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Abstract
We consider an integer-valued time series (Y

t
)
t∈ℤ where the model after a time k∗ 

is Poisson autoregressive with the conditional mean that depends on a parameter 
𝜃
∗ ∈ 𝛩 ⊂ ℝ

d . The structure of the process before k∗ is unknown; it could be any 
other integer-valued process, that is, (Y

t
)
t∈ℤ could be nonstationary. It is established 

that the maximum likelihood estimator of �∗ computed on the nonstationary obser-
vations is consistent and asymptotically normal. Subsequently, we carry out the 
sequential change-point detection in a large class of Poisson autoregressive models, 
and propose a monitoring scheme for detecting change. The procedure is based on 
an updated estimator, which is computed without the historical observations. The 
above results of inference in a nonstationary setting are applied to prove the consist-
ency of the proposed procedure. A simulation study as well as a real data application 
are provided.
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1 Introduction

We consider a process Y = (Yt)t∈ℤ satisfying

where Ft = �(Ys, s ≤ t) is the �-field generated by the whole past. A large 
literature on this model has recently been developed by assuming that 
�t = �(Yt|Ft−1) = f (Yt−1, Yt−2,…) for all t ∈ ℤ , where f is a measurable non-nega-
tive function, satisfying some Lipschitz-type conditions. This entails that the pro-
cess (Yt, �t)t∈ℤ is strictly stationary with finite moment of any order. But such result 
does not hold in many practical situations. For instance, in the change-point prob-
lem, it often holds that

with f0 ≠ f1 and k∗ ∈ ℤ . Thus, the process (Yt, �t)t∈ℤ is not stationary.
We consider a nonstationary autoregressive process Y = (Yt)t∈ℤ in a parametric 

framework; we assume that Y satisfies

with k∗ ∈ ℤ , where �∗ is the parameter belonging to a compact set 𝛩 ⊂ ℝ
d ( d ∈ ℕ ) 

and f
�
 is a measurable non-negative function, assumed to be known up to the param-

eter � . If (2) holds for t < k∗ , then with some Lipschitz-type conditions on f, there 
exists a strictly stationary and ergodic solution of (2), denoted by (Ỹt, �̃t)t∈ℤ , with 
finite moment of any order (see for instance Doukhan et  al. 2012). It is assumed 
here that the process Y = (Yt)t∈ℤ is a solution of (2) (with t > k∗ ) and we focus in a 
more general situation where the structure of the process (Yt)t≤k∗ is assumed to be 
unknown; it could be a Poisson autoregressive model depending on a parameter dif-
ferent from �∗ or could be any other integer-valued time series.

In this work, we firstly study the inference of the parameter �∗ in the model (2). 
This task has been considered by several authors; see among others (Fokianos et al. 
2009; Fokianos and Tjøstheim 2012; Doukhan and Kengne 2015). These works (and 
many other) have been developed under the assumption that the process (Yt)t∈ℤ is 
strictly stationary, which restricts the application area of such results. To deal with 
the model (2), we conduct some preliminary works for the approximation of the 
nonstationary process with its stationary regime. Under some classical Lipschitz-
type condition on the function f, there exists (see Doukhan et  al. 2012, 2013) a 
strictly stationary process Ỹ = (Ỹt)t∈ℤ with finite moments of any order, satisfying:

where F̃t = 𝜎(Ỹs, s ≤ t) is the �-field generated by the whole past of Ỹ .
Let us remark that, models (1), (2) and (3) can be represented in terms of Poisson 

processes. Let {Nt(⋅);t ∈ ℤ} be a sequence of independent Poisson processes of unit 

(1)Yt|Ft−1 ∼ Poisson (�t) with �t = �(Yt|Ft−1);

𝜆t =

{
f0(Yt−1, Yt−2,…) for t ≤ k∗,

f1(Yt−1, Yt−2,…) for t > k∗

(2)
Yt|Ft−1 ∼ Poisson (𝜆t) with 𝜆t = �(Yt|Ft−1) = f

𝜃∗
(Yt−1, Yt−2,…) for all t > k∗

(3)Ỹt|F̃t−1 ∼ Poisson (�̃�t) with �̃�t = f
𝜃∗
(Ỹt−1, Ỹt−2,…) for t ∈ ℤ
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intensity. Yt and Ỹt can respectively be seen as the number (say Nt(�t) ) of events of Nt(⋅) 
that occur in the time interval [0, �t] and [0, �̃�t] . Therefore, we can also write

This representation is useful to approximate the processes (Yt)t≥k∗ and (Ỹt)t≥k∗ . The 
question of this approximation has been addressed by Doukhan and Kengne (2015) 
(see Remark 4.1). In this work, we provide a detailed proof of this problem. In par-
ticular, we show that the expectation �|Yk∗+� − Ỹk∗+�| (for � ≥ 1 ) can be controlled 
and tends to zero when � goes to infinity, see Lemma 1. These approximation results 
are applied to establish that the conditional maximum likelihood estimator (MLE) of 
�
∗ , based on the nonstationary observations, is consistent and asymptotically normal. 

Also, let us stress that numerous papers on change-point problem assume that the 
process is stationary after the change-point; see for instance (Doukhan and Kengne 
2015; Diop and Kengne 2017; Franke et al. 2012; Kirch and Kamgaing 2015). This 
paper provides tools to avoid such condition, which is quite restrictive in practice.

As a second contribution, we consider the structural change-point problem in 
the Poisson autoregressive models. In the retrospective (or off-line) framework, this 
issue has already been addressed. See for instance (Franke et al. 2012; Kang and Lee 
2014; Doukhan and Kengne 2015; Diop and Kengne 2017). But these works suf-
fer from a drawback: the (asymptotic) study under the presence of change is either 
missing or done with the stationarity assumption on the observations after change-
points, which is unrealistic in many practical problems. For the procedure proposed 
by these authors, the stationarity assumption after the change-point can be relaxed 
by applying Theorem 1 (see below), which establishes the consistency of the condi-
tional MLE of the parameter of the nonstationary model after the change-point. In 
the sequel, we focus on the sequential (or on-line) framework.

Assume that the process Y = (Yt)t∈ℤ satisfies

where �∗
0
, �∗

1
 are the parameters belonging to a compact set 𝛩 ⊂ ℝ

d ( d ∈ ℕ ) and 
k∗ is a positive integer, standing for the possible instant of change. If �∗

0
≠ �

∗
1
 , then 

a structural change occurs at time k∗ ; otherwise, no change has occurred, and the 
model (5) can be simply written as

We follow the paradigm of Chu et al. (1996). The general idea is to use the observa-
tions (Y1,… , Ym) (called the historical data) that depend on the parameter �∗

0
 . Then 

from the time m + 1 , one would like to test sequentially whether a structural change 
occurs and trigger an alarm if so, by ensuring that the probability of false alarm does 
not exceed a fixed level � . More precisely, k∗ > m and (Y1,… , Ym) is assumed to 
be generated from the model (6), depending on �∗

0
 (without change); we are going 

to observe new data Ym+1, Ym+2,… , Ym+k,… . For each new observation Ym+k , we 

(4)
Yt = Nt(𝜆t), Ỹt = Nt(�̃�t) with 𝜆t

= f
𝜃∗
(Yt−1, Yt−2 …) and �̃�t = f

𝜃∗
(Ỹt−1, Ỹt−2,…) for all t > k∗.

(5)Yt|Ft−1 ∼ Poisson (𝜆t) with 𝜆t =

{
f
𝜃
∗
0
(Yt−1, Yt−2,…) for t ≤ k∗,

f
𝜃
∗
1
(Yt−1, Yt−2,…) for t > k∗

(6)Yt|Ft−1 ∼ Poisson (�t) with �t = f
�
∗
0
(Yt−1, Yt−2,…) for t ∈ ℤ.
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would like to know if it is generated from a model depending on �∗
0
 or from a model 

depending on �∗
1
 , with �∗

0
≠ �

∗
1
 . This problem can be treated as a classical hypothesis 

testing: 

�
�
  �∗

0
 is constant over ⋯ , Y−1, Y0, Y1,… , Ym, Ym+1,… i.e. (Yt)t∈ℤ satisfies (5) with 

�
∗
0
= �

∗
1
;

�
�
  the process (Yt)t∈ℤ satisfies (5) with �∗

0
≠ �

∗
1
 and k∗ > m.

 Numerous works have been done in the sequential change-point detection accord-
ing to such paradigm. See among others papers, Horváth et al. (2004), Gombay 
and Serban (2009), Na et  al. (2011) and Bardet and Kengne (2014) for several 
test procedures for sequential change detection in a general class of time series 
models, including linear and GARCH-type models. Kengne (2015) proposed a 
fluctuation-type test procedure for sequential change detection in a large class of 
Poisson autoregressive model. Recently, Kirch and Kamgaing (2015) and Kirch 
and Weber (2018) have considered a large class of models (that includes con-
tinuous and discrete valued time series) and developed a general setup based on 
estimating functions for sequential change-point detection. Estimating functions 
is a general estimation method and some classical procedure such as, the like-
lihood estimator, the least square estimator,...can be treated in many cases as a 
particular class of estimating functions. It is well-known (Godambe 1960) that 
the optimal estimating function in several classical parametric models is based 
on the score function. In the case of infinite memory process considered here, a 
more complex class of estimating functions is needed; this involves some difficul-
ties in the application of their procedure. Moreover, Kirch and Kamgaing (2015) 
and Kirch and Weber (2018) impose some regularity conditions on the process 
after the change-point. These conditions, which are not easy to verify in general, 
are somewhere sufficient to unify the treatment of the large class models that they 
have considered.

We carry out a sequential test in the spirit of Bardet and Kengne (2014), 
and propose an open-end and closed-end (see below) procedure for monitoring 
changes in the model (5). We develop a procedure where the recursive estimator 
is computed without the historical observations. It is shown that the detector con-
verges to a known distribution under the null hypothesis. Under the alternative, 
we do not need any additional assumption on the process after the change-point. 
The consistency of the procedure is established even in the nonstationary setting 
(the previous study of inference in nonstationary models plays a key role in the 
proof of this result). Moreover, the test developed here is intended for early detec-
tion of change than the aforementioned procedure, since it has displayed a detec-
tion delay that can be bounded by OP(m

1∕2+�) for any 𝜖 > 0.
In the following Sect. 2, some classical assumptions on the model (2) as well 

as some examples are provided. The inference in the nonstationary process Y is 
conducted in Sect. 3. Section 4 focuses on the sequential change-point detection. 
Some numerical results are displayed in Sect.  5, whereas Sect.  6 is devoted to 
some concluding remarks. The proofs of the main results are provided in Sect. 7.
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2  Assumptions and examples

2.1  Assumptions

We will use the following classical notations: 

1. ‖y‖ ∶=
∑p

j=1
�yj� for any y ∈ ℝ

p;
2. for any compact set K ⊆ ℝ

d  and for any function g ∶ K ⟶ ℝ
d� , 

‖g‖K = sup
�∈K(‖g(�)‖);

3. for any set K ⊆ ℝ
d , K̊ denotes the interior of K;

4. ℕ = {1, 2, 3,…} and ℕ0 = {0, 1, 2, 3,…};
5. if Y is a random vector with finite s-order moments, we set ‖Y‖s = (�‖Y‖s)1∕s.

Throughout the sequel, we will assume that the function � ↦ f
�
 is twice continu-

ously differentiable on � and we need the following conditions on the model (2). For 
i = 0, 1, 2 , define

Assumption A i(�) ‖f𝜃(0)‖𝛩 < ∞ ( ‖𝜕if
𝜃
(0)∕𝜕𝜃i‖

𝛩
< ∞ when i = 1, 2 ) and there 

exists a sequence of non-negative real numbers (�(i)

k
)k≥1 satisfying 

∞∑
j=1

𝛼
(0)

k
< 1 (when 

i = 0 ) and 
∞∑
j=1

𝛼
(i)

k
< ∞ (when i = 1, 2 ) such that for all y, y� ∈ (ℝ+)ℕ,

Under the assumption A0(�) , Doukhan et al. (2012, 2013) proved that the model (3) 
has a strictly stationary solution (Ỹt, �̃�t)t∈ℤ , which is �-weakly dependent with finite 
moment of any order (see also Doukhan and Wintenberger 2008). But, such result 
cannot be applied to process Y satisfying (2), since the structure of the past before 
k∗ is unknown. The following proposition shows that if (Yt)t≤k∗ has finite moments of 
any order, then it also holds for (Yt)t>k∗.

Proposition 1 Assume A0(�) . Let Y = (Yt)t∈ℤ satisfy (2) and for any r ≥ 1 , there 
exists a constant Cr,0 > 0 such that �Yr

t
≤ Cr,0 for all t ≤ k∗ . Then, there exists C > 0 

such that

As we state above, (Yt)t≤k∗ could be any integer-valued time series, and we assume in 
the sequel that:

‖f
�
(y) − f

�
(y�)‖

�
≤

∞�
j=i

�
(0)

j
�yj − y�

j
� or

�����
�
if
�
(y)

��i
−

�
if
�
(y�)

��i

������
≤

∞�
k=1

�
(i)

k
�yk − y�

k
� (when i = 1, 2).

�Yr
k∗+�

≤ C for all � ≥ 1.

(7)for any r ≥ 1, there exists Cr,0 > 0 such that �Yr
t
≤ Cr,0 for all t ≤ k∗.
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The conditions A 1(�) , A 2(�) as well as the following assumptions D (�) , Id(� ) and 
Var(� ) are classical for inference on such model see Doukhan and Kengne (2015).

Assumption D (�) ∃c > 0 such that inf
�∈�

(f
�
(y)) ≥ c for all y ∈ (ℝ+)ℕ.

Assumption Id(� For all (�, ��) ∈ �
2 , (

f
𝜃
(Yt−1,…) = f

𝜃�
(Yt−1,…) a.s. for some t > k∗

)
⇒ 𝜃 = 𝜃

�.

Assumption Var(� For all � ∈ � and t > k∗ , the components of the vector 
�f

�

��
(Yt−1,…) are a.s. linearly independent.

Also, we will assume in the sequel that the true parameter �∗ belongs to ◦
�

 (the 
interior of �).

2.2  Examples

2.2.1  Linear Poisson autoregression

We consider an integer-valued time series (Yt)t∈ℤ satisfying for any t ∈ ℤ

with 𝜃∗ ∈ 𝛩 ⊂ ℝ
d , where the functions � ↦ �k(�) are positive, twice continuous 

differentiable such that 
∑

k≥1 ‖𝜙k(𝜃)‖𝛩 < 1 , 
∑

k≥1 ‖𝜙�
k
(𝜃)‖

𝛩
< ∞ , ∑

k≥1 ‖𝜙��
k
(𝜃)‖

𝛩
< ∞ and inf

𝜃∈𝛩𝜙0(𝜃) > 0 (see also Doukhan and Kengne 2015). 
Thus, Assumptions A i(�) i = 0, 1, 2 and D (�) hold. Moreover, if there exists a finite 
subset I ⊂ ℕ − {0} such that the function � ↦ (�k(�))k∈I is injective, then assump-
tion Id(�) holds and the model (8) is identifiable. Finally, assumption Var(� ) holds 
if for any � ∈ � , there exists d functions �k1

,… ,�kd
 such that the matrix (

��kj

��

)

1≤j≤d

 (computed at � ) has a full rank. This is the case in the classical useful 

situations, such as, for instance, the INGARCH(p, q) model below.
The classical Poisson INGARCH(p, q) (see Ferland et al. 2006 or Weiß 2009) is 

obtained with

The true parameter �
∗ = (�∗

0
, �∗

1
,… , �∗

p
, �∗

1
,… , �∗

q
) ∈ � where � is a com-

pact subset of (0,+∞) × [0,+∞)p+q such that 
∑p

k=1
𝛼k +

∑q

k=1
𝛽k < 1 for 

all � = (�0, �1,… , �p, �1,… , �q) ∈ � . This model is a special case of the 
model (8) since we can find a sequence of functions (�k(�))k≥0 such that 
�t = �0(�

∗) +
∑

k≥1 �k(�
∗)Yt−k.

In the model (8), it often happens in practice that

(8)Yt|Ft−1 ∼ Poisson (�t) with �t = �0(�
∗) +

∑
k≥1

�k(�
∗)Yt−k

(9)�t = �
∗

0
+

p∑
k=1

�
∗

k
�t−k +

q∑
k=1

�
∗

k
Yt−k.
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with �∗
0
≠ �

∗
1
 . There exists several references in the literature (see for instance Douk-

han and Kengne 2015; Ahmad and Francq 2016) that address the inference on �∗
0
 

based on the observations of the stationary process (Yt)t≤k∗ . These results which are 
heavily based on the stationarity of the process cannot work for �∗

1
 . Section 3 focuses 

on the estimation of �∗
1
 based on the nonstationary process (Yt)t>k∗.

2.2.2  Threshold Poisson autoregression

We consider a threshold Poisson autoregressive model defined by:

where 𝜙0(𝜃) > 0 , �+

k
(�),�−

k
(�) ≥ 0 for all � ∈ � and � ∈ ℕ . We can also write

This is an example of a nonlinear model called an integer-valued threshold ARCH 
(or INTARCH) see Doukhan and Kengne (2015); see also Franke et al. (2012) for 
INTARCH(1) model. Such model is often used to capture piecewise phenomenon. � 
is the threshold parameter of the model. If the functions � ↦ �

+

k
(�) and � ↦ �

−
k
(�) 

are twice continuously differentiable such that 
∑

k≥1 max
�‖𝜙+

k
(𝜃)‖

𝛩
, ‖𝜙−

k
(𝜃)‖

𝛩

�
< 1 , ∑

k≥1 max
�‖ �

��
�
+

k
(�)‖

�
 , ‖ 𝜕

𝜕𝜃
𝜙
−
k
(𝜃)‖

𝛩
, ‖ 𝜕

2

𝜕𝜃2
𝜙
+

k
(𝜃)‖

𝛩
, ‖ 𝜕

2

𝜕𝜃2
𝜙
−
k
(𝜃)‖

𝛩

�
< ∞ , then A i(�) 

i = 0, 1, 2 hold. Furthermore, conditions on D (�) , Id(�) and Var(� ) are obtained as 
above.

3  Likelihood inference

We focus on the inference for the model (2); that is, we consider the process 
Y = (Yt)t∈ℤ satisfying

Assume that a trajectory (Yk∗+1,… , Yk∗+n) of the process (Yt)t>k∗ is observed. 
The conditional (log)-likelihood (up to a constant) computed on a segment 
T ⊂ {k∗ + 1, k∗ + 2,…} is given by

(10)𝜆t =

�
𝜙0(𝜃

∗
0
) +

∑
k≥1 𝜙k(𝜃

∗
0
)Yt−k for t ≤ k∗,

𝜙0(𝜃
∗
1
) +

∑
k≥1 𝜙k(𝜃

∗
1
)Yt−k for t > k∗

(11)
Yt|Ft−1 ∼ Poisson (�t) with �t = �0(�

∗)

+
∑
k≥1

(
�
+

k
(�∗)max(Yt−k − �, 0) + �

−

k
(�∗)min(Yt−k,�)

)

�t = �0(�
∗) +

∑
k≥1

(
�
−

k
(�∗)Yt−k +

(
�
+

k
(�∗) − �

−

k
(�∗)

)
max(Yt−k − �, 0)

)
.

(12)
Yt|Ft−1 ∼ Poisson (𝜆t) with 𝜆t = �(Yt|Ft−1) = f

𝜃∗
(Yt−1, Yt−2,…) for all t > k∗.

Ln(T , �) =
∑
t∈T

(Yt log �t(�) − �t(�)) =
∑
t∈T

�t(�) with �t(�) = Yt log �t(�) − �t(�)
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where �t(�) = f
�
(Yt−1,…) . In the sequel, we use the notation f t

�
∶= f

�
(Yt−1,…) . An 

approximation of the conditional (log)-likelihood is

where �̂t(�) ∶= f̂ t
�
∶= f

�
(Yt−1,… , Y1, 0,…) . The MLE of �∗ computed on T is 

defined by

For any k, k� ∈ ℤ such as k ≤ k′ , denote

The following theorem establishes that the MLE of �∗ based on the nonstationary 
process Y [satisfying (12)] is consistent.

Theorem 1 Assume that 𝜃∗ ∈ �̊� , D(�) , Id(�) , A0(�) and (7) hold with

Then, it holds that

To address the asymptotic normality, set

where (Ỹt)t∈ℤ is a stationary and ergodic process satisfying (3) [see also (33)] and ′ 
denotes the transpose. This matrix is symmetric and positive definite (see Doukhan 
and Kengne 2015). According to the proof of Theorem 2, the matrix

is a consistent estimator of �̃ . The asymptotic normality of the MLE is displayed in 
the following theorem.

Theorem 2 Under the assumptions of Theorem 1 and Var(� ) if Ai(�) i = 1, 2 hold 
with

(13)

L̂n(T , �) =
∑
t∈T

(Yt log �̂t(�) − �̂t(�)) =
∑
t∈T

�̂t(�) with �̂t(�) = Yt log �̂t(�) − �̂t(�)

(14)�̂(T) = argmax
�∈�(L̂n(T , �)).

Tk,k� = {k, k + 1,… , k�}.

(15)𝛼
(0)

j
= O(j−𝛾 ), for some 𝛾 > 3∕2.

�̂(Tk∗+1,k∗+n)
a.s.

������������������������→
n→+∞

�
∗.

(16)
�𝛴 = E

(
1

f̃ 0
𝜃∗

(
𝜕

𝜕𝜃
f̃ 0
𝜃∗

)(
𝜕

𝜕𝜃
f̃ 0
𝜃∗

)�
)

with

f̃ 0
𝜃∗

= f
𝜃∗
(Ỹ−1, Ỹ−2 …),

�̂n =

(
1

n

k∗+n∑
t=k∗+1

1

f̂ t
�

(
�

��
f̂ t
�

)(
�

��
f̂ t
�

)�
)||||||�=�̂(Tk∗+1,k∗+n)
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then,

4  Sequential change‑point detection

Let (Y1,… , Ym) be historical observations, assumed to be a trajectory of a station-
ary and ergodic time series (Yt)t≤k∗ satisfying (6) with parameter �∗

0
 , and with finite 

moments of any order (such process exists according to Doukhan et al. 2012, 2013). 
We consider the online change-point detection in the model (5) and focus on the 
hypotheses �

�
 and �

�
 (defined in the introduction).

The MLE of �∗
0
 , computed on the historical observations is defined by

According to Sect. 3 (see also Doukhan and Kengne 2015), this estimator is consist-
ent and asymptotically normal. The asymptotic covariance matrix of �̂(T1,m) is �−1 
with

Recall that, the fluctuation-type test proposed by Chu et al. (1996) is based on the 
discrepancy between the estimators of the model’s parameters. The classical idea of 
the fluctuation test is to evaluate at the monitoring step m + k , the distance between 
�̂(T1,m) and �̂(T1,m+k) by expecting this will be large enough if a change occurs at 
time m + k∗ (with k∗ < k ). Such idea has been employed by Na et al. (2011); Kengne 
(2015), among others. As pointed out by Bardet and Kengne (2014), the recursive 
estimator �̂(T1,m+k) heavily depends on the historical data and the detection delay of 
such procedure may not be quite efficient.

We follow the ideas of Bardet and Kengne (2014) and propose a procedure which is 
based on the detector:

defined for any k > m and � = m,… , k , where

(17)𝛼
(i)

j
= O(j−𝛾 ), for some 𝛾 > 3∕2,

√
n(�̂(Tk∗+1,k∗+n) − �

∗)
D

������������������������→
n→+∞

N(0, �̃−1).

(18)�̂(T1,m) = argmax
�∈�

(L̂(T1,m, �)).

(19)� = E

⎛⎜⎜⎝
1

f 0
�
∗
0

�
�

��
f 0
�
∗
0

��
�

��
f 0
�
∗
0

��⎞⎟⎟⎠
.

Ĉk,� ∶=
√
m

k − �

k
���̂1∕2

m

�
�̂(T

�,k) − �̂(T1,m)
���

�̂m =

(
1

m

m∑
t=1

1

f̂ t
�

(
�

��
f̂ t
�

)(
�

��
f̂ t
�

)�
)||||||�=�̂(T1,m)
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is a consistent estimator of � (see Sect. 3 and also Doukhan and Kengne (2015)). 
Hence, �̂m is asymptotically positive definite, and the detector Ĉk,� is well defined 
for m large enough.

To avoid some distortion in the computation of �̂(T
�,k) (when � is close to k), we 

introduce a sequence of integer numbers (vm)m∈ℕ with vm << m and compute Ĉk,� for 
� ∈ {m − vm,m − vm + 1,… , k − vm} . Thus, for any k > m denote

For technical consideration, we assume in this section that,

Let us stress that, if vm is too small, the convergence of the numerical algorithm 
used to �̂(T

�,k) (when � is close to k) is not ensured, which can introduce high dis-
tortion in the empirical level of the procedure. And conversely, if vm is too large, 
under the alternative, one will wait longer in the monitoring scheme to get k∗ ∈ �m,k 
and so that the change-point is detected; that is, a procedure with high distortion 
in the empirical power if T  (see below) is not too large, and large detection delay. 
Such sequence does not increase too fast in order to keep the accuracy of the pro-
cedure. We also refer to Remark 1 in Kengne (2012). The usual choice of such 
sequence is vm = (logm)� , with 3∕2 ≤ � ≤ 3 (see Doukhan and Kengne 2015; Diop 
and Kengne 2017; Bardet and Kengne 2014; Kengne 2012). We have evaluated the 
procedure with vm = [(logm)2], [(logm)2.25], [(logm)2.5], [(logm)2.75], [(logm)3] for 
the INGARCH(1, 1) models, and have noticed that the choice vm = [(logm)2.25] dis-
played a good trade-off between the distortion in the empirical level and power.

Note that, for any � ∈ �m,k both �̂(T
�,k) and �̂(T1,m) are estimators of �∗

0
 if change 

does not occur at time k > m , they are asymptotically close and the detector Ĉk,� is not 
too large under H0.

Let T > 1 ( T  can be infinite). The monitoring scheme rejects H0 at the first time 
k between m and [Tm] where there exists � ∈ �m,k such that �Ck,� > c for a suitable 
constant c > 0 to be computed, where [x] denotes the integer part of x. The proce-
dure is called closed-end (resp. open-end) method when T < ∞ (resp. T = ∞ ). To be 
more general, we will use a function b ∶ (0,∞) ↦ (0,∞) , called a boundary function 
satisfying:

Assumption B b ∶ (0,∞) ↦ (0,∞) is a non-increasing and continuous function such 
that inf 0<t<∞b(t) > 0.

Then, the monitoring scheme stops at the first time k (with m < k ≤ [Tm] + 1 ) such 
that �Ck,� > b((k − �)∕m) for some � ∈ �m,k . Therefore, define the stopping time:

�m,k ∶= {m − vm,m − vm + 1,… , k − vm}.

vm → ∞ and vm∕
√
m → 0 (m → ∞).

𝜏(m) ∶= inf
{
m < k < [Tm] + 1

/
∃� ∈ 𝛱m,k,

�Ck,� > b((k − �)∕m)
}

= inf

{
m < k < [Tm] + 1

/
max
�∈𝛱m,k

�Ck,�

b((k − �)∕m)
> 1

}
,
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with the convention that inf{�} = ∞ . Therefore, we have

The challenge is to choose a suitable boundary function b(⋅) such that for some given 
� ∈ (0, 1),

and

where the hypothesis H0 and H1 are formulated above.
In the case of a boundary function, that is b ≡ c for some c > 0 , it holds from 

(20) that P{𝜏(m) < ∞} = P
{
sup m<k<[Tm]+1 max

�∈𝛱m,k

�Ck,� > c
}
 . Then, the 

aim is to compute a threshold c = c
�
 satisfying limm→∞ PH0

{𝜏(m) < ∞} = 𝛼 and 
limm→∞ PH1

{𝜏(m) < ∞} = 1 . If change is detected under H1 i.e. 𝜏(m) < ∞ and 
𝜏(m) > k∗ , then the detection delay is defined by

d̂m is used to assess the efficiency of the procedure to early detect changes in the 
model. The smaller is the detection delay, the better is the efficiency under the 
alternative.

4.1  Asymptotic under the null hypothesis

Under H0 , all the observations are generated from the model (6) according to the 
parameter �∗

0
 . The following theorem displays the asymptotic behavior under the 

null hypothesis of the detector Ĉm,k for the open and closed-end procedure.

Theorem 3 Assume that D(�) , Id(�) , Var(� ) and Ai(�)i = 0, 1, 2 hold with

Under H 0 with 𝜃∗
0
∈ �̊� , for the open-end ( T = ∞ ) and closed-end ( T < ∞ ) proce-

dure it holds that

where Wd is a d -dimensional standard Brownian motion.

(20)

P{𝜏(m) < ∞} = P

{
max
�∈𝛱m,k

�Ck,�

b((k − �)∕m)
> 1 for some k between m and [Tm] + 1

}

= P

{
sup

m<k<[Tm]+1

max
�∈𝛱m,k

�Ck,�

b((k − �)∕m)
> 1

}
.

lim
m→∞

PH0
{𝜏(m) < ∞} = 𝛼

lim
m→∞

PH1
{𝜏(m) < ∞} = 1,

(21)d̂m = �(m) − k∗.

𝛼
(i)

j
= O(j−𝛾 ), for some 𝛾 > 3∕2.

(22)lim
m→∞

P{𝜏(m) < ∞} = P

�
sup
1<t≤T

sup
0<s<t−1

‖Wd(s) − sWd(1))‖
t b(s)

> 1

�
,
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Assume that b(s) = cb0(s) for some function b0 satisfying the assumption B, with 
c > 0 . Thus, at a nominal level � ∈ (0, 1) , the monitoring procedure stops and rejects 
H0 at the first time k (with 1 < k ≤ [Tm] + 1 ) such that

where c
�,d,T  is the (1 − �)-quantile of the distribution of 

sup1<t≤T sup0<s<t−1
‖Wd(s) − sWd(1))‖

t b0(s)
.

In Sect. 5, for numerical convenience, we will use the simplest boundary function 
b(⋅) = c where c is a positive constant. In this case, it follows directly from Theo-
rem 3 that

where

The (1 − �)-quantile c
�,d,T  of the distribution of Ud,T  can be computed through 

Monte-Carlo simulations. With � = 0.05 , we have obtained c
�,3,1.5 = 1.679 and 

c
�,3,2 = 1.803.

4.2  Asymptotic under the alternative

Under the alternative, a change occurs at time k∗ > m and contrary to some recent 
works (for instance: Franke et al. 2012; Doukhan and Kengne 2015; Kengne 2015; 
Kirch and Kamgaing 2015; Diop and Kengne 2017; Kirch and Weber 2018, ...), we 
do not set any additional assumption on the process after the change-point.

Many recent works impose stationarity after the change-point. This assumption is 
too strong for autoregressive process; note that, in model (5) with t > k∗,

depends on �∗
1
 and it is contaminated by observations which depend on �∗

0
 . This 

shows that, stationarity assumption on the observations after the change-point is 
quite questionable and nonstationary approach seems to be suitable. The proof of 
the following theorem is heavily based on the result of Theorem 1. The results below 
show that the proposed monitoring procedure is consistent under the alternative for 
both the open-end and the closed-end methods.

Theorem 4 Assume that D(�) , Id(�) , Var(� ) and Ai(�) i = 0, 1, 2 hold with

max
�∈𝛱m,k

�Ck,�

b0((k − �)∕m)
> c

𝛼,d,T

lim
m→∞

P{𝜏(m) < ∞} = P{Ud,T > c}

(23)Ud,T = sup
1<t≤T

sup
0<s<t−1

1

t
‖Wd(s) − sWd(1))‖.

�t = f
�
∗
1
(Yt−1, Yt−2,…)

𝛼
(i)

j
= O(j−𝛾 ), for some 𝛾 > 3∕2.
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Under the alternative H1 , if 𝜃∗
0
, 𝜃∗

1
∈ �̊� and there exists T∗ ∈ (1, T) such that 

k∗ = [T∗m] , for the open-end ( T = ∞ ) and closed-end ( T < ∞ ) procedure, then for 
km = k∗ + m� with � ∈ (1∕2, 1) , it holds that

The Corollary 1 follows immediately from Theorem 4.

Corollary 1 Under the assumptions of Theorem 4,

Therefore, it follows from Theorem  4 that with probability one, the change is 
asymptotically detected both for open-end and closed-end (when T∗ < T  ) proce-
dures and the detection delay d̂n can be bounded by OP(m

1∕2+�) for any 𝜀 > 0 (or 
even by OP

�√
m(logm)a

�
 with a > 0 using the same kind of proof).

5  Some numerical results

In this section, we conduct a small simulation study and a real data example in 
order to display some empirical performances of the proposed sequential change-
point procedure. We focus on the closed-end procedure with T = 1.5, 2 ; that is, the 
historical available data are X1,… ,Xm and the monitoring periods considered are 
{m + 1,… , 1.5m} and {m + 1,… , 2m} . In the sequel, the detector of the sequential 
procedure is computed with vm = [(logm)2.25] (see Sect. 4).

5.1  Sequential change‑point detection in Poisson INGARCH

We consider a Poisson INGARCH(1, 1)

where �∗
0
= (�∗

0
, �∗

1
, �∗

1
) denote the parameter of the model. For any k > m , denote 

Ĉk = max
�∈�m,k

Ĉk,� . For m = 1000 , Fig. 1 displays the statistics (Ĉk)1001≤k≤1500 in a sce-

nario without change (a) and a scenario with a change-point at k∗ = 1.25m = 1250 
(b). Figure 1a shows that the detector Ĉk is under the horizontal line that defines the 
critical region of the test; whereas in Fig. 1b, the detector is under the horizontal line 
before a change occurs, and increases with a high rate until exceeds the critical value 
after the change-point. As pointed out by Bardet and Kengne (2014), such growth 
rate over a long period indicates that something is happening in the model.

Note that, a classical fluctuation test for sequential change-point detection is 
based on the detector (see for instance Chu et al. 1996; Leisch et al. 2000; Na et al. 
2011),

(24)max
�∈�m,km

Ĉkm,�

b((km − �)∕m)

a.s.
⟶
m→∞

∞.

lim
m→∞

P{𝜏(m) < ∞} = 1.

(25)Yt|Ft−1 ∼ Poisson (�t) with �t = �
∗

0
+ �

∗

1
�t−1 + �

∗

1
Yt−1
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With this statistic and with the constant boundary function b ≡ c > 0 , the procedure 
stops (and rejects H0 ) at the first time k (with m < k ≤ [Tm] + 1 ) such that �Dk > c . 
The associated stopping time is,

Therefore,

This statistic has been applied by Kengne (2015) to Poisson autoregressive models 
(5) but without asymptotic study under H1 . Under H0 , they proved that,

Thus, at a nominal level � ∈ (0, 1) , take c = c̃
𝛼,d,T  , the (1 − �)-quantile of the distri-

bution sup1<t≤T
�‖Wd(t) − tWd(1))‖∕t

�
 . From the procedure described on page 105 

in Kengne (2015), we get with � = 0.05 , c̃
𝛼,3,1.5 = 1.740 and c̃

𝛼,3,2 = 2.130.
Table 1 indicates the empirical levels and powers obtained after 500 replica-

tions for the procedures based on the statistics Ĉk and D̂k , for m = 200, 500, 1000.

�Dk ∶=
√
m�� �𝛴

1∕2
m

�
�𝜃(T1,k) −

�𝜃(T1,m)
��� for any k > m.

𝜏(m) ∶= inf
{
m < k < [Tm] + 1, �Dk > c

}
.

P{𝜏(m) < ∞} = P

{
sup

m<k<[Tm]+1

�Dk > c

}
.

lim
m→∞

P{𝜏(m) < ∞} = P

�
sup
1<t≤T

‖Wd(t) − tWd(1))‖
t

> c

�
.

 a−) Ck  for Poisson INGARCH(1,1) without change

k

1000 1100 1200 1300 1400 1500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 b−) Ck  for Poisson INGARCH(1,1) with a break at k*=1250 

k

1000 1100 1200 1300 1400 1500

0
1

2
3

4
5

Fig. 1  A realization of the detector (Ĉ
k
)1001≤k≤1500 for a Poisson INGARCH(1, 1) with m = 1000 . a The 

parameter �∗
0
= (1, 0.2, 0.15) is constant; b the parameter �∗

0
= (1, 0.2, 0.15) changes to �∗

1
= (1, 0.2, 0.5) 

at k∗ = 1250 . The horizontal solid line represents the limit of the critical region, the vertical dotted line 
indicates where the change occurs and the vertical solid line indicates the time where the sequential pro-
cedure detects a break in the observations
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Some elementary statistics of the empirical detection delay (defined at (21)) for 
the first two scenarios are summarized in Table 2. In the third scenario (with a large 
discrepancy between the model before and after the change-point), both the proce-
dures based on Ĉk and D̂k work very well and provide very good detection delay.

The results of Table  1 display some distortion in the empirical levels when 
m = 200, 500 . But the empirical level decreases as m increases and for the three sce-
narios, it is close to the nominal level when m = 1000 for both the detectors Ĉk and 

Table 1  Empirical levels and powers for sequential change-point detection in Poisson INGARCH(1, 1) 
model, with procedures based on the statistics Ĉ

k
 and D̂

k

The empirical levels are computed when �∗
0
= (1, 0.2, 0.15), (0.75, 0.5, 0.3), (2.5, 0, 0.35) is constant 

(under H0 ) and the empirical powers when �∗
0
= (1, 0.2, 0.15), (0.75, 0.5, 0.3), (2.5, 0, 0, 0.35) changes 

respectively to �∗
1
= (1, 0.2, 0.5), (0.25, 0.5, 0.3), (4.5, 0.05, 0.6) (under the alternative) at k∗ = 1.25m

Detector m = 200 m = 500 m = 1000

Empirical levels
�
∗
0
= (1, 0.2, 0.15) T = 1.5 Ĉ

k
0.078 0.062 0.052

D̂
k

0.074 0.060 0.050

T = 2 Ĉ
k

0.082 0.064 0.054

D̂
k

0.076 0.060 0.052

�
∗
0
= (0.75, 0.5, 0.3) T = 1.5 Ĉ

k
0.080 0.068 0.054

D̂
k

0.074 0.056 0.048

T = 2 Ĉ
k

0.102 0.072 0.058

D̂
k

0.086 0.054 0.044

�
∗
0
= (2.5, 0, 0.35) T = 1.5 Ĉ

k
0.076 0.060 0.042

D̂
k

0.056 0.038 0.046

T = 2 Ĉ
k

0.088 0.066 0.058

D̂
k

0.052 0.054 0.042

Empirical powers
�
∗
0
= (1, 0.2, 0.15) ; �∗

1
= (1, 0.2, 0.5) T = 1.5 Ĉ

k
0.782 0.958 0.994

D̂
k

0.608 0.778 0.894

T = 2 Ĉ
k

0.934 0.980 1

D̂
k

0.710 0.834 0.916

�
∗
0
= (0.75, 0.5, 0.3) ; �∗

1
= (0.25, 0.5, 0.3) T = 1.5 Ĉ

k
0.844 0.966 1

D̂
k

0.632 0.786 0.982

T = 2 Ĉ
k

0.900 0.988 1

D̂
k

0.616 0.830 0.908

�
∗
0
= (2.5, 0, 0.35) ; �∗

1
= (4.5, 0.05, 0.6) T = 1.5 Ĉ

k
0.968 1 1

D̂
k

0.854 1 1

T = 2 Ĉ
k

0.988 1 1

D̂
k

0.850 0.966 1
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D̂k . Also, the empirical power increases with m and approaches one when m = 1000 
for the procedure based on Ĉk , which outperforms the detector D̂k ; and the empirical 
power is overall a bit more accurate when T = 2 than T = 1.5.

These findings are consistent with Theorem 3 and Corollary 1.
In Table  2, for example, when m = 200 with a change occurred at the time 

k∗ = 250 in the first scenario, this break is detected on average after a delay of 
29, 30 respectively for the procedure based on Ĉk and D̂k when T = 1.5 . It appears 
that, the detection delay when T = 2 is slightly larger than the case when T = 1.5 ; 
this is not surprising since the monitoring period with T = 2 is greater. Moreover, 

Table 2  Elementary statistics of the empirical detection delay for sequential change-point detection in a 
Poisson INGARCH(1, 1)

d̂
m

Detector Mean SD Min Q1 Med Q3 Max

�
∗
0
= (1, 0.2, 0.15) ; �∗

1
= (1, 0.2, 0.5)

m = 200 ; k∗ = 250 T = 1.5 Ĉ
k

28.77 9.78 8 24 31 38 50

D̂
k

29.67 11.88 7 18 28 39 50

T = 2 Ĉ
k

39.80 20.09 7 29 35 50 113

D̂
k

49.94 29.04 7 30 45 63 142

m = 500 ; k∗ = 625 T = 1.5 Ĉ
k

48.41 19.04 6 35 48 61 91

D̂
k

48.19 26.25 4 26 42 55 109

T  = 2 Ĉ
k

53.48 27.68 5 35 53 66 135

D̂
k

73.55 65.23 5 38 50 81 360

m = 1000 ; k∗ = 1250 T = 1.5 Ĉ
k

69.51 31.65 12 49 69 81 175

D̂
k

61.29 27.78 16 36 55 69 141

T = 2 Ĉ
k

78.33 31.71 28 60 75 90 208

D̂
k

90.65 84.67 22 49 63 96 576

�
∗
0
= (0.75, 0.5, 0.3) ; �∗

1
= (0.25, 0.5, 0.3)

m = 200 ; k∗ = 250 T = 1.5 Ĉ
k

25.06 11.73 3 19 27 34 50

D̂
k

24.07 14.28 4 15 22 35 49

T = 2 Ĉ
k

25.65 14.98 4 20 25 29 95

D̂
k

34.00 28.05 6 13 21 35 93

m = 500 ; k∗ = 625 T  = 1.5 Ĉ
k

41.76 20.43 5 32 39 49 102

D̂
k

45.69 21.07 8 28 41 57 108

T = 2 Ĉ
k

46.73 29.22 3 35 40 49 244

D̂
k

54.78 25.82 17 33 47 66 149

m = 1000 ; k∗ = 1250 T = 1.5 Ĉ
k

58.42 29.05 3 46 55 74 139

D̂
k

56.81 20.63 3 38 58 67 98

T = 2 Ĉ
k

62.60 27.79 8 47 56 69 174

D̂
k

76.41 31.17 26 50 73 104 158
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one can notice that the detection delay displayed by the detector Ĉk is overall more 
accurate than that based on D̂k . We can also see that, for two historical sample 
sizes m1 and m2 with m1 < m2 , the sequence d̂m2

−
√
m2∕m1d̂m1

 overall decreases 
when m1 and m2 increases and it is on average, close or less than 0 when m1 = 500 
and m2 = 1000 . This is in accordance with Theorem 4 where d̂m can be bounded 
by OP

(
m1∕2+�

)
 for any 𝜖 > 0.

5.2  Real data example

We consider the daily number of trades in the stock of Technofirst listed in the 
NYSE Euronext group. These data have been analyzed by Ahmad and Francq 
(2016) with the Poisson Quasi-maximum Likelihood Estimator (PQMLE); 
they have applied a test of nullity of the coefficient and have concluded that the 
INGARCH(1, 3) model is more appropriate [in comparison to INGARCH(1, 2) 
and INGARCH(1, 1) representation]. Diop and Kengne (2021) have applied a 
multiple change-point procedure with an INGARCH(1, 1) representation based 
on the PQMLE. We consider the data from 04 January 2010 to 05 September 
2011 (see Fig. 2); there are 310 observations.

For the data from t = 1 to t = 230 , Diop and Kengne (2021) have showed that 
the INARCH(1) representation is more appropriate and the INGARCH(1, 1) rep-
resentation has been used for t > 230 . So, we applied the Poisson INGARCH(1, 1) 
model and considered the observations from t = 1 to t = 207 as the historical data. 

Daily number of trades in the stock Technofirst

Time

Nu
m
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f t
ra
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s

0 50 100 150 200 250 300
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Fig. 2  Daily number of trades in the stock of Technofirst from 04 January 2010 to 05 September 2011. 
The solid line represents the break that has been detected by Diop and Kengne (2021) from a retrospec-
tive procedure. The dotted line indicates the stopping time of the sequential procedure proposed
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We carry out the sequential procedure in the closed-end setting with T = 1.5 ; so, 
[T × m] = 310 . Therefore, the monitoring starts at the time t = 208 . The estima-
tion of the parameter computed on the historical data is �̂0 = (2.43, 2 × 10−8, 0.35).

Figure  3 displays the realizations of the detector Ĉk = max
�∈�n,k

Ĉk,� , with 
k = 208,… , 310 . One can see that the sequential procedure stops at time t = 237 . 
In terms of the detection delay, it appears that the procedure works well for this real 
data example, in the sense that the sequential procedure stops 7 days after the break 
time detected by Diop and Kengne (2021).

6  Concluding remarks

This work addresses the question of inference for nonstationary time series of 
counts. After a time k∗ , the process is a nonstationary Poisson autoregressive model 
with the conditional mean that depends on a parameter �∗ . We carry out an approx-
imation study between this process and the stationary regime which allows us to 
establish that the MLE of �∗ computed with the nonstationary observations is con-
sistent and asymptotically normal. We thus provide a detailed proof of an issue that 
has been addressed by Doukhan and Kengne (2015) (see Remark 4.1). These results 
are very useful for both the retrospective and the sequential change-point problem. 
We perform an application to sequential change-point detection and propose a con-
sistent procedure in which the detection delay can be bounded by OP

(
m1∕2+�

)
 for 

any 𝜖 > 0 . Empirical studies show that the procedure works well for simulated and 

Ck  for the number of trades

k

220 240 260 280 300

0
1

2
3

4
5

6
7

Fig. 3  Realizations of the statistics (Ĉ
k
)208≤k≤310 for the daily number of trades in the stock of Technofirst 

from 04 January 2010 to 05 September 2011; the historical data considered are the first 207 observations. 
The horizontal solid line represents the limit of the critical region, the vertical dotted line represents the 
break that has been detected by using the retrospective procedure of Diop and Kengne (2021) and the 
vertical solid line indicates the stopping time of the sequential procedure
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real data example with satisfactory detection delay. An extension of this work is the 
study of the inference for nonstationary models where the conditional distribution is 
different from Poisson, and could be for instance negative binomial, binary, etc.

7  Proofs of main results

Let (�n)n and (rm)m be sequences of random variables or vectors. Throughout this sec-
tion, we use the notation �m = oP(rm) to mean: for all 𝜀 > 0, P(‖𝜓m‖ ≥ 𝜀‖rm‖) → 0 
as m → ∞ . Write �m = OP(rm) to mean: for all 𝜀 > 0 , there exists C > 0 such that 
P(‖�m‖ ≥ C‖rm‖) ≤ � for n large enough.

Proof of Proposition 1 We will prove that, for all r ∈ ℕ , there exists Cr > 0 such that

Recall that for all � ≥ 1,

According to the assumption A0(�) , we have for all � ≥ 1,

In the sequel, we set �(0) =
∑

j≥1 �
(0)

j
 . If (26) holds for some r ∈ ℕ , then we get from 

the Jensen’s inequality,

Moreover, under (26), for some r ∈ ℕ since Ys
t
≤ Yr

t
 a.s. for any s ≤ r , we have 

�Ys
t
≤ Cr for s ≤ r . Thus, we can get Cs ≤ Cr for any s ≤ r . Therefore, for all � ≥ 1,

(26)𝔼Yr
t
≤ Cr, ∀t ∈ ℤ.

Yk∗+�|Fk∗+�−1 ∼ Poisson (�k∗+�) with �k∗+� = f
�∗
(Yk∗+�−1, Yk∗+�−2,…) = f k

∗+�

�∗
.

(27)f k
∗+�

�∗
≤ |f k∗+�

�∗
− f

�∗
(0)| + f

�∗
(0) ≤

∑
j≥1

�
(0)

j
Yk∗+�−j + f

�∗
(0).

(28)
�

���
j≥1

�
(0)

j
Yk∗+�−j

�r�
=(�(0))r�

⎡
⎢⎢⎣

⎛
⎜⎜⎝
�
j≥1

�
(0)

j

�(0)
Yk∗+�−j

⎞
⎟⎟⎠

r⎤
⎥⎥⎦

≤ (�(0))r−1
�
j≥1

�
(0)

j
�Yr

k∗+�−j
≤ (�(0))rCr.
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with Cr,f = Cr

(
�
(0) + f

�∗
(0)

)r.
Let us show by induction that for all r ∈ ℕ , there exists Cr > 0 such that (26) 

holds. For r = 1 , if C1 exists, we will have �Yt ≤ C1 for all t ≤ k∗ ; and according to 
(27), for all � ≥ 1,

Hence, (26) holds with C1 = max(C1,0,
1

1−�(0)
f
�∗
(0)) . Indeed, from the assumption of 

the proposition, �Yt ≤ C1,0 for t ≤ k∗ , thus �Yt ≤ C1 for t ≤ k∗ . Moreover, from the 
above inequality, �Yk∗+1 ≤

∑
j≥1 �

(0)

j
�Yk∗+1−j + f

�∗
(0) ≤ �

(0)C1,0 + f
�∗
(0) . If 

C1,0 ≤
1

1−�(0)
f
�∗
(0) , then

else, if 1

1−�(0)
f
�∗
(0) ≤ C1,0 , then

Thus, in both cases, �Yk∗+1 ≤ C1 . Also,

where the last inequality is obtained by considering the two cases C1,0 ≤
1

1−�(0)
f
�∗
(0) 

and 1

1−�(0)
f
�∗
(0) ≤ C1,0 as above. Similarly, we have EYk∗+� ≤ C1 for all � ≥ 1 . In 

addition to �Yt ≤ C1,0 ≤ C1 for t ≤ k∗ , we get �Yt ≤ C1 for all t ∈ ℤ.
Assume (26) holds until r ∈ ℕ . According to Lemma 1 of Ferland et al. (2006) 

(see also Lemma A.1. of Doukhan et al. 2012) and (29), for all � ≥ 1,

(29)

�[(f k
∗+�

�∗
)r] ≤ �

[(∑
j≥1

�
(0)

j
Yk∗+�−j + f

�∗
(0)

)r]

≤

r∑
s=0

(
r

s

)(
f
�
∗
1
(0)

)r−s
�

[(∑
j≥1

�
(0)

j
Yk∗+�−j

)s]

≤

r∑
s=0

(
r

s

)(
f
�∗
(0)

)r−s
(�(0))sCs

≤

r∑
s=0

Cr

(
r

s

)(
f
�∗
(0)

)r−s
(�(0))s ≤ Cr

(
�
(0) + f

�∗
(0)

)r
≤ Cr,f

�Yk∗+� = �f k
∗+�

�∗
≤
∑
j≥1

�
(0)

j
�Yk∗+�−j + f

�∗
(0) ≤ �

(0)C1 + f
�∗
(0).

�Yk∗+1 ≤ �
(0) 1

1 − �(0)
f
�∗
(0) + f

�∗
(0) =

1

1 − �(0)
f
�∗
(0) ≤ C1;

�Yk∗+1 ≤ �
(0)C1,0 + (1 − �

(0))C1,0 = C1,0 ≤ C1.

EYk∗+2 ≤
∑
j≥1

�
(0)

j
�Yk∗+2−j + f

�∗
(0) =

∑
j≥2

�
(0)

j
�Yk∗+2−j + �

(0)

1
�Yk∗+1 + f

�∗
(0)

≤
∑
j≥2

�
(0)

j
C1,0 + �

(0)

1
C1 + f

�∗
(0) ≤

∑
j≥2

�
(0)

j
C1 + �

(0)

1
C1 + f

�∗
(0)

= �
(0)C1 + f

�∗
(0) ≤ C1;
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where for all n, k ∈ ℕ0 , 
{

n

k

}
 denotes the Stirling numbers of the second kind that 

satisfies the recurrence 
{

n

k

}
=

{
n − 1

k − 1

}
+ k

{
n − 1

k

}
 with 

{
n

n

}
= 1 ∀n ∈ ℕ0 , {

n

0

}
= 0 ∀n ∈ ℕ and 

{
n

k

}
= 0 if k > n . Hence, if Cr+1 exists, it must satisfy 

Cr+1 ≥ �Yr+1
t

 for all t ≤ k∗ ; and according to (27) and (28), we have

Hence, (30) gives

(30)

�Yr+1
k∗+�

= �
(
�(Yr+1

k∗+�
|Fk∗+�−1)

)
=

r+1∑
s=0

{
r + 1

s

}
�[(f k

∗+�

�∗
)s]

= �[(f k
∗+�

�∗
)r+1] +

r∑
s=0

{
r + 1

s

}
�[(f k

∗+�

�∗
)s]

≤ �[(f k
∗+�

�∗
)r+1] +

r∑
s=0

{
r + 1

s

}
Cs,f

�[(f k
∗+�

�∗
)r+1] ≤ �

⎡
⎢⎢⎣

��
j≥1

�
(0)

j
Yk∗+�−j + f

�∗
(0)

�r+1⎤
⎥⎥⎦

≤

r+1�
s=0

�
r + 1

s

��
f
�∗
(0)

�r−s+1
�

���
j≥1

�
(0)

j
Yk∗+�−j

�s�

≤ �

⎡⎢⎢⎣

��
j≥1

�
(0)

j
Yk∗+�−j

�r+1⎤⎥⎥⎦

+

r�
s=0

�
r + 1

s

��
f
�∗
(0)

�r−s+1
�

���
j≥1

�
(0)

j
Yk∗+�−j

�s�

≤ (�(0))r+1Cr+1 +

r�
s=0

�
r + 1

s

��
f
�∗
(0)

�r−s+1
(�(0))sCs

≤ (�(0))r+1Cr+1 + Cr

r�
s=0

�
r + 1

s

��
f
�∗
(0)

�r−s+1
(�(0))s

≤ (�(0))r+1Cr+1 + Cr

�
(�(0) + f

�∗
(0))r+1 − (�(0))r+1

�
.

�Yr+1
k∗+�

≤ (�(0))r+1Cr+1 + Cr

(
(�(0) + f

�∗
(0))r+1 − (�(0))r+1

)
+

r∑
s=0

{
r + 1

s

}
Cs,f .
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Thus, (26) holds with Cr+1 = max

⎛
⎜⎜⎜⎜⎜⎝

Cr,0,

Cr

�
(�(0)+f

�∗ (0))
r+1−(�(0))r+1

�
+
∑r

s=0

⎧⎪⎨⎪⎩

r + 1

s

⎫⎪⎬⎪⎭
Cs,f

1−(�(0))r+1

⎞
⎟⎟⎟⎟⎟⎠

 . 

With this value of Cr+1 , on can prove as above that �Yr+1
t

≤ Cr+1 for all t ∈ ℤ . This 
completes the proof of the Proposition.   ◻

As stated in the Introduction, the following approximation study to the station-
ary regime plays a key role in the proof Theorems 1 and 2.

7.1  Approximation with stationary solutions after the change‑point

Under the Lipschitz-type A0(�) , there exists (see Doukhan et  al. 2012, 2013) 
a stationary and ergodic solutions of the process after k∗ ; that is, there exists a 
stationary and ergodic process Ỹ = (Ỹt)t∈ℤ with finite moment of any order, 
satisfying:

where F̃t = 𝜎(Ỹs, s ≤ t) is the �-field generated by the whole past of Ỹ .
For T ⊂ ℕ , let us consider the conditional (log)-likelihood function (up to a con-

stant) of this stationary regime computed on T:

where �̃�t(𝜃) = f
𝜃
(Ỹt−1,…) ; we will use the notation

The following lemma provides an approximation of the process (Yt)t>k∗ to the second 
stationary regime.

Lemma 1 Consider the model (2) and assume that the conditions of Theorem 1 hold. 
There exists C > 0 such that for all � ≥ 1,

where �(0) =
∑

k≥1 �
(0)

k
.

Proof From the representation (4), we can write (see also Remark 4.1 of Doukhan 
and Kengne 2015),

(31)Ỹt|F̃t−1 ∼ Poisson (�̃�t) with �̃�t = f
𝜃∗
(Ỹt−1, Ỹt−2,…) for t ∈ ℤ

(32)
L̃(T , 𝜃) =

∑
t∈T

(
Ỹt log �̃�t(𝜃) − �̃�t(𝜃)

)
=
∑
t∈T

�̃t(𝜃) with �̃t(𝜃)

= Ỹt log �̃�t(𝜃) − �̃�t(𝜃)

(33)f̃ t
𝜃
= f

𝜃
(Ỹt−1,…), for all t ∈ ℤ.

(34)�|Yk∗+� − Ỹk∗+�| ≤ C

(
inf

1≤p≤�

{
(𝛼(0))�∕p +

∑
k≥p

𝛼
(0)

k

})
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and

Hence, we have

where

Therefore,

where the third equality holds since |Nk∗+�(f
k∗+�
𝜃∗

) − Nk∗+�(f̃
k∗+�
𝜃∗

)| | Fk∗+�−1, F̃k∗+�−1 
can also be considered as a number of events Nt that occur in the time interval 
[0, |f k∗+�

𝜃∗
− f̃ k

∗+�

𝜃∗
|].

For all � ∈ ℕ , set u
�
∶= �|Yk∗+� − Ỹk∗+�| . According to Proposition 1, we can 

find a constant C1 > 0 satisfying �Yt ≤ C1 for all t ∈ ℤ . Hence, since the process 
Ỹ  is stationary, we have for any � ∈ ℕ , u

�
≤ �Yk∗+� + �Ỹk∗+� ≤ C1 + �Ỹ0 . Set 

C = C1 + �Ỹ0 . Let us show by induction on � that for any � ∈ ℕ,

For � = 1 , (36) holds according to (35). Assume that (36) holds until � . Let 
1 ≤ p ≤ � + 1 . From (35), we have

Yk∗+� = Nk∗+�(�k∗+�) with �k∗+� = f k
∗+�

�∗
= f

�∗
(Yk∗+�−1,…)

Ỹk∗+� = Nk∗+�(�̃�k∗+�) with �̃�k∗+� = f̃ k
∗+�

𝜃∗
= f

𝜃∗
(Ỹk∗+�−1,…).

Yk∗+� = F(Yk∗+�−1,… ;Nk∗+�) and Ỹk∗+� = F(Ỹk∗+�−1,… ;Nk∗+�)

F(y1, y2,… ;Nk∗+�) = Nk∗+�(f�∗ (y1, y2,…)) for any yk ∈ ℕ, k ≥ 1.

(35)

�|Yk∗+� − Ỹk∗+�| = �|F(Yk∗+� ,… ;Nk∗+�) − F(Ỹk∗+� ,… ;Nk∗+�)|
= �|Nk∗+�(f

k∗+�
𝜃∗

) − Nk∗+�(f̃
k∗+�
𝜃∗

)|
= �

[
�[|Nk∗+�(f

k∗+�
𝜃∗

) − Nk∗+�(f̃
k∗+�
𝜃∗

)| | Fk∗+�−1, F̃k∗+�−1]
]

= �|f k∗+�
𝜃∗

− f̃ k
∗+�

𝜃∗
|

= �|f
𝜃∗
(Yk∗+�−1,…) − f

𝜃∗
(Ỹk∗+�−1,…)|

≤
∑
k≥1

𝛼
(0)

k
�|Yk∗+�−k − Ỹk∗+�−k|

(36)u
�
≤ C

(
inf

1≤p≤�

{
(�(0))�∕p +

1

1 − �(0)

∑
k≥p

�
(0)

k

})
.
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Therefore (36) holds for � + 1 . Thus, (34) holds. Note that, in the inequality (37), we 
have applied

even when p ≥ � − k + 1 . Indeed, in this case, (� − k + 1)∕p ≤ 1 and since 
�
(0) ∈ (0, 1) , we have �(0) ≤ (�(0))(�−k+1)∕p , then it holds that

  ◻

Proof of Theorem 1 Let us prove that

Indeed, consider the function L̃ ∶ 𝜃 ↦ ��̃0(𝜃) ; where �̃0 is defined in (32). From the 

proof of Theorem 3.1 of Doukhan and Kengne (2015), we have �
(
sup |�̃0(𝜃)|

𝜃∈𝛩

)
< ∞

,

and that the function L̃ has a unique maximum at �∗ . If (38) holds, we will get

(37)

u
�+1 ≤

p−1∑
k=1

�
(0)

k
u
�−k+1 +

∑
k≥p

�
(0)

k
u
�−k+1

≤ C

p−1∑
k=1

�
(0)

k

(
(�(0))(�−k+1)∕p +

1

1 − �(0)

∑
i≥p

�
(0)

i

)
+ C

∑
k≥p

�
(0)

k

≤ C

p−1∑
k=1

�
(0)

k
(�(0))(�−k+1)∕p + C

�
(0)

1 − �(0)

∑
i≥p

�
(0)

i
+ C

∑
k≥p

�
(0)

k

≤ C(�(0))(�−(p−1)+1)∕p�(0) + C
1

1 − �(0)

∑
k≥p

�
(0)

k

≤ C

(
(�(0))(�+1)∕p +

1

1 − �(0)

∑
k≥p

�
(0)

k

)
.

u
�−k+1 ≤ C

(
(�(0))(�−k+1)∕p +

1

1 − �(0)

∑
i≥p

�
(0)

i

)

u
�−k+1 ≤ C

∑
i≥1

�
(0)

i
≤ C�(0) ≤ C(�(0))(�−k+1)∕p

≤ C

(
(�(0))(�−k+1)∕p +

1

1 − �(0)

∑
i≥p

�
(0)

i

)
.

(38)
1

n
‖‖�L

(
Tk∗+1,k∗+n, 𝜃

)
− L̃

(
Tk∗+1,k∗+n, 𝜃

)‖‖𝛩
𝚊.𝚜
⟶
n→∞

0.

‖‖‖‖
1

n
L̃
(
Tk∗+1,k∗+n, 𝜃

)
− L̃(𝜃)

‖‖‖‖𝛩
a.s
⟶
m→∞

0,
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and standard arguments can be used to conclude that �̂(Tk∗+1,k∗+n)
a.s
⟶
n→∞

�
∗ . Thus, to 

complete the proof of the Theorem, it suffices to prove (38).
In the sequel, C denotes a positive constant whom value may differ from an ine-

quality to another. We have

Let 0 < r < 1 . According to Kounias and Weng (1969), it suffices to show that

By using the inequality |a1b1 − a2b2| ≤ |a1||b1 − b2| + |b2||a1 − a2| 
∀a1, a2, b1, b2 ∈ ℝ , we get for all � ∈ ℕ and � ∈ �,

By applying the mean value theorem at the function x ↦ log x on [c,+∞[ (since 
�f k

∗+�

𝜃
, f̃ k

∗+�

𝜃
≥ c from the assumption D (�) ), we get 

| log�f k∗+�
𝜃

− log f̃ k
∗+�

𝜃
| ≤ 1

c
|�f k∗+�
𝜃

− f̃ k
∗+�

𝜃
| . Moreover, from the inequality 

log x ≤ x − 1,∀x ≥ 1 , we have | log f̃ k∗+�
𝜃

| = | log f̃ k
∗+�

𝜃

c
+ log c| ≤ | f̃ k

∗+�

𝜃

c
− 1| + | log c| . 

Hence,

and from the Hölder’s inequality, we get

‖‖‖‖
1

n
�L
(
Tk∗+1,k∗+n, 𝜃

)
− L̃(𝜃)

‖‖‖‖𝛩
a.s
⟶
m→∞

0;

1

n
���L

�
Tk∗+1,k∗+n, 𝜃

�
− L̃

�
Tk∗+1,k∗+n, 𝜃

���𝛩
≤

1

n

�
t∈Tk∗+1,k∗+n

‖�lt(𝜃) − l̃t(𝜃)‖𝛩

≤
1

n

n�
t=1

‖�lk∗+t(𝜃) − l̃k∗+t(𝜃)‖𝛩.

(39)
�
�≥1

�
1

�

�r

�

�
‖�lk∗+�(𝜃) − l̃k∗+�(𝜃)‖r𝛩

�
< ∞.

|||�lk∗+�(𝜃) − l̃k∗+�(𝜃)
||| =

|||Yk∗+� log�f
k∗+�
𝜃

−�f k
∗+�

𝜃
− Ỹk∗+� log f̃

k∗+�
𝜃

+ f̃ k
∗+�

𝜃

|||
≤
|||Yk∗+� log�f

k∗+�
𝜃

− Ỹk∗+� log f̃
k∗+�
𝜃

||| +
|||�f

k∗+�
𝜃

− f̃ k
∗+�

𝜃

|||
≤ Yk∗+�

|||log�f
k∗+�
𝜃

− log f̃ k
∗+�

𝜃

||| +
|||log f̃

k∗+�
𝜃

||||Yk∗+�
− Ỹk∗+�| + |||�f

k∗+�
𝜃

− f̃ k
∗+�

𝜃

|||.

‖�lk∗+�(𝜃) − l̃k∗+�(𝜃)‖𝛩 ≤ C
�
1 + Yk∗+� + ‖f̃ k∗+�

𝜃
‖
𝛩

���Yk∗+� − Ỹk∗+��
+ ‖�f k∗+�

𝜃
− f̃ k

∗+�

𝜃
‖
𝛩

�
,

�‖�lk∗+�(𝜃) − l̃k∗+�(𝜃)‖r𝛩 ≤ C
�
�
�
1 + Yk∗+� + ‖f̃ k∗+�

𝜃
‖
𝛩

� r

1−r
�1−r

�
�[�Yk∗+� − Ỹk∗+�� + ‖�f k∗+�

𝜃
− f̃ k

∗+�

𝜃
‖
𝛩
]
�r
.
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From Proposition 1, and arguments of its proof, for all s > 0 , we can find a constant 
C > 0 such that �Ys

k∗+�
≤ C , �‖f̂ k∗+�

�
‖s
�
≤ C and �‖f̃ k∗+�

𝜃
‖s
𝛩
≤ C . Therefore,

and also �‖�lk∗+�(𝜃) − l̃k∗+�(𝜃)‖r𝛩 < ∞ for all � ≥ 1 . Hence, it suffices to establish 
(39) with the sum on � ≥ e2 . Let � ≥ e2 , according to the assumption A0(�) and 
(34), we get

Thus, (40) and (34) imply

with p
�
= �∕ log� and C� = 2rC . Hence,

(40)�‖�lk∗+�(𝜃) − l̃k∗+�(𝜃)‖r𝛩 ≤ C
�
��Yk∗+� − Ỹk∗+�� + �‖�f k∗+�

𝜃
− f̃ k

∗+�

𝜃
‖
𝛩

�r
,

�‖�f k∗+�
𝜃

− f̃ k
∗+�

𝜃
‖
𝛩
≤
�
j≥1

𝛼
(0)

j
��Yk∗+�−j − Ỹk∗+�−j�

≤

�∕2−1�
j=1

𝛼
(0)

j
��Yk∗+�−j − Ỹk∗+�−j� + C

�
j≥�∕2

𝛼
(0)

j

≤ C

�∕2−1�
j=1

𝛼
(0)

j

�
inf

1≤p≤�−j

�
(𝛼(0))(�−j)∕p +

�
i≥p

𝛼
(0)

i

��

+ C
�
j≥�∕2

𝛼
(0)

j

≤ C

�
inf

1≤p≤�∕2

�
(𝛼(0))�∕(2p) +

�
i≥p

𝛼
(0)

i

�
+

�
j≥�∕2

𝛼
(0)

j

�
.

�‖�lk∗+�(𝜃) − l̃k∗+�(𝜃)‖r𝛩 ≤ C

�
inf

1≤p≤�

�
(𝛼(0))�∕p +

�
j≥p

𝛼
(0)

j

�

+ inf
1≤p≤�∕2

�
(𝛼(0))�∕(2p) +

�
j≥p

𝛼
(0)

j

�
+

�
j≥�∕2

𝛼
(0)

j

�r

≤ C

�
inf

1≤p≤�∕2

�
(𝛼(0))�∕(2p) +

�
j≥p

𝛼
(0)

j

�
+

�
j≥�∕2

𝛼
(0)

j

�r

≤ C�

�
(𝛼(0))�∕(2p�) +

�
j≥p

�

𝛼
(0)

j

�r

≤ C�

�
(𝛼(0))r�∕(2p�) +

��
j≥p

�

𝛼
(0)

j

�r�
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For r ∈ (max(
2

3
,

2

2−log �(0)
) , 1) , we have r

2
(2 − log 𝛼(0)) > 1 and r𝛾 > 1 ; which ensures 

that the sums on the right-hand side of (41) are finite. Thus, one can find r ∈ (0, 1) 
such that (39) holds; which achieves the proof of (38) and completes the proof of the 
Theorem.   ◻

Proof of Theorem  2 For any 1 ≤ i ≤ d , from the Taylor expansion to the function 
�

��i

L̂n(Tk∗+1,k∗+n, �) , there exists �n,i between �̂(Tk∗+1,k∗+n) and �∗ such that

Hence,

with

Since �̂(Tk∗+1,k∗+n)⟶
n→∞

�
∗ and 𝜃∗ ∈ �̊� , for n large enough, �𝜃(Tk∗+1,k∗+n) ∈ �̊� and 

�

��
L̂n(Tk∗+1,k∗+n, �̂(Tk∗+1,k∗+n)) = 0 . Therefore, (42) gives

(41)

�
�≥e2

�
1

�

�r

�
�‖�lk∗+�(𝜃) − l̃k∗+�(𝜃)‖r𝛩

�

≤ C�
�
�≥e2

�
1

�

�r
�
(𝛼(0))r�∕(2p� )

��
j≥p

�

𝛼
(0)

j

�r�

≤ C�
�
�≥e2

1

�r
(𝛼(0))

r

2
log�

+ C�
�
�≥e2

1

�r

��
j≥p

�

𝛼
(0)

j

�r

≤ C�
�
�≥e2

1

�
r−

r

2
log 𝛼(0)

+ C�
�
�≥e2

1

�r

�
1�

p
�

�𝛾−1
�r

≤ C�
�
�≥e2

1

�
r

2
(2−log 𝛼(0))

+ C�
�
�≥e2

(log�)r(𝛾−1)

�r𝛾
.

�

��i

L̂n(Tk∗+1,k∗+n, �̂(Tk∗+1,k∗+n)) =
�

��i

L̂n(Tk∗+1,k∗+n, �
∗)

+
�
2

����i

L̂n(Tk∗+1,k∗+n, �n,i)

⋅ (�̂(Tk∗+1,k∗+n) − �
∗).

(42)
nĜn ⋅ (�̂(Tk∗+1,k∗+n) − �

∗) =
�

��
L̂n(Tk∗+1,k∗+n, �

∗)

−
�

��
L̂n(Tk∗+1,k∗+n, �̂(Tk∗+1,k∗+n)),

Ĝn = −
1

n

(
�
2

����i

L̂n(Tk∗+1,k∗+n, �n,i)

)

1≤i≤d

.

(43)nĜn ⋅ (�̂(Tk∗+1,k∗+n) − �
∗) =

�

��
L̂n(Tk∗+1,k∗+n, �

∗).
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The following convergences hold (see the proofs in the supplementary material).

From Lemma 7.2 and the proof of Theorem 3.2 of Doukhan and Kengne (2015), it 
follows that:

According to Theorem 1, (44), (45), (47), (48) and (49), we get Ĝn

𝚊.𝚜
⟶
n→∞

�̃ and also 
�̂n

𝚊.𝚜
⟶
n→∞

�̃ . Hence, for n large enough, Ĝn is invertible, therefore in addition to (43), 
(46) and (50) it holds that

  ◻

(44)
1

n

‖‖‖‖
𝜕
2

𝜕𝜃𝜕𝜃�
�L
(
Tk∗+1,k∗+n, 𝜃

)
−

𝜕
2

𝜕𝜃𝜕𝜃�
L̃
(
Tk∗+1,k∗+n, 𝜃

)‖‖‖‖𝛩
𝚊.𝚜
⟶
n→∞

0;

(45)
1

n

‖‖‖‖‖‖

k∗+n∑
t=k∗+1

1

�f t
𝜃

(
𝜕

𝜕𝜃

�f t
𝜃

)(
𝜕

𝜕𝜃

�f t
𝜃

)�

−

k∗+n∑
t=k∗+1

1

f̃ t
𝜃

(
𝜕

𝜕𝜃
f̃ t
𝜃

)(
𝜕

𝜕𝜃
f̃ t
𝜃

)�
‖‖‖‖‖‖𝛩

𝚊.𝚜
⟶
n→∞

0;

(46)�

�
1√
n

����
𝜕

𝜕𝜃

�L
�
Tk∗+1,k∗+n, 𝜃

�
−

𝜕

𝜕𝜃
L̃
�
Tk∗+1,k∗+n, 𝜃

�����𝛩

�
⟶
n→∞

0.

(47)
1

n

‖‖‖‖‖
𝜕
2

𝜕𝜃𝜕𝜃�
L̃
(
Tk∗+1,k∗+n, 𝜃

)
− �

(
𝜕
2

𝜕𝜃𝜕𝜃�
�̃0(𝜃)

)‖‖‖‖‖𝛩
𝚊.𝚜
⟶
n→∞

0;

(48)
‖‖‖‖‖‖

k∗+n∑
t=k∗+1

1

f̃ t
𝜃

(
𝜕

𝜕𝜃
f̃ t
𝜃

)(
𝜕

𝜕𝜃
f̃ t
𝜃

)�

− �

(
1

f̃ 0
𝜃

(
𝜕

𝜕𝜃
f̃ 0
𝜃

)(
𝜕

𝜕𝜃
f̃ 0
𝜃

)�
)‖‖‖‖‖‖𝛩

𝚊.𝚜
⟶
n→∞

0;

(49)�

(
1

f̃ 0
𝜃∗

(
𝜕

𝜕𝜃
f̃ 0
𝜃∗

)(
𝜕

𝜕𝜃
f̃ 0
𝜃∗

)�
)

= −�

(
𝜕
2

𝜕𝜃𝜕𝜃�
�̃0(𝜃

∗)

)
= �𝛴;

(50)
1√
n

𝜕

𝜕𝜃
L̃
�
Tk∗+1,k∗+n, 𝜃

∗
�
=

1√
n

k∗+n�
t=k∗+1

𝜕

𝜕𝜃
�t(𝜃

∗)
D

������������������������→
n→+∞

N(0, �𝛴).

√
n(�̂(Tk∗+1,k∗+n) − �

∗) =
1√
n
Ĝ−1

n

�

��
L̂n(Tk∗+1,k∗+n, �

∗)

=
1√
n
�̃

−1 �

��
L̃n(Tk∗+1,k∗+n, �

∗) + oP(1)

D

������������������������→
n→+∞

N(0, �̃−1).
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Let k > m and T1,m = {1,… ,m} , T
�,k = {�,� + 1,… , k} with 

� ∈ �m,k = {m − vm, vm + 1,… , k − vm} , define

with �̂  defined in (14).

Lemma 2 Under the assumptions of Theorem 3,

Proof For any m ≥ 1 , we have

Therefore, similar arguments as in the proof of Lemma 7.3 of Doukhan and Kengne 
(2015) lead to conclusion.   ◻

Proof of Theorem 3 Recall that

Hence, it suffices to show that

According to Lemma 2, it is enough to show that

Let k > m and � ∈ �m,k . From the proof of Theorem 4.1 of Doukhan and Kengne 
(2015), it holds that, as m → ∞

Therefore,

Ck,𝓁 ∶=
√
m

k − 𝓁

k
���1∕2

⋅
�
�̂(T

𝓁,k) − �̂(T1,m)
���,

sup
k>m

max
�∈𝛱m,k

1

b((k − �)∕m)
||�Ck,� − Ck,�

|| = oP(1) as n → ∞.

sup
k>m

max
�∈𝛱m,k

1

b((k − �)∕m)
||�Ck,� − Ck,�

|| ≤ 1

infs>0 b(s)
sup
k>m

max
�∈𝛱m,k

||�Ck,� − Ck,�
||.

P{𝜏(m) < ∞} = P

{
sup

m<k≤[Tm]+1

max
�∈𝛱m,k

�Ck,�

b((k − �)∕m)
> 1

}
.

(51)

sup
m<k≤[Tm]+1

max
�∈𝛱m,k

1

b((k − �)∕m)
�Ck,�

D

��������������������������→
m→+∞

sup
1<t≤T

sup
0<s<t−1

‖Wd(s) − sWd(1))‖
t b(s)

.

(52)

sup
m<k≤[Tm]+1

max
�∈𝛱m,k

1

b((k − �)∕m)
Ck,�

D

��������������������������→
m→+∞

sup
1<t≤T

sup
0<s<t−1

‖Wd(s) − sWd(1))‖
t b(s)

.

�(�̂(T1,m) − �
∗

0
) =

1

m

�

��
Lm(T1m, �

∗

0
) + oP

�
1√
m

�
and �(�̂(T

�,k) − �
∗

0
)

=
1

k − �

�

��
Lm(T�,k, �

∗

0
) + oP

�
1√
k − �

�
.
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This implies

Hence,

Thus, to complete the proof of the theorem, we will prove that

Let k > m and � ∈ �m,k . We have

Let us consider the following cases. 

�(�̂(T
�,k) − �̂(T1,m)) =

1

k − �

�
�

��
Lm(T�,k, �

∗

0
) −

k − �

m

�

��
Lm(T1,m, �

∗

0
)

�

+ oP

�
1√
k − �

+
1√
m

�
.

√
m
k − �

k
�

1∕2(�̂(T
�,k) − �̂(T1,m)) =

√
m

k
�

−1∕2
�
�

��
Lm(T�,k, �

∗

0
)

−
k − �

m

�

��
Lm(T1,m, �

∗

0
)

�
+ oP(1).

sup
m<k≤[Tm]+1

max
�∈𝛱m,k

1

b((k − �)∕m)

����
√
m
k − �

k
𝛴

1∕2(�𝜃(T
�,k) −

�𝜃(T1,m))

−

√
m

k
𝛴

−1∕2

�
𝜕

𝜕𝜃
Lm(T�,k, 𝜃

∗

0
) −

k − �

m

𝜕

𝜕𝜃
Lm(T1,m, 𝜃

∗

0
)

�������
≤

1

infs>0 b(s)
sup

m<k≤[Tm]+1

max
�∈𝛱m,k

����
√
m
k − �

k
𝛴

1∕2(�𝜃(T
�,k) −

�𝜃(T1,m))

−

√
m

k
𝛴

−1∕2

�
𝜕

𝜕𝜃
Lm(T�,k, 𝜃

∗

0
) −

k − �

m

𝜕

𝜕𝜃
Lm(T1,m, 𝜃

∗

0
)

�����
= oP(1).

(53)

sup
m<k≤[Tm]+1

max
�∈𝛱m,k

1

b((k − �)∕m)

√
m

k

����𝛴
−1∕2

�
𝜕

𝜕𝜃
Lm(T�,k, 𝜃

∗

0
)

−
k − �

m

𝜕

𝜕𝜃
Lm(T1,m, 𝜃

∗

0
)

������
D

��������������������������→
m→+∞

sup
1<t≤T

sup
0<s<t−1

‖Wd(s) − sWd(1))‖
t b(s)

.

√
m

k

�
�

��
Lm(T�,k, �

∗

0
) −

k − �

m

�

��
Lm(T1,m, �

∗

0
)

�

= −
m

k

1√
m

�
k�

i=�

�li(�
∗
0
)

��
−

k − �

m

m�
i=1

�li(�
∗
0
)

��

�
.
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(i) Closed-end procedure.

Let 1 < T < ∞ . Define the set S ∶= {(t, s) ∈ [1, T] × [0, T − 1]∕s < t} . According to 

Doukhan and Kengne (2015), 
(
�li(�

∗
0
)

��
,Fi

)

i∈ℤ

 is a stationary ergodic square inte-

grable martingale difference sequence with covariance matrix � . By the Cramér-
Wold device (see Billingsley 1968), it holds that

where 
D(S)
⟶
m→∞

 denotes the weak convergence on the Skorohod space D(S) and W
�

 is a 
centered Gaussian process such that �

(
W

�
(s),W

�
(�)�

)
= min(s, �)� . Therefore

and

Hence

1√
m

[mt]�
i=[ms]

�li(�
∗
0
)

��

D(S)
⟶
m→∞

W
�
(t − s)

1√
m

�
[mt]�

i=[ms]

�li(�
∗
0
)

��
−

[mt] − [ms]

m

m�
i=1

�li(�
∗
0
)

��

�

D(S)
⟶
m→∞

W
�
(t − s) − (t − s)B

�
(1);

1√
m
�

−1∕2

�
[mt]�

i=[ms]

�li(�
∗
0
)

��
−

[mt] − [ms]

m

m�
i=1

�li(�
∗
0
)

��

�

D(S)
⟶
m→∞

Wd(t − s) − (t − s)Bd(1);
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(ii) Open-end procedure. We proceed as in proof of Lemma 6.3 of Bardet and 
Kengne (2014). Thus, according to (53) and (i), it suffices to show that the limit in 
distribution (as m, T → ∞ ) of

exists and is equal to the limit in distribution (as T → ∞ ) of

Let k > [Tm] . For some �k ∈ �m,k , we have

From the Hájek-Rényi-Chow inequality (see Chow 1960), we get

(54)

sup
m<k<[Tm]+1

max
�∈𝛱m,k

1

b((k − �)∕m)

√
m

k

�����
𝛴

−1∕2

�
𝜕

𝜕𝜃
Lm(T�,k, 𝜃

∗

0
) −

k − �

n

𝜕

𝜕𝜃
Lm(T1,n, 𝜃

∗

0
)

������
= sup

m<k<[Tm]+1

max
�∈𝛱m,k

1

b((k − �)∕m)

√
m

k

������
𝛴

−1∕2

�
k�

i=�

𝜕li(𝜃
∗
0
)

𝜕𝜃
−

k − �

n

m�
i=1

𝜕li(𝜃
∗
0
)

𝜕𝜃

�������
= sup

t∈
�
1+

1

m
,1+

2

m
,…,

[Tm]

m

� max
s∈

�
1−

vm

m
,1+

1

m
−

vm

m
,1+

2

m
−

vm

m
,…,

[mt]

m
−

vm

m

�

�
1

b(([mt] − [ms])∕m)

m

[mt]

×

������
1√
m
𝛴

−1∕2

�
[mt]�

i=[ms]

𝜕li(𝜃
∗
0
)

𝜕𝜃
−

[mt] − [ms]

m

m�
i=1

𝜕li(𝜃
∗
0
)

𝜕𝜃

�������

�

D

��������������������������→
m→+∞

sup
1<t<T

sup
1<s<t

‖Wd(t − s) − (t − s)Wd(1)‖
t b(t − s)

D
= sup

1<t<T

sup
0<s<t−1

‖Wd(s) − sWd(1)‖
t b(s)

.

sup
k>[Tm]

max
�∈𝛱m,k

1

b((k − �)∕m)

√
m

k

�����
𝛴

−1∕2

�
𝜕

𝜕𝜃
Lm(T�,k, 𝜃

∗

0
) −

k − �

m

𝜕

𝜕𝜃
Lm(T1,m, 𝜃

∗

0
)

������

sup
t>T

sup
0<s<t−1

‖Wd(s) − sWd(1))‖
t b(s)

.

max
�∈�m,k

1

b((k − �)∕m)

√
m

k

����
�

��
Lm(T�,k, �

∗

0
)
���� =

1

b((k − �k)∕m)

√
m

k

������

k�
i=�k

�li(�
∗
0
)

��

������
.
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Moreover, since the function b(⋅) is non-increasing, we have for any m, T > 1

where the latter convergence holds from the Cramér-Wold device and the central 

limit theorem applied to the martingale difference sequence 
(
�li(�

∗
0
)

��
,Fi

)

i∈ℤ

 . 

According to (55) and (56), it follows that

On the other hand, from the proof of Lemma 6.3 of Bardet and Kengne (2014), we 
get

This implies

Equations (57) and (58) complete the proof in the case of the open-end procedure.  
 ◻

Proof of Theorem 4 In the sequel, C denotes a positive constant whom value may dif-
fer from an inequality to another. Denote km = k∗ + m� for � ∈ (1∕2, 1) . For m large 

(55)

∀x > 0, lim
T→∞

lim sup
m→∞

P

�
sup

k>[Tm]

1

b((k − �k)∕m)

√
m

k

������

k�
i=�k

𝜕li(𝜃
∗
0
)

𝜕𝜃

������
> x

�
= 0.

(56)

sup
k>mT

max
�∈𝛱m,k

1

b((k − �)∕m)

√
m

k

����
k − �

m

𝜕

𝜕𝜃
Lm(T1,m, 𝜃

∗

0
)
����

=

������
1√
m

m�
i=1

𝜕li(𝜃
∗
0
)

𝜕𝜃

������
× sup

k>Tm

max
�∈𝛱m,k

1

b((k − �)∕m)

k − �

k

=

������
1√
m

m�
i=1

𝜕li(𝜃
∗
0
)

𝜕𝜃

������
× sup

k>Tm

1

b((k − vm)∕m)

k − vm

k

=
1

infs>0 b(s)

������
1√
m

m�
i=1

𝜕li(𝜃
∗
0
)

𝜕𝜃

������
D

��������������������������→
m→+∞

1

infs>0 b(s)
‖W

𝛴
(1)‖,

(57)
sup
k>Tm

max
�∈𝛱m,k

1

b((k − �)∕m)

√
n

k

�����
𝛴

−1∕2

�
𝜕

𝜕𝜃
Lm(T�,k, 𝜃

∗

0
) −

k − �

m

𝜕

𝜕𝜃
Lm(T1,m, 𝜃

∗

0
)

�����
D

��������������������������→
m→+∞

1

infs>0 b(s)
‖Wd(1)‖.

sup
t>T

sup
0<s<t−1

‖W
𝛴
(s) − sW

𝛴
(1)‖

t b(s)

D

�������������������������→
T→+∞

1

infs>0 b(s)
‖W

𝛴
(1)‖.

(58)sup
t>T

sup
0<s<t−1

‖Wd(s) − sWd(1)‖
t b(s)

D

�������������������������→
T→+∞

1

infs>0 b(s)
‖Wd(1)‖.
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enough, we have m ≤ km ≤ [Tm] + 1 for both open-end and closed-end procedure; 
moreover, vn << n𝛿 and k∗ ∈ �m,km

 . Hence, according to assumption B, we can find 
a constant C > 0 such that

From Doukhan and Kengne (2015), we get �̂1∕2
m

a.s
⟶
m→∞

�
1∕2 and �̂(T1,m)

a.s
⟶
m→∞

�
∗
0
 . 

Moreover, from Theorem 1, �̂(Tk∗,km)
a.s
⟶
m→∞

�
∗
1
 . Thus, since � is symmetric positive 

definite, �∗
0
≠ �

∗
1
 and 𝛿 > 1∕2 , (59) implies

  ◻
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