636
1.626

2.289
2.347
2.287
2.285

1.450
1.453
1.478
1.460

2.732
2.709
2.720
2.725

1.199
0.843
0.535
0.374

0.400
0.270
0.170
0.119

0.134
0.089
0.055
0.039

0.272
0.182
0.111
0.078

0.472
0.324
0.197
0.138

0.643
0.416
0.248
0.171

0.252
0.158
0.098
0.092

0.511
0.312
0.194
0.137

1.181
0.831
0.527
0.369

0.414
0.278
0.175
0.122

0.142
0.091
0.055
0.038

0.267
0.175
0.106
0.074

0.486
0.331
0.200
0.140

0.592
0.402
0.242
0.167

0.203
0.132
0.079
0.055

0.383
0.248
0.150
0.107

1.336
0.953
0.604
0.427

0.516
0.357
0.227
0.160

0.202
0.139
0.089
0.062

0.379
0.270
0.166
0.117

0.677
0.474
0.296
0.213

0.911
0.663
0.442
0.326

0.318
0.219
0.134
0.095

0.634
0.413
0.259
0.182

2.945
2.951
2.961
2972

1.179
1.184
1.182
1.191

0.478
0.480
0.477
0.484

0.877
0.914
0.905
0.891

1.692
1.722
1.705
1.718

2.306
2.386
2.350
2.338

0.840
0.838
0.866
0.863

1.571
1.595
1.591
1.584
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Table4 Simulated MADs (x10)
under homogeneous errors with
(n,p) = (100, 20)

m ﬁ(q)

ﬁ Cen

ﬂAve

ﬂSub

ﬁw(q)

Ao
ﬂ Cen

A1)

Ave

Ao
ﬂ Sub

€; ~ N(0,4%)
5 0971
10 0.685
25 0.436
50 0.307
€~ 1(2)

5 0324
10 0.218
25 0.138
50 0.096
¢ ~ exp(l)
5 0.161
10 0.107
25 0.068
50 0.048
e~ 12
5 0.320
10 0.221
25 0.135
50 0.096

0.953
0.673
0.428
0.301

0.350
0.237
0.149
0.104

0.190
0.128
0.082
0.057

0.360
0.250
0.154
0.109

1.059
0.755
0.481
0.336

0.415
0.288
0.182
0.129

0.222
0.155
0.101
0.070

0.425
0.305
0.190
0.136

€, ~ (0.5 +0.50x;))N(0, 1)

5 0403
10 0.278
25 0.171
50 0.119

0.475
0.328
0.201
0.141

0.597
0.424
0.264
0.188

€, ~ (0.5+0.50x,))1(2)

5 0.555
10 0.385
25 0.238
50 0.163

0.634
0.439
0.270
0.186

0.837
0.602
0.380
0.267

€ ~ (0.5 +0.50x;, P)exp(1)

5 0378
10 0.211
25 0.127
50 0.110

0.482
0.267
0.161
0.114

0.666
0.386
0.237
0.171

€ ~ (0.5 +0.50x,))) %(2)

5  0.621
10 0.416
25 0.258
50 0.178

0.702
0.473
0.292
0.200

0.100
0.701
0.450
0.316

2.354
2.346
2.390
2.365

0916
0.911
0.905
0.912

0.494
0.491
0.486
0.494

0.931
0.962
0.953
0.943

1.325
1.335
1.310
1.301

1.848
1.883
1.840
1.841

1.450
1.172
1.191
1.177

2.201
2.192
2.208
2.197

0.971
0.683
0.433
0.304

0.326
0.218
0.138
0.096

0.108
0.072
0.045
0.032

0.220
0.147
0.090
0.063

0.372
0.254
0.155
0.107

0.510
0.328
0.198
0.135

0.252
0.128
0.079
0.075

0.411
0.252
0.156
0.110

0.955
0.673
0.426
0.300

0.336
0.225
0.142
0.099

0.115
0.073
0.045
0.031

0.216
0.142
0.086
0.060

0.384
0.260
0.157
0.109

0.468
0.317
0.193
0.132

0.203
0.106
0.063
0.044

0.309
0.200
0.121
0.086

1.080
0.773
0.491
0.347

0.421
0.289
0.184
0.130

0.164
0.112
0.072
0.050

0.307
0.218
0.134
0.095

0.541
0.380
2.370
0.170

0.731
0.532
0.356
0.263

0.318
0.177
0.109
0.077

0.511
0.334
0.208
0.147

2.388
2.395
2.402
2.406

0.959
0.958
0.952
0.965

0.387
0.389
0.386
0.393

0.712
0.739
0.734
0.724

1.359
1.388
1.369
1.374

1.862
1.915
1.892
1.883

0.840
0.674
0.697
0.696

1.267
1.289
1.284
1.276
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Table 5 Simulated RMSEs (X

. m RMSE MAD
100) and MADs (x100) with
(Vl,p) = (2000’ 50) ﬁ(q) ﬂACen ﬁAv@ ﬁASub ﬁA(q) ﬁCen ﬁAAve ﬁASub
€6 ~1(2)

@)

3)

“

0.878 0.940 0957 2.128 0.701 0.750 0.764 1.705
10 0613 0658 0672 2.106 0493 0528 0539 1.688
25 0391 0419 0429 2.147 0314 0337 0345 1718
50 0274 0294 0300 2134 0219 0236 0241 1.707
& ~ exp(l)
5 0427 0506 0516 1.145 0342 0405 0.414 0918
10 0306 0361 0369 1.164 0245 0291 0296 0.937
25 0192 0225 0230 1.148 0.154 0.180 0.184 0921
50 0.35 0159 0.162 1151 0.108 0.128 0.130 0.925
€, ~ (0.5 +0.50x;))N(0, 1)
5 1060 1229 1261 2828 0.841 0978 1.004 2247
10 0744 0866 0.894 2282 0.590 0.687 0711 2252
25 0466 0.542 0561 2.813 0368 0430 0.446 2.238
50 0331 0385 0398 2.815 0261 0305 0315 2.241
€ ~ (0.5 +0.50x;,))1(2)
5 1371 1647 1710 3787 1.086 1310 1361 3.021
10 0956 1.149 1.198 3.763 0.763 0918 0.958 2.999
25 0601 0722 0.754 3784 0477 0574 0.602 3.012
50 0426 0512 0536 3773 0338 0409 0427 3.007

MAD:s of ﬁ «up Vary slightly since its local sample size n is still fixed, while these
values of the other estimators decrease due to the increased total sample size.
At the same time, the RMSE and MAD difference ratios between f 4y DECOME
obviously smaller than those between ﬁCen due to the fact that the naive method
requires the constraint on the number of machines for bias reduction.

From Tables 1 and 2, the RMSEs and MADs of our proposed WCQR estimator
[3 @ are comparable with these of the central estimator ﬂ cen Apart from that,
the other WCQR estimators have the similar findings as the corresponding CQR
estimators. In addition, it can be seen that the optimal WCQR estimators have
smaller RMSEs and MADs than those of CQR estimators in most of cases,
which agree with the theoretical result that equal weights for CQR might not be
optimal. However, this improvement is not significant when ¢; ~ N(0,4?) and
1(2).

From Tables 3 and 4, when both the local sample size n and dimension p increase
(.e., (n,p) = (100, 20)), we have the same conclusions as (n, p) = (50, 10), which
shows our proposed estimators are robust.

When (n, p) = (2000, 50), we have the similar conclusions. In these cases, the
values of iterations for proposed CQR estimator are around 5 even with the larger
n and p on each machine.
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In summary, our proposed estimators can achieve the desirable performance with
few iterations even when (n, p) are large.

4.2 Sensitivity analysis

The sensitivity analysis of the proposed estimators with respect to bandwidth and K
is also investigated. In specific, we consider h; = 1.50'é/_(Kn)“ with
v=(-1/5,-1/3,-2/5) and h; = co'é/(l(n)‘l/3 with ¢ = (1,1.5,2), respectively,
based on the error N(0,4?) and (n, p) = (100, 20). The simulation results are reported
in Table 6. It can be seen that the RMSEs and MADs vary little over a wide range of
v and ¢ values. The simulations show that our proposed estimators are insensitive to
the choice of the bandwidth. Finally, v=—1/3 and ¢ = 1.5 are recommended in
practice. Furthermore, we consider 7, = k/(K+ 1) fork=1,..., K withK =5,7,9
based on the error N(0,4?) and (n, p) = (100, 20). It can be seen from Table 7 that
the RMSEs and MADs with different K vary little.

4.3 Coverage probability

To further measure the performance of our proposed method in terms of the statisti-
cal inference, we study the coverage probability (CP) of 95% confidence interval for
vgﬁ, where v, = lp. From Theorem?2, an oracle 95% confidence interval for vgﬁ is
given by

K

+ N_1/2 Z min(Tk, Tk’)(l - HlaX(Tk, Tk/))ng_lE[xxT] Q_1 VOZ04975’
kk'=1

T 5@
vy B

where z; 975 is the 97.5%-quantile of the standard normal distribution. Table 8 show
that CPs of the different methods. The CPs of our proposed CQR method are around
nominal level 0.95, which are similar to those of BCen' On the other hand, the CPs
of B,,, and fis,, are much lower, which also demonstrate our proposed CQR method
has good performance than the naive DC method.

5 Real data

In this section, we carry out our proposed methods on the Gas Turbine CO and
NOx Emission Data in Year 2013 from the UCI machine learning repository
(https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emiss
ion+Data+Set). The dataset contains N = 6000 samples, which were aggregated
over one hour (by means of average) from a gas turbine located in Turkey’s north
western region. Our interest is to study the flue gas CO (Y) emissions with covari-
ates turbine inlet temperature (X)), turbine after temperature (X,), turbine energy
yield (X3;) and compressor discharge pressure (X,) at different quantiles 7, = k/6,
k=1,....,5.
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Table 6 Simulated RMSEs (x10) and MADs (x10) for different bandwidths under normal error with
(n, p) = (100, 20)

m bandwidth p@ Been Bave B oD e By, ﬂ;;b

RMSEs

5 (1.5, = 1/5) 1.223 1.188 1.318 2.953 1.202 1.191 1.346 2.957
(1.5, - 1/3) 1.198 1.177 1.308 2.900 1.199 1.181 1.336 2.945
(1.5, =2/5) 1.196 1.173 1.304 2.923 1.196 1.175 1.325 2.905
(1, -1/3) 1.202 1.181 1.300 2.896 1.203 1.182 1.325 2.889
(2,-1/3) 1.212 1.190 1.320 2910 1.212 1.193 1.350 2.894

10 (1.5, = 1/5) 0.843 0.823 0.928 2.979 0.828 0.822 0.946 2.958
(1.5, - 1/3) 0.845 0.830 0.931 2.880 0.843 0.831 0.953 2.951
(1.5, =2/5) 0.837 0.822 0.928 2915 0.838 0.823 0.947 2.888
(1,-1/3) 0.839 0.825 0.931 2.963 0.838 0.825 0.950 2.950
(2,-1/3) 0.839 0.824 0.926 2.925 0.833 0.824 0.948 2.922

25 (1.5, = 1/5) 0.531 0.518 0.579 2.901 0.522 0.518 0.589 2.876
(1.5, - 1/3) 0.538 0.530 0.593 2.932 0.535 0.527 0.604 2.961
(1.5, =2/5) 0.523 0.513 0.583 2.943 0.522 0.513 0.594 2.924
1,-1/3) 0.531 0.522 0.585 2912 0.531 0.522 0.594 2917
(2,-1/3) 0.522 0.512 0.582 2.935 0.518 0.512 0.596 2917

50 (1.5, = 1/5) 0.378 0.369 0.413 2.938 0.370 0.368 0.587 2918
(1.5, - 1/3) 0.377 0.370 0.415 2914 0.374 0.369 0.427 2972
(1.5, =2/5) 0.376 0.370 0.413 2.879 0.374 0.369 0.560 2.847
(1,-1/3) 0.373 0.366 0.417 2.940 0.371 0.365 0.579 2.932
(2,-1/3) 0.371 0.364 0.414 2.851 0.366 0.362 0.566 2.846

MADs

5 (1.5, = 1/5) 0.990 0.961 1.068 2.392 0.973 0.964 1.091 2.395
(1.5,-1/3) 0.971 0.953 1.059 2.354 0.971 0.955 1.080 2.388
(1.5, =2/5) 0.968 0.949 1.054 2.374 0.969 0.951 1.069 2.362
(1,-1/3) 0.974 0.957 1.056 2.340 0.976 0.959 1.076 2.335
(2,-1/3) 0.984 0.965 1.074 2.368 0.987 0.970 1.097 2.353

10 (1.5, = 1/5) 0.687 0.670 0.756 2415 0.675 0.670 0.771 2.396
(1.5,-1/3) 0.685 0.673 0.755 2.346 0.683 0.673 0.773 2.395
(1.5, =2/5) 0.678 0.667 0.750 2.369 0.680 0.667 0.766 2.345
(1,-1/3) 0.678 0.667 0.752 2.396 0.678 0.668 0.770 2.380
(2,-1/3) 0.681 0.668 0.749 2.364 0.677 0.670 0.767 2.360

25 (1.5, = 1/5) 0.431 0.419 0.469 2.344 0.422 0.418 0.477 2.327
(1.5,-1/3) 0.436 0.428 0.481 2.390 0.433 0.426 0.491 2.402
(1.5, =2/5) 0.423 0.415 0.472 2.387 0.422 0.415 0.480 2.374
(1,-1/3) 0.428 0.421 0.472 2.353 0.428 0.421 0.479 2.363
(2,-1/3) 0.424 0.416 0.472 2.370 0.421 0.416 0.484 2.354
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Table 6 (continued)
m bandwidth £ Been Birve Bous fo@ Agm A/f;fve ﬁ;}ub
50 (1.5, = 1/5) 0.307 0.299 0.335 2.378 0.299 0.298 0.474 2.363
(1.5,-1/3) 0.307 0.301 0.336 2.365 0.304 0.300 0.347 2.406
(1.5, =2/5) 0.305 0.300 0.335 2.337 0.304 0.299 0.455 2.308
1,-1/3) 0.302 0.296 0.336 2.379 0.300 0.295 0.467 2.370
2,-1/3) 0.301 0.296 0.336 2.299 0.298 0.294 0.458 2.296
Table 7 Simulated RMSEs N » s s - s s S
(x10) and MADs (x10) moKPD few Bae P BUY Be, Bue B
for different quantile l.evels RMSEs
under normal error with
(n.p) = (100,20) 5 5 1198 1177 1308 2900 1.199 1.181 1336 2.945
7 1.188 1.172 1.303 2.886 1.189 1.170 1.354 2.937
9 1.183 1.170 1.300 2.880 1.185 1.168 1.387 2.945
10 5 0.845 0.830 0.931 2.880 0.843 0.831 0.953 2.951
7 0.838 0.827 0.928 2.869 0.836 0.825 0.971 2.933
9 0.835 0.825 0.926 2.863 0.833 0.823 0.996 2.938
25 5 0.538 0.530 0.593 2.932 0.535 0.527 0.604 2.961
7 0535 0.528 0.590 2918 0.529 0.524 0.614 2.956
9 0533 0.527 0.589 2911 0.528 0.523 0.634 2.975
50 5 0.377 0370 0415 2914 0.374 0.369 0427 2.972
7 0374 0369 0.413 2905 0.369 0.366 0.436 2.956
9 0373 0.368 0412 2.899 0368 0.364 0.451 2.960
MADs
5 5 0971 0953 1.059 2.354 0971 0.955 1.080 2.388
7 0963 0949 1.054 2.343 0.963 0.948 1.095 2.384
9 0.959 0.947 1.052 2.338 0.960 0.946 1.122 2.385
10 5 0.685 0.673 0.755 2.346 0.683 0.673 0.773 2.395
7 0.679 0.670 0.752 2.338 0.677 0.668 0.786 2.383
9 0.677 0.669 0.751 2.333 0.674 0.667 0.808 2.387
25 5 0436 0428 0481 2.390 0433 0426 0491 2.402
7 0.433 0427 0479 2377 0.428 0424 0.499 2.401
9 0431 0426 0478 2371 0427 0422 0.514 2418
50 5 0.307 0301 0.336 2.365 0.304 0.300 0.347 2.406
7 0304 0300 0.335 2.357 0.300 0.297 0.354 2.393
9 0303 0300 0.334 2354 0.299 0296 0.366 2.403

Since the true value of f is unknown for a real data set, for the purpose of compari-
son, we randomly divide this dataset into 5000 training data and 1000 testing data,
apply the eight methods to train the model, and then compare the performance of these
estimates in terms of prediction errors based on the testing data. In particular, we
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Table 8 CPs under
homogeneous errors

for the CQR estimators
with (n, p) = (50, 10) and
(n, p) = (100, 20)
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m  (n,p) =(50,10)

(n, p) = (100, 20)

ﬁ @ ﬁCen ﬁAAve

ﬁSub

ﬂ @ ﬁ Cen ﬁAve ﬂSub

€; ~ N(0,4%)

5 0940 0944 0918
10 0.930 0.934 0.890
25 0954 0.954 0.922
50 0.946 0.954 0.900
€ ~ 1(2)

5 0962 0942 0.878
10 0.968 0.948 0.862
25 0946 00918 0.854
50 0.958 0.946 0.882
€; ~ exp(1)

5 0966 0.938 0.892
10 0.968 0.942 0.868
25 0968 0.946 0.870
50 0.980 0.942 0.864
6~ 1Q2)

5 0964 0.944 0.866
10 0.968 0.928 0.864
25 0958 0.934 0.866
50 0.964 0.952 0.902
€; ~ (0.5 +0.5(x;))N(, 1)
5 0918 0.904 0.844
10 0.900 0.884 0.814
25 0932 0.898 0.808
50 0936 0.896 0.798
€ ~ (0.5+0.5(x;))t(2)

5 0960 0.940 0.866
10 0958 0.940 0.848
25 0948 0.936 0.864
50 0.962 0.946 0.856
€ ~ (05 + 0.5(x,-1)2)exp(1)
5 0966 0.932 0.808
10 0.980 0.932 0.852
25 0986 0.960 0.830
50 0.988 0.942 0.808
& ~ (0.5 40505, 72(2)
5 0962 0946 0.812
10 0.984 0.968 0.872
25 0978 0.962 0.860
50 0974 0.964 0.854

0.914
0916
0.932
0.930

0.868
0.898
0.896
0.882

0.860
0.898
0.862
0.884

0.874
0.888
0.874
0.886

0.842
0.836
0.826
0.808

0.868
0.840
0.858
0.880

0.840
0.830
0.814
0.828

0.862
0.894
0.844
0.826

0.956 0954 0.924 0.936
0.968 0.964 0.920 00916
0962 0962 0932 0.946
0954 0956 0.924 0.926

0.930 0918 0.872 0.876
0.968 0.954 0.894 0.886
0.982 0972 0902 0.870
0962 0942 0.870 0.892

0.950 0.904 0.846 0.842
0962 0918 0.854 0.852
0.966 0.928 0.838 0.854
0.950 0.906 0.854 0.886

0966 0.940 0.880 0.886
0.954 0944 0.876 0.886
0956 0.930 0.866 0.868
0.966 0.944 0.880 0.888

0936 0912 0.810 0.824
0910 0.858 0.792 0.802
0.950 0.908 0.796 0.820
0940 0.896 0.840 0.832

0950 0924 0.852 0.844
0950 0.926 0.850 0.844
0966 0956 0.872 0.870
0964 0930 0.864 0.844

0986 0.932 0.864 0.828
0.980 0.932 0.830 0.852
0.992 0938 0.808 0.816
0.980 0.942 0.828 0.832

0992 0970 0.866 0.874
0.982 0970 0.870 0.856
0986 0970 0.834 0.840
0980 0.966 0.846 0.872
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Table9 The RMSEs and MAD:s for the gas emission data
m ﬂA @ ﬁA Cen ﬁAAve ﬂASub ﬂA (@) A(Cl')m AZJW A_g;b

5 X, (p)) —1494 —1611 -1226 -—-0.893 —-1502 -1.645 —1341 -0.770
RMSE  0.347 0.381 0.387 0.530 0.363 0.366 0.373 0.520
MAD 0.261 0.299 0.310 0.436 0.278 0.283 0.295 0.421

10 X)) —-148 —1611 —-1504 —-0442 —1507 —-1648 —1447 —0414
RMSE 0.348 0.381 0.403 0.549 0.365 0.367 0.373 0.541
MAD 0.261 0.299 0.330 0.438 0.281 0.283 0.291 0.426

25 X, (p) —-1485 -—1611 -1.697 —-0965 —-1518 —1.655 —1576 —0.684
RMSE  0.341 0.381 0.414 0.672 0.367 0.368 0.379 0.646
MAD 0.260 0.299 0.325 0.567 0.283 0.284 0.299 0.530

50 X,(B) -—-1476 —-1611 —-1.667 1904 -1536 —-1662 —1555 1.034
RMSE  0.347 0.381 0.449 0.873 0.369 0.369 0.386 0.780
MAD 0.259 0.299 0.347 0.663 0.285 0.285 0.297 0.578

consider the number of machines m= (5 10 25, 50) and then obtain the estimates ﬂ

Bcon Baves Bsups ﬂ ﬁCen’ /3 e and ﬂSub’ respectively, based on the training data
Thereafter, we use the estimated coefficients to construct forecasts of the other 1000
testing data. We compute both the RMSE = \/ (Y- ¥,)2/1000 and MAD

=Y, - ¥,| /1000 based on the testing data, where ¥, is the fitted value of the testing
dataY, i =1,...,1000. The results are given in Table 9.

(1) For m = (5,10, 25,50), we find that only the estimated coefficients of X, are
remarkable and negatively related with ¥ among these eight different methods,
while the other estimated coefficients are close to zero. This coincides with the
fact that the CO emissions will increase when incomplete combustion with lower
turbine inlet temperature occurs. Thus, we only present the estimated coefficients
of X, in Table 9. Among these results, it can be seen that the subsample estimates
are the worst since their absolute values are the smallest when m=5, 10, 25 and
they even become positive when m = 50.

(2) Interms of RMSEs and MADs, our proposed estimates ﬁ and ﬁ have similar
results with these of f§ Con and ﬁ cen» @d perform better than the naive DC method
in both CQR and WCQR models. This indicates that we can obtain desirable
coefficient estimates via our proposed distributed methods.
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6 Discussion

In this paper, we propose the multi-round smoothed CQR and WCQR estima-
tors for the distributed data. The proposed methods only require consistent ini-
tial value, and the rest of operations are convenient matrix manipulations. Some
interesting issues still merit further research. Firstly, the proposed methods are
designed for small to moderate covariate dimensionality. The multi-round penal-
ized and smoothed estimators for sparse high-dimensional CQR and WCQR
model are interesting consideration. Secondly, it is also of interest to investigate
the proposed estimation methods for longitudinal data.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10463-021-00816-0.
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