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Abstract
Statistical analysis of large-scale dataset is challenging due to the limited memory 
constraint and computation source and calls for the efficient distributed methods. In 
this paper, we mainly study the distributed estimation and inference for composite 
quantile regression (CQR). For computational and statistical efficiency, we propose 
to apply a smoothing idea to the CQR loss function for the distributed data and then 
successively refine the estimator via multiple rounds of aggregations. Based on the 
Bahadur representation, we derive the asymptotic normality of the proposed multi-
round smoothed CQR estimator and show that it also achieves the same efficiency of 
the ideal CQR estimator by analyzing the entire dataset simultaneously. Moreover, 
to improve the efficiency of the CQR, we propose a multi-round smoothed weighted 
CQR estimator. Extensive numerical experiments on both simulated and real data 
validate the superior performance of the proposed estimators.

Keywords  Bahadur representation · Composite quantile regression · Divide-and-
conquer · Multiple rounds · Kernel smoothing · Weighted composite quantile 
regression

1  Introduction

With the rapid development of science and technologies, massive data are increas-
ingly being collected and stored in the distributed environment with many machines. 
Naturally, the traditional method, which processes all of data simultaneously in one 
central machine, is not practical due to the storage space, limited computational 
source and privacy problem. As a common and effective way to reduce the com-
putational burden, the parallel and distributed estimation has attracted increasing 
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attention in the statistical and machine learning literature. See Boyd et al. (2011), 
Dekel et  al. (2012), Zhang et  al. (2013) and the references therein. Among these 
distributed estimation methods, the divide-and-conquer (DC) approach has become 
the simplest and most popular method to deal with these challenges. The general DC 
framework firstly divides the entire dataset of sample size N on m machines with 
size n = N∕m , then computes the local statistical estimator on each machine with 
smaller sample size n and outputs the calculation results, and finally combines the 
local estimators from each machine to obtain the global estimator. In this way, the 
information of entire dataset can be utilized. However, constructing the local calcu-
lation algorithm and combining the local results from each machine to make estima-
tion statistically and computationally efficient are the main obstacles of implement-
ing the DC method. In many existing DC studies, such as Chen and Xie (2014), Lee 
et al. (2017) and Battey et al. (2018), the global estimator is obtained by a simple 
average of the local estimators computed on each machine, which is called as the 
naive method in DC framework.

Various statistical models have been investigated based on the DC framework, 
examples include density parameter estimation (Li et  al. 2013), M-estimator (Shi 
et al. 2018), least squares estimator (Fan et al. 2007) and so on. Since the large-scale 
data are collected from different locations and times, the homoscedasticity assump-
tion may not hold such that the ordinary M-estimator and least squares estimator do 
not perform well. Volgushev et al. (2019) studied distributed inference for quantile 
regression (QR; Koenker and Bassett 1978) to provide more robust estimation and 
a complete picture of effects of the covariates on the response variable. However, 
the distributed QR estimator is hampered by the following three issues. Firstly, the 
loss function of the QR model is not differentiable at some points, which may cause 
some problems in the subsequent asymptotic analysis and computation. Secondly, 
the QR estimator is less efficient for certain light-tailed distributions (Zou and Yuan 
2008; Gu and Zou 2020). Thirdly, the QR estimator considers only one quantile at a 
time and may not fully grasp the distributional information to produce more efficient 
estimation.

To address the first problem, Chen et al. (2019) circumvented the non-differ-
entiability of the loss function by smoothing the indicator part of check function 
via a kernel function (Horowitz 1998; Whang 2006; Heller 2007; Kaplan and Sun 
2017) and then developed a multi-round distributed approach for the QR estima-
tion. The idea of smoothing the non-smooth QR loss function was firstly intro-
duced by Horowitz (1998) and then has been widely applied to different areas 
of QR problem. For example, Whang (2006) applied the smoothed empirical 
likelihood method for the QR problem, Kaplan and Sun (2017) considered the 
smoothed estimating equations for instrumental QR and so on. However, differ-
ent from adopting the traditional smoothing approach for calculating a one-stage 
estimator in the existing literature, we use this smoothing technique to construct 
multi-round smoothed estimators, which heavily rely on the first-order optimal-
ity condition of the loss function (Chen et al. 2019). To solve the last two prob-
lems, in this paper we consider the composite quantile regression (CQR; Zou and 
Yuan 2008), which is a mixture of the objective functions from different quantile 
regression models and can provide gains in estimation efficiency over the single 
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QR. Furthermore, Zou and Yuan (2008), Kai et al. (2010, 2011) and many others 
demonstrated that the CQR estimator is potentially much more efficient than the 
M-estimator and least squares estimator. In addition, different from the CQR esti-
mation based on a sum of different quantile regressions with equal weights, Jiang 
et  al. (2012) considered weighted composite quantile regression (WCQR) as a 
more efficient alternative to the regular CQR estimator. Given some appropriate 
weights, the WCQR estimator outperforms the CQR estimator when compar-
ing asymptotic relative efficiency theoretically and numerically (Zhao and Lian 
2016).

Distributed data with heteroscedasticity and demands for great computation 
and estimation efficiency encourage us to develop robust and efficient CQR and 
WCQR estimation methods. To the best of our knowledge, the multi-round dis-
tributed approach in conjunction with the smoothing idea has not previously been 
investigated for the CQR and WCQR models for the distributed data. Thus, we 
are motivated to adopt these approaches and establish theoretical properties for 
the smoothed CQR and WCQR estimators, which will significantly expand the 
applicability of Chen et  al. (2019). Our contributions of this paper are in three 
aspects. 

(1)	 We propose a multi-round smoothed CQR estimator for the distributed data. To 
illustrate our idea, we first apply the smoothing technique to the loss function 
of CQR based on the entire data, then set the derivatives of the smoothed loss 
function to zero and ultimately derive the explicit expressions of the CQR esti-
mator, which only rely on initial value and individual data points. Motivated by 
the above concise formulation, we propose to design the local calculation form 
on each machine and construct the final estimator by adding up the local results 
as the components of derived CQR estimator expressions. The proposed estima-
tion approach can use the last iteration result as the consistent initial value and 
successively refine the estimator via multiple rounds to improve the efficiency.

(2)	 We show the proposed multi-round smoothed CQR estimator has the following 
outstanding merits. Firstly, it can achieve the same efficiency as the ideal CQR 
estimator computed based on the entire data. Secondly, our proposed estimator 
improves the naive DC CQR framework. In statistical theory, since the local 
estimators are biased with the bias O(1/n), the naive DC CQR estimator works 
on a small number of machines m = o(

√
N) and requires the large sample size on 

each machine to achieve the same asymptotic distribution as pooling the entire 
data together. However, these conditions are easily to be violated in practice, 
while our proposed method removes this strict constraint and achieves the same 
asymptotic efficiency through multiple rounds. Finally, our method only needs to 
solve one optimization problem to obtain the initial estimator during the whole 
process and the iterative process converges rapidly due to the consistent initial 
value and simple calculation formulas.

(3)	 To further improve the estimation efficiency based on the CQR model, a multi-
round smoothed WCQR estimator for the distributed data is also proposed. Our 
simulation results based on m = (5, 10, 25, 50) and n = (50, 100, 2000) show that 
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our proposed multi-round smoothed CQR and WCQR estimators with only a 
few rounds of aggregations can achieve the same efficiency as the correspond-
ing ideal CQR and WCQR estimators computed on the entire data and perform 
better than the naive DC estimators.

The rest of this paper is organized as follows. In Sect. 2, we propose the multi-
round smoothed CQR estimator for the distributed data and give the asymptotic 
properties. In Sect.  3, we study the multi-round smoothed WCQR estimator. 
Sects. 4 and 5 show the simulation studies and an application of a real dataset. 
We summarize this paper in Sect. 6 and display our future work. All the proofs of 
theoretical results are given in the Supplementary Material.

2 � Multi‑round smoothed CQR estimation

2.1 � Smoothed CQR estimator for the entire data

Given independent and identically distributed samples (xi, yi) , i = 1,… ,N , we 
consider the linear model as follows:

where yi is a univariate response, xT
i
= (xi1,… , xip) is a vector of p-dimensional 

covariates, � = (�1,… , �p)
T is a true but unknown parameter vector, �i is an unob-

served random variable. For multiple quantile levels 0 < 𝜏1 < ⋯ < 𝜏K < 1 , when all 
of data fit into one machine, the ideal CQR estimator (b�1 ,… , b�K , �) can be esti-
mated by solving

where 𝜌𝜏k (u) = u(I{u > 0} + 𝜏k − 1) is the check function, I{⋅} is the indicator func-
tion, and b�k is the �k-th quantile of error term �. We usually use �k = k∕(K + 1) for 
k = 1,… ,K. The main challenge in the above CQR estimation is that the check 
function is piecewise linear and not differentiable such that the first-order optimiza-
tion method can not be performed directly on (1).

To illustrate our smoothing idea, we first propose the smoothed CQR estimator 
based on the entire data and then extend this technique to the distributed data in 
Sect. 2.2. Motivated by Chen et al. (2019), we approximate the indicator function 
I{u > 0} with a smooth kernel function H(u/h), where h → 0 is the bandwidth. 
The smooth function satisfies H(+∞) = 1 and H(−∞) = 0 such that H(u∕h) = 1 
when u > 0 and H(u∕h) = 0 when u < 0 . If it is possible to analyze the entire 
dataset, the smoothed loss function of the CQR model can be written as

yi = xT
i
� + �i, i = 1,… ,N,

(1)(b̌𝜏1 ,… , b̌𝜏K , 𝜷) = argmin
b𝜏1

,…,b𝜏k
,𝜷

K∑

k=1

{ N∑

i=1

𝜌𝜏k (yi − b𝜏k − xT
i
𝜷)
}
,
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By the first-order optimality conditions on (2), the ideal smoothed CQR estimator 
(b̂𝜏1 ,… , b̂𝜏K , 𝜷) satisfies

for k = 1,… ,K. Here, H�(⋅) denotes the first-order derivative. Given a set of con-
sistent initial estimator (b̃𝜏1 ,… , b̃𝜏K , 𝜷) , it is straightforward to deduce simple and 
explicit closed-form expressions of the smoothed CQR estimator (b̂𝜏1 ,… , b̂𝜏K , 𝜷) for 
the entire data as follows:

where

After obtaining (b̂𝜏1 ,… , b̂𝜏K , 𝜷) , we can employ it as a set of new initial estimator 
(b̃𝜏1 ,… , b̃𝜏K , 𝜷) to recalculate (3) until convergence.

Unfortunately, due to the storage, computation capacity and privacy, it is imprac-
tical to compute (3) in one machine based on the whole data. Recently, the DC 
method has become popular in statistical literature to handle the distributed data. A 
typical approach is one-shot simple averaging DC CQR, which is also called as the 
naive DC CQR method. In specific, assume that the total data indices {1,… ,N} are 
divided into m subsets {H1,… ,Hm} with equal size n = N∕m and denote the data 
in the j-th local machine by Dj = {xi, yi ∶ i ∈ Hj} , j = 1,… ,m . The naive DC CQR 
method will firstly compute the classical CQR estimator 𝜷j on each Dj and then cal-
culate the final CQR estimator by taking a simple average, i.e., 𝜷Ave =

∑m

j=1
𝜷j∕m.

However, as we mentioned in Sect. 1, the naive DC CQR estimator 𝜷Ave is sub-
optimal and our simulation results in Sect. 4 show that it does not perform well in 
most of the cases. Next, we will introduce the multi-round smoothed CQR estimator 
for the distributed data to overcome the existing problems in statistical and compu-
tational efficiency.

(2)L = argmin
b�1

,…,b�k
,�

K∑

k=1

{ N∑

i=1

(yi − b�k − xi
T�)

[
H
(yi − b�k − xi

T�

h

)
+ �k − 1

]}
.

�L

��
=

K∑

k=1

N∑

i=1

xi

{
H
(yi − b�k − xT

i
�

h

)
+ �k − 1 +

yi − b�k − xT
i
�

h
H�

(yi − b�k − xT
i
�

h

)}
= 0,

�L

�b�k

=

N∑

i=1

{
H
(yi − b�k − xT

i
�

h

)
+ �k − 1 +

yi − b�k − xT
i
�

h
H�

(yi − b�k − xT
i
�

h

)}
= 0,

(3)𝜷 = W−1M, b̂𝜏k = V−1
k
Uk, k = 1,… ,K,

(4)

W =

K∑

k=1

N∑

i=1

xix
T
i

h
H�

(yi − b̃𝜏k − xT
i
𝜷

h

)
, Vk =

N∑

i=1

1

h
H�

(yi − b̃𝜏k − xT
i
𝜷

h

)
,

M =

K∑

k=1

N∑

i=1

xi

{
H
(yi − b̃𝜏k − xT

i
𝜷

h

)
+ 𝜏k − 1 +

yi − b̃𝜏k

h
H�

(yi − b̃𝜏k − xT
i
𝜷

h

)}
,

Uk =

N∑

i=1

{
H
(yi − b̃𝜏k − xT

i
𝜷

h

)
+ 𝜏k − 1 +

yi − xT
i
𝜷

h
H�

(yi − b̃𝜏k − xT
i
𝜷

h

)}
.
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2.2 � The proposed estimator

As we discussed in Sect. 2.1, the smoothed CQR estimator for the entire data in (3) 
is constructed by the quantities W , M , Vk and Uk defined in (4). While these for-
mulas only involve the summation of matrices and vectors computed for each indi-
vidual data point xi and yi . This concise formulation makes it simple to adopt the 
distributed method and greatly facilitates the distributed computing. Therefore, we 
propose the multi-round smoothed CQR estimator for the distributed data based on 
(3). We are able to compute the initial estimator using the traditional CQR estima-
tion method based on a small part of samples, e.g., D1 . The specific calculation steps 
can be described as follows: 

S1:	� In the first iteration, using the traditional CQR estimation method, we obtain 
the initial value (b̃𝜏1 ,… , b̃𝜏K , 𝜷) based on D1.

S2:	� For each batch of data Dj , 1 ≤ j ≤ m , define the following quantities .

	�

	� Notice that (Wj,Mj,Vkj,Ukj) can be calculated separately on the j-th machine 
and only the summed statistics (Wj,Mj,Vkj,Ukj) have to be stored and trans-
ferred to the central machine, j = 1,… ,m and k = 1,… ,K

S3:	� After receiving (Wj,Mj,Vkj,Ukj) from all the machines, the central machine 
can aggregate them and compute 

S4:	� After the first round, (b̂(1)
𝜏1
,… , b̂(1)

𝜏K
, 𝜷

(1)
) can be treated as the new initial esti-

mator (b̃𝜏1 ,… , b̃𝜏K , 𝜷) and then sent to all the machines to repeat the steps 
S2-S3 described above to construct the second round estimator, denoted as 
𝜷
(2)

 . The algorithm is repeated q times until the q-th round estimator 𝜷
(q)

 con-
verges with a given threshold � , and 𝜷

(q)
 is taken to be the final estimator. The 

details of the entire inference procedure are presented in Algorithm  1. We 
name the final estimator 𝜷

(q)
 in the distributed environment as the multi-round 

smoothed CQR (MSCQR) estimator.

For each iteration, we can choose different bandwidths hj with the same order 
on different machines for j = 1,… ,m in the step S2. This will not change the final 

Wj =

K∑

k=1

∑

i∈Dj

xix
T
i

hj
H�

(yi − b̃𝜏k − xT
i
𝜷

hj

)
, Vkj =

∑

i∈Dj

1

hj
H�

(yi − b̃𝜏k − xT
i
𝜷

hj

)
,

Mj =

K∑

k=1

∑

i∈Dj

xi

{
H
(yi − b̃𝜏k − xT

i
𝜷

hj

)
+ 𝜏k − 1 +

yi − b̃𝜏k

hj
H�

(yi − b̃𝜏k − xT
i
𝜷

hj

)}
,

Ukj =
∑

i∈Dj

{
H
(yi − b̃𝜏k − xT

i
𝜷

hj

)
+ 𝜏k − 1 +

yi − xT
i
𝜷

hj
H�

(yi − b̃𝜏k − xT
i
𝜷

hj

)}
.

(5)𝜷
(1)

= (

m∑

j=1

Wj)
−1(

m∑

j=1

Mj), b̂(1)
𝜏k

= (

m∑

j=1

Vkj)
−1(

m∑

j=1

Ukj), k = 1,… ,K.
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asymptotic results of expressions (5). Therefore, in Sect. 2.3, we denote h as a common 
bandwidth for the proof of theoretical results. Since the initial estimator is consistent 
and calculation formulas are simple, these make the convergence fast. 

Algorithm 1 Multi-round smoothed CQR estimation for the distributed data.
Input: Data batches D1, . . . ,Dm, smooth function H(x/h), quantiles τ1, . . . , τK , conver-

gence threshold δ.
Output: β̂(q).
1: Set g = 1.
2: Calculate the initial value based on D1 using traditional CQR method:

(b̃τ1 , . . . , b̃τK , β̃) = argmin
bτ1 ,...,bτk ,β

K

k=1 i∈D1

ρτk(yi − bτk − xT
i β) .

3: for j = 1, . . . , m do
4: Compute the bandwidth hj on dataset Dj using (b̃τ1 , . . . , b̃τK , β̃).
5: Compute (Wj , Mj) on dataset Dj using (b̃τ1 , . . . , b̃τK , β̃) with the bandwidth hj .
6: for k = 1, . . . , K do
7: Compute (Vkj, Ukj) on dataset Dj using (b̃τ1 , . . . , b̃τK , β̃) with the bandwidth

hj.
8: end for
9: end for
10: Compute

β̂(g) = (
m

j=1

Wj)−1(
m

j=1

Mj), b̂(g)τk
= (

m

j=1

Vkj)−1(
m

j=1

Ukj), k = 1, . . . , K.

11: while ( β̂(g) − β̃ 2 > δ) do
12: (b̃τ1 , . . . , b̃τK , β̃) = (b̂(g)τ1 , . . . , b̂

(g)
τK , β̂

(g)).
13: g = g + 1.
14: Repeat from 3.
15: end while

2.3 � Asymptotic theories

In this subsection, our main objectives are to provide a Bahadur representation of the 
MSCQR estimator 𝜷

(q)
 and to establish correspondingly asymptotic normality result. 

Firstly, from (3), we show that the difference between the smoothed CQR estimator 
after the first round and its true parameter can be equivalently rearranged as:

where QN =
1

Nh

∑K

k=1

∑N

i=1
xix

T
i
H�

�
yi−b̃𝜏k

−xT
i
𝜷

h

�
 and

(6)𝜷 − 𝜷 = Q−1
N
PN ,
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Let f (⋅|x) be the conditional density function of the noise � given x . Define 
P =

1

N

∑K

k=1

∑N

i=1
xi{I

�
yi − b�k − xT

i
� ≥ 0

�
+ �k − 1} and Q =

∑K

k=1
E(xxT f (b�k �x)). 

Then we state some regularity conditions for theoretical development and show that 
PN and QN can be close to their corresponding population quantities P and Q when 
N is large. 

(C1) 	� The function f (⋅|x) is Lipschitz continuous ( |f (x1|x) − f (x2|x)| ≤ C|x1 − x2| 
for any x1, x2 ∈ ℝ and some constant C > 0 ). There also exist constants c1 
and c2 such that 0 < c1 ≤ 𝜆min(Q) ≤ 𝜆max(Q) ≤ c2 < ∞.

(C2) 	� The smooth function H(⋅) is twice differentiable and its second derivative 
H(2)(⋅) is bounded. Moreover, we assume the bandwidth h = o(1).

(C3) 	� p = o(Nh∕(log(KN)) as well as sup‖𝜃‖2=1 Ee
𝜂(𝜃Tx)2 < ∞ for some 𝜂 > 0.

(C3)∗	� p = o((N1−4�h∕ log(KN))1∕3) for some 𝜅 > 0 as well as supj E|x1j|a < ∞ for 
some a ≥ 2∕� and sup‖𝜃‖2=1 E(𝜃

Tx)4 < ∞.

Condition (C1) contains the smoothness of the conditional density function f (⋅|x) , 
which can be used to obtain the upper bounds of inequalities in the proof of Proposi-
tions 1 and 2, and involves a normal eigenvalue condition related to covariates x . Con-
dition (C2) is a mild condition on H(⋅) for the smooth approximation and can be easily 
satisfied by a properly chosen H(⋅) . Conditions (C3) and (C3)∗ illustrate the relation-
ship between the dimension p and sample size N, and the moment conditions on covari-
ates x are also presented. However, Condition (C3) has weaker constraints compared 
with Condition (C3)∗ . Both Conditions (C3) and (C3)∗ can reach the same theoretical 
conclusions in the Propositions 1 and 2. Under these conditions, we derive the follow-
ing asymptotic analysis of PN and QN , respectively. The proofs are relegated to the Sup-
plementary Material.

Proposition 1  Under conditions (C1), (C2) and (C3) (or (C3)∗), assume that the ini-
tial estimator (b̃𝜏1 ,… , b̃𝜏k , 𝜷) satisfies ‖𝜷 − 𝜷‖2 = OP(an) and |b̃𝜏k − b𝜏k | = OP(bn) 
for k = 1,… ,K, in which an = O(h) and bn = O(h). We have

Proposition 2  Under the same conditions in Proposition 1, we have

Combining Propositions 1 and 2, the expression (6) with some algebraic manipu-
lations, we have

PN =
1

N

K∑

k=1

N∑

i=1

xi

{
H
(yi − b̃𝜏k − xT

i
𝜷

h

)
+ 𝜏k − 1 +

yi − b̃𝜏k − xT
i
𝜷

h
H�

(yi − b̃𝜏k − xT
i
𝜷

h

)}
.

‖PN − P‖2 = OP

��ph log(kN)

N
+ a2

n
+ b2

n
+ h2

�
.

‖QN − Q‖2 = OP

��p log(kN)

Nh
+ an + bn + h

�
.

(7)𝜷 − 𝜷 = Q−1P + rN ,
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with ‖rN‖2 = OP

��
p2 log(KN)

N2h
+

�
ph log(KN)

N
+ a2

n
+ b2

n
+ h2

�
.

Remark 1  When h shrinks at an appropriate rate, we find that the dominant item of rN 
shrinks from an to a2

n
 , while the initial estimator only can attain ||𝜷 − 𝜷||2 = OP(an) . 

This result indicates that an iterative refinement of the initial estimator will signifi-
cantly improve the estimation accuracy of 𝜷  . Therefore, our proposed method could 
obtain the MSCQR estimator to achieve the desirable estimate efficiency by succes-
sively refining the initial estimator only based on data from the first machine after q 
iterations.

Remark 2  The similar process as Propositions  1 and  2 can be applied to b̂𝜏k for 
k = 1,… ,K , we have

with ‖r�
N
‖2 = OP

��
p2 logN

N2h
+

�
ph logN

N
+ a2

n
+ b2

n
+ h2

�
.

According to our Algorithm  1, the previous discussions only involve the 
asymptotic behaviors after one round aggregation. Based on the above arguments, 
the theoretical results for our MSCQR estimator 𝜷

(q)
 in Algorithm 1 can also be 

concluded. By a recursive argument based on (7) and setting the obtained estima-
tor as the new initial value (b̃𝜏1 ,… , b̃𝜏k , 𝜷) , we establish the following Bahadur 
representation of 𝜷

(q)
 , where the main term is still Q−1P.

Theorem  1  Under the same conditions in Proposition  1, the initial estima-
tor (b̃𝜏1 ,… , b̃𝜏k , 𝜷) in the first iteration satisfies ‖𝜷 − 𝜷‖2 = OP(

√
p∕n) and 

�b̃𝜏k − b𝜏k � = OP(
√
1∕n) for k = 1,… ,K and p = O(n∕(log(KN))2). We have

with ‖rN‖2 = OP

��
ph(q) log(KN)

N

�
.

Remark 3  The classical initial CQR estimator based on a single machine will satisfy 
‖𝜷 − 𝜷‖2 = OP(

√
p∕n) and �b̃𝜏k − b𝜏k � = OP(

√
1∕n) . Furthermore, we should point 

out that any initial estimator satisfying the above conditions in Theorem 1 can be 
used in the first iteration and the same Bahadur representation in Theorem1 holds. 
The condition p = O(n∕(log(KN))2) is used for balancing the terms in rN in (7).

By applying the central limit theorem to (8), we derive the following result on 
the asymptotic distribution of the MSCQR estimator 𝜷

(q)
.

Theorem 2  Under the conditions in Theorem1, for the MSCQR estimator 𝜷
(q)

, we 
have

b̂𝜏k − b𝜏k =
1

N

N∑

i=1

{I
{
yi − b𝜏k − xT

i
� ≥ 0

}
+ 𝜏k − 1}∕E(f (b𝜏k |x)) + r

�

N
,

(8)𝜷
(q)

− 𝜷 = Q−1P + rN ,
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with Q =
∑K

k=1
E(xxT f (b�k �x)) as n and N → ∞.

Remark 4  In order to construct confidence intervals for 𝜷
(q)

 , the consistent estimators 
of Q and E[xxT ] are needed. Motivated by Proposition 2 and Chen et al. (2019), we 
propose to use QN in the q-th iteration and 

∑N

i=1
xix

T
i
∕N to estimate Q and E[xxT ] , 

respectively. It is convenient to obtain QN and 
∑N

i=1
xix

T
i
∕N , since they can be sepa-

rately calculated on each machine when computing the MSCQR for the distributed 
data and then taken for a simple summation.

Remark 5  Theorem2 shows that 𝜷
(q)

 achieves the same asymptotic efficiency as 𝜷  
in (1) computed directly on the entire samples. When p is fixed, although the naive 
DC CQR method also can achieve the same efficiency, it requires a small number 
of machines, i.e., m = o(

√
N) , to achieve better performance. However, in some 

applications such as sensor networks, the number of batches can be large. While our 
proposed approach removes the restriction by applying multiple rounds of aggrega-
tions. Since these three methods achieve the same asymptotic distribution, we could 
use the same asymptotic variance as the MSCQR when constructing the confidence 
intervals of above mentioned methods.

3 � Multi‑round smoothed WCQR estimation

The above CQR estimator is investigated based on a sum of different quantile regres-
sions with equal weights and may not be optimal. Let � = (�1,… ,�K)

T be a vector 
of weights and the components in the weight vector � are allowed to be negative. 
Jiang et al. (2012) proposed the WCQR estimator (b�1 ,… , b�K , �) by solving

Similarly, the multi-round smoothed WCQR (MSWCQR) estimator for the distrib-
uted data can also be obtained by using our proposed four-step method in Sect. 2. 
Given the consistent and suitable initial estimator (b̃𝜔

𝜏1
,… , b̃𝜔

𝜏K
, 𝜷

𝜔
) , in the step S2, 

we define

√
N(𝜷

(q)
− 𝜷) ⇒ N

�
0,

K�

k,k�=1

min(�k, �k� )(1 −max(�k, �k� ))Q
−1E[xxT ]Q−1

�
,

(b̌𝜔
𝜏1
,… , b̌𝜔

𝜏K
, 𝜷

𝜔
) = argmin

b𝜏1
,…,b𝜏k

,𝜷

K∑

k=1

{ N∑

i=1

𝜔k𝜌𝜏k (yi − b𝜏k − xT
i
𝜷)
}
.
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and then in the step S3 we obtain

The MSWCQR for the distributed data algorithm is shown in Algorithm 2.

Theorem 3  Under the conditions in Theorem1 and 
∑K

k=1
�k = 1, for the MSWCQR 

estimator 𝜷
�(q)

, we have

with Q� =
∑K

k=1
�kE(xx

T f (b�k �x)) as n and N → ∞.

Remark 6  Q� can be estimated by Q𝜔

N
=

1

Nh

∑K

k=1

∑N

i=1
𝜔kxix

T
i
H�

�
yi−b̃𝜏k

−xT
i
𝜷

h

�
.

As pointed in Jiang et al. (2016), the optimal weight �opt is

where f = (f (b�1),… , f (b�K ))
T and Ω is a K × K matrix with 

Ωkk� = min(�k, �k� )(1 −max(�k, �k� )) for k = 1,… ,K. In practice, �opt = Ω−1f  can 
be estimated by 𝝎̂opt = Ω−1 f̂ = (𝜔̂1,… , 𝜔̂K)

T . Furthermore, the usual nonparamet-
ric density estimation methods, such as kernel smoothing based on the estimated 
residuals, can provide a consistent estimator f̂  . 

W𝜔

j
=

K∑

k=1

∑

i∈Dj

𝜔kxix
T
i

hj
H�

(yi − b̃𝜔
𝜏k
− xT

i
𝜷
𝜔

hj

)
, V𝜔

kj
=

∑

i∈Dj

1

hj
H�

(yi − b̃𝜔
𝜏k
− xT

i
𝜷
𝜔

hj

)
,

M𝜔

j
=

K∑

k=1

∑

i∈Dj

𝜔kxi

{
H
(yi − b̃𝜔

𝜏k
− xT

i
𝜷
𝜔

hj

)
+ 𝜏k − 1 +

yi − b̃𝜔
𝜏k

hj
H�

(yi − b̃𝜔
𝜏k
− xT

i
𝜷
𝜔

hj

)}
,

U𝜔

kj
=

∑

i∈Dj

{
H
(yi − b̃𝜔

𝜏k
− xT

i
𝜷
𝜔

hj

)
+ 𝜏k − 1 +

yi − xT
i
𝜷
𝜔

hj
H�

(yi − b̃𝜔
𝜏k
− xT

i
𝜷
𝜔

hj

)}
,

𝜷
𝜔(1)

= (

m∑

j=1

W𝜔

j
)−1(

m∑

j=1

M𝜔

j
), b̂𝜔(1)

𝜏k
= (

m∑

j=1

V𝜔

kj
)−1(

m∑

j=1

U𝜔

kj
), k = 1,… ,K.

√
N(𝜷

�(q)
− 𝜷) ⇒ N

�
0,

K�

k,k�=1

�k�k� min(�k, �k� )(1 −max(�k, �k� ))(Q
�)−1E[xxT ](Q�)−1

�
,

�opt = Ω−1f ,
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Algorithm 2 Multi-round smoothed WCQR estimation for the distributed data.
Input: Data batches D1, . . . ,Dm, smooth function H(x/h), quantiles τ1, . . . , τK , weights

ω1, . . . , ωK , convergence threshold δ.
Output: β̂ω(q).
1: Set g = 1.
2: Given consistent initial estimator (̃bωτ1 , . . . , b̃

ω
τK
, β̃ω).

3: for j = 1, . . . , m do
4: Compute the bandwidth hω

j on dataset Dj using (b̃ωτ1 , . . . , b̃
ω
τK
, β̃ω).

5: Compute (W ω
j , Mω

j ) on dataset Dj using (b̃ωτ1 , . . . , b̃
ω
τK
, β̃ω) with the bandwidth

hω
j .

6: for k = 1, . . . , K do
7: Compute (V ω

kj, U
ω
kj) on dataset Dj using (b̃ωτ1 , . . . , b̃

ω
τK
, β̃ω) with the bandwidth

hω
j .

8: end for
9: end for
10: Compute

β̂ω(g) = (
m

j=1

W ω
j )

−1(
m

j=1

Mω
j ), b̂ω(g)τk

= (
m

j=1

V ω
kj)

−1(
m

j=1

Uω
kj), k = 1, . . . , K.

11: while ( β̂ω(g) − β̃ω
2 > δ) do

12: (b̃ωτ1 , . . . , b̃
ω
τK
, β̃ω) = (b̂ω(g)τ1 , . . . , b̂

ω(g)
τK , β̂ω(g)).

13: g = g + 1.
14: Repeat from 3.
15: end while

4 � Simulations

In this section, we provide simulation experiments to illustrate the performance of 
our proposed estimators. The data are generated from a linear regression model

where xi = (xi1,… , xip)
T is generated from a p-dimensional normal distribution with 

mean being (0,… , 0)T and covariance matrix Σ being a p × p symmetric matrix with 
Σjj� = 4 × 0.5|j−j

�| for 1 ≤ j ≤ j′ ≤ p . The true value of � = 1p . The errors �i are gen-
erated independently from the following homogeneous and quadratic heteroscedas-
tic distributions: (1) �i ∼ N(0, 42) ; (2) �i ∼ t(2) ; (3) �i ∼ exp(1) ; (4) �i ∼ �2(2) ; (5) 
�i = (0.5 + 0.5(xi1)

2)ei and ei ∼ N(0, 1) ; (6) �i = (0.5 + 0.5(xi1)
2)ei and ei ∼ t(2) ; (7) 

�i = (0.5 + 0.5(xi1)
2)ei and ei ∼ exp(1) ; (8) �i = (0.5 + 0.5(xi1)

2)ei and ei ∼ �2(2).

yi = xT
i
� + �i, for i = 1,… ,N,
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In the simulations, let �k = k∕(1 + K) for k = 1,… ,K and we consider K = 5 , 
m = (5, 10, 25, 50) , (n, p) = (50, 10) , (100, 20) and (2000, 50). The Gaussian ker-
nel is employed as the smooth function H(⋅) . All of the simulations are based on 
500 replications. Furthermore, we include the following four competitors in the 
simulations. 

(1)	 𝜷
(q)

 : the proposed MSCQR estimator on the distributed data;
(2)	 𝜷Cen : the central CQR estimator, which is computed on the entire data using 

traditional CQR model;
(3)	 𝜷Ave : the naive DC CQR estimator on the distributed data, which is computed by 

taking a simple average of traditional local CQR estimators on each machine;
(4)	 𝜷Sub : the subsample CQR estimator, which is only computed on the dataset in 

one single machine using traditional CQR model.

The corresponding four WCQR estimators 𝜷
�(q)

 , 𝜷
�

Cen
 , 𝜷

�

Ave
 , 𝜷

�

Sub
 are also computed. 

Here, the estimators 𝜷
(q)

 , 𝜷Cen , 𝜷Ave , 𝜷Sub are used to compute the optimal weights, 
respectively. Thus, eight different estimators are included. For our proposed estima-
tors, we choose the bandwidth hj = 1.5𝜎𝜖j(Kn)

−1∕3 on j-th machine, where 𝜎𝜖j means 
the sample standard deviation of 𝜖j = yi − b̃𝜏k − xT

i
𝜷  , i ∈ Dj , k = 1,… ,K.

4.1 � RMSE and MAD

To access the accuracy of our proposed estimators in terms of estimation errors, we 
compute root of mean square error (RMSE) and mean absolute deviation (MAD) of 
𝜷:

When (n, p) = (50, 10) and (100, 20), the simulated RMSEs and MADs with eight 
different errors for the CQR and WCQR estimators are given in Tables 1, 2, 3 and 
4. When (n, p) = (2000, 50) , due to the computation time issue, we only present the 
simulated RMSEs and MADs for the CQR estimators under four errors in Table 5. 
A few conclusions can be drawn from the simulation results.

(1)	 As shown in Tables 1 and 2, for any given number of machines m, as expected, 
the RMSEs and MADs of the subsample CQR estimator 𝜷Sub are the largest 
because it only uses the local data on one machine. The naive DC estimator 𝜷Ave 
can reduce the RMSEs and MADs of 𝜷Sub by averaging; however, these values 
of 𝜷Ave are still larger than those of 𝜷

(q)
 and 𝜷Cen . Under the normal error, the 

RMSEs and MADs of our proposed estimator 𝜷
(q)

 are comparable with these of 
the central estimator 𝜷Cen , while our proposed CQR estimator has the smallest 
RMSEs and MADs in the other errors, which is in accord with our Remark 5. 
The similar phenomenon was also reported by Chen et al. (2019) for the multi-
round QR model. As the number of machines m increases, the RMSEs and 

RMSE =

√√√√1

p

p∑

j=1

(𝛽j − 𝛽j)
2, MAD =

1

p

p∑

j=1

|𝛽j − 𝛽j|.
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Table 1   Simulated RMSEs 
× 10 under eight errors with 
(n, p) = (50, 10)

m 𝜷
(q)

𝜷Cen 𝜷Ave 𝜷Sub 𝜷
�(q)

𝜷
�

Cen
𝜷
�

Ave
𝜷
�

Sub

�i ∼ N(0, 42)

5 1.623 1.593 1.808 4.036 1.625 1.596 1.856 4.010
10 1.171 1.149 1.296 4.009 1.169 1.152 1.317 3.977
25 0.717 0.703 0.812 4.077 0.716 0.704 0.829 4.028
50 0.510 0.501 0.582 4.006 0.508 0.500 0.635 3.975
�i ∼ t(2)

5 0.551 0.596 0.723 1.614 0.557 0.579 0.753 1.697
10 0.381 0.412 0.512 1.573 0.385 0.400 0.535 1.678
25 0.238 0.259 0.320 1.542 0.241 0.248 0.334 1.636
50 0.165 0.178 0.228 1.576 0.167 0.171 0.238 1.678
�i ∼ exp(1)

5 0.276 0.320 0.380 0.834 0.194 0.202 0.293 0.682
10 0.182 0.215 0.269 0.856 0.127 0.128 0.206 0.709
25 0.117 0.138 0.171 0.835 0.079 0.079 0.129 0.690
50 0.083 0.098 0.121 0.837 0.056 0.055 0.091 0.695
�i ∼ �2(2)

5 0.547 0.608 0.732 1.638 0.387 0.375 0.555 1.333
10 0.372 0.415 0.513 1.626 0.259 0.245 0.383 1.297
25 0.231 0.261 0.332 1.649 0.158 0.149 0.246 1.320
50 0.163 0.183 0.233 1.601 0.112 0.104 0.170 1.257
�i ∼ (0.5+ 0.5(xi1)

2)N(0, 1)

5 0.800 0.860 1.078 2.404 0.776 0.747 1.062 2.503
10 0.523 0.603 0.785 2.366 0.501 0.506 0.753 2.494
25 0.374 0.375 0.501 2.356 0.357 0.307 0.480 2.480
50 0.224 0.259 0.345 2.445 0.212 0.212 0.351 2.598
�i ∼ (0.5+ 0.5(xi1)

2)t(2)

5 1.211 1.147 1.561 3.408 1.163 0.908 1.467 3.453
10 0.717 0.794 1.102 3.424 0.633 0.605 1.033 3.458
25 0.547 0.507 0.711 3.360 0.460 0.383 0.691 3.409
50 0.400 0.348 0.499 3.353 0.267 0.255 0.509 3.445
�i ∼ (0.5+ 0.5(xi1)

2)exp(1)

5 0.612 0.705 0.997 2.130 0.440 0.309 0.508 1.329
10 0.470 0.477 0.713 2.170 0.322 0.198 0.365 1.367
25 0.306 0.298 0.451 2.175 0.190 0.119 0.227 1.359
50 0.198 0.208 0.321 2.190 0.103 0.082 0.167 1.412
�i ∼ (0.5+ 0.5(xi1)

2)�2(2)

5 1.298 1.317 1.916 4.124 0.882 0.564 1.162 2.765
10 0.812 0.850 1.308 3.950 0.520 0.372 0.767 2.680
25 0.517 0.526 0.837 3.992 0.299 0.228 0.515 2.590
50 0.400 0.366 0.587 3.989 0.209 0.158 0.359 2.600
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Table 2   Simulated MADs ( ×10) 
under homogeneous errors with 
(n, p) = (50, 10)

m 𝜷
(q)

𝜷Cen 𝜷Ave 𝜷Sub 𝜷
�(q)

𝜷
�

Cen
𝜷
�

Ave
𝜷
�

Sub

�i ∼ N(0, 42)

5 1.341 1.319 1.488 3.321 1.346 1.324 1.535 3.295
10 0.964 0.946 1.068 3.295 0.965 0.949 1.085 3.284
25 0.589 0.578 0.672 3.340 0.586 0.578 0.687 3.305
50 0.417 0.409 0.477 3.301 0.415 0.410 0.520 3.275
�i ∼ t(2)

5 0.454 0.491 0.593 1.334 0.459 0.477 0.619 1.402
10 0.314 0.340 0.419 1.293 0.317 0.329 0.438 1.380
25 0.196 0.213 0.264 1.271 0.197 0.204 0.276 1.349
50 0.137 0.147 0.189 1.297 0.138 0.141 0.197 1.385
�i ∼ exp(1)

5 0.229 0.264 0.314 0.689 0.160 0.167 0.241 0.565
10 0.149 0.176 0.222 0.706 0.104 0.105 0.169 0.584
25 0.096 0.113 0.141 0.688 0.065 0.065 0.106 0.567
50 0.068 0.080 0.099 0.690 0.046 0.045 0.074 0.574
�i ∼ �2(2)

5 0.447 0.497 0.601 1.352 0.318 0.307 0.455 1.098
10 0.308 0.342 0.423 1.336 0.213 0.202 0.315 1.059
25 0.190 0.215 0.273 1.356 0.131 0.123 0.203 1.083
50 0.134 0.151 0.191 1.317 0.092 0.086 0.140 1.033
�i ∼ (0.5 + 0.5(xi1)

2)N(0, 1)

5 0.638 0.690 0.874 1.954 0.614 0.589 0.856 2.036
10 0.523 0.603 0.785 2.366 0.501 0.506 0.753 2.494
25 0.295 0.300 0.407 1.900 0.279 0.242 0.390 2.006
50 0.176 0.206 0.279 1.987 0.166 0.165 0.284 2.114
�i ∼ (0.5 + 0.5(xi1)

2)t(2)

5 0.976 0.926 1.277 2.758 0.938 0.723 1.198 2.806
10 0.573 0.638 0.899 2.795 0.502 0.479 0.842 2.824
25 0.441 0.405 0.580 2.735 0.368 0.301 0.563 2.781
50 0.321 0.280 0.406 2.733 0.212 0.201 0.415 2.809
�i ∼ (0.5 + 0.5(xi1)

2)exp(1)

5 0.574 0.575 0.813 1.757 0.471 0.252 0.430 1.105
10 0.387 0.386 0.579 1.765 0.266 0.161 0.298 1.107
25 0.248 0.240 0.367 1.770 0.155 0.097 0.186 1.102
50 0.162 0.168 0.261 1.787 0.084 0.066 0.136 1.148
�i ∼ (0.5 + 0.5(xi1)

2)�2(2)

5 1.056 1.061 1.566 3.353 0.719 0.458 0.950 2.247
10 0.657 0.684 1.068 3.236 0.421 0.302 0.625 2.186
25 0.419 0.421 0.684 3.250 0.243 0.185 0.420 2.123
50 0.322 0.294 0.478 3.240 0.169 0.129 0.291 2.108
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Table 3   Simulated RMSEs ( ×
10) under homogeneous errors 
with (n, p) = (100, 20)

m 𝜷
(q)

𝜷Cen 𝜷Ave 𝜷Sub 𝜷
�(q)

𝜷
�

Cen
𝜷
�

Ave
𝜷
�

Sub

�i ∼ N(0, 42)

5 1.198 1.177 1.308 2.900 1.199 1.181 1.336 2.945
10 0.845 0.830 0.931 2.880 0.843 0.831 0.953 2.951
25 0.538 0.530 0.593 2.932 0.535 0.527 0.604 2.961
50 0.377 0.370 0.415 2.914 0.374 0.369 0.427 2.972
�i ∼ t(2)

5 0.398 0.430 0.509 1.125 0.400 0.414 0.516 1.179
10 0.270 0.293 0.354 1.125 0.270 0.278 0.357 1.184
25 0.170 0.184 0.225 1.121 0.170 0.175 0.227 1.182
50 0.119 0.129 0.159 1.127 0.119 0.122 0.160 1.191
�i ∼ exp(1)

5 0.198 0.234 0.274 0.609 0.134 0.142 0.202 0.478
10 0.133 0.158 0.191 0.607 0.089 0.091 0.139 0.480
25 0.084 0.101 0.124 0.602 0.055 0.055 0.089 0.477
50 0.059 0.070 0.086 0.608 0.039 0.038 0.062 0.484
�i ∼ �2(2)

5 0.396 0.444 0.527 1.146 0.272 0.267 0.379 0.877
10 0.273 0.308 0.379 1.189 0.182 0.175 0.270 0.914
25 0.167 0.190 0.235 1.173 0.111 0.106 0.166 0.905
50 0.118 0.135 0.168 1.165 0.078 0.074 0.117 0.891
�i ∼ (0.5 + 0.5(xi1)

2)N(0, 1)

5 0.507 0.594 0.744 1.651 0.472 0.486 0.677 1.692
10 0.352 0.412 0.527 1.657 0.324 0.331 0.474 1.722
25 0.216 0.253 0.330 1.636 0.197 0.200 0.296 1.705
50 0.152 0.179 0.235 1.626 0.138 0.140 0.213 1.718
�i ∼ (0.5 + 0.5(xi1)

2)t(2)

5 0.696 0.793 1.040 2.289 0.643 0.592 0.911 2.306
10 0.485 0.552 0.750 2.347 0.416 0.402 0.663 2.386
25 0.298 0.338 0.472 2.287 0.248 0.242 0.442 2.350
50 0.206 0.234 0.331 2.285 0.171 0.167 0.326 2.338
�i ∼ (0.5 + 0.5(xi1)

2)exp(1)

5 0.378 0.482 0.666 1.450 0.252 0.203 0.318 0.840
10 0.262 0.332 0.479 1.453 0.158 0.132 0.219 0.838
25 0.159 0.201 0.294 1.478 0.098 0.079 0.134 0.866
50 0.137 0.143 0.211 1.460 0.092 0.055 0.095 0.863
�i ∼ (0.5 + 0.5(xi1)

2)�2(2)

5 0.771 0.873 1.242 2.732 0.511 0.383 0.634 1.571
10 0.516 0.590 0.871 2.709 0.312 0.248 0.413 1.595
25 0.321 0.363 0.555 2.720 0.194 0.150 0.259 1.591
50 0.222 0.249 0.390 2.725 0.137 0.107 0.182 1.584
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Table 4   Simulated MADs ( ×10) 
under homogeneous errors with 
(n, p) = (100, 20)

m 𝛽(q) 𝛽Cen 𝛽Ave 𝛽Sub 𝛽𝜔(q) 𝛽𝜔
Cen

𝛽𝜔
Ave

𝛽𝜔
Sub

�i ∼ N(0, 42)

5 0.971 0.953 1.059 2.354 0.971 0.955 1.080 2.388
10 0.685 0.673 0.755 2.346 0.683 0.673 0.773 2.395
25 0.436 0.428 0.481 2.390 0.433 0.426 0.491 2.402
50 0.307 0.301 0.336 2.365 0.304 0.300 0.347 2.406
�i ∼ t(2)

5 0.324 0.350 0.415 0.916 0.326 0.336 0.421 0.959
10 0.218 0.237 0.288 0.911 0.218 0.225 0.289 0.958
25 0.138 0.149 0.182 0.905 0.138 0.142 0.184 0.952
50 0.096 0.104 0.129 0.912 0.096 0.099 0.130 0.965
�i ∼ exp(1)

5 0.161 0.190 0.222 0.494 0.108 0.115 0.164 0.387
10 0.107 0.128 0.155 0.491 0.072 0.073 0.112 0.389
25 0.068 0.082 0.101 0.486 0.045 0.045 0.072 0.386
50 0.048 0.057 0.070 0.494 0.032 0.031 0.050 0.393
�i ∼ �2(2)

5 0.320 0.360 0.425 0.931 0.220 0.216 0.307 0.712
10 0.221 0.250 0.305 0.962 0.147 0.142 0.218 0.739
25 0.135 0.154 0.190 0.953 0.090 0.086 0.134 0.734
50 0.096 0.109 0.136 0.943 0.063 0.060 0.095 0.724
�i ∼ (0.5 + 0.5(xi1)

2)N(0, 1)

5 0.403 0.475 0.597 1.325 0.372 0.384 0.541 1.359
10 0.278 0.328 0.424 1.335 0.254 0.260 0.380 1.388
25 0.171 0.201 0.264 1.310 0.155 0.157 2.370 1.369
50 0.119 0.141 0.188 1.301 0.107 0.109 0.170 1.374
�i ∼ (0.5 + 0.5(xi1)

2)t(2)

5 0.555 0.634 0.837 1.848 0.510 0.468 0.731 1.862
10 0.385 0.439 0.602 1.883 0.328 0.317 0.532 1.915
25 0.238 0.270 0.380 1.840 0.198 0.193 0.356 1.892
50 0.163 0.186 0.267 1.841 0.135 0.132 0.263 1.883
�i ∼ (0.5 + 0.5(xi1)

2)exp(1)

5 0.378 0.482 0.666 1.450 0.252 0.203 0.318 0.840
10 0.211 0.267 0.386 1.172 0.128 0.106 0.177 0.674
25 0.127 0.161 0.237 1.191 0.079 0.063 0.109 0.697
50 0.110 0.114 0.171 1.177 0.075 0.044 0.077 0.696
�i ∼ (0.5 + 0.5(xi1)

2)�2(2)

5 0.621 0.702 0.100 2.201 0.411 0.309 0.511 1.267
10 0.416 0.473 0.701 2.192 0.252 0.200 0.334 1.289
25 0.258 0.292 0.450 2.208 0.156 0.121 0.208 1.284
50 0.178 0.200 0.316 2.197 0.110 0.086 0.147 1.276
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MADs of 𝜷Sub vary slightly since its local sample size n is still fixed, while these 
values of the other estimators decrease due to the increased total sample size. 
At the same time, the RMSE and MAD difference ratios between 𝜷Ave become 
obviously smaller than those between 𝜷Cen due to the fact that the naive method 
requires the constraint on the number of machines for bias reduction.

(2)	 From Tables 1 and 2, the RMSEs and MADs of our proposed WCQR estimator 
𝜷
�(q)

 are comparable with these of the central estimator 𝜷
�

Cen
 . Apart from that, 

the other WCQR estimators have the similar findings as the corresponding CQR 
estimators. In addition, it can be seen that the optimal WCQR estimators have 
smaller RMSEs and MADs than those of CQR estimators in most of cases, 
which agree with the theoretical result that equal weights for CQR might not be 
optimal. However, this improvement is not significant when �i ∼ N(0, 42) and 
t(2). 

(3)	 From Tables 3 and 4, when both the local sample size n and dimension p increase 
(i.e., (n, p) = (100, 20) ), we have the same conclusions as (n, p) = (50, 10) , which 
shows our proposed estimators are robust. 

(4)	 When (n, p) = (2000, 50) , we have the similar conclusions. In these cases, the 
values of iterations for proposed CQR estimator are around 5 even with the larger 
n and p on each machine.

Table 5   Simulated RMSEs ( ×
100) and MADs ( ×100) with 
(n, p) = (2000, 50)

m RMSE MAD

𝛽(q) 𝛽Cen 𝛽Ave 𝛽Sub 𝛽(q) 𝛽Cen 𝛽Ave 𝛽Sub

�i ∼ t(2)

5 0.878 0.940 0.957 2.128 0.701 0.750 0.764 1.705
10 0.613 0.658 0.672 2.106 0.493 0.528 0.539 1.688
25 0.391 0.419 0.429 2.147 0.314 0.337 0.345 1.718
50 0.274 0.294 0.300 2.134 0.219 0.236 0.241 1.707
�i ∼ exp(1)

5 0.427 0.506 0.516 1.145 0.342 0.405 0.414 0.918
10 0.306 0.361 0.369 1.164 0.245 0.291 0.296 0.937
25 0.192 0.225 0.230 1.148 0.154 0.180 0.184 0.921
50 0.135 0.159 0.162 1.151 0.108 0.128 0.130 0.925
�i ∼ (0.5 + 0.5(xi1)

2)N(0, 1)

5 1.060 1.229 1.261 2.828 0.841 0.978 1.004 2.247
10 0.744 0.866 0.894 2.282 0.590 0.687 0.711 2.252
25 0.466 0.542 0.561 2.813 0.368 0.430 0.446 2.238
50 0.331 0.385 0.398 2.815 0.261 0.305 0.315 2.241
�i ∼ (0.5 + 0.5(xi1)

2)t(2)

5 1.371 1.647 1.710 3.787 1.086 1.310 1.361 3.021
10 0.956 1.149 1.198 3.763 0.763 0.918 0.958 2.999
25 0.601 0.722 0.754 3.784 0.477 0.574 0.602 3.012
50 0.426 0.512 0.536 3.773 0.338 0.409 0.427 3.007



887

1 3

Multi-round SCQR for distributed data

In summary, our proposed estimators can achieve the desirable performance with 
few iterations even when (n, p) are large.

4.2 � Sensitivity analysis

The sensitivity analysis of the proposed estimators with respect to bandwidth and K 
is also investigated. In specific, we consider hj = 1.5𝜎𝜖j(Kn)

v with 
v = (−1∕5,−1∕3,−2∕5) and hj = c𝜎𝜖j (Kn)

−1∕3 with c = (1, 1.5, 2) , respectively, 
based on the error N(0, 42) and (n, p) = (100, 20) . The simulation results are reported 
in Table 6. It can be seen that the RMSEs and MADs vary little over a wide range of 
v and c values. The simulations show that our proposed estimators are insensitive to 
the choice of the bandwidth. Finally, v = −1∕3 and c = 1.5 are recommended in 
practice. Furthermore, we consider �k = k∕(K + 1) for k = 1,… ,K with K = 5 , 7, 9 
based on the error N(0, 42) and (n, p) = (100, 20) . It can be seen from Table 7 that 
the RMSEs and MADs with different K vary little.

4.3 � Coverage probability

To further measure the performance of our proposed method in terms of the statisti-
cal inference, we study the coverage probability (CP) of 95% confidence interval for 
vT
0
� , where v0 = 1p . From Theorem2, an oracle 95% confidence interval for vT

0
� is 

given by

where z0.975 is the 97.5%-quantile of the standard normal distribution. Table 8 show 
that CPs of the different methods. The CPs of our proposed CQR method are around 
nominal level 0.95, which are similar to those of 𝜷Cen . On the other hand, the CPs 
of 𝜷Ave and 𝜷Sub are much lower, which also demonstrate our proposed CQR method 
has good performance than the naive DC method.

5 � Real data

In this section, we carry out our proposed methods on the Gas Turbine CO and 
NOx Emission Data in Year 2013 from the UCI machine learning repository 
(https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Gas+​Turbi​ne+​CO+​and+​NOx+​Emiss​
ion+​Data+​Set). The dataset contains N = 6000 samples, which were aggregated 
over one hour (by means of average) from a gas turbine located in Turkey’s north 
western region. Our interest is to study the flue gas CO (Y) emissions with covari-
ates turbine inlet temperature ( X1 ), turbine after temperature ( X2 ), turbine energy 
yield ( X3 ) and compressor discharge pressure ( X4 ) at different quantiles �k = k∕6 , 
k = 1,… , 5.

vT
0
𝜷
(q)

± N−1∕2

√√√√
K∑

k,k�=1

min(�k, �k� )(1 −max(�k, �k� ))v
T
0
Q−1E[xxT ]Q−1v0z0.975,

https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set
https://archive.ics.uci.edu/ml/datasets/Gas+Turbine+CO+and+NOx+Emission+Data+Set
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Table 6   Simulated RMSEs ( ×10) and MADs ( ×10) for different bandwidths under normal error with 
(n, p) = (100, 20)

m bandwidth 𝛽(q) 𝛽Cen 𝛽Ave 𝛽Sub 𝛽𝜔(q) 𝛽𝜔
Cen

𝛽𝜔
Ave

𝛽𝜔
Sub

RMSEs
5 (1.5, − 1/5) 1.223 1.188 1.318 2.953 1.202 1.191 1.346 2.957

(1.5, − 1/3) 1.198 1.177 1.308 2.900 1.199 1.181 1.336 2.945
(1.5, − 2/5) 1.196 1.173 1.304 2.923 1.196 1.175 1.325 2.905
(1, − 1/3) 1.202 1.181 1.300 2.896 1.203 1.182 1.325 2.889
(2, − 1/3) 1.212 1.190 1.320 2.910 1.212 1.193 1.350 2.894

10 (1.5, − 1/5) 0.843 0.823 0.928 2.979 0.828 0.822 0.946 2.958
(1.5, − 1/3) 0.845 0.830 0.931 2.880 0.843 0.831 0.953 2.951
(1.5, − 2/5) 0.837 0.822 0.928 2.915 0.838 0.823 0.947 2.888
(1, − 1/3) 0.839 0.825 0.931 2.963 0.838 0.825 0.950 2.950
(2, − 1/3) 0.839 0.824 0.926 2.925 0.833 0.824 0.948 2.922

25 (1.5, − 1/5) 0.531 0.518 0.579 2.901 0.522 0.518 0.589 2.876
(1.5, − 1/3) 0.538 0.530 0.593 2.932 0.535 0.527 0.604 2.961
(1.5, − 2/5) 0.523 0.513 0.583 2.943 0.522 0.513 0.594 2.924
(1, − 1/3) 0.531 0.522 0.585 2.912 0.531 0.522 0.594 2.917
(2, − 1/3) 0.522 0.512 0.582 2.935 0.518 0.512 0.596 2.917

50 (1.5, − 1/5) 0.378 0.369 0.413 2.938 0.370 0.368 0.587 2.918
(1.5, − 1/3) 0.377 0.370 0.415 2.914 0.374 0.369 0.427 2.972
(1.5, − 2/5) 0.376 0.370 0.413 2.879 0.374 0.369 0.560 2.847
(1, − 1/3) 0.373 0.366 0.417 2.940 0.371 0.365 0.579 2.932
(2, − 1/3) 0.371 0.364 0.414 2.851 0.366 0.362 0.566 2.846

MADs
5 (1.5, − 1/5) 0.990 0.961 1.068 2.392 0.973 0.964 1.091 2.395

(1.5, − 1/3) 0.971 0.953 1.059 2.354 0.971 0.955 1.080 2.388
(1.5, − 2/5) 0.968 0.949 1.054 2.374 0.969 0.951 1.069 2.362
(1, − 1/3) 0.974 0.957 1.056 2.340 0.976 0.959 1.076 2.335
(2, − 1/3) 0.984 0.965 1.074 2.368 0.987 0.970 1.097 2.353

10 (1.5, − 1/5) 0.687 0.670 0.756 2.415 0.675 0.670 0.771 2.396
(1.5, − 1/3) 0.685 0.673 0.755 2.346 0.683 0.673 0.773 2.395
(1.5, − 2/5) 0.678 0.667 0.750 2.369 0.680 0.667 0.766 2.345
(1, − 1/3) 0.678 0.667 0.752 2.396 0.678 0.668 0.770 2.380
(2, − 1/3) 0.681 0.668 0.749 2.364 0.677 0.670 0.767 2.360

25 (1.5, − 1/5) 0.431 0.419 0.469 2.344 0.422 0.418 0.477 2.327
(1.5, − 1/3) 0.436 0.428 0.481 2.390 0.433 0.426 0.491 2.402
(1.5, − 2/5) 0.423 0.415 0.472 2.387 0.422 0.415 0.480 2.374
(1, − 1/3) 0.428 0.421 0.472 2.353 0.428 0.421 0.479 2.363
(2, − 1/3) 0.424 0.416 0.472 2.370 0.421 0.416 0.484 2.354
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Since the true value of � is unknown for a real data set, for the purpose of compari-
son, we randomly divide this dataset into 5000 training data and 1000 testing data, 
apply the eight methods to train the model, and then compare the performance of these 
estimates in terms of prediction errors based on the testing data. In particular, we 

Table 6   (continued)

m bandwidth 𝛽(q) 𝛽Cen 𝛽Ave 𝛽Sub 𝛽𝜔(q) 𝛽𝜔
Cen

𝛽𝜔
Ave

𝛽𝜔
Sub

50 (1.5, − 1/5) 0.307 0.299 0.335 2.378 0.299 0.298 0.474 2.363

(1.5, − 1/3) 0.307 0.301 0.336 2.365 0.304 0.300 0.347 2.406

(1.5, − 2/5) 0.305 0.300 0.335 2.337 0.304 0.299 0.455 2.308

(1, − 1/3) 0.302 0.296 0.336 2.379 0.300 0.295 0.467 2.370

(2, − 1/3) 0.301 0.296 0.336 2.299 0.298 0.294 0.458 2.296

Table 7   Simulated RMSEs 
( ×10) and MADs ( ×10) 
for different quantile levels 
under normal error with 
(n, p) = (100, 20)

m K 𝛽(q) 𝛽Cen 𝛽Ave 𝛽Sub 𝛽𝜔(q) 𝛽𝜔
Cen

𝛽𝜔
Ave

𝛽𝜔
Sub

RMSEs
5 5 1.198 1.177 1.308 2.900 1.199 1.181 1.336 2.945

7 1.188 1.172 1.303 2.886 1.189 1.170 1.354 2.937
9 1.183 1.170 1.300 2.880 1.185 1.168 1.387 2.945

10 5 0.845 0.830 0.931 2.880 0.843 0.831 0.953 2.951
7 0.838 0.827 0.928 2.869 0.836 0.825 0.971 2.933
9 0.835 0.825 0.926 2.863 0.833 0.823 0.996 2.938

25 5 0.538 0.530 0.593 2.932 0.535 0.527 0.604 2.961
7 0.535 0.528 0.590 2.918 0.529 0.524 0.614 2.956
9 0.533 0.527 0.589 2.911 0.528 0.523 0.634 2.975

50 5 0.377 0.370 0.415 2.914 0.374 0.369 0.427 2.972
7 0.374 0.369 0.413 2.905 0.369 0.366 0.436 2.956
9 0.373 0.368 0.412 2.899 0.368 0.364 0.451 2.960

MADs
5 5 0.971 0.953 1.059 2.354 0.971 0.955 1.080 2.388

7 0.963 0.949 1.054 2.343 0.963 0.948 1.095 2.384
9 0.959 0.947 1.052 2.338 0.960 0.946 1.122 2.385

10 5 0.685 0.673 0.755 2.346 0.683 0.673 0.773 2.395
7 0.679 0.670 0.752 2.338 0.677 0.668 0.786 2.383
9 0.677 0.669 0.751 2.333 0.674 0.667 0.808 2.387

25 5 0.436 0.428 0.481 2.390 0.433 0.426 0.491 2.402
7 0.433 0.427 0.479 2.377 0.428 0.424 0.499 2.401
9 0.431 0.426 0.478 2.371 0.427 0.422 0.514 2.418

50 5 0.307 0.301 0.336 2.365 0.304 0.300 0.347 2.406
7 0.304 0.300 0.335 2.357 0.300 0.297 0.354 2.393
9 0.303 0.300 0.334 2.354 0.299 0.296 0.366 2.403
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Table 8   CPs under 
homogeneous errors 
for the CQR estimators 
with (n, p) = (50, 10) and 
(n, p) = (100, 20)

m (n, p) = (50, 10) (n, p) = (100, 20)

𝛽(q) 𝛽Cen 𝛽Ave 𝛽Sub 𝛽(q) 𝛽Cen 𝛽Ave 𝛽Sub

�i ∼ N(0, 42)

5 0.940 0.944 0.918 0.914 0.956 0.954 0.924 0.936
10 0.930 0.934 0.890 0.916 0.968 0.964 0.920 0.916
25 0.954 0.954 0.922 0.932 0.962 0.962 0.932 0.946
50 0.946 0.954 0.900 0.930 0.954 0.956 0.924 0.926
�i ∼ t(2)

5 0.962 0.942 0.878 0.868 0.930 0.918 0.872 0.876
10 0.968 0.948 0.862 0.898 0.968 0.954 0.894 0.886
25 0.946 0.918 0.854 0.896 0.982 0.972 0.902 0.870
50 0.958 0.946 0.882 0.882 0.962 0.942 0.870 0.892
�i ∼ exp(1)

5 0.966 0.938 0.892 0.860 0.950 0.904 0.846 0.842
10 0.968 0.942 0.868 0.898 0.962 0.918 0.854 0.852
25 0.968 0.946 0.870 0.862 0.966 0.928 0.838 0.854
50 0.980 0.942 0.864 0.884 0.950 0.906 0.854 0.886
�i ∼ �2(2)

5 0.964 0.944 0.866 0.874 0.966 0.940 0.880 0.886
10 0.968 0.928 0.864 0.888 0.954 0.944 0.876 0.886
25 0.958 0.934 0.866 0.874 0.956 0.930 0.866 0.868
50 0.964 0.952 0.902 0.886 0.966 0.944 0.880 0.888
�i ∼ (0.5 + 0.5(xi1)

2)N(0, 1)

5 0.918 0.904 0.844 0.842 0.936 0.912 0.810 0.824
10 0.900 0.884 0.814 0.836 0.910 0.858 0.792 0.802
25 0.932 0.898 0.808 0.826 0.950 0.908 0.796 0.820
50 0.936 0.896 0.798 0.808 0.940 0.896 0.840 0.832
�i ∼ (0.5 + 0.5(xi1)

2)t(2)

5 0.960 0.940 0.866 0.868 0.950 0.924 0.852 0.844
10 0.958 0.940 0.848 0.840 0.950 0.926 0.850 0.844
25 0.948 0.936 0.864 0.858 0.966 0.956 0.872 0.870
50 0.962 0.946 0.856 0.880 0.964 0.930 0.864 0.844
�i ∼ (0.5 + 0.5(xi1)

2)exp(1)

5 0.966 0.932 0.808 0.840 0.986 0.932 0.864 0.828
10 0.980 0.932 0.852 0.830 0.980 0.932 0.830 0.852
25 0.986 0.960 0.830 0.814 0.992 0.938 0.808 0.816
50 0.988 0.942 0.808 0.828 0.980 0.942 0.828 0.832
�i ∼ (0.5 + 0.5(xi1)

2)�2(2)

5 0.962 0.946 0.812 0.862 0.992 0.970 0.866 0.874
10 0.984 0.968 0.872 0.894 0.982 0.970 0.870 0.856
25 0.978 0.962 0.860 0.844 0.986 0.970 0.834 0.840
50 0.974 0.964 0.854 0.826 0.980 0.966 0.846 0.872
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consider the number of machines m = (5, 10, 25, 50) and then obtain the estimates 𝜷
(q)

 , 
𝜷Cen , 𝜷Ave , 𝜷Sub , 𝜷

�(q)
 , 𝜷

�

Cen
 , 𝜷

�

Ave
 and 𝜷

�

Sub
 , respectively, based on the training data. 

Thereafter, we use the estimated coefficients to construct forecasts of the other 1000 
testing data. We compute both the RMSE =

�∑
i(Yi − Ŷi)

2∕1000 and MAD 
=
∑

i �Yi − Ŷi�∕1000 based on the testing data, where Ŷi is the fitted value of the testing 
data Yi , i = 1,… , 1000 . The results are given in Table 9.

(1)	 For m = (5, 10, 25, 50) , we find that only the estimated coefficients of X1 are 
remarkable and negatively related with Y among these eight different methods, 
while the other estimated coefficients are close to zero. This coincides with the 
fact that the CO emissions will increase when incomplete combustion with lower 
turbine inlet temperature occurs. Thus, we only present the estimated coefficients 
of X1 in Table 9. Among these results, it can be seen that the subsample estimates 
are the worst since their absolute values are the smallest when m=5, 10, 25 and 
they even become positive when m = 50.

(2)	 In terms of RMSEs and MADs, our proposed estimates 𝜷
(q)

 and 𝜷
�(q)

 have similar 
results with these of 𝜷Cen and 𝜷

�

Cen
 , and perform better than the naive DC method 

in both CQR and WCQR models. This indicates that we can obtain desirable 
coefficient estimates via our proposed distributed methods.

Table 9   The RMSEs and MADs for the gas emission data

m 𝛽(q) 𝛽Cen 𝛽Ave 𝛽Sub 𝛽𝜔(q) 𝛽𝜔
Cen

𝛽𝜔
Ave

𝛽𝜔
Sub

5 X1(�1) − 1.494 − 1.611 − 1.226 − 0.893 − 1.502 − 1.645 − 1.341 − 0.770
RMSE 0.347 0.381 0.387 0.530 0.363 0.366 0.373 0.520
MAD 0.261 0.299 0.310 0.436 0.278 0.283 0.295 0.421

10 X1(�1) − 1.486 − 1.611 − 1.504 − 0.442 − 1.507 − 1.648 − 1.447 − 0.414
RMSE 0.348 0.381 0.403 0.549 0.365 0.367 0.373 0.541
MAD 0.261 0.299 0.330 0.438 0.281 0.283 0.291 0.426

25 X1(�1) − 1.485 − 1.611 − 1.697 − 0.965 − 1.518 − 1.655 − 1.576 − 0.684
RMSE 0.341 0.381 0.414 0.672 0.367 0.368 0.379 0.646
MAD 0.260 0.299 0.325 0.567 0.283 0.284 0.299 0.530

50 X1(�1) − 1.476 − 1.611 − 1.667 1.904 − 1.536 − 1.662 − 1.555 1.034
RMSE 0.347 0.381 0.449 0.873 0.369 0.369 0.386 0.780
MAD 0.259 0.299 0.347 0.663 0.285 0.285 0.297 0.578
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6 � Discussion

In this paper, we propose the multi-round smoothed CQR and WCQR estima-
tors for the distributed data. The proposed methods only require consistent ini-
tial value, and the rest of operations are convenient matrix manipulations. Some 
interesting issues still merit further research. Firstly, the proposed methods are 
designed for small to moderate covariate dimensionality. The multi-round penal-
ized and smoothed estimators for sparse high-dimensional CQR and WCQR 
model are interesting consideration. Secondly, it is also of interest to investigate 
the proposed estimation methods for longitudinal data.
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