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Abstract
For parameters in a threshold autoregressive process, the paper proposes a sequen-
tial modification of the least squares estimates with a specific stopping rule for col-
lecting the data for each parameter. In the case of normal residuals, these estimates 
are exactly normally distributed in a wide range of unknown parameters. On the base 
of these estimates, a fixed-size confidence ellipsoid covering true values of param-
eters with prescribed probability is constructed. In the i.i.d. case with unspecified 
error distributions, the sequential estimates are asymptotically normally distributed 
uniformly in parameters belonging to any compact set in the ergodicity parametric 
region. Small-sample behavior of the estimates is studied via simulation data.

Keywords  TAR process · Sequential estimates · Fixed-size confidence ellipsoid

1  Introduction

The first step in the analysis of a time series is the selection of a suitable mathemati-
cal model for the data which allows one to obtain an understanding of the mechanism 
generating the series and make inference about the probabilistic mechanism of the 
underlying structure. Linear and nonlinear models are two main structures for statistical 
modeling. Linear models are usually more tractable for studies and interpretable, but 
their efficiency highly relies on the validity of the linearity assumption. The nonlin-
ear models may be more flexible and more accurately capture the dependence between 
observations in some cases, but they often computationally challenging. In engineering 
applications related to automatic control, filtering, segmentation of signals, biomedical 
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signal processing, change-point detection, spectral analysis, finance, linear and nonlin-
ear models are often completely specified by some stochastic difference and stochastic 
differential equations except for a finite number of unknown parameters. The classical 
methods of identifying unknown parameters, such as least-squares method, stochastic 
approximation, have been successfully developed for a great variety of linear models. 
As a rule, the estimation theory becomes more complicated and mostly asymptotic, in 
the case of processes with dependent values. For an autoregression process, the least 
squares estimate (LSE) of its parameters, based on fixed sample size, is nonlinear func-
tion of observations. Asymptotic properties of the LSE of the autoregressive parame-
ters, such as strong consistency, asymptotic normality, have been proved, under general 
conditions, relatively by not so long ago (we refer the reader to Lai and Wei 1983 and 
references therein). In recent years, remarkable theoretical advancements in statisti-
cal inference for linear stochastic models are made by the development of sequential 
methods for processes with dependent observations. The idea of sequential analysis to 
sample until enough information is gathered about unknown parameters turned out to 
be fruitful as in the case of independent observations. As the sequential sampling meth-
ods developed for i.i.d. framework, sequential methods for dependent observations are 
applied either to compare asymptotic properties of estimates or to find a solution to the 
problem which is unsolvable within the estimation theory with fixed sample size. We 
cannot go to detail here and refer the reader to the literature (see, e.g., Lai and Sieg-
mund 1983 for a first-order non-explosive autoregressive process proposed to use the 
special stopping rule based on the observed Fisher information in the least squares esti-
mate to obtain the estimator which is asymptotically normal uniformly in parameter).

In this paper, we develop a sequential least square method for estimating parameters 
in a threshold autoregressive model of order one TAR(1), introduced by Tong (1978), 
obeying the equation

where {�k} are independent and identically distributed (i.i.d.) unobservable random 
errors (noise) with E�k = 0 and 0 < E𝜀2

k
= 𝜎2 < ∞;�1 and �2 are unknown param-

eters; x+ = max(x, 0) and x− = min(x, 0);x0 (not dependent on �1 and �2 ) is independ-
ent of {�k} . The parameters �1 and �2 are commonly estimated by the least squares 
estimates

Asymptotic properties of these estimates are well studied in the literature (see Chan 
1993; Chigansky and Kutoyants 2013; Li and Ling 2012; Yau et al. 2015; Gao et al. 
2013 for details and other references). Pham et al. (1991) have proved strong con-
sistency of the least squares estimates under quite general conditions, for the first-
order SETAR model with one threshold. Proposition 1 of their paper implies that 
estimates (2) for parameters in (1) are strongly consistent if and only if �1 ≤ 1 and 
�2 ≤ 1. In terms of the processes {x+

k
} and {x−

k
} , 𝜃̂1,n and 𝜃̂2,n are strongly consistent if 

and only if simultaneously

(1)xk = �1x
+
k−1

+ �2x
−
k−1

+ �k, k = 1, 2,… ,

(2)𝜃̂1,n =

∑n

k=1
xkx

+
k−1∑n

k=1

�
x+
k−1

�2 , 𝜃̂2,n =

∑n

k=1
xkx

−
k−1∑n

k=1

�
x−
k−1

�2 .
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Petruccelli and Woolford (1984) have established that the process (1) is ergodic if 
and only if parameters � = (�1, �2) satisfy

and they proved asymptotic normality of estimate (2), when the process (1) is 
ergodic.

In recent years, there has been growing an interest to developing sequential 
analysis approach to the problem of estimating parameters in a threshold TAR(1) 
model. Lee and Sriram (1999) have studied risk efficient sequential estimates of 
parameters in a threshold TAR(1) model. Keeping in mind a surprising uniform 
asymptotic normality result of Lai and Siegmund (1983) for AR(1) model, Sriram 
raised a theoretical conjecture about the limiting distribution of a sequential 
pivot quantity for a parameter vector in TAR(1) model and conducted an exten-
sive numerical study that strongly suggests in favor of sequential procedure (see 
Sriram and Iaci 2014 for details).

The goal of this paper is to develop sequential point and sequential confidence 
region procedures for estimating parameters in a TAR(1) model with a given pre-
cision on the basis of the least squares method. The sequential point estimate for 
the vector � = (�1, �2) in (1) is constructed by modifying the least squares esti-
mates (2) and introducing specific stopping rule for each of them. We consider 
the estimation problem in non-asymptotic and asymptotic statements. First, we 
study case of normal residuals {�k} in (1). We show that the proposed sequential 
estimates, under this assumption, have exactly normal joint distribution.

The present paper has two linked objectives. First, we address the problem of 
constructing sequential least squares estimates for TAR(1) model (1) with non-
asymptotic normal joint distribution under the assumption that the errors {�n} 
form a Gaussian white noise. The obtained results are applied to construction the 
fixed-size confidence ellipsoid for estimating parameters in a TAR(p) model. The 
second problem is to study asymptotic properties of these estimates for ergodic 
process (1) in the case when {�n} is an i.i.d. sequence of random variables with 
unspecified distribution and to prove uniform asymptotic normality of estimates.

The paper is organized as follows. In Sect.  2, we construct sequential least 
squares estimates for TAR(1) model. The exact non-asymptotic normal distri-
bution of these estimates has been derived under assumption that the errors in 
the model (1) are an i.i.d. sequence of normally distributed random variables 
(Theorem 1). In Sect. 3, we study the case of unspecified error distribution. The 
property of uniform asymptotic normality for sequential estimates is established. 
In Sect.  4, the proof of key theoretical result is presented. In Sect.  5, we con-
struct sequential point and sequential confidence region procedures for estimating 
parameters in a TAR(p) model (40). In Sect. 6, the results of numerical simula-
tions are given.

(3)P�

(∑
k≥1

(
x+
k

)2
= +∞

)
= 1, P�

(∑
k≥1

(
x−
k

)2
= +∞

)
= 1.

(4)𝜃1 < 1, 𝜃2 < 1, 𝜃1𝜃2 < 1.
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Proceeding from this result, the problem of constructing a fixed-size confidence 
ellipsoid with a given coverage probability has been solved in nonparametric statement 
(Propositions 1, 5).

2 � Construction of sequential least squares estimates

In this section, it is assumed that the errors {�k} are i.i.d. with the standard Gaussian 
distribution. We will construct sequential point estimates for �1 and �2 on the basis of 
estimates (2). For a fixed h > 0 , we introduce two stopping rules

The parameter h defines the accuracy of the estimates (see Theorem 1).
Let �(h) = �1(h) ∨ �2(h) be the observation time. We denote sequential least squares 

estimates for � = (�1, �2) as the vector

with coordinates

where �1,k and �2,k are weight coefficients of the form

Here, �1,�1 and �2,�2 are correction factors compensating the overshots in (5), uniquely 
defined by the equations

(5)

�1(h) = inf

{
n ≥ 1 ∶

n∑
k=1

(
x+
k−1

)2 ≥ h

}
,

�2(h) = inf

{
n ≥ 1 ∶

n∑
k=1

(
x−
k−1

)2 ≥ h

}
.

(6)𝜃̂(h) = (𝜃̂1(h), 𝜃̂2(h))

(7)

𝜃̂1(h) =
1

h+

𝜏1(h)∑
k=1

𝛽1,kx
+
k−1

xk,

𝜃̂2(h) =
1

h−

𝜏2(h)∑
k=1

𝛽2,kx
−
k−1

xk

(8)𝛽i,k =

⎧⎪⎨⎪⎩

1 if k < 𝜏i(h),√
𝛼i,𝜏i if k = 𝜏i(h),

0 if k > 𝜏i(h); i = 1, 2.

(9)

�1(h)−1∑
k=1

(
x+
k−1

)2
+ �1,�1(h)

(
x+
�1(h)−1

)2

= h,

�2(h)−1∑
k=1

(
x−
k−1

)2
+ �2,�2(h)

(
x−
�2(h)−1

)2

= h.
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We set

It will be noted that 0 < 𝛼1,𝜏1(h) ≤ 1 and 0 < 𝛼2,𝜏2(h) ≤ 1 for any h > 0. Therefore, 
h+∕h ≥ 1 and h−∕h ≥ 1. It is clear that these rations are close to one provided that 
contribution of the last addends to the corresponding sums in (10) is small.

The following theorem gives joint distribution of the standardized deviations of 
estimates (7).

Theorem  1  Define 𝜃̂(h), h > 0 by (6), (7) and �1(h), �2(h) by (5). If {�k} are i.i.d. 
normal random variables with mean 0 and variance 1 and are independent of x0 , 
then for any � = (�1, �2), �1 ≤ 1, �2 ≤ 1 the standardized deviations

have the standard two-dimensional normal distribution N2(0, I), I is the unit matrix 
of the size 2 × 2 , that is

The proof of Theorem 1 is given in Appendix.

Corollary 1  Under conditions of Theorem 1 for every x ∈ R

where �2
2
 is Chi-square random variable with two degrees of freedom.

This result is a direct consequence of Theorem 1.
Equation (12) enables one to construct a fixed-size confidence region for 

unknown parameters (�1, �2) with a prescribed coverage probability. Consider a fam-
ily of confidence regions of elliptic form

Proposition 1  Let {�k} in (1) be an i.i.d. sequence of standard normal vari-
ables, �k ∼ N(0, 1) , and 𝜃̂1(h), 𝜃̂2(h) be defined by (7). Then, for any given 
r > 0, 0 < 𝛼 < 1, 𝜃1 ≤ 1, 𝜃2 ≤ 1

(10)

h+ =

�1(h)∑
k=1

�1,k
(
x+
k−1

)2
,

h− =

�2(h)∑
k=1

�2,k
(
x−
k−1

)2
.

(11)𝜉1 =
h+√
h

�
𝜃̂1(h) − 𝜃1

�
, 𝜉2 =

h−√
h

�
𝜃̂2(h) − 𝜃2

�

P𝜃

(
𝜉1 < x, 𝜉2 < y

)
= 𝛷(x)𝛷(y), −∞ < x < ∞, −∞ < y < ∞.

(12)P𝜃

(
(h+)2

h

(
𝜃̂1(h) − 𝜃1

)2
+

(h−)2

h

(
𝜃̂2(h) − 𝜃2

)2 ≤ x

)
= P

(
𝜒2
2
≤ x

)
,

(13)G(r) =

{
(t1, t2) ∶

(
h+

h

)2(
𝜃̂1(h) − t1

)2
+

(
h−

h

2
)(

𝜃̂2(h) − t2
)2 ≤ r2

}
.



690	 V. V. Konev, S. E. Vorobeychikov 

1 3

for stopping rules (5) with h = 2 log
1

�
∕r2.

Proof  Let r > 0 and 0 < 𝛼 < 1 be fixed. From (12), (13), it follows that confidence 
region (13) covers true values of parameters �1 and �2 with probability 1 − � if h sat-
isfies the equation

By making use of Chi-square density of distribution with two degrees of freedom

 one gets

Solving this equation with respect to h, one comes to the desired result. This com-
pletes the proof of Proposition 1. 	�  ◻

3 � The case of unspecified error distribution

Henceforth, we assume that {�k} in (1) is a sequence of i.i.d. random variables with 
zero mean, variance 0 < 𝜎2 < ∞ and E𝜀4

1
< ∞, each having a strictly positive den-

sity f (⋅) on R = (−∞,∞). We set for simplicity �2 = 1. In this section, we will study 
asymptotic behavior of the joint distribution of sequential estimates (7) as parameter 
h in stopping rules (5) tends to infinity and establish the property of uniform asymp-
totic normality in some parametric region. We need some extension of the probabil-
istic result for martingales of Lai and Siegmund (1983) (Proposition 2.1).

Proposition 2  Let xn, �n, n = 0, 1… be random variables adapted to the increasing 
sequence of �–algebras {Fn}n≥0 . Let 

{
P� , � ∈ �

}
 be a family of probabilistic meas-

ures such that under every P�

(1)	  �1, �2,… are i.i.d. with E��1 = 0, E��
2
1
= 1;

(2)	 sup
𝜃

E𝜃(𝜀
2
1
; |𝜀1| > a) → 0 as a → ∞;

(3)	 �n is independent of Fn−1 for each n ≥ 1;

(4)	 sup
𝜃

P𝜃(x
2
n
> a) → 0 as a → ∞ for each n ≥ 1;

(14)P�{� ∈ G(r)} = 1 − �

P𝜃(𝜃 ∉ G(r)) = P𝜃

(
𝜒2
2

h
> r2

)
= 𝛼.

P�2
2
(z) =

1

2
e−z∕2

(15)P𝜃

(
𝜒2
2

h
> r2

)
= e

−
hr2

2 = 𝛼.
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(5)	 P�

�∑
k≥1

�
x+
k

�2
= +∞

�
= 1, P�

�∑
k≥1

�
x−
k

�2
= +∞

�
= 1, where x+ = max(x, 0),

x
− = min(x, 0);

(6)	 for each 𝛿 > 0

For h > 0 let

�(h) = �1(h) ∨ �2(h).
(7)	 Let �1,�1 and �2,�2 be correction multipliers uniquely defined by the equations

(8)	 For each vector u = (u1, u2) with real components and ||u|| =
√

u2
1
+ u2

2
= 1, let 

define the sequence of random variables

where

Then,

where � is the standard normal distribution function.

lim
n→∞

sup
𝜃

P𝜃

(
(x+

n
)2 > 𝛿

n∑
k=1

(x+
k−1

)2 for some n ≥ m

)
= 0;

lim
n→∞

sup
𝜃

P𝜃

(
(x−

n
)2 > 𝛿

n∑
k=1

(x−
k−1

)2 for some n ≥ m

)
= 0.

(16)

�1(h) = inf

{
n ≥ 1 ∶

n∑
k=1

(
x+
k−1

)2 ≥ h

}
,

�2(h) = inf

{
n ≥ 1 ∶

n∑
k=1

(
x−
k−1

)2 ≥ h

}
,

�1(h)−1∑
k=1

(
x+
k−1

)2
+ �1,�1(h)

(
x+
�1(h)−1

)2

= h,

�2(h)−1∑
k=1

(
x−
k−1

)2
+ �2,�2(h)

(
x−
�2(h)−1

)2

= h;

yk−1 = �1,ku1x
+
k−1

+ �2,ku2x
−
k−1

, 1 ≤ k ≤ �(h),

𝛽i,k =

⎧⎪⎨⎪⎩

1 if k < 𝜏i(h),√
𝛼i,𝜏i if k = 𝜏i(h),

0 if k > 𝜏i(h); i = 1, 2.

lim
h→∞

sup
𝜃∈𝛩

sup
t∈R

������
P𝜃

�
1√
h

𝜏(h)�
k=1

yk−1𝜀k < t

�
−𝛷(t)

������
= 0
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The proof of Proposition  2 actually proceeds along the lines of the proof of 
Proposition 2.1 in Lai and Siegmund (1983). Some technical changes are caused 
by the presence of two stopping times instead of one. For sake of clarity and ease 
of reading, the proof of Proposition 2 is given in Appendix.

Now, we consider sequential least squares estimates for � = (�1, �2) defined by 
(5)–(7) in the case of unspecified distribution of residuals �k in (1). Let the filtra-
tion {Fn≥0} be defined as

Then, �1 and �2 introduced in (5) are stopping times with respect to the filtration 
(17). We assume that the process (1) is ergodic, that is the parametric region � given 
by (4). In order to apply Proposition 2 to the process (1), one has to verify condi-
tions (6) because all other conditions are obvious.

Proposition 3  Let {xk} obey equation (1) and {�k}k≥1 be an i.i.d. sequence with 
E�1 = 0 and E�2

1
= 1. Then, for any 0 < 𝜆 < 1 both conditions (6) of Proposition 2 

hold for all � ∈ �� where

The proof of this result is rather laborious and is postponed to the next section.
The following theorem establishes the property of uniform asymptotic normal-

ity for the sequential estimates (5)–(7), when the distribution of residuals (�k) in 
(1) is not specified.

Theorem  2  Define 𝜃̂(h) = (𝜃̂1(h), 𝜃̂2(h)), h > 0, by (6,  7) and �1(h), �2(h) by (5). If 
{�k}k≥1 are i.i.d. with mean 0 and variance 1, and are independent of x0 , then for any 
0 < 𝜆 < 1

uniformly for � ∈ �� and t ∈ R2; h+ and h− are given by (10).

Proof  . Substituting (1) in (7) yields

From here, it follows that

(17)F0 = �{x0}, Fn = �{x0, �1,… , �n}, n ≥ 1.

(18)𝛩𝜆 =
{
𝜃 = (𝜃1, 𝜃2) ∶ |𝜃i| < 𝜆, i = 1, 2

}
.

lim
h→∞

������
P𝜃

�
h+√
h

�
(𝜃̂1(h) − 𝜃1

� ≤ t1,
h−√
h

�
(𝜃̂2(h) − 𝜃2

� ≤ t1

�
− 𝛷(t1)𝛷(t2)

������
= 0,

h+√
h

�
(𝜃̂1(h) − 𝜃1

�
=

1√
h

𝜏1(h)�
k=1

𝛽1,kx
+
k−1

𝜀k,

h−√
h

�
(𝜃̂2(h) − 𝜃2

�
=

1√
h

𝜏2(h)�
k=1

𝛽2,kx
−
k−1

𝜀k.
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where �(h) = �1(h) ∨ �2(h),

u = (u1, u2) ∈ R2 with ||u|| = 1. For � ∈ � , thanks to Proposition 3, the process (1) 
satisfies all conditions of Proposition 2 which implies the desired result. Theorem 2 
is proved. 	�  ◻

A direct consequence of Theorem 2 is the following result.

Proposition 4  Under conditions of Theorem 2, for 0 < 𝜆 < 1

uniformly for � ∈ �� and t ∈ R2.

4 � Proof of Proposition 3

Let 𝜃 ∈ 𝛩𝜆 =
{
𝜃 = (𝜃1, 𝜃2) ∶ |𝜃i| < 𝜆, i = 1, 2

}
 . We have to verify the following 

limiting relations, for TAR​(1) process (xk) : for each 𝛿 > 0

The proofs of relations (19) and (20) are similar. We will consider that of (19). 
Equation (1) can be written as

where ��
k
= −x−

k
+ �2x

−
k−1

+ �k. Further, we apply Lemma 1 from the paper of Perga-
menshchikov (1992) which claims that if 

{
xk
}
k≥0 is autoregressive process

with |�| ≤ 1 , then

u1 ⋅
h+√
h

�
𝜃̂1(h) − 𝜃1

�
+ u2 ⋅

h−√
h

�
𝜃̂2(h) − 𝜃2

�
=

1√
h

𝜏(h)�
k=1

yk−1𝜀k

yk−1 = �1,ku1x
+
k−1

+ �2,ku2x
−
k−1

,

lim
h→∞

P𝜃

(
(h+)2

h

(
(𝜃̂1(h) − 𝜃1

)2
+

(h−)2

h

(
(𝜃̂2(h) − 𝜃2

)2 ≤ t

)
= P

(
𝜒2
2
≤ t

)

(19)lim
n→∞

sup
𝜃

P𝜃

(
(x+

n
)2 > 𝛿

n∑
k=1

(x+
k−1

)2 for some n ≥ m

)
= 0;

(20)lim
n→∞

sup
𝜃

P𝜃

(
(x−

n
)2 > 𝛿

n∑
k=1

(x−
k−1

)2 for some n ≥ m

)
= 0.

(21)x+
k
= �1x

+
k−1

+ ��
k
,

xk = �xk−1 + �k, k ≥ 1,
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where c = 3 − 2
√
2.

For Eq. (21), this inequality takes the form

It will be observed that

From here and (23), one has

Now, we represent the process {��
n
} as

The first step in estimating from above the probability of event

is the following result.

Lemma 1  For each natural number p, for |�i| ≤ 1 and for sufficiently large n,

Proof  For a fixed number p, we define the number

(22)
n∑

k=1

(xk)
2 ≥ c

n∑
k=1

�2
k
,

(23)
n∑

k=1

(x+
k
)2 ≥ c

n∑
k=1

(��
k
)2.

(𝜀�
k
)2 ≥ (𝜀�

k
)2𝜒(xk−1>0)

𝜒(xk>0)
= 𝜀2

k
𝜒(xk−1>0)

𝜒(𝜃1xk−1+𝜀k>0)
=∶ 𝜁 �

k
.

(24)
n∑

k=0

(x+
k
)2 ≥ c ⋅ ��

n
, ��

n
=

n∑
k=1

� �
k
.

(25)

��
n
= M�

n
+ T �

n
,

M�
n
=

n∑
k=1

� �
k
− T �

n
, T �

n
=

n∑
k=1

g�
�1
(xk−1);

(26)g�
𝜃1
(z) = E𝜃

(
𝜁 �
k
|xk−1 = z

)
= 𝜒(z>0) ∫

∞

−𝜃1z

y2f (y)dy.

(27)Am(�) =

�
(x+

n
)2∑n

k=1
(x+

k−1
)2

≥ � for some n ≥ m

�
.

(28)(x+
n
)2

n∑
k=1

(x+
k−1

)2

≤ 2

p
+

12p

�
p+1∑
1=1

(xn−i)
2 +

p∑
1=1

�2
n−i

�

c�n
.
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By making use of (21) repeatedly, one gets

From here and (24), it follows that

In view of (21),

Combining (29), (30) yields (28).
Lemma 1 is proved. 	�  ◻

Further, we will study the asymptotic behavior of the ratios xn∕
√
n and ��

n
∕n as 

n → ∞.

Lemma 2  Let {xk} be defined by (1) and �� by (18). Then, for any 0 < 𝜆 < 1 with 
probability one

The proof of Lemma 2 is given in Appendix.
The analysis of each term in the sum

l(p)
n

∈

{
l ∶ x+

n−l
= min

1≤j≤p x
+
n−j

, 1 ≤ l ≤ p

}
.

x+
n
= �l

1
x+
n−l

+

l−1∑
i=0

�i
1
��
n−i

.

(29)

(x+
n
)2

n∑
k=1

(x+
k−1

)2

≤
2(x+

n−l
(p)
n

)2

n∑
k=1

(x+
k−1

)2

+

2

�
l
n(p)

−1∑
i=0

�i
1
��
n−i

�2

n∑
k=1

(x+
k−1

)2

≤ 2

p
+

2p
∑p

i=0
(��

n−i
)2

c
∑n

k=1
(��

k
)2

.

(30)

p∑
i=0

(��
n−i

)2 ≤
(
3

p∑
i=0

x2
n−i

+

p∑
i=0

x2
n−i−1

+

p∑
i=0

�2
n−i

)

≤ 6

(
p+1∑
i=0

x2
n−i

+

p∑
i=0

�2
n−i

)
.

(31)lim
n→∞

sup
�∈��

�xn�√
n
= 0,

(32)
���

n
�√
n
=

T �
n

n
+

M�
n

n
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requires its own technical means. It will be observed that the process (1) is a homo-
geneous Markov chain, and moreover, it has the property of uniform geometric ergo-
dicity. All necessary notions are reminded in Appendix. By applying general Theo-
rem 1, cited ibidem, from the paper by Galtchouk and Pergamenshchikov (2014) we 
obtain

Lemma 3  For any 0 < 𝜆 < 1

where V(x) is the Lyapunov function (.),

�� is the ergodic measure of the chain, �∗ and R∗ are some positive parameters.

From here, one can derive the following result.

Lemma 4  For any 0 < 𝜆 < 1

Proof  We have

Limiting n → ∞ , then N → ∞ and taking into account (33), we come to (34). 
Lemma 4 is proved. 	�  ◻

Now, we can estimate ��
n
∕n from below. For any 0 < L < ∞ and |x| ≤ L , one 

has

(33)sup
�∈��

sup
x∈R

1

V(x)

|||E
�
x
g�(xk) − b�(�)

||| ≤ R∗e−�
∗k, k ≥ 1,

b�(�) = ∫R

g�
�1
(z)��(z)dz,

(34)lim
n→∞

sup
�∈��

sup
�∈R

1

V(x)

||||
1

n
E�
x
T �
n
− b�(�)

|||| = 0.

||||
1

n
E�
x
T �
n
− b�(�)

|||| =
|||||
1

n

n∑
k=1

E�
x
g�(xk−1) − b�(�)

|||||
≤

||||||
1

n

1

V(x)

N∑
k=1

E�
x
g�(xk−1) − b�(�)

||||||
+

(n − N)

n
R∗

n∑
k=N+1

e−�
∗(k−1)

≤
||||||
1

n

1

V(x)

N∑
k=1

E�
x
g�(xk−1) − b�(�)

||||||
+

(n − N)

n
R∗ e−N�

∗

1 − e−�
∗ .
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Denote

Combining (32) and (34) yields

By making use of this estimate in Lemma 1, we obtain for sufficiently large n:

where

Further, we will establish the following result.

Lemma 5  Let �(�, n) be defined by (38). Then, for any 0, 𝜆 < 1 and 𝜇 > 0

The proof of Lemma 5 is postponed to Appendix.
Finally, we will show that (37) and (39) imply the desired result (19). Let Am(�) be 

defined by (27) and 𝛿 > 0 . In view of (37),

(35)

1

n
E�
x
T �
n
≥ 1

nV(x)
E�
x
T �
n
=

1

V(x)

||||
1

n
E�
x
T �
n
− b�(�) + b�(�)

||||
≥ b�(�)

V(x)
−

1

V(x)

||||
1

n
E�
x
T �
n
− b�(�)

||||

≥ 1

V(x)
inf
�∈��

b�(�) − sup
|x|≤L

sup
�∈��

|||
1

n
E�
x
T �
n
− b�(�)

|||
V(x)

.

B(L, �) =
1

V(x)
inf
�∈��

b�(�),

t�(n, �) = sup
|x|≤L

sup
�∈��

|||
1

n
E�
x
T �
n
− b�(�)

|||
V(x)

.

(36)1

n
��
n
≥ B(L, �) − t�(n, �) −

|M�
n
|

n
.

(37)
(x+

n
)2∑

k=1 n(x
+
k−1

)2
≤ 2

p
+ �(�;n),

(38)�(�;n) =
12p

�
1

n

∑p+1

i=0
x2
n−i

+
1

n

∑p

i=0
�2
n−i

�

C
�
B(L, �) − t�(n, �) −

�M�
n
�

n

� .

(39)lim
m→∞

sup
�∈��

P�

{
sup
n≥m

�(�, n) ≥ �

}
= 0.
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If m is large and � is small enough, then 2
p
+ 𝜇 < 𝛿. Therefore,

Limiting m → ∞ and taking into account (39), we derive (19). The proof of Proposi-
tion 3 has been completed. 	�  ◻

5 � Sequential estimators of parameters of generalized TAR(p) process

Consider a TAR(p) process, obeying the equation

where gi are known functions (for example, gi(x) = x),

and −∞ = r0 < r1 < ⋯ < rp−1 < rp = +∞ are some fixed points; it is assumed that 
the errors {�k} are i.i.d. with the standard Gaussian distribution. For a fixed h > 0 , 
we introduce stopping rules

Denote sequential least squares estimates for � = (�1,… , �p) as the vector

Am(𝛿) = Am(𝛿)
⋂{

2

p
+ 𝛥(𝜆, n) < 𝛿 for all n ≥ m

}

+ Am(𝛿)
⋂{

2

p
+ 𝛥(𝜆, n) ≥ 𝛿 for some n ≥ m

}

⊂

{
2

p
+ 𝛥(𝜆, n) ≥ 𝛿 for some n ≥ m

}

=

{
2

p
+ 𝛥(𝜆, n) ≥ 𝛿 for some n ≥ m; 𝛥(𝜆, n) < 𝜇 for all n ≥ m

}

+

{
2

p
+ 𝛥(𝜆, n) ≥ 𝛿 for some n ≥ m; 𝛥(𝜆, n) < 𝜇 for some n ≥ m

}

⊂

{
2

p
+ 𝜇 ≥ 𝛿

}⋃
{𝛥(𝜆, n) < 𝜇 for some n ≥ m}.

sup
�∈��

P�

(
Am(�)

) ≤ sup
�∈��

P�

(⋃
n≥m

{�(�, n) ≥ �}

)
.

(40)xk =

p∑
i=1

�igi(xk−1)Ii(xk−1) + �k,

Ii(x) =

{
1, if ri−1 < x ≤ ri
0, otherwise

,

(41)�i(h) = inf

{
n ≥ 1 ∶

n∑
k=1

g2
i
(xk−1)Ii(xk−1) ≥ h

}
, 1 ≤ i ≤ p.

(42)𝜃̂(h) = (𝜃̂1(h),… , 𝜃p(h))
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with coordinates

where �i,k are weight coefficients of the form

Here, �i,�i are correction factors compensating the overshots in (41), uniquely defined 
by the equations

The following theorem gives joint distribution of the standardized deviations of esti-
mates (43).

Theorem 3  For h > 0 define 𝜃i(h) by (42), (43) and �i(h) by (41). Let the following 
conditions

are satisfied. If {�k} are i.i.d. normal random variables with mean 0 and variance 1 
and are independent of x0 , then

1) the standardized deviations

have the standard p—dimensional normal distribution Np(0, I), I is the unit matrix 
of the size p × p , that is

(43)𝜃̂i(h) =
1

hi

𝜏i(h)∑
k=1

𝛽i,kgi(xk−1)Ii(xk−1)xk,

(44)𝛽i,k =

⎧
⎪⎨⎪⎩

1 if k < 𝜏i(h),√
𝛼i,𝜏i if k = 𝜏i(h),

0 if k > 𝜏i(h); 1 ≤ i ≤ p.

(45)
�i(h)∑
k=1

g2
i
(xk−1)Ii(xk−1) + (�i,�i(h) − 1)g2

i
(xk−1)Ii(xk−1) = h,

(46)hi =

�i(h)∑
k=1

�i,kg
2
i
(xk−1)Ii(xk−1), 1 ≤ i ≤ p.

(47)P�

(∑
k≥1

g2
i
(xk−1)Ii(xk−1) = +∞

)
= 1, 1 ≤ i ≤ p

(48)𝜉i =
hi√
h

�
𝜃i(h) − 𝜃i

�
, 1 ≤ i ≤ p

(49)

P𝜃

(
𝜉1 < z1,… , 𝜉p < zp

)
= 𝛷(z1)⋯𝛷(zp), −∞ < zi < ∞, 1 ≤ i ≤ p.

2) for every x ∈ R P𝜃

(
p∑
i=1

h2
i

h

(
𝜃i(h) − 𝜃i

)2 ≤ x

)
= P

(
𝜒2
p
≤ x

)
,
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where �2
p
 is Chi-square random variable with p degrees of freedom.

The proof of Theorem 3 actually proceeds along the lines of the proof of Theorem 1.
Equation (49) enables one to construct a fixed-size confidence region for unknown 

parameters (�1,… , �p) with a prescribed coverage probability. Consider a family of 
confidence regions of elliptic form

Proposition 5  Under conditions of Theorem 3 for any given r > 0, 0 < 𝛼 < 1

for stopping rules (41) with h = F−1
�2
p

(1 − �)∕r2, where F�2
p
 denotes the distribution 

function of �2
p
 random variable.

Proof  Let r > 0 and 0 < 𝛼 < 1 be fixed. From (49), (50), it follows that confidence 
region (50) covers true values of parameters �i, 1 ≤ i ≤ p with probability 1 − � if h 
satisfies the equation

Solving this equation with respect to h, one comes to the desired result. 	� ◻

6 � Simulation results

In this section, we present some results of Monte Carlo simulation of constructing con-
fidence regions for parameters TAR(1) described by Eq. (1). The value of x0 in all cases 
was taken equal to zero. The noise 

{
�k
}
k≥1 is assumed to be an i.i.d. sequence of ran-

dom variables with zero mean and unit variance. The estimates of unknown param-
eters �1, �2 are defined by formulas (5–10). The fixed-size confidence ellipsoid is con-
structed using Eqs. (13, 14)

and the parameter h = h(�, r) is found from (15):

(50)G(r) =

{
(t1,… , tp) ∈ Rn ∶

p∑
i=1

(
hi

h

)2(
𝜃i(h) − ti

)2 ≤ r2

}
, r > 0.

(51)P�{� ∈ G(r)} = 1 − �

P�(� ∈ G(r)) = P

(
�2
p

h
≤ r2

)
= P

(
�2
p
≤ h ⋅ r2

)
= 1 − �.

G(r) =

{
(t1, t2) ∶

(
h+

h

)2(
𝜃̂1(h) − t1

)2
+

(
h−

h

2
)(

𝜃̂2(h) − t2
)2 ≤ r2

}
, r > 0,



701

1 3

Fixed accuracy estimation of parameters in a threshold

According to Proposition 1,

The results of Monte Carlo simulation are reported in Tables 1–3. The values r and 
� were equal to 0.2 and 0.1, respectively. The corresponding value of the parameter 
h(�, r) is equal to 115.13. The quantities Ẽ𝜃𝜏1 and Ẽ𝜃𝜏2 denote the observed averages 
of stopping times �1(h) and �2(h) , respectively ; 𝛼̂ denotes the frequency count of 
the number of times when the confidence ellipsoid does not contain the true values 
(�1, �2).

All the results were obtained by 10,  000 replications. The parameters �1, �2 in 
Table 1 lie inside the region of ergodicity of the process TAR(1) and were chosen as 
in Sriram and Iaci (2014). The noises {�}n in (1) were taken as �1 ∼ N(0, 1).

One can see that in all cases the averaged coverage probability is very close to 
that of theoretical one.

The similar results in Table  2 were obtained when both parameters �1, �2 are 
negative and lie outside the region of ergodicity. The obtained results show that 
the constructed fixed-size confidence ellipsoid guarantees the prescribed coverage 
probability.

To illustrate the asymptotic property established in Proposition 4 (case of unspec-
ified error distribution), we present the simulation results for the case of double 
exponential noises �n . The values �, r stay the same. The results are presented in 
Table 3. The only difference with Table 1 consists in changing of averaged stopping 
times.

P

(
�2
2

h
≥ r2

)
= �.

P�(� ∈ G(r)) = 1 − �.

Table 1   TAR(1) model with 
Gaussian noises. Region of 
ergodicity

h = 115.13 r = 0.2 � = 0.10

�
1

�
2 Ẽ𝜃𝜏1 Ẽ𝜃𝜏2 𝛼̂

0.9 0.5 51.8 320.5 0.0972
0.9 − 0.5 39.1 968.7 0.1017
0.9 − 10.0 11.5 3378.6 0.1021
0.1 − 0.5 162.2 311.1 0.1052
− 0.1 0.5 361.0 132.5 0.1016
− 0.1 − 5.0 14.5 207.3 0.0944
− 0.9 0.5 510.9 94.7 0.1018
− 0.9 − 0.5 155.3 106.9 0.1048
0.5 0.5 180.0 180.5 0.0935
− 0.5 − 0.5 176.6 177.1 0.1014
− 0.9 − 0.9 58.0 58.0 0.0969
− 0.2 − 4.9 11.7 50.5 0.1033
− 0.19 − 5 11.8 58.1 0.1056
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To compare the quality of the proposed sequential estimators and least squares 
estimators, an additional simulation was performed. The sample size n of the least 
squares estimators �i was chosen so that Ê𝜃𝜏i ≈ n for each i = 1, 2. The results are 
given in Table 4. Here, �2

1
(S) , �2

2
(S) and �2

1
(L) , �2

2
(L) denote the averaged squared 

Table 2   TAR(1) model. 
Negative parameters

h = 115.13 r = 0.2 � = 0.10

�
1

�
2 Ẽ𝜃𝜏1 Ẽ𝜃𝜏2 𝛼̂

− 5.0 − 0.2 46.8 11.4 0.1015
− 10.0 − 0.1 48.1 7.3 0.0983
− 10.0 − 0.2 11.8 6.5 0.0966
− 10.0 − 2.0 5.1 4.6 0.1002
− 10.0 − 0.1 48.1 7.4 0.0991
− 10.0 − 5.0 4.6 4.3 0.1022
− 1.0 − 1.0 32.7 32.7 0.0969
− 0.1 − 10.0 7.4 48.4 0.1020
− 0.2 − 5.0 11.4 47.0 0.1047

Table 3   TAR(1) model with 
double exponential noises

h = 115.13 r = 0.2 � = 0.10

�
1

�
2 Ẽ𝜃𝜏1 Ẽ𝜃𝜏2 𝛼̂

0.9 0.5 54.9 311.7 0.0979
0.9 − 0.5 41.7 783.1 0.1009
0.1 − 0.5 168.5 292.9 0.1023
− 0.1 0.5 331.1 141.5 0.0990
− 0.9 0.5 429.2 97.3 0.0970
− 0.9 − 0.5 158.4 108.1 0.0988
0.5 0.5 183.0 182.9 0.0955
− 0.5 − 0.5 178.9 178.8 0.1027
− 0.9 − 0.9 59.8 59.8 0.1005

Table 4   Simulation results of 
TAR(1) model based on 10000 
replications

h = 115.13

�
1

�
2

E��1 E��2 �2

1
(S) �2

2
(S) �2

1
(L) �2

2
(L)

− 10.0 − 0.1 48.3 7.4 0.0087 0.0087 0.0120 0.0188
− 5.0 − 0.2 46.7 11.4 0.0088 0.0087 0.0126 0.0162
− 2.0 − 0.5 41.8 22.1 0.0087 0.0085 0.0116 0.0149
− 1.0 − 1.0 32.8 32.8 0.0086 0.0087 0.0151 0.0143
− 0.2 − 5.0 11.4 46.9 0.0088 0.0087 0.0192 0.0114
− 0.5 − 2.0 21.7 41.1 0.0084 0.0087 0.0167 0.0126
− 0.1 − 10.0 7.3 48.2 0.0088 0.0086 0.0305 0.0117
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deviations of sequential and least squares estimators from the corresponding true 
values of the parameters �1, �2 . The parameters lie on the hyperbolic boundary of the 
region of ergodicity.

Note that according to Theorem  1, the mean square deviation of the estimates 
𝜃̂j, j = 1, 2 satisfies the inequality

One can see that the averaged squared deviations of sequential estimates are close to 
the value 1∕h = 0, 00868 . The quality of sequential estimates appeared to be essen-
tially better as compared to least squares estimates.

Numerical results confirm the established properties of estimates.

7 � Conclusion

In this paper, we consider the problem of estimating parameters in TAR process. 
We construct fixed-size confidence regions on the basis of the sequential point esti-
mates. It is shown that this allows one to derive non-asymptotic confidence ellip-
soid of prescribed size and coverage probability. The results may be useful for fitting 
nonlinear time series models.

Appendix

Proof of Theorem 1  Let the filtration {F}n≥0 be given by (17). We will show that the 
characteristic function of vector � = (�1, �2) with the coordinates defined in (6) has 
the form

u = (u1, u2), −∞ < uj < ∞, j = 1, 2. Taking into account (11), we introduce two 
sequences

Consider the characteristic function of the vector �(N) = (�1(N), �2(N)):

E𝜃

(
𝜃̂j − 𝜃j

)2 ≤ 1

h
.

��(u) = Eei(u,�) = Eei(u1�1+u2�2) = e
−

u2
1

2 e
−

u2
2

2 ,

�1(N) =
1√
h

N�
k=1

�(k≤�1(h))�1,kx
+
k−1

�k,

�2(N) =
1√
h

N�
j=1

�(j≤�2(h))�2,jx
+
j−1

�j, N ≥ 1.

��(N)(u) = Eei(u,�(N)) = E exp

�
N�
k=1

i√
h
yk−1�k

�
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where

Since

we have

Now, we represent ��(N)(u) as

where

Taking repeatedly conditional expectation yields

Further, we note that

yk−1 = �(k≤�1(h))�1,ku1x
+
k−1

+ �(k≤�2(h))�2,ku2x
−
k−1

.

lim
N→∞

�1(N) = �1, lim
N→∞

�2(N) = �2,

��(u) = lim
N→∞

��(N)(u).

(52)

��(N)(u) = E exp

��
N�
k=1

i√
h
yk−1�k +

1

2h
y2
k−1

�
−

N�
k=1

1

2h
y2
k−1

�

= exp

�
−
u2
1

2
−

u2
2

2

�
E exp

�
N�
k=1

i√
h
yk−1�k +

1

2h
y2
k−1

�
+ RN ,

RN =E
�
exp(�N) ⋅ SN

�
,

�N =

N�
k=1

�
i√
h
yk−1�k +

1

2h
y2
k−1

�
,

SN =E exp

�
N�
k=1

1

2h
y2
k−1

�
− exp

�
−
u2
1

2
−

u2
2

2

�
.

(53)

Ee�(N) = E
�
E
�
e�(N)�FN−1

��

= E exp

�
N−1�
k=1

i√
h
yk−1�k +

N�
k=1

1

2h
y2
k−1

�
E exp

�
i√
h
yN−1�N�FN−1

�

= E

�
exp

�
N−1�
k=1

�
i√
h
yk−1�k +

1

2h
y2
k−1

���
= Ee�(N−1) = ⋯ = 1.

N∑
k=1

1

2h
y2
k−1

≤ 1

2

(
u2
1
+ u2

2

)
,

lim
N→∞

N∑
k=1

1

2h
y2
k−1

=
1

2

(
u2
1
+ u2

2

)
.
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Using the estimate

and applying the theorem of dominated convergence, one gets

Substituting (53) in (52) and limiting N → ∞ , we arrive at the desired result. Thus, 
Theorem 2.1 is proved. 	�  ◻

Proof of Lemma 2  Noting that

and applying this inequality repeatedly, one gets

This implies the following estimate N < n

Limiting n → ∞, then N → ∞ and thanks the strong law of large numbers one 
comes to (31). 	�  ◻

Proof of Lemma 5  For each � ∈ �� , the process M′
n
 in decomposition (25) is a square 

integrable martingale subjected to the strong law of large numbers:

Moreover, this convergence is uniform in � ∈ �� , i.e., for any 𝜇 > 0

This can be checked by making use of the inequality (see, e.g., Shiryaev (1996))

Ee�(N) ≤ exp
(
1

2

(
u2
1
+ u2

2

))

lim
N→∞

RN = 0.

|xk| ≤ �|xk−1| + |�k|, k ≥ 1,

|xk| ≤ �n|x0| +
n∑
j=1

�n−j|�j.

�xk�√
n

≤ �n√
n
�x0� + 1√

n

N�
j=0

�n−j��j� + 1√
n

n�
j=N+1

�n−j��j�

≤ �n√
n
�x0� + 1√

n

N�
j=0

�n−j��j� + 1

1 − �
sup

��j�√
j
.

lim
n→∞

M�
n

n
→ 0 (P� − a.s.).

(54)sup
�∈��

P�

{
sup
n≥m

|M�
n
|

n
≥ �

}
→ 0 a.s. m → ∞.
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From the definition of M′
n
 , it follows that

Using the estimate in (54), one gets

This inequality provides the rate of convergence in (54). Now, we are ready to show 
(39). It remains to notice that the numerator of (38), thanks to Lemma 2 and the 
strong law of large numbers, tends to zero uniformly in � ∈ �� and the denominator 
of (38), in view of (54), is bounded away from zero below by some positive constant 
uniformly in � ∈ �� . Thus, we arrive at (39). Lemma 5 is proved. 	�  ◻

Proof of Proposition 2
As in Lai and Siegmund (1983), we need the following martingale central limit 

theorem from Freedman (1983), pages 90–92.

Lemma 6  Let 0 < 𝛿 < 1 and r > 0. Assume that (un,Fn)n≥0 is a martingale differ-
ence sequence satisfying

and

Let

There exists a function � ∶ (0,∞) → [0, 2] , not depending on the distribution of 
martingale difference sequence, such that lim �(x) = 0 as x → 0 and

(55)

�2P�

{
sup
n≥m

|M�
n
|

n
≥ �

}
= �2 lim

l→∞
P�

{
max
m≤n≤l

(M�
n
)2

n2
≥ �2

}

≤ 1

m2
E�(M

�
n
)2 +

∑
n≥m

E�

(
(M�

n
)2 − (M�

n−1
)2
)

=
∑

n≥m+1

(
1

(n − 1)2
−

1

n2

)
E�(Mn−1)

2.

E�(M
�
j
)2 =

j∑
i=1

E�(�M
�
j
)2 ≤ j ⋅ E�4

1
.

(56)sup
�∈��

P�

{
sup
n≥m

|M�
n
|

n
≥ �

}
≤ 2E�4

1

�2m
.

|un| ≤ � for all n

∑
E
(
u2
n
|Fn−1

)
> r a.s.

�(h) = inf

{
n ≥ 1 ∶

n∑
k=1

E
(
u2
k
|Fk−1

) ≥ r

}
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Proof of Proposition 2.
For each 0 < 𝛿 < 1 , we define truncated versions for both processes {x+

k
}k≥0 and 

{x−
k
}k≥0:

Then, we introduce the counterparts of stopping times (16) as

Let 𝛼̃1,T1 and 𝛼̃2,T2 be correction factors compensating the overshots in (57) computed 
from the equations

Denote

where

and

Then, under P�

�
1√
h
ỹk−1

�
𝜀̃k − E𝜀̃k

�
, Fk

�
k≥0 is a martingale difference such that

sup
x∈R

������
P

�
��

k=1

uk ≤ x

�
−�

�
x√
�

�������
≤ �

�
�√
�

�
.

x̃+
k
=

�
x+
k

if (x+
k
)2 ≤ 𝛿2h,

𝛿
√
h if (x+

k
)2 > 𝛿2h;

x̃−
k
=

�
x−
k

if (x−
k
)2 ≤ 𝛿2h,

−𝛿
√
h if (x−

k
)2 > 𝛿2h.

(57)

T1(h) = inf

{
n ≥ 1 ∶

n∑
k=1

(
x̃+
k−1

)2 ≥ h

}
,

T2(h) = inf

{
n ≥ 1 ∶

n∑
k=1

(
x̃−
k−1

)2 ≥ h

}
,

T(h) = T1(h) ∨ T2(h).

T1(h)−1∑
k=1

(
x+
k−1

)2
+ 𝛼̃1,T1(h)

(
x+
T1(h)−1

)2

= h,

T2(h)−1∑
k=1

(
x−
k−1

)2
+ 𝛼̃2,T2(h)

(
x−
T2(h)−1

)2

= h.

ỹk−1 = 𝛽1,ku1x̃
+
k−1

+ 𝛽2,ku2x̃
−
k−1

, 1 ≤ k ≤ 𝜏(h),

𝛽i,k =

⎧⎪⎨⎪⎩

1 if k < Ti(h),√
𝛼̃i,Ti if k = Ti(h),

0 if k > Ti(h); i = 1, 2,

𝜀̃k = 𝜀k𝜒(�𝜀k�≤1∕
√
𝛿)
, ̃̃𝜀k = 𝜀k − 𝜀̃k.



708	 V. V. Konev, S. E. Vorobeychikov 

1 3

By Lemma 6

where v𝜃(𝛿) = Var𝜃𝜀̃1 → 1 uniformly in � as � → 0. We need the following sets

We will show that

It suffices to check that

For all � and h > 0 , one has the inequality

From here, it follows

������
1√
h
ỹk−1

�
𝜀̃k − E𝜀̃k

�������
=

������
1√
h

�
𝛽1,ku1x̃

+
k−1

+ 𝛽2,ku2x̃
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��
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�������
≤ 1√

h
2𝛿

√
h

2√
𝛿
= 4

√
𝛿.

(58)
������
P𝜃

�
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h

T(h)�
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�
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� ≤ t

�
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�
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�
4
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�
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𝛺1,h =
{
x+
k
= x̃+

k
for all k < 𝜏1(h)

}
,

𝛺2,h =
{
x−
k
= x̃−

k
for all k < 𝜏2(h)

}
,

𝛺h =𝛺1,h

⋂
𝛺2,h.

lim
h→∞

sup
�∈�

P�

(
�c

h

)
= 0.

(59)lim
h→∞

sup
�∈�

P�

(
�c

i,h

)
= 0, i = 1, 2.

P𝜃

(
𝛺c

i,h

)
= P𝜃

{
x+
k
≠ x̃+

k
for some k < 𝜏1(h)
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x+
k−1
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(
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for some n ≥ m
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.
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Limiting h → ∞ and then m → ∞ and taking into account conditions (4) and (6) and 
comes to (59) with i = 1. Similarly, one obtains (59) for i = 2.

It will be noted that, on the set �h one has yk−1 = ỹk−1, 𝜏(h) = T(h),

This implies the equation

where r�(h) is such that

Using the presentation

where

one can show that

where 𝛥 > 0. Taking into account (58), one gets
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𝜃∈𝛩

P𝜃

(
𝛺c
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) ≤
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)2
> 𝛿2h

}
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𝜃∈𝛩
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x+
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k=1

(
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}
.
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h
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|r�(h)| ≤ sup
�∈�

P�

(
�c

h
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→ 0 as h → ∞.

1√
h

T(h)�
k=1

ỹk−1𝜀k = 𝜉h + 𝜂h
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1√
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(
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(
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(
�h + �h ≤ t

) ≥ P�

(
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where �(�;�) is the oscillation of function � of radius �. Similarly, one derives

Combining these inequalities yields

where

Therefore,

Taking supremum with respect to � in both sides of this inequality and limiting 
h → ∞, � → 0 and then � → 0, one arrives at the desired result. 	�  ◻
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