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Abstract This supplementary material file contains some additional mathematical details needed
to prove the main results in the manuscript entitled “Asymptotics for function derivatives esti-
mators based on stationary and ergodic discrete time processes”.

Additional Mathematical Details

The following additional results are required to complete the proofs of the results in the main
manuscript.

Lemma 1 Under the assumptions (K.1)(iii) and (C.3)(ii), we have

sup |E (D'S'rn(w;X, m)) — Dlslp(y;x)| = O(hY/P).
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Proof of Lemma 1.

Notice that, under conditions (C.3)(ii), we have
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where § = (01,...,6,) and 0 < 6; < 1,4i=,1,...,p. This, in turn, implies that
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Thus a straightforward application of the Lebesgue dominated convergence theorem gives, for n
large enough,

sug) E (D‘Slrn(z/);x, hn)) — DIslr(;x)| = O(RL/P). (0.1)
x€
Hence the proof is complete. O

Lemma 2 Under assumptions (K.1)(i), (K.1)(ii), (C.1), (C.2), (C.3), (R.1)(i), (R.1)(iii). For all
x € J, we have, as n — o0,
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where we recall
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Proof of Lemma 2.

Let us introduce the notation
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We first observe that
25 (D453, ) = DIl (5%, 1) ) = ng, (0.3)

where, for any fixed x in J, the summands statement (0.3) form a triangular array of stationary
ergodic martingale differences with respect to the o-field G;_;. This allows us to apply the central
limit theorem for discrete-time arrays of real-valued martingales (see, Hall and Heyde (1980),
page 23) to establish the asymptotic normality. This can be done if we establish the following
statements:

(a) i E[€2:(x,0) | Gima] = 03(),
(b) nE[E2;(x, ) L{je,.. (x,0)|>e}) = 0(1) holds, for any € > 0. (Lindeberg condition).

Proof of part (a). We first observe that
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Using assumption (R.1)(i), by a first order Taylor series expansion and the change of variable

1
h/pv—x—u we have
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Making use of the condition (C.2), we have
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Therefore, statement (a) follows if we show
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Observe that by assumptions (K.1)(i) and (R.1)(iii), we have
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Using the condition (C.1)(ii) and (R.1)(iii) and a Taylor series expansion up to order one, we
can write
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In view of the assumptions (K.1)(i) and (C.2), we deduce, almost surely, as n — oo,

o = o(1) x (f(x) (/R (DS|K(V))2dV> +o (h:/p)> ) (0.4)
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Considering now the term I,,1, making use of assumption (C.1), we have

()

0 )Z/Rp (o () s
)Z/RP (DK ) 77 e = vyav

(z @) [, (o)

hy/? 0" fx (x — hor) 2
k}l k: X ‘Sl
R e e (D K (r )) dr| .

BY kb=

Making use of assumptions (K.1)(i), (K.1)(iv) and (C.2), we readily obtain that

I = Ws(x) (fx(x) (/R (D‘S‘K (v))2 dv) +0 (h:/P)) .

lim I = Ws(x) f(x) (/R (Dls\K (v))2 dv) . (0.5)
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Combining (0.4) and (0.5), we obtain
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Proof of part (b). The Lindeberg condition results from Corollary 9.5.2 in Chow (1998), page
349, which implies that

We have then
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Let @ > and b > such that % + % = 1. Making use of Hélder and Markov inequalities and
assumption (R.1)(iii) one can write, for all € > 0
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Making use of (K.1)(i) and (C.3)(i) and an first order Taylor’s expansion, we infer that
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Therefore, we have
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which concludes the proof of part (b). The proof of Lemma 2 is complete.

Lemma 3 Under the assumptions (K.1)(i), (C.5), (R.1)(i)-(ii), we have

Isl ~
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Lemma 4 Under the assumptions (K.1)(iii) and (C.3)(ii), and the condition
n2REHO/PTY2 0 s n— oo,
we have then

\/nhkt2(sl/p) (IE (D‘S‘rn(zp;x, hn)) — DSl x, hn)) = o(1).

The proofs of Lemmas 3 and 4 will be omitted.

Proof of Theorem 1.

Theorem 1 is a direct consequence of Lemma 2 and Proposition 81.

(0.9)



Proof of Theorem 2.
Consider the following decomposition
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We achieve the proof by combining Theorem 1 and Lemma 1.

Proof of Theorem 3.

Consider the following decomposition
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The proof is completed by combining the Lemmas 2 and 3.

Proof of Theorem 4.

Let us consider the following decomposition

=\ nh711+2(‘sl/p) (Dlslrn(¢§ X, hn) —-E (D‘Slm(w; X, hn)))
o/ npkt20sl/p) (IE (D|S‘rn(¢;x, hn)) — DIl x, hn)) .

By using Theorem 3 and Lemma 4, we achieve the proof.

Proof of Theorem 5.

Recall from the proof of Lemma 1 that, under conditions (K.1) and (C.3) (ii), we have
2
B (Dl (35, 1n) ) = DIl )|

n2tP 'DI fx v (x — hs, v)
= / / Z s s];P p kp Y(v)K(s)dsdv
: Re R T Oxi*...0xp




This implies that
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From the proof of (0.6) and (0.8), under the assumptions (K.1), (C.1), (C.2), (C.5) and (R.1)(i)-
(ii), we have,
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This readily implies that
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We finally obtain that
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Hence the proof is complete. O
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