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Abstract
Under minimal assumptions, we prove that an empirical estimator of the tail condi-
tional allocation (TCA), also known as the marginal expected shortfall, is consistent. 
Examples are provided to confirm the minimality of the assumptions. A simulation 
study illustrates the performance of the estimator in the context of developing con-
fidence intervals for the TCA. The philosophy adopted in the present paper relies on 
three principles: easiness of practical use, mathematical rigor, and practical justifi-
ability and verifiability of assumptions.

Keywords  Tail conditional allocation · Marginal expected shortfall · Inference · 
Order statistic · Concomitant

1  Introduction

Let (X,  Y) be a random pair whose joint cumulative distribution function (cdf) 
we denote by H. Furthermore, let F and G denote the marginal cdf’s of X and Y, 
respectively. For any p ∈ [0, 1) , the tail conditional allocation is defined by

(1)TCA(p) =
1

1 − p
�(X1[p,1](G(Y))),
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where 1[p,1](t) is equal to 1 when t ∈ [p, 1] and 0 otherwise. It has played a prominent 
role in a number of optimization and allocation problems in economics, finance, 
and insurance (e.g., Bauer & Zanjani, 2016; Furman et al., 2021a; Guo et al., 2021;  
Schechtman et al., 2008; Shalit & Yitzhaki, 1994;  Yitzhaki & Schechtman, 2013).

The following examples serve concrete illustrations of where TCA can natu-
rally be used, with X being any of the two specified random variables R1 and R2 , 
with Y = R1 + R2:

•	 In an auto insurance context, suppose that R1 is the indemnity payment per 
insurance claim, and R2 is the loss adjustment expense per claim (e.g., Frees 
&  Valdez, 1998). Note that in the current insurance practice, it is not uncom-
mon for insurance companies to have the records of a very large number n 
of claims (e.g., n = 105 , which we shall use in our simulations). Similarly, in 
home insurance products, R1 might mean the structural damage per claim, and 
R2 the additional living expense per claim (e.g. Insurance Information Insti-
tute, 2021). In both cases, Y is the total insurance payment. The TCA can be 
used to determine the risk driver in the large insurance payment scenario for 
insurance risk pricing and management purposes.

•	 In the case of simulated climate scenarios provided by catastrophe software, 
third-party companies, or regulators, R1 might mean the total loss of property 
insurance business line per policy period (e.g., one year) based on a given 
catastrophe scenario, and R2 might mean the total loss of life-insurance busi-
ness line per policy period based on the same catastrophe scenario. In this 
case, Y would be the total insurance loss. The TCA can be used to determine 
the insurance portfolio’s minimal capital requirement and capital allocation.

•	 In the case of Economic Scenario Generator (ESG) (Pedersen et  al., 2016), 
R1 could mean the loss/profit for an investment, and R2 could mean the loss/
profit for another investment, in which case Y would be the total investment 
loss/profit. The TCA can be used to determine the optimal asset allocation and 
measure investment performance (e.g., Tasche, 2004).

Coming back to equation  (1), when p = 0 , we obviously have TCA(0) = �(X) , 
which is often called the net premium in insurance, with X carrying the mean-
ing of a loss variable. Naturally, throughout the paper we make the following 
assumption.

Assumption 1  The moment �(|X|) is finite.

Note the equation

where yp = G−1(p) , with the generalized inverse G−1 , also called the quantile func-
tion, defined by the equation G−1(p) = inf{y ∈ ℝ ∶ G(y) ≥ p} . Usually in the finance 

TCA(p) =
1

1 − p
�(X1[yp,∞)(Y)),
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and insurance literature, G−1(p) is called the pth value-at-risk of the random variable 
Y and denoted by VaRp(Y) . When X = Y  , TCA(p) turns into the expected shortfall

where xp = F−1(p) . We note that the expected shortfall is also known in the litera-
ture under other names, such as conditional tail expectation (CTE), tail conditional 
expectation (TCE), and tail value at risk (TVaR). We refer to Wang & Zitikis (2020), 
Embrechts et al. (2021), and Wang et al. (2021) for axiomatic foundations that dis-
tinguish the expected shortfall from other risk measures.

Empirical estimation of �(X) and thus of ES(0) and TCA(0) is of course a well-
understood and developed area of classical statistics. In practice, when ES(p) and 
TCA(p) are of importance, the values of p ∈ [0, 1) are, however, quite close to 1, such 
as p = 0.975 and p = 0.99 (BCBS, 2016, 2019). In such cases, statistical inference for 
ES(p) and TCA(p) becomes involved. To see the reason, we start with the expected 
shortfall ES(p).

Let X1,X2,… ,Xn be identically distributed random variables, each with the same 
cdf F. Let Fn be the empirical cdf based on these random variables, that is,

where X1∶n ≤ X2∶n ≤ ⋯ ≤ Xn∶n are the order statistics of X1,X2,… ,Xn (e.g., Ahsan-
ullah et al., 2013;  Arnold et al., 2008;  David & Nagaraja, 2003). A non-parametric 
estimator of ES(p) can now be defined as follows:

where to get the final equation, we assumed continuity of the cdf F and thus, with-
out loss of generality, the strict ordering X1∶n < X2∶n < ⋯ < Xn∶n . (In what follows, 
when analyzing the tail conditional allocation, we shall drop the continuity of F but 
impose the continuity on the cdf G; see Assumption 2.) The factor n∕(n + 1) in front 
of the empirical cdf Fn in the above equations can of course be deleted, but it is use-
ful to keep it there for a number of reasons, not least for the consistency of our fol-
lowing discussion.

Hence, ESn(p) is a linear combination of order statistics, which are of course 
dependent and non-identically distributed random variables, thus explaining the leap 
in complexity if compared with the non-parametric estimator X = n−1

∑n

i=1
Xi of 

the mean �(X) . Nevertheless, the case has been successfully tackled even at a much 

ES(p) =
1

1 − p
�(X1[p,1](F(X))) =

1

1 − p
�(X1[xp,∞)(X)),

Fn(x) =
1

n

n∑
k=1

1{Xk ≤ x} =
1

n

n∑
k=1

1{Xk∶n ≤ x},

(2)

ESn(p) =
1

n

n∑
i=1

Xi

1

1 − p
1[p,1]

(
n

n + 1
Fn(Xi)

)

=
1

n

n∑
i=1

Xi∶n

1

1 − p
1[p,1]

(
n

n + 1
Fn(Xi∶n)

)

=
1

n

n∑
i=1

Xi∶n

1

1 − p
1[p,1]

(
i

n + 1

)
,
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higher level of generality than that on the right-hand side of equation (2). Namely, 
various statistical properties of the L-statistic

have been thoroughly explored in the immense body of the literature, under various 
sets of conditions and levels of generality. Note that having n + 1 and not n in the 
denominator on the right-hand side of equation (3) allows us to use weight functions 
w ∶ [0, 1] → ℝ ∪ {±∞} that take infinite values at any of the two end-points of the 
interval [0, 1], thus explaining one of the reasons behind the factor n∕(n + 1) in front 
of the empirical cdf Fn in equations (2).

The complexity of statistical inference for TCA(p) is even higher, as we shall see 
in the next section.

2 � The main result, its proof and performance

Let each pair (X1, Y1), (X2, Y2),… , (Xn, Yn) follow the same joint cdf H, thus making 
them independent copies of the earlier introduced pair (X, Y). A natural empirical 
estimator of H(x, y) is

where Y1∶n ≤ Y2∶n ≤ ⋯ ≤ Yn∶n are the order statistics of Y1, Y2,… , Yn , with 
X1,n,X2,n,… ,Xn,n denoting the corresponding concomitants (e.g., David & Nagaraja, 
2003, Section 6.8), which are defined by

for every k = 1,… , n . The concomitants are uniquely defined when the cdf G is 
continuous, in which case we have Y1∶n < Y2∶n < ⋯ < Yn∶n almost surely. Therefore, 
from now on, unless noted otherwise, we work under the following assumption.

Assumption 2  The cdf G of Y is a continuous function.

An empirical estimator of TCA(p) can now be defined as follows:

(3)Ln(w) =
1

n

n∑
i=1

Xi∶nw

(
i

n + 1

)

Hn(x, y) =
1

n

n∑
k=1

1{Xk ≤ x, Yk ≤ y} =
1

n

n∑
k=1

1{Xk,n ≤ x, Yk∶n ≤ y},

Xk,n =

n∑
i=1

Xi1{Yi = Yk∶n}
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where Gn is the empirical cdf based on Y1, Y2,… , Yn . More generally than the above 
estimator, we might be interested in considering

for various weight functions w ∶ [0, 1] → ℝ ∪ {±∞} . If we compare Λn(w) with 
Ln(w) , the appearance of concomitants explains the added level of complexity. Nev-
ertheless, a number of results have appeared in the literature, and we shall discuss 
them next.

In particular, we see two trends in developing non-parametric statistical infer-
ence for

One of them is based on the desire to cover as large a class of weight functions w as 
possible, and then to specify classes of distributions of (X, Y), which often happen 
to be sub-optimal. For example, Gribkova & Zitikis (2017, 2019), and Dudkina & 
Gribkova (2020) require higher finite moments than the first moment of X in order 
to establish weak or strong consistency of estimators. Although not being an impedi-
ment in a number of applications, such conditions nevertheless need to be relaxed to 
accommodate other applications. There are situations when even the first moment is 
not finite (e.g., Nešlehová et al., 2006).

The other trend in the development of statistical inference for TCA(w) is based 
on fixing a weight function w of some particular interest and then seeking for 
(nearly) optimal classes of distributions that ensure desired inference results, such 
as consistency or asymptotic normality of Λn(w) . For example, when the weight 
function is w(t) = t for all t ∈ [0, 1] , which gives rise to the Gini covariance and 
correlation (e.g., Yitzhaki & Schechtman, 2013), statistical inference results have 
been thoroughly developed by Kattumannil et  al. (2020), where extensive ref-
erences to earlier works can also be found. Departures from iid observations to 
those driven by time series models with accompanying statistical inference results 
for the Gini covariance and related quantities can be found in Shelef (2013), Car-
cea & Serfling (2015), Shelef (2016), and Shelef & Schechtman (2019).

The present paper is in the spirit of the latter trend, albeit in the iid case, and 
is devoted to establishing consistency of the estimator TCAn(p) , which is Λn(wp) 
with

(4)

TCAn(p) =
1

n

n∑
i=1

Xi

1

1 − p
1[p,1]

(
n

n + 1
Gn(Yi)

)

=
1

n

n∑
i=1

Xi,n

1

1 − p
1[p,1]

(
n

n + 1
Gn(Yi∶n)

)

=
1

n

n∑
i=1

Xi,n

1

1 − p
1[p,1]

(
i

n + 1

)
,

Λn(w) =
1

n

n∑
i=1

Xi,nw

(
i

n + 1

)

TCA(w) = �(Xw(G(Y))).
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This weight function wp plays a pivotal role when developing ES-based capital allo-
cations (e.g., Furman & Zitikis, 2008) and, by now, has been widely employed when 
tackling a myriad of insurance- and finance-related problems (e.g., Bauer & Zanjani, 
2016; Furman et al., 2021a; Guo et al., 2021, and references therein).

Having thus mentioned insurance and finance, we note that the earlier noted regu-
latory documents (BCBS, 2016, 2019) stipulate the use of p = 0.975 and p = 0.99 
when using the expected shortfall ES(p) ; see Wang & Zitikis (2020) for an in-depth 
discussion on the matter. We therefore also use these p values in the current context 
of the tail conditional allocation TCA(wp) , which is also known in the literature under 
the name of marginal expected shortfall and written as MES(p) = �(X ∣ Y ≥ G−1(p)) 
(e.g., Cai et al., 2015; Cai &  Musta, 2020; Kulik & Tong, 2019). For related results 
in the case Y = X , that is, when dealing with the expected shortfall ES(p) , we refer 
to Necir et al. (2010), Laidi et al. (2020), and references therein. The aforementioned 
studies employ the extreme value theory (e.g., Beirlant et al., 2004; Castillo et al., 
2004; de Haan & Ferreira, 2006) that facilitates the development of ES and MES 
estimation even in situations when there are very few observations in the far right-
hand tail of the distribution. In particular, in Cai et al. (2015), Eq. (5), and Kulik & 
Tong (2019), Eq. (11), we find consistency and asymptotic normality of an empiri-
cal estimator, which is akin to the herein employed TCAn(p).

These state-of-the-art results give rise to asymptotically precise statistical infer-
ence results, including minimal length confidence intervals and asymptotically pre-
cise coverage proportions. But these achievements come at a heavy price, which 
is the assumptions inevitably imposed on the underlying population (e.g., Kulik 
& Tong, 2019,  Section  3.3). Although highly natural from the theoretical point 
of view, the assumptions are challenging to verify in practice and thus give rise 
to unsurmountable difficulties when convincing practitioners in the worthiness of 
adopting the results. Clearly, a compromise is warranted, and as we shall argue 
next, it could be achieved via properly delivered (weak) consistency results under 
minimal assumptions on the population. In this sense, the following theorem is the 
main result of the present paper. Its connection to the classical standard-error-based 
approach, with additional clarifying details and a numerical illustration, will be pro-
vided after the theorem has been proved.

Theorem  1  Let the pairs (X1, Y1), (X2, Y2),… , (Xn, Yn) be independent copies of 
(X, Y), and let Assumptions 1 and 2 be satisfied. Then TCAn(p) is a consistent esti-
mator of TCA(p) for every p ∈ [0, 1) . That is, for any pre-specified margin of error 
𝜖 > 0 , the statement

holds with the asymptotically perfect (i.e., equal to 1) probability when the sample 
size n indefinitely increases.

(5)wp(t) =
1

1 − p
1[p,1](t), t ∈ [0, 1].

(6)TCA(p) ∈
[
TCAn(p) − �,TCAn(p) + �

]
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Proof  When p = 0 , the theorem is obviously true. Hence, from now on, we consider 
only p ∈ (0, 1) . With a parameter 𝛿 > 0 , let wp,� ∶ ℝ → [0, 1] be the function defined 
by

It is a non-decreasing and continuously differentiable function, known in the statisti-
cal literature as the raised cosine cdf, whose first derivative (i.e., probability density 
function) is

Obviously, w�
p,�
(t) is always non-negative and never exceeds 1∕� . We have

We shall next show that no matter what 𝛿 > 0 is, as long as it does not depend on n, 
the quantity �n(�) converges in probability to zero when n → ∞ . We start as follows:

By the law of large numbers, the right-most term �∗∗(�) converges in probability to 
zero, and even almost surely, irrespective of the value of 𝛿 > 0 . As to �∗

n
(�) , we uti-

lize the fact that w�
p,�
(t) ∈ [0, 1∕�] for all t ∈ ℝ and have

wp,�(t) =

⎧⎪⎨⎪⎩

0 when t ≤ p − �,

1

2

�
1 +

t − p

�
+

1

�
sin

�
t − p

�
�

��
when t ∈ (p − �, p + �),

1 when t ≥ p + �.

w�
p,�
(t) =

⎧
⎪⎨⎪⎩

1

2�

�
1 + cos

�
t − p

�
�

��
when t ∈ (p − �, p + �),

0 otherwise.

(1 − p)|TCAn(p) − TCA(p)| ≤ ||||
1

n

n∑
i=1

Xi,n1[p,1]

(
i

n + 1

)
−

1

n

n∑
i=1

Xi,nwp,�

(
i

n + 1

)||||

+
||||
1

n

n∑
i=1

Xi,nwp,�

(
i

n + 1

)
− �(Xwp,�(G(Y)))

||||
+
|||�(Xwp,�(G(Y))) − �(X1[p,1](G(Y)))

|||
=∶ �n(�) + �n(�) + �(�).

(7)

�n(�) =
||||
1

n

n∑
i=1

Xi,nwp,�

(
n

n + 1
Gn(Yi∶n)

)
− �(Xwp,�(G(Y)))

||||

=
||||
1

n

n∑
i=1

Xiwp,�

(
n

n + 1
Gn(Yi)

)
− �(Xwp,�(G(Y)))

||||

≤ ||||
1

n

n∑
i=1

Xiwp,�

(
n

n + 1
Gn(Yi)

)
−

1

n

n∑
i=1

Xiwp,�

(
G(Yi)

)||||

+
||||
1

n

n∑
i=1

Xiwp,�

(
G(Yi)

)
− �(Xwp,�(G(Y)))

||||
=∶ �∗

n
(�) + �∗∗(�).
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By the Glivenko-Cantelli theorem, supy∈ℝ |Gn(y) − G(y)| converges in probability to 
zero, and even almost surely. By the law of large numbers, n−1

∑n

i=1
�Xi� − �(�X�) 

converges in probability to zero, and even almost surely. Hence, no matter what 
𝛿 > 0 is, the entire right-hand side of bound  (8) converges in probability to zero 
when n → ∞ , and so does �n(�) in view of bound (7).

Consequently, to complete the proof of Theorem 1, we need to show that no mat-
ter what 𝜀 > 0 is, we can choose 𝛿 = 𝛿(𝜀) > 0 such that

when n → ∞ . We start with the bounds

The expectation on the right-hand side converges to 0 when � ↓ 0 because 
�(|X|) < ∞ and ℙ((G(Y) ∈ [p − �, p + �]) = 2� ↓ 0 when � ↓ 0 . (Note that continu-
ity of the cdf G implies that G(Y) follows the uniform on [0, 1] distribution.) Hence, 
there is 𝛿∗ = 𝛿∗(𝜀) > 0 such that

for every � ∈ (0, �∗] . Consequently, from now on we work with only such �’s, and 
thus statement (9) holds provided that we show the convergence

when n → ∞ . That is, we need to show that for every 𝜀∗ > 0 , there is n∗ such that

(8)

�∗
n
(�) ≤ 1

�n

n∑
i=1

|Xi|
||||

n

n + 1
Gn(Yi) − G(Yi)

||||

=
1

�n

n∑
i=1

|Xi|
||||
−1

n + 1
Gn(Yi) + Gn(Yi) − G(Yi)

||||

≤ 1

�n

n∑
i=1

|Xi|
(

1

n + 1
+ sup

y∈ℝ

|Gn(y) − G(y)|
)

=
1

�

(
1

n

n∑
i=1

|Xi| − 𝔼(|X|)
)(

1

n + 1
+ sup

y∈ℝ

|Gn(y) − G(y)|
)

+
𝔼(|X|)

�

(
1

n + 1
+ sup

y∈ℝ

|Gn(y) − G(y)|
)
.

(9)ℙ
(
�n(�) + �(�) ≥ �

)
→ 0

�(�) ≤ �
(|X||wp,�(G(Y)) − 1[p,1](G(Y))|

)

≤ �
(|X|1[p−�,p+�](G(Y))

)
.

�(�) ≤ �

2

(10)ℙ

(
�n(�) ≥ �

2

)
→ 0

(11)ℙ

(
�n(�) ≥ �

2

)
≤ �∗
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for all n ≥ n∗ . We start with the bounds

where M ≥ 0 can be arbitrary at the moment but it will soon need to be chosen suf-
ficiently large. We have

We see that no matter what 𝜀 > 0 and M < ∞ are, we can always choose � ∈ (0, �∗] 
so small that the right-hand side of bound  (12) becomes smaller than �∕4 for all 
sufficiently large n, that is, for all n ≥ n0 for some n0 . This implies statement  (11) 
provided that

for all n ≥ n∗ , where n∗ is an integer not smaller than n0 . Using Markov’s inequality, 
we have

Since �(|X|) < ∞ , the right-hand side of the above bound can be made smaller than 
�∗ by choosing a sufficiently large M = M(�, �∗) . This completes the proof of Theo-
rem 1. 	�  ◻

We next discuss several aspects related to the use of TCAn(p) in practice. Spe-
cifically, in Section 2.1 we provide a large sample analysis of TCA(p) within the 
context of ESG (Pedersen et  al., 2016), which gives the risk analyst the abil-
ity to generate practice-relevant samples of as large sizes as desired. In Sec-
tion 2.2 we deal with the traditional case of fixed-size samples, although with a 

�n(�) ≤ 1

n

n∑
i=1

|Xi,n|
||||1[p,1]

(
i

n + 1

)
− wp,�

(
i

n + 1

)||||

≤ 1

n

n∑
i=1

|Xi,n|1[p−�,p+�]

(
i

n + 1

)

≤ 1

n

n∑
i=1

|Xi,n|1[0,M](|Xi,n|)1[p−�,p+�]

(
i

n + 1

)
+

1

n

n∑
i=1

|Xi,n|1(M,∞)(|Xi,n|),

(12)

1

n

n∑
i=1

|Xi,n|1[0,M](|Xi,n|)1[p−�,p+�]

(
i

n + 1

)
≤ M

n

n∑
i=1

1[p−�,p+�]

(
i

n + 1

)

≤ M

n

(
2�(n + 1) + 1

)
.

(13)ℙ

(
1

n

n∑
i=1

|Xi,n|1(M,∞)(|Xi,n|) ≥ �

4

)
≤ �∗

ℙ

(
1

n

n∑
i=1

|Xi,n|1(M,∞)(|Xi,n|) ≥ �

4

)
≤ 4

n�

n∑
i=1

𝔼
(|Xi,n|1(M,∞)(|Xi,n|)

)

=
4

n�

n∑
i=1

𝔼
(|Xi|1(M,∞)(|Xi|)

)

=
4

�
𝔼
(|X|1(M,∞)(|X|)

)
.
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non-traditional but highly practical twist: we are interested in confidence inter-
vals that have fixed margins of error and increasing (when n grows) coverage 
probabilities.

2.1 � Statistical analysis under unlimited sample sizes

Consider a scenario in which the risk analyst has the ability to generate data of any 
sample size. This situation is not uncommon in the finance and insurance prac-
tice, due to the aforementioned ESG. The data generating process that underlines 
the ESG is, however, rather complex and therefore, admittedly, can be viewed as 
unknown. In this case, the estimator TCAn(p) can be used to determine the risk capi-
tal and its allocation to individual business lines, since the sample size n can be 
made as large as needed to obtain an accurate estimate of TCA(p).

To imitate such a process, instead of using the complex ESG, we consider an 
insurance portfolio consisting of two dependent risks R1 and R2 that follow Mardia’s 
bivariate Pareto distribution (Mardia, 1962). Its joint survival function is given by 
the formula

where 𝜃1 > 0 and 𝜃2 > 0 are the scale parameters, and 𝛼 > 0 is the shape parameter. 
It is one of the most popular multivariate Pareto distributions (Arnold et al., 1999; 
Arnold, 2015) that has recently been shown to be particularly useful when model-
ling insurance and financial risks under the background risk model (Asimit et  al., 
2016; Furman et al., 2021b). Both R1 and R2 have finite first moments when 𝛼 > 1 
and finite second moments only when 𝛼 > 2.

The associated with the pair (R1,R2) aggregate risk is Y = R1 + R2 , and suppose 
that we are interested in TCA(p) when X = R1 . Hence, we simulate n independent 
pairs (r1,k, r2,k)nk=1 based on distribution (14), from which we obtain the pairs

via the equations xk = r1,k and yk = r1,k + r2,k . We make the following parameter 
choices: 

	(A.1)	�1 = 100 , �2 = 50 , and � ∈ {1.5, 2.0, 3.0} as motivated by Furman et  al. 
(2021b);

	(A.2)	 p = 0.975 and 0.99 as stipulated by BCBS (2016, 2019);
	(A.3)	n = i × 10, 000 when i = 1,… , 10.

We obtain one value of TCAn(p) in each simulation for every given n. Then, for each 
n, we repeat the procedure 100 times. Figure 1 depicts the box plots of the obtained 
values of TCAn(p) . We observe that the averaged values of the TCA estimates fol-
low closely the corresponding theoretical TCA values, which have been computed 
using a matrix-analytic method described by Furman et al. (2021b).

(14)S(r1, r2) =
(
1 + r1∕𝜃1 + r2∕𝜃2

)−𝛼
, r1 > 0, r2 > 0,

(15)(x1, y1), (x2, y2),… , (xn, yn)
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2.2 � Statistical analysis under limited sample sizes

In this section, we consider another practical situation in which there is no pos-
sibility to generate data sets of arbitrary size, and thus the risk analyst can only 

Fig. 1   Box plots of TCA estimates TCAn(p) for n = i × 10, 000 when i = 1,… , 10 , with their averaged 
(blue lines with circles) and theoretical (horizontal green lines) values; the parameter � refers to distribu-
tion (14)
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estimate the TCA based on one set of historical data. In this case, we resort to 
bootstrap methodology in order to understand the performance of the estimator.

Specifically, we assume the availability of n = 105 observed pairs (15), which 
we call the parent data set, which we simulate from distribution  (14) with 
parameters  (A.1). Then we use bootstrap to re-sample different samples of size 
m ∈ {10 000, 20 000,… , 100 000} , which mimic our analysis in Section 2.1.

To facilitate readability, the rest of the current section is divided into three 
parts: Sect.  2.2.1 develops understanding of the standard errors of TCAn(p) , 
which can be used, e.g., for constructing shrinking-margin-of-error and fixed-
coverage-probability confidence intervals for the population TCA. Sect.  2.2.2 
transitions our (traditional) thinking into fixed-margin-of-error and increasing-
coverage-probability confidence intervals, which are discussed in Sect. 2.2.3.

2.2.1 � Estimated standard errors

The standard error of TCAn(p) can conveniently and speedily be assessed using 
bootstrap (e.g.,  Efron & Tibshirani, 1993; Davison & Hinkley, 1997; DasGupta, 
2008; Hall, 1992; Shao & Tu, 1995):

where

with TCA∗
n,m,�

(p) obtained as follows: Given pairs  (15), we select (with replace-
ment) m pairs for various choices of the parameter m. Given the just obtained pairs 
(x∗

1
, y∗

1
), (x∗

2
, y∗

2
),… , (x∗

m
, y∗

m
) , we calculate the empirical TCA using formula (4) and 

denote the obtained value by TCA∗
n,m,1

(p) . We repeat the procedure L times and 
obtain TCA∗

n,m,1
(p),… ,TCA∗

n,m,L
(p) , which we use to calculate s2

n,m,boot
.

As an illustration, we use Mardia’s bivariate Pareto distribution (14) and from 
it arising pairs (15). We use the same parameters �1 , �2 , � and p as in specifica-
tions (A.1) and (A.2), with the other specifications as follows: 

	(B.1)	 n = 100, 000 , which reflects what we have observed in real-world insurance 
data;

	(B.2)	m = i × 10, 000 with i = 1,… , 10 (we shall discuss “ m < n vs m = n ” in 
Sect. 2.2.3);

	(B.3)	 L = 5, 000.

Table  1 summarizes simulation results in the case of one parent data set, 
which we call I, whose size is n = 105 , simulated from distribution  (14) with 
parameters (A.1).

(16)ŝen,m,boot =
√

s2
n,m,boot

,

s2
n,m,boot

=
1

L

L∑
�=1

(
TCA∗

n,m,�
(p) −

1

L

L∑
i=1

TCA∗
n,m,i

(p)

)2
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To show the effect of parent-data variability, we have also produced another par-
ent data set, called II, using the same data generating process. The simulation results 
are summarized in Table 2.

The theoretical TCA values reported in the bottom rows of the two tables have 
been calculated using a matrix-analytic method discussed by Furman et al. (2021b).

Note 1  Looking at Tables 1 and 2, the monotonicity of values in each column would 
suggest that bootstrap works even when � = 1.5 , in which case X, being equal to R1 , 
lacks finite second moment, and thus the TCA estimator lacks finite asymptotic vari-
ance. This may not be an issue when working with data and bootstrap, because large 

Table 1   Estimated standard errors based on the parent data set I, with � referring to distribution (14)

� = 1.5 � = 2 � = 3

p =97.5% p =99% p =97.5% p =99% p =97.5% p =99%

m = 1 × 104 496 1230 70.8 167 11.2 22.7
m = 2 × 104 319 788 49 115 8 16.1
m = 3 × 104 254 626 40 93.7 6.5 13.1
m = 4 × 104 220 542 34.3 80.5 5.6 11.3
m = 5 × 104 195 479 31 72.4 6 9.9
m = 6 × 104 178 438 28.4 66.8 4.5 9
m = 7 × 104 165 408 26.3 62.1 4.2 8.4
m = 8 × 104 154 379 24.5 57.6 3.9 7.9
m = 9 × 104 145 357 23.2 54.4 3.7 7.4

m = n = 105 136 335 21.8 51.1 3.5 7
Theoretical TCA​ 3290 6140 1100 1800 386 557

Table 2   Estimated standard errors based on the parent data set II, with � referring to distribution (14)

� = 1.5 � = 2 � = 3

p =97.5% p =99% p =97.5% p =99% p =97.5% p =99%

m = 1 × 104 420 824 85.7 191 20 40.3
m = 2 × 104 296 602 60.1 135 13.9 28.7
m = 3 × 104 241 481 49.1 110 11.4 23.2
m = 4 × 104 208 413 43 95.2 9.9 20.3
m = 5 × 104 187 386 39 85.2 8.9 17.7
m = 6 × 104 174 343 34.3 78 8.1 16.4
m = 7 × 104 161 317 31.8 72.1 7.5 15.2
m = 8 × 104 149 303 30.3 67 7.1 14.3
m = 9 × 104 139 279 28.3 64.1 6.6 13.3

m = n = 105 136 268 21.8 60.4 6.3 12.8
Theoretical TCA​ 3290 6140 1110 1800 386 557
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deviations of the estimator from the true TCA value may compensate increasing val-
ues of the variance estimate. Nevertheless, to rigorously explore this phenomenon 
from the theoretical point of view is a worthwhile problem, well beyond the scope of 
the present paper.

2.2.2 � A pivotal practical consideration

From the traditional point of view of looking at confidence intervals, the standard error 
determines the shrinking to 0 (when n grows) margin of error while asymptotically 
maintaining the pre-specified level of confidence. The view that we take next is in a 
sense the opposite: the confidence interval has a pre-specified (fixed) margin of error � 
and an asymptotically growing to 1 coverage probability

The established consistency result ensures that Cn → 1 when n → ∞ . Note that the 
value of � may not be small. It could, for example, be a certain percentage (e.g., 
10%) of the average TCA values obtained beforehand from historical data, and such 
values can be, or at least look, large.

To assess the rate of convergence of Cn to 1, lower bounds for Cn can be established 
using, e.g., Markov’s bound, or—assuming finite second moment—Chebyshev’s bound

or perhaps using some other bound such as Chernoff’s, which would require finite-
ness of the moment generating function. The verification can also be done in an 
asymptotically precise manner—although naturally under more stringent condi-
tions—via the CLT-type result

when n → ∞ , where �2
1
 is the �2-random variable with 1 degree of freedom, and 

�2
TCA

 is the asymptotic variance of TCAn(p) whose magnitude we assessed in 
Sect. 2.2.1 using bootstrap.

The validity of such results requires considerably stronger assumptions than those of 
the present paper (e.g., Gribkova &  Zitikis, 2017, 2019). For example, statements (17) 
and (18) require at least finite second moment of X. The extreme value theory (EVT) 
would enable us to circumvent the need for finite second or larger-order moments, but it 
relies on a plethora of other conditions whose validity might be challenging to establish 
in practice (e.g., Beirlant et al., 2004; Castillo et al., 2004; de Haan & Ferreira, 2006). 
Hence, we next adopt a practical bootstrap-based approach for assessing convergence 
of the error probabilities

Cn ∶= ℙ
(|TCAn(p) − TCA(p)| ≤ �

)
.

(17)Cn ≥ 1 −
1

�2
�
(
(TCAn(p) − TCA(p))2

)
,

(18)Cn = ℙ

(
�2
1
≤ n�2

�2
TCA

)
+ o(1)

�n(p, �) = 1 − Cn
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to 0. The approach is akin to the classical bootstrap approach for assessing standard 
errors, and it will hint at the sample sizes n needed to achieve prescribed confidence 
levels in practice.

2.2.3 � Estimated error probabilities

Given pairs (15), we first calculate TCAn(p) using formula (4), and then obtain the 
bootstrap values TCA∗

n,m,1
(p),… ,TCA∗

n,m,L
(p) following the procedure described 

after definition (16). Using these values, we then calculate the proportion

Asymptotically, this is a proxy to �m(p, �) , which tends to be larger than �n(p, �) due 
to n ≥ m and the established consistency of the estimator. In other words, �∗

n,m
(p, �) 

asymptotically gives a conservative upper bound for the probability �n(p, �) , which 
we do not want to exceed the prescribed significance level � , say 0.05. Hence, if we 
find m such that �∗

n,m
(p, �) dips below � , then we conclude that for the given sample 

size n, the probability �n(p, �) also dips below � , and thus the coverage probability 
Cn becomes (asymptotically) at least 1 − �.

If, however, we cannot find m for which �∗
n,m

(p, �) dips below � , then we conclude 
that the sample size n is not sufficiently large to suggest the coverage probability of 
at least 1 − � , and thus additional data need to be obtained.

To illustrate the proximity of �∗
n,m

(p, �) to 0 depending on m, we use the same 
experiment as described earlier under parameter specifications  (A.1)–(A.2) and 
(B.1)–(B.3). We set � to be 10% of the corresponding theoretical TCA(p) value, 
which is unknown in practice but, of course, is known in our experiment. Tables 3 

𝜋∗
n,m

(p, 𝜖) ∶=
1

L

L∑
�=1

1

{||TCA∗
n,m,�

(p) − TCAn(p)
|| > 𝜖

}
.

Table 3   Error proportions (in %) based on the parent data set I, with � referring to distribution (14)

� = 1.5 � = 2 � = 3

p =97.5% p =99% p =97.5% p =99% p =97.5% p =99%

m = 1 × 104 56.8 67 30.7 48.2 3.8 14
m = 2 × 104 48.6 60.3 15.6 33.3 0.4 3.7
m = 3 × 104 39.9 54 8.7 23.4 0 1
m = 4 × 104 33.8 48.3 5 16.5 0 0.4
m = 5 × 104 28.2 42.6 3.1 12.3 0 0
m = 6 × 104 24.4 38.7 2 9.2 0 0
m = 7 × 104 21.2 35.4 1.3 7.2 0 0
m = 8 × 104 17.8 31.8 0.9 5.7 0 0
m = 9 × 104 15 28.6 0.6 4.7 0 0

m = n = 105 13 25.6 0.3 3.5 0 0
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and 4 summarize the results in the case of the same parent data sets I and II that we 
used to produce Tables 1 and 2. A few notes conclude this section.

Note 2  It is natural to ask why m < n could be better than m = n , given that �n(p, �) 
is asymptotically dominated by �m(p, �) whenever m < n . The reason is that the “m 
out of n” bootstrap tends to outperform the “n out of n” bootstrap when the lat-
ter lacks consistency. For details, we refer to, e.g., Bickel et  al. (1997), Bickel & 
Sakov (2008), DasGupta (2008), Gribkova & Helmers (2007, 2011). Hence, the two 
competing forces at play in the current context can be conciliated by appropriately 
choosing m, and this leads to the above suggested recipe for deciding whether or not 
the sample size n of the original data set is sufficiently large. Nevertheless, we do not 
see m < n outperforming m = n in Tables 1 and 2, which, in our opinion, suggests 
that bootstrap is consistent. Establishing this fact rigorously, however, presents yet 
another interesting theoretical problem, well beyond the scope of the present paper.

Note 3  By comparing Tables 3 and 4, we see that there are more entries below 5% 
in the latter table than in the former, and thus Table 4 is more likely to suggest that 
the sample size n = 105 is sufficient for statistical purposes than Table 3. This is of 
course natural, given the inevitable data variability, but it reminds us that some data 
sets are more telling about the population than other ones.

3 � The role of continuity

The continuity assumption on the cdf’s—whether F or G depending on the con-
text—has been natural throughout the above considerations, but this naturalness 
does not serve a rigorous basis for claiming that the assumption is truly necessary 
for consistency. For this reason, the current section is devoted to a detailed analysis 

Table 4   Error proportions (in %) based on the parent data set II, with � referring to distribution (14)

� = 1.5 � = 2 � = 3

p =97.5% p =99% p =97.5% p =99% p =97.5% p =99%

m = 1 × 104 43.1 46.1 19.2 34.1 4.8 16.6
m = 2 × 104 25.8 30.8 6.6 17.6 0.6 4.9
m = 3 × 104 16.3 20.2 2.2 9.7 0.1 1.8
m = 4 × 104 11.1 13.6 1 6 0 0.7
m = 5 × 104 7.5 11 0.5 3.5 0 0.3
m = 6 × 104 5.3 7.5 0.1 2.1 0 0.1
m = 7 × 104 4.2 4.8 0 1.4 0 0.1
m = 8 × 104 2.7 3.9 0 0.7 0 0
m = 9 × 104 2.2 2.8 0 0.4 0 0

m = n = 105 1.3 2.3 0 0.2 0 0
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of a discrete case. Naturally, to show that consistency fails for the tail conditional 
allocation, it is sufficient to show that it fails for the expected shortfall because the 
latter is a special case of the former: we just need to set Y = X . Hence, we concen-
trate on the latter risk measure, dropping the factor 1∕(1 − p) for typographical sim-
plicity, as it does not change any of the following arguments.

Fix any p ∈ (0, 1) , and let the distribution of X be

for some x1 < x2 be chosen later. Then

Note that in the discontinuous case, such as the one we consider now, equations (2) 
give two empirical “estimators” of L(p): one is in the bottom (third) line, and another 
one is in any of the two preceding lines. For convenience, we denote them as

and

respectively. The rest of the section is subdivided into two parts.

3.1 � Failure of Ln(p)

Let x1 = 0 and x2 = 1 . Then

Furthermore, we have

because n−1
∑n

i=1
Xi

ℙ

−→1 − � by the law of large numbers. Hence, when 𝛼 < p , the 
“estimator” Ln(p) fails to consistently estimate L(p).

3.2 � Failure of L∗
n
(p)

Let x1 = 1 and x2 = 2 . Then

X =

{
x1 with probability � ∈ (0, 1),

x2 otherwise,

L(p) ∶= �(X1[p,1](F(X))) = x1�1[p,1](�) + x2(1 − �).

Ln(p) ∶=
1

n

n∑
i=1

Xi∶n1[p,1]

(
i

n + 1

)

L∗
n
(p) ∶=

1

n

n∑
i=1

Xi1[p,1]

(
n

n + 1
Fn(Xi)

)
,

L(p) = 1 − �.

Ln(p) = min

{
1

n

n∑
i=1

Xi,
1

n

n∑
i=1

1[p,1]

(
i

n + 1

)}
ℙ

−→min{1 − �, 1 − p}
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Furthermore, we have

for all sufficiently large n, so that n∕(n + 1) ≥ p ∈ (0, 1) . Hence,

when n → ∞ , because Fn(1)
ℙ

−→� by the law of large numbers. This implies that

if and only if

We shall next check whether of not the latter statement holds.
When 𝛼 < p , for every � ∈ (0, 1) we have

when n → ∞ , because p − 𝛼 > 0 and Fn(1) − �
ℙ

−→0 by the law of large numbers.
When � ≥ p , for every � ∈ (0, 1) we have

L(p) =

{
𝛼 + 2(1 − 𝛼) when 𝛼 ≥ p,

2(1 − 𝛼) when 𝛼 < p.

L∗
n
(p) =

1

n

n∑
i=1

1{1}(Xi)1[p,1]

(
n

n + 1
Fn(1)

)
+ 2

1

n

n∑
i=1

1{2}(Xi)1[p,1]

(
n

n + 1
Fn(2)

)

=
1

n

n∑
i=1

1{1}(Xi)1[p,1]

(
n

n + 1
Fn(1)

)
+ 2

1

n

n∑
i=1

1{2}(Xi)1[p,1]

(
n

n + 1

)

=
1

n

n∑
i=1

1{1}(Xi)1[p,1]

(
n

n + 1
Fn(1)

)
+ 2

1

n

n∑
i=1

1{2}(Xi)

L∗
n
(p) = Fn(1)1[p,1]

(
n

n + 1
Fn(1)

)
+ 2(1 − Fn(1))

= �1[p,1]

(
n

n + 1
Fn(1)

)
+ 2(1 − �) + o

ℙ
(1)

L∗
n
(p)

ℙ

−→L(p)

(19)1[p,1]

(
n

n + 1
Fn(1)

)
ℙ

−→

{
1 when 𝛼 ≥ p,

0 when 𝛼 < p.

ℙ

(
1[p,1]

(
n

n + 1
Fn(1)

)
> 𝜀

)
= ℙ

(
n

n + 1
Fn(1) ≥ p

)

= ℙ

(
n

n + 1
(Fn(1) − 𝛼) −

𝛼

n + 1
≥ p − 𝛼

)
→ 0

ℙ

(||||1[p,1]

(
n

n + 1
Fn(1)

)
− 1

|||| > 𝜀

)
= ℙ

(
n

n + 1
Fn(1) < p

)

= ℙ

(
n

n + 1
(Fn(1) − 𝛼) −

𝛼

n + 1
< p − 𝛼

)
.
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Hence, when 𝛼 > p , the right-hand side converges to 0 when n → ∞ , because 
p − 𝛼 < 0 and Fn(1) − �

ℙ

−→0 by the law of large numbers.
When � = p , the above equations give

when n → ∞ , due to the central limit theorem and the symmetry of the stand-
ard Gaussian distribution. Hence, when � = p , statement  (19) fails, which in turn 
implies that the “estimator” L∗

n
(p) fails to consistently estimate L(p).

4 � Conclusion

In response to a concluding remark by Dudkina & Gribkova (2020), we have shown 
under minimal assumptions that the empirical estimator of the tail conditional alloca-
tion TCA(p) is (weakly) consistent. This, however, only partially solves the problem of 
Dudkina & Gribkova (2020), as they consider a strong law of large numbers and thus 
obviously wish a strong consistency result, which we next formulate as a conjecture.

Conjecture 1  Let Assumptions 1 and 2 be satisfied. Then TCAn(p) is a strongly con-
sistent estimator of TCA(p) for every p ∈ [0, 1).

The minimality of Assumptions  1 and 2 is, of course, meant in some general 
sense. For example, the necessity of the finite first moment �(X) can, irrespective of 
p ∈ [0, 1) , be concluded by considering independent X and Y, in which case we have

due to the equation �(1[p,1](G(Y))) = 1 − p that follows from the continuity of the 
cdf G and thus from the uniformity of the distribution of G(Y) on the interval [0, 1]. 
This establishes the necessity of 𝔼(X) ∈ ℝ . Nevertheless, the other extreme case (in 
the sense of dependence) X = Y  gives the equations

ℙ

�����1[p,1]

�
n

n + 1
Fn(1)

�
− 1

���� > 𝜀

�
= ℙ

�
n

n + 1
(Fn(1) − 𝛼) <

𝛼

n + 1

�

= ℙ

�√
n(Fn(1) − 𝛼)√
𝛼(1 − 𝛼)

<

√
𝛼

√
n
√
1 − 𝛼

�

≥ ℙ

�√
n(Fn(1) − 𝛼)√
𝛼(1 − 𝛼)

≤ 0

�

=
1

2
+ o(1)

TCA(p) =
1

1 − p
�(X)�(1[p,1](G(Y))) = �(X),

TCA(p) =
1

1 − p
�(Y1[p,1](G(Y))) =

1

1 − p ∫
1

p

G−1(u)du,
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thus suggesting that only 𝔼(Y+) ∈ ℝ (or, equivalently, 𝔼(X+) ∈ ℝ ) is necessary. 
Hence, next is our second conjecture.

Conjecture 2  Let Assumption 2 be satisfied. Given any p ∈ [0, 1) , if the moment 
�(X1[p,1](G(Y))) is finite, then TCAn(p) is a (weakly or strongly) consistent estimator 
of TCA(p).

Solving these conjectures are primarily of theoretical interest. The two boot-
strap-related problems that we raised in Notes 1 and 2 are of practical value. Given 
our intuition for the technicalities needed to attack these problems, their solutions 
will require considerable space to establish. That said, we can give the following 
expression

of the asymptotic variance of the estimator TCAn(p) , where g2(y) = �
(
X2 ∣ Y = y

)
 , 

g(y) = �
(
X ∣ Y = y

)
 , and �p = g(G−1(p)).

Conjecture 3  Let Assumption 2 be satisfied. If the asymptotic variance �2
p
 is finite, 

then

where d
⟶ denotes convergence in distribution.

To compare the performance of various estimation procedures based on confi-
dence intervals with prescribed margins of error under minimal assumptions will 
be a very interesting problem for future research, but for doing so, we first need to 
establish Conjecture 3 in the stated or a modified form, depending on the inevitabil-
ity of technicalities.
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