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We provide an additional real data example in Section A, the proofs of the theoretical results in
Sections B–D, and discuss a CUSUM-based candidate generating procedure in Section E. The
discussion on the computational complexity of the localised pruning is provided in Section F,
and Section G provides a complete description of the simulation results. Finally, Section H
gives the pseudo-codes of LocAlg and PrunAlg introduced in Section 3 of the main text.

A Real data analysis: Kepler light curve data

Kepler light curve dataset contains regularly measured luminosity of stars. The transit of an
orbiting planet results in periodically recurring segments of reduced luminosity, which can be
used for detecting exoplanets via the transit method (Sartoretti and Schneider, 1999). Re-
garding segments of dimmed luminosity as collective anomalies, Fisch et al. (2018) apply their
anomaly detection methodology to the light curve data obtained from Kepler-1132 (available
in the R package anomaly (Fisch et al., 2018)), which is known to host at least one orbiting
planet (Rein, 2018). In their paper, the data is pre-processed into equally sized bins aggre-
gating the luminosity from different orbits using the known periodicity (62.89 days) of the
orbiting planet. This amplifies the signal and transforms the irregularly sampled time series
data into a regular one. From the aggregated data, they detect a short interval of collective
anomalies over [649, 660] (at the scale of bins).
We apply the proposed localised pruning to both raw Kepler-1132 data and its binned and
aggregated version. For the former, we ignore the presence of missing observations, which
yields n = 51405, and set the penalty at ξn = log1.1(n) to account for possible outliers and
heavy tails. For the binned and aggregated data of length N = 3078, we choose the penalty
ξN = log1.01(N) on the basis of its Gaussian-like tail behaviour.
Top panel of Figure 2 plots the raw data and the estimated change points. MoLP (with
α = 0.2 and η = 0.4) detects 14 estimators in total, while CuLP (with Cζ = 0.5) returns 16

1



Figure 2: Top: Luminosity of Kepler-1132 measured every half an hour (approximately)
with change point estimators (vertical lines; longdashed: MoLP, dashed: CuLP) and the
beginnings of the anomalous intervals detected by Fisch et al. (2018) periodically repeated
every 62.89 days (vertical dotted lines). Where two estimators returned by the same method
lie too close to each other to be distinguished, a filled circle is added. Second, third: Change
point estimators from the top panel binned using the periodicity of 62.89. Bottom: Kepler-
1132 data binned and aggregated using the periodicity of 62.89 days. In the second, third and
bottom panels, change point estimators from the aggregated data are also given as vertical
lines (longdashed: MoLP, dashed: CuLP, dotted: Fisch et al. (2018)).

estimators, out of which there are 10 overlapping estimators in the sense that either they are
identical or very close to one another. In analysing the raw data, we do not use the known
periodicity to accumulate the information obtained from different orbits, nor do we utilise the
knowledge that the changes are of epidemic nature as in Fisch et al. (2018). Nonetheless, both
MoLP and CuLP identify the anomalous interval detected by Fisch et al. (2018) at some orbits
(see the second and the third panels of Figure 2). Additionally detected change points may
be attributed to the missingness in the data which is not accounted for by our methodology,
particularly the pair in the vicinity of 1290 in the observation time scale. From the binned and
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aggregated data, both MoLP and CuLP detect 5 estimators including 648 and 660 (bottom
panel of Figure 2), correctly identifying the anomalous segment reported in Fisch et al. (2018).
In summary, our methodology is able to detect the periodic reduction in luminosity of Kepler-
1132 without aggregating the signal using the extra information of periodicity which, in the
problem of detecting exoplanets, may not be readily available.

B Proof of the result in Section 2

B.1 Proof of Proposition 1

We first prove assertion (a): By Hoeffding’s inequality (see Theorem 2.6.3 of Vershynin (2018)),
we have
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By sub-additivity and the i.i.d. assumption of the errors (distributional equality) and since
νn →∞ at an arbitrary rate, the above choice for ω(1)

n fulfils Assumption 1. Furthermore, by
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Lévy’s reflection principle (see e.g. Theorem 3.1.11 of Giné and Nickl (2016)) and Hoeffding’s
inequality, it holds for some constant c′′ε and any un > 1,
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Therefore, with ω(2)
n =

√
2 log(max(qn, νn))/c′′ε , we have
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such that the proof can be completed as for ω(1)
n , concluding the proof of (a).

The assertion in (c.i) follows directly from the invariance principle in addition to (a) (ωn �√
log(n) derived for the increments of the Wiener process). To prove (c.ii), let
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Then, by Theorem B.3 in Kirch (2006), it holds uniformly in j that
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where O(1) does not depend on j. From this and Markov’s inequality, we yield

P

(
max

1≤j≤qn
Mn(j) ≥ ω(1)

n

)
≤ qn max1≤j≤qn E (|Mn(j)|γ)

(ω
(1)
n )γ

= O(1)

(
q

1/γ
n

ω
(1)
n

)γ

such that the claim follows with ω(1)
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n νn. The assertion for ω(2)
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The assertion in (b) for ωn follows directly from Theorem 1.1 of Mikosch and Račkauskas
(2010). The assertion for ω(1)

n and ω
(2)
n follows analogously as in the proof of (c.ii): The

moments E(εβ
′

t ) and E(εβt ) for all β < β′ < α exist and independent and centred sequences
fulfil the moment condition in (c.ii), see e.g., Theorem 3.7.8 of Stout (1974). By (c.ii), it gives
ω

(1)
n � q1/β′

n νn so that the given choice ω(1)
n � max(q

1/β
n , νn) is also valid.

C Proof of the result in Section 3

In this section, we provide the proofs of Theorems 1–2 which establish the consistency of
the localised pruning algorithm combining LocAlg and PrunAlg. They are based on Propo-
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sitions C.1–C.3, whose proofs can be found in Section C.4. Throughout, we assume that
Assumptions 1 and 4 (a) (and Assumption 5 for Theorem 2) hold. In addition, we work under
the following non-asymptotic bound:
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(C.1)

for some M > 0, which holds for all n ≥ n(M) for some large enough n(M). This replaces
the asymptotic conditions in Assumptions 2, 3 and 4. Here, we regard ρn as the precision
originally attained by a candidate generating mechanism. If max(ω

(1)
n , ω

(2)
n )2 = O(ρn) as in

Assumption 4 (a), (C.1) is fulfilled by νn → ∞ arbitrarily slowly as stated in the theorem.
If not, the assertions still hold for any νn fulfilling the above. Also, when ρn = O(ω2

n) is not
met, the assertions continue to hold but with a penalty parameter greater than the acceptable
precision, which is reflected in (C.1). In the proofs of Propositions C.1–C.3, we state the
precise requirement on the ratios in the LHS of (C.1) each instance they appear; while this
allows to make a tighter bound on each term with which non-asymptotic results are readily
derived, we omit such a detailed analysis here and simply state that the assertion in (C.1)
holds for n large enough.
We write SC(A) = SC(A|C, Θ̂, s, e) where there is no confusion since, for given s and e,
the difference between SC(A|C, Θ̂, s, e) and SC(A′|C, Θ̂, s, e) does not depend on candidates
outside (s, e) for any A,A′ ⊂ C ∩ (s, e). For a change point currently under consideration,
say θ◦, we write its neighbouring change points as θ± (i.e. Θ ∩ (θ−, θ+) = {θ◦}) allowing for
θ− = 0 and θ+ = n, and denote the associated jump sizes by d◦ and d±, respectively.
For any given interval (s, e], Proposition C.1 establishes the sure detectability of any change
point in Θ(s,e) as defined in (6), as well as the undetectability of any change point not belonging
to Θ̄(s,e) as defined in (7).

Proposition C.1. For any 0 ≤ s < e ≤ n (with Θ ∩ (s, e) 6= ∅) and θ◦ ∈ Θ ∩ (s, e),
let A ⊂ D = K ∩ (s, e) denote a set of candidate estimators where k± ∈ A ∪ {s, e} satisfy
θ◦ ∈ (k−, k+) as well as A∩(k−, k+) = ∅. Then, there exist universal constants c∗, C∗ ∈ (0,∞)

with c∗ < C∗, with which the following statements hold onMn for n large enough: Let

max
{
d2

+(k+ − θ+) · Ik+≥θ+ , d2
−(θ− − k−) · Ik−≤θ−

}
≤ C∗ξn.

(a) If d2
◦min(θ◦ − k−, k+ − θ◦) ≥ C∗ξn, we have SC(A) > SC(A ∪ {k′◦}) for all k′◦ ∈ V ′◦.

(b) Suppose θ− < k− and d2
◦(θ◦−k−) < c∗ξn. Then, if either θ+ > k+ or |k−θ◦| < (θ+−k),

we have SC(A) < SC(A ∪ {k}).

(c) Suppose k+ < θ+ and d2
◦(k+−θ◦) < c∗ξn. Then, if either k− > θ− or |k−θ◦| < (k−θ−),

we have SC(A) < SC(A ∪ {k}).
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Throughout, for any k±, k◦ ∈ K ∪ {0, n} with k− < k◦ < k+, we refer to k◦ as detecting
θ◦ ∈ Θ ∩ (k−, k+] if θ◦ = arg minθ∈Θ∩(k−,k+] |k◦ − θ|, i.e. its nearest change point within
(k−, k+] is θ◦, even though there may be some θj /∈ (k−, k+] closer to k◦ than θ◦.
Proposition C.2 states that when a given set A already contains an acceptable candidate for
a change point in a local environment, SC increases if another candidate detecting the same
change point is added to A, as well as that adding spurious candidates increases SC.

Proposition C.2. For any 0 ≤ s < e ≤ n and some k◦ ∈ D = K ∩ (s, e), let A ⊂ D \ {k◦}
with k± ∈ A ∪ {s, e} chosen such that k− < k◦ < k+ and (k−, k+) ∩ A = ∅. Further, we
suppose that k± satisfy

(a) Θ ∩ (k−, k+] = ∅, or

(b) if Θ∩(k−, k+] 6= ∅, then for any θj ∈ Θ∩(k−, k+], we have d2
j min(θj−k−, k+−θj) ≤ C∗ξn.

Additionally, for θ◦ ∈ Θ ∩ (k−, k+] detected by k◦, either

(i) at least one of k± is acceptable, i.e. d2
◦min(θ◦ − k−, k+ − θ◦) ≤ ρnνn, or

(ii) d2
◦|k◦ − θ◦| > C̃ ξn for C̃ > max(C∗, C̄(C∗)2) with C̄ as defined in Lemma C.4.

Then, adding k◦ to A yields an increase of SC, i.e. for n large enough,

SC(A) < SC(A ∪ {k◦}) on Mn.

The next proposition asserts that a set containing an unacceptable candidate yields larger SC
than the one replacing it with a strictly valid estimator, when the corresponding change point
is detectable in the interval of consideration.

Proposition C.3. For any 0 ≤ s < e ≤ n (with Θ̄(s,e) 6= ∅) and θ◦ ∈ Θ̄(s,e), let A ⊂
D = K ∩ (s, e) be any candidate subset with k± ∈ A ∪ {s, e} satisfying θ◦ ∈ (k−, k+),
A ∩ (k−, k+) = ∅, d2

◦|k± − θ◦| ≥ c∗ξn, as well as

max
{
d2

+(k+ − θ+) · Ik+≥θ+ , d2
−(θ− − k−) · Ik−≤θ−

}
≤ C∗ξn.

Denote by k∗◦ ∈ V∗◦ a strictly valid estimator for θ◦, and by k◦ an estimator detecting θ◦

within (k−, k+] which satisfies d2
◦|k◦ − θ◦| ≤ C̃ξn with C̃ as in Proposition C.2, while being

unacceptable for θ◦. Then, adding k∗◦ to A yields a greater reduction in the RSS than adding
k◦, i.e. for n large enough,

SC(A ∪ {k◦}) > SC(A ∪ {k∗◦}) on Mn.

C.1 Proof of Theorem 1

On Mn, the following arguments hold uniformly in 0 ≤ s < e ≤ n and the corresponding
D = K ∩ (s, e) for n large enough. First, we note that
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(D1) any set A ⊂ D fulfilling (C1) contains at least one estimator satisfying d2
j mink∈A |k −

θj | ≤ C∗ξn for all θj ∈ Θ(s,e).

We prove (D1) by contradiction. Suppose that for some θ◦ ∈ Θ(s,e), the set A does not
contain any candidate within its (C∗d−2

◦ ξn)-environment. To such A, we can add, if necessary,
strictly valid candidates until the resultant set contains one strictly valid candidate for each
θj ∈ Θ ∩ (s, e) \ {θ◦}. Then, the conditions of Proposition C.1 (a) are met, and adding any
k′◦ ∈ V ′◦ to such a set results in a decrease of SC.
Also, we can always find a subset of D that fulfils (C1), since

(D2) any A ⊂ D containing exactly one acceptable estimator for all Θ̄(s,e) with |A| = |Θ̄(s,e)|
satisfies (C1).

To see this, adding candidates detecting θj ∈ Θ̄(s,e) to A incurs monotonic increase of SC by
Proposition C.2 since in each step, either (a) or (b.i) therein is fulfilled for any candidates
k◦ ∈ D \A (since ρnνn < C∗ξn under (C.1) for n large enough). Similarly, when adding those
detecting θj ∈ Θ ∩ (s, e) \ Θ̄(s,e) to A, Proposition C.1 (b)–(c) applies.
Denoting by F[m] the collection of the subsets of D of cardinality m that fulfil (C1). By (D1),
we have |F[m]| = 0 for m < |Θ(s,e)|. Also, defining m∗ = min{1 ≤ m ≤ |D| : |F[m]| 6= ∅},
we have m∗ ≤ |Θ̄(s,e)| ≤ |Θ(s,e)| + 2 ≤ m∗ + 2 by (D2). Suppose now that there exists
A ∈

⋃
m∗≤m≤m∗+2F[m] for which

(a) |A ∩ V ′j | 6= 1 for θj ∈ Θ(s,e), or

(b) |A ∩ V ′j | > 1 for θj ∈ Θ̄(s,e) \Θ(s,e), or

(c) A \
⋃
j: θj∈Θ̄(s,e) V ′j 6= ∅.

We show that such a set A cannot be returned by (C2). To this end, we apply the following
operations to A. Because the set changes after each operation, we denote the active set by A′

in the following which is initially set as A′ = A.

Step 1: If A′ contains any estimator of Θ∩ (s, e)\ Θ̄(s,e), iteratively remove such estimators
from A′ one at a time which, by Proposition C.1 (b)–(c) and (D1), strictly reduces the
SC monotonically. Also remove any estimator k◦ ∈ A′ one at a time which is too far
from its nearest change point, say θ◦, in the sense that d2

◦|k◦ − θ◦| > C̃ξn; this strictly
reduces the SC by Proposition C.2 (a), (b.ii) and (D1).

Step 2: If A′∩V ′◦ = ∅ for some θ◦ ∈ Θ(s,e), by (D1), we have at least one k◦ ∈ A′ satisfying
d2
◦|k◦−θ◦| ≤ C∗ξn. Let k◦ be the closest estimator of θ◦ in A′ and identify k± ∈ A∪{s, e}

such that (k−, k+)∩A = {k◦}. When d2
◦min(θ◦−k−, k+−θ◦) < c∗ξn, we can remove one

of k± closer to θ◦ while decreasing the SC. To see this, suppose without loss of generality
(otherwise consider the time series in reverse) that this is k+. Then, k+ > θ◦ since k◦ is
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the estimator closest to θ◦ in A′. Denote by k̃◦ = k+ and define k̃± analogously as k±
with regards to k̃◦ (such that k̃− = k◦), and let d̃◦ denote the jump size associated with
a change point θ̃◦. Then, one of the followings applies.

• Conditions of Proposition C.1 (b) are met by k̃± if k◦ = k̃− ≤ θ◦ = θ̃◦ < k+ = k̃◦.

• Conditions of Proposition C.2 (a) are met by k̃± if θ◦ < k̃− < k̃◦ < k̃+ ≤ θ+.

• Conditions of Proposition C.2 (b.ii) hold for k̃± and θ̃◦ if θ◦ < k̃− < k̃◦ < θ+ =

θ̃◦ < k̃+, since in this case, d̃2
◦(θ̃◦ − k̃◦) = d̃2

◦(θ̃◦ − θ◦){1 − (k̃◦ − θ◦)/(θ̃◦ − θ◦)} ≥
Dn − c∗ξn > C̃ξn for n large enough.

In all cases, removing k̃◦ = k+ results in a decrease of SC. Iteratively repeat the removal
and re-defining of k◦ and k± until d2

◦min(θ◦−k−, k+−θ◦) ≥ c∗ξn. Then, the resultant A′

and k◦ are such that A′ \{k◦} meets the conditions of Proposition C.3 for θ◦. Therefore,
replacing k◦ with any of k∗◦ ∈ V∗◦ yields a reduction in the SC. Repeat the above until
|A′ ∩ V ′j | = 1 for all θj ∈ Θ(s,e), which strictly decreases SC(A′) monotonically.

Step 3: If A′ ∩ V ′j = ∅ for some θj ∈ Θ̄(s,e) \ Θ(s,e) yet A′ contains an estimator of θj , we
take the same steps as in Step 2 for all such θj so that |A′ ∩ V ′j | = 1, which strictly
decreases SC(A′) monotonically.

Step 4: If there exists θj ∈ Θ̄(s,e) for which there are more than one estimator in A′,
through Steps 2–3, we have A′ ∩ V ′j 6= ∅. Remove the duplicate estimators one at a
time until all θj with A′ ∩ V ′j 6= ∅ have exactly one acceptable estimator in A′ which,
by Proposition C.1 (b)–(c) or by Proposition C.2 (a) and (b.i), results in a strictly
monotonic reduction of SC.

After Steps 1–4, we have A′ that satisfies A′ \
⋃
j: θj∈Θ̄(s,e) V ′j = ∅, with |A′ ∩ V ′j | = 1 for

θj ∈ Θ(s,e) and |A′ ∩ V ′j | ≤ 1 for θj ∈ Θ̄(s,e) \ Θ(s,e), as well as SC(A′) < SC(A) because
under (a)–(c), at least one of Steps 1–4 above has to take place. Further, if necessary, by
adding strictly valid candidates to A′ for all those θj ∈ Θ̄(s,e) \ Θ(s,e) with |A′ ∩ V ′j | = 0, we
yield A′′ ⊃ A′ fulfilling (C1) by (D2) and of cardinality |Θ̄(s,e)|, i.e. A′′ ∈

⋃
m∗≤m≤m∗+2F[m].

Since A′ ⊂R A′′ with ⊂R defined below (C2) and SC(A′) < SC(A), this shows that A with
candidates belonging to either of (a)–(c) cannot be returned in (C2). In conclusion, Θ̂(s,e)

obtained from (C2) satisfies the assertion of the theorem.

C.2 Proof of Theorem 2

Under (C.1), we make the following observations: For all j = 1, . . . , qn,

(a) d2
j |θ̂j − θj | ≤ ρnνn < c∗ξn for any θ̂j ∈ V ′j , and

(b) d2
j min(θj − θj−1, θj+1 − θj) ≥ Dn > 2 max(C∗ξn, ρnνn)
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for n large enough.
In iteratively applying Steps 1–4 of LocAlg, Theorem 1 guarantees that Θ̂ contains only
acceptable estimators of θj ∈ Θ. Also, each change point can belong to Θ(s,e) defined by the
interval of consideration (s, e] = (kL, kR] at most once: When θj ∈ Θ(s,e) for the first time,
it gets detected by some θ̂j ∈ V ′j by Theorem 1. Then, in the following iterations, either
θj /∈ (s, e), or some k ∈ (C ∪ Θ̂) ∩ [min(θj , θ̂j) , max(θj , θ̂j)] defines the endpoints of the local
environment by Step 2. In the latter case, θj cannot be a detectable change point within
the interval of consideration of this particular iteration due to (a), which guarantees that no
further estimator for θj is added to Θ̂.
When there exists θj ∈ Θ̄(s,e)\Θ(s,e) at some iteration, Theorem 1 indicates that it may or may
not get detected at this iteration. If it does, an acceptable estimator of θj is added to Θ̂ and
the same argument as above applies. If not, without loss of generality, suppose θj−s ≤ e−θj .
By construction, c∗ξn ≤ d2

j (θj − s) < C∗ξn and thus from (b), we have

d2
j−1(s− θj−1) = d2

j−1(θj − θj−1)

{
1−

d2
j (θj − s)

d2
j (θj − θj−1)

}
≥ Dn − C∗ξn > ρnνn,

i.e. the boundary point s cannot be an acceptable estimator for either θj−1 or θj . Consequently,
it cannot have already been added to Θ̂ in the previous iterations by Theorem 1. Therefore,
all acceptable estimators for θj , with the possible exception of k◦ identified in Step 1, remain
in C by (a)–(b) and how it is reduced in Step 4 of LocAlg.
Next, we justify the removal of k◦ from C at each iteration. Clearly, if k◦ is not acceptable for
any change point, it can be safely removed from the future consideration. Next, suppose that
k◦ is an acceptable estimator of θj and θj − s ≤ e− θj .

(a) When θj ∈ Θ(s,e), we have either k◦ or another acceptable estimator of θj accepted by
PrunAlg, and therefore k◦ can be removed.

(b) When θj ∈ Θ̄(s,e) \Θ(s,e), if θj is detected at the current iteration, the same argument as
in (a) applies. If not, as shown above, s has not been added to Θ̂ yet and by construction
of the interval of consideration in Step 2, it follows that

d2
jGL(k◦) = d2

j (k◦ − s) ≤ C∗ξn + ρnνn = C∗ξn(1 + o(1)),

which shows that k◦ cannot fulfil (8) for θj (nor any other change point as it is acceptable
for θj). Consequently, k◦ can safely be removed from C since by Assumption 5 and the
construction of R in Step 4, there remains at least one acceptable estimator for θj that
fulfils (8) in C after the current iteration.

(c) When θj /∈ Θ̄(s,e) (which is not necessarily situated within (s, e)), we first consider the
case where s has already been accepted. Then by Theorem 1, s is acceptable for some
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change point, say θj′ , such that

d2
j′+1(θj′+1 − s) = d2

j′+1(θj′+1 − θj′)

{
1−

d2
j′(s− θj′)

d2
j′(θj′+1 − θj′)

}

≥ Dn

(
1− ρnνn

Dn

)
> C∗ξn,

i.e. θj′+1 is either surely detectable within (s, e), too close to e, or θj′+1 /∈ (s, e) to have
been detected by k◦. Therefore, j = j′ and k◦ can safely be removed as in (a) since there
already exists an acceptable estimator s in Θ̂. If s has not been accepted, the argument
analogous to that in (b) applies.

The case when θj − s > e− θj is similarly handled.
The above (b)–(c) show that under Assumptions 4 and 5, for each j = 1, . . . , qn, acceptable
estimators of θj remain in C until its detection and at least one of them, when set as k◦ in
Step 1 of LocAlg, leads θj to belong to Θ(s,e) at some iteration, from which we conclude that
all θj ∈ Θ are eventually detected by acceptable estimators. Finally, |R| ≥ 1 at all iterations
since R contains k◦ at least, which ensures that LocAlg terminates eventually.

C.3 Auxiliary lemmas

In this section, we list some auxiliary lemmas that will be used in the proof of Theorem 1.
Unless stated otherwise, we assume that the conditions made in Theorem 1 are met through-
out.
Recall the definition of the CUSUM statistic computed on Xt as

Xk−,k◦,k+ ≡ Xk−,k◦,k+(X) :=

√
k+ − k−

(k+ − k◦)(k◦ − k−)

k◦∑
t=k−+1

(Xt − X̄(k−+1):k+)

for any 1 ≤ k−+ 1 ≤ k◦ < k+ ≤ n, and analogously define Xk−,k◦,k+(f) and Xk−,k◦,k+(ε) with
ft and εt in place of Xt, respectively. Also, we use the notation f̄u:v = (v − u+ 1)−1

∑v
t=u ft

for any 1 ≤ u ≤ v ≤ n and ε̄u:v is defined analogously.

Lemma C.1. For max(k−, θ−) < k < θ◦ < min(k+, θ+), it holds with r+ := max(0, k+ − θ+)

and r− := max(0, θ− − k−),

Fk =
k∑

t=k−+1

(ft − f̄(k−+1):k+) = −(k − k−) (k+ − θ◦)
k+ − k−

d◦ −
k − k−
k+ − k−

d+r+ −
k+ − k
k+ − k−

d−r−

as well as

Xk−,k,k+(f) = −

√
(k − k−)(k+ − k)

k+ − k−

(
(k+ − θ◦) d◦
k+ − k

+
r+ d+

k+ − k
+

r− d−
k − k−

)
.
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Similarly, for max(k−, θ−) < θ◦ ≤ k < min(c+, θ+), it holds

Fk = −(k+ − k) (θ◦ − k−)

k+ − k−
d◦ −

k − k−
k+ − k−

d+r+ −
k+ − k
k+ − k−

d−r−

as well as

Xk−,k,k+(f) = −

√
(k − k−)(k+ − k)

k+ − k−

(
(θ◦ − k−) d◦
k − k−

+
r+ d+

k+ − k
+

r− d−
k − k−

)
.

Proof. The results follow from straightforward calculations.

Lemma C.2. For an arbitrary setA ⊂ K and k◦ ∈ A, let k± ∈ A∪{0, n} satisfy k− < k◦ < k+

with A ∩ (k−, k+) = ∅. Then,

RSS(A \ {k◦})− RSS(A) = |Xk−,k◦,k+ |2.

Proof.

RSS(A \ {k◦})− RSS(A)

=

k+∑
t=k−+1

(Xt − X̄(k−+1):k+)2 −


k◦∑

t=k−+1

(Xt − X̄(k−+1):k◦)
2 +

k+∑
t=k◦+1

(Xt − X̄(k◦+1):k+)2


=(k◦ − k−)X̄2

(k−+1):k◦
+ (k+ − k◦)X̄2

(k◦+1):k+

− 1

k+ − k−
{

(k◦ − k−)X̄(k−+1):k◦ + (k+ − k◦)X̄(k◦+1):k+

}2

=

{√
(k◦ − k−)(k+ − k◦)

k+ − k−
(
X̄(k−+1):k◦ − X̄(k◦+1):k+

)}2

= |Xk−,k◦,k+ |2.

Lemma C.3. Under Assumptions 1, 2 and 4 (b), there exist fixed C ′, C ′′ > 0 for which we
have C ′n ≤ RSS(A) ≤ C ′′n for any A ⊂ K onM(11)

n .

Proof. Firstly, by ergodicity and that 0 < Var(εt) <∞, there exist cl, cu ∈ (0,∞) such that

0 < cl ≤
1

n

n∑
t=1

ε2
t ≤ cu <∞ a.s.

From
∑e

t=s(Xt − X̄s:e)
2 = mina∈R

∑e
t=s(Xt − a)2, it holds that RSS(A) ≥ RSS(A′) for any

A ⊂ A′. Thus we can find C ′′ ∈ (0,∞) such that for any A ⊂ K,

RSS(A) ≤ RSS(∅) =

n∑
t=1

(Xt − X̄1:n)2 ≤ 2

n∑
t=1

(εt − ε̄1:n)2 + 2

n∑
t=1

(ft − f̄1:n)2

11



≤ 2

n∑
t=1

ε2
t + 2n f̄2 ≤ n

(
2cu + 2f̄2

)
≤ C ′′n,

where f̄ = max1≤j≤qn |fj − f̄1:n| is bounded by that max1≤j≤qn |dj | = O(1).
Next, let K̃ := K ∪Θ = {k̃1 < . . . < k̃An} with k̃0 = 0 and k̃An+1 = n, where An ≤ Qn + qn.
Then, we can find C ′ ∈ (0,∞) such that for any A ⊂ K and n large enough,

RSS(A) ≥ RSS(K̃) ≥
An∑
j=0

k̃j+1∑
t=k̃j+1

(εt − ε̄(k̃j+1):k̃j+1
)2 =

n∑
t=1

ε2
t −

An∑
j=0


∑k̃j+1

t=k̃j+1
εt√

k̃j+1 − k̃j


2

≥ n
(
cl −

(Qn + qn)ω2
n

n

)
≥ C ′n,

where the last inequality follows from that (min1≤j≤qn δj)
−1ω2

n → 0 under Assumption 2 and
thus n−1ω2

nqn → 0, and from Assumption 4 (b).

Lemma C.4. Let the conditions in Lemma C.3 hold. Then, there exist fixed C, C̄ > 0 such
that we have

C |Xk−,k◦,k+ |2 − ξn ≤ SC(A \ {k◦})− SC(A) ≤ C̄ |Xk−,k◦,k+ |2 − ξn (C.2)

for any k◦ ∈ A ⊂ K.

Proof. From Lemmas C.2–C.3 and that log(1 + x) ≤ x for all x ≥ 0, we obtain

SC(A \ {k◦})− SC(A) =
n

2
log

{
RSS(A \ {k◦})

RSS(A)

}
− ξn =

n

2
log

{
1 +
|Xk−,k◦,k+ |2

RSS(A)

}
− ξn

≤
|Xk−,k◦,k+ |2

2C ′
− ξn

hence the RHS of (C.2) holds with C̄ = 1/(2C ′).
Furthermore, by Lemmas C.2–C.3 it holds

1 ≤ RSS(A \ {k◦})
RSS(A)

≤ C ′′

C ′
.

Let g(x) = log(x)/(x − 1). Since limx↓1 g(x) → 1 and from its continuity, there exists a
constant C ′′′ > 0 such that inf1≤x≤C′′/C′ g(x) ≥ C ′′′. Hence by Lemma C.3

SC(A \ {k◦})− SC(A) =
n

2
log

{
RSS(A \ {k◦})

RSS(A)

}
− ξn ≥

C ′′′

2C ′′
|Xk−,k◦,k+ |2 − ξn,

so that C = C ′′′/(2C ′′) meets (C.2).
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C.4 Proofs of the Propositions C.1–C.3

Within the proofs of the propositions, the o-notation always refers to M in (C.1) being large
enough, which in turn follows for large enough n, and precise bounds can be given in each
instance.

C.4.1 Proof of Proposition C.1

Choose C∗ > max(1, 2/C) and c∗ < min(1, 1/C̄) for C and C̄ defined in Lemma C.4. The
tighter the choice is, the larger M in (C.1) is required to be.
Firstly, in the situation of (a), we have d2

◦min(θ◦−k−, k+−θ◦) ≥ C∗ξn and max(d2
+r+, d

2
−r−) ≤

C∗ξn. Then, when k′◦ ≥ θ◦, it holds from Lemma C.1,

∣∣Xk−,k′◦,k+∣∣ ≥√
(k′◦ − k−)(k+ − k′◦)

k+ − k−

{
(θ◦ − k−)|d◦|
k′◦ − k−

− r−|d−|
k′◦ − k−

− r+|d+|
k+ − k′◦

}
− |Xk−,k′◦,k+(ε)|.

For the first summand, note that√
(k′◦ − k−)(k+ − k′◦)

k+ − k−
(θ◦ − k−)|d◦|
k′◦ − k−

= |d◦|

√
(k+ − θ◦)(θ◦ − k−)

k+ − k−

(
k+ − k′◦
k+ − θ◦

)1/2 (θ◦ − k−
k′◦ − k−

)1/2

≥ |d◦|
√

1

2
min (θ◦ − k−, k+ − θ◦)

(
1− ρnνn

ξn

)
≥
√
C∗ξn

2
(1 + o(1)).

For the second summand,√
(k′◦ − k−)(k+ − k′◦)

k+ − k−
r− |d−|
k′◦ − k−

=

√
k+ − k′◦
k+ − k−

r− |d−|2√
k′◦ − k−|d−|

≤ C∗ξn√
Dn

= o(
√
ξn),

where the inequality follows from noting that when r− > 0, we have k′◦ − k− ≥ θ◦ − θ− as
well as d2

−(θ◦ − θ−) ≥ Dn under Assumption 2. An analogous argument applies to the third
summand, noting that k+ − k′◦ ≥ (θ+ − θ◦) (1− ρnνn/Dn) when θ+ < k+ (hence r+ > 0).
Finally, onM(11)

n , the fourth summand satisfies

|Xk−,k′◦,k+(ε)| =

√
(k◦ − k−)(k+ − k◦)

k+ − k−
∣∣X̄(k−+1):k◦ − X̄(k◦+1):k+

∣∣ ≤ 2ωn = o(
√
ξn). (C.3)

Putting the above together, for M large enough (whose exact value depends on the choice of
C∗),

|Xk−,k′j ,k+ | ≥
√
C∗ξn

2

(
1 + o(1) +

√
2C∗ o(1)

)
+ o(

√
ξn) ≥

√
ξn
C
, (C.4)
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which holds uniformly for any s, e, θ◦, k± and k′◦ meeting the conditions of the proposition.
By symmetric arguments (reversing time), the same holds when k′◦ < θ◦. The assertion of (a)
now follows from Lemma C.4.
Next, we suppose that d2

◦(θ◦ − k−) ≤ c∗ξn as in the case of (b). Recalling the decomposition
of Xk−,k,k+(f) from Lemma C.1, the term that does not depend on r+ (note that r− = 0 in
the situation of (b)) satisfies for k ≥ θ◦,√

(k − k−)(k+ − k)

k+ − k−
(θ◦ − k−)|d◦|

k − k−
≤
√
d2
◦min(θ◦ − k−, k+ − k)

≤
√
d2
◦min(θ◦ − k−, k+ − θ◦) ≤

√
c∗ξn

and analogously for k ≤ θ◦, that√
(k − k−)(k+ − k)

k+ − k−
(k+ − θ◦)|d◦|

k+ − k
≤
√
c∗ξn.

Also, when r+ > 0,√
(k − k−)(k+ − k)

k+ − k−
r+ |d+|
k+ − k

≤ r+ |d+|2√
|d+|2(k+ − k)

≤
√

2C∗ξn√
Dn

, (C.5)

by noting that k − k− ≤ k+ − k− and k+ − k ≥ (θ+ − θ◦)/2 when r+ > 0, because k is closer
to θ◦ than to θ+. Together with (C.3), this leads to

|Xk−,k,k+ | ≤
√
c∗ ξn +

√
2C∗ξn√
Dn

+ 2ωn =
√
c∗ξn

(
1 +

C∗√
c∗
o(1) + o(1)

)
<

√
ξn
C̄
, (C.6)

for M sufficiently large (depending on C̄, C), with the inequality holding uniformly for any
s, e, θ◦, k± and k meeting the conditions. Hence the conclusion of (b) follows from Lemma C.4.
The proof of (c) follows by symmetry (reversing time).

C.4.2 Proof of Proposition C.2

Under (a), i.e. when there is no change point contained within this interval, by (C.3) we get

∣∣Xk−,k◦,k+∣∣ =
∣∣Xk−,k◦,k+(ε)

∣∣ ≤ 2ωn = o(
√
ξn)

onM(11)
n , so that assertion (a) follows from Lemma C.4.

In the case of (b.i), w.l.o.g., we assume that d2
◦ |k− − θ◦| ≤ ρnνn, which in particular implies

that r− = 0 (for M large enough); otherwise consider the series in reversed time. Then, by
assumption, d2

+r+ ≤ C∗ξn as well as k+ − k◦ ≥ (θ+ − θ◦)/2 when k+ > θ+, since k◦ is closer
to θ◦ than any other change point within (k−, k+). We now distinguish the two cases: (I)
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k− < θ◦ ≤ k◦ and (II) k− < k◦ < θ◦. If (I) holds, Lemma C.1 leads to

∣∣Xk−,k◦,k+∣∣ ≤
√

(k◦ − k−)(k+ − k◦)
k+ − k−

{
(θ◦ − k−)|d◦|
k◦ − k−

+
r+ |d+|
k+ − k◦

}
+ |Xk−,k◦,k+(ε)|

≤
√
θ◦ − k− |d◦|+

√
2C∗ξn√
Dn

+ 2ωn =
√
ξn (o(1) + C∗o(1)) <

√
ξn
C̄
,

for M large enough. The assertion follows from Lemma C.4. The case of (II) can be dealt
with analogously.
Similarly, in the case of (b.ii), w.l.o.g., suppose d2

◦ |k− − θ◦| ≤ C∗ξn such that in particular,
r− = 0 (for M large enough). Also, as in (b.i), it holds k+ − k◦ ≥ (θ+ − θ◦)/2 when k+ > θ+.
In this case, necessarily k− < θ◦ ≤ k◦ and thus by Lemma C.1,

∣∣Xk−,k◦,k+∣∣ ≤
√

(k◦ − k−)(k+ − k◦)
k+ − k−

{
(θ◦ − k−)|d◦|
k◦ − k−

+
r+ |d+|
k+ − k◦

}
+ |Xk−,k◦,k+(ε)|

≤ (θ◦ − k−)|d◦|√
k◦ − θ◦

+

√
2C∗ξn√
Dn

+ 2ωn =
√
ξn

(
C∗√
C̃

+ o(1) + C∗o(1)

)
<

√
ξn
C̄
,

for M large enough, completing the proof.

C.4.3 Proof of Proposition C.3

We start with some preliminary numerical calculations that will be used throughout the proof.
We use the notations

Wk =
k+ − k−

(k − k−)(k+ − k)
, Fk =

k∑
t=k−+1

(ft − f̄(k−+1):k+) and Ek =
k∑

t=k−+1

(εt − ε̄(k−+1):k+);

we suppress the dependence of the above definitions on k± for brevity.
From Lemma C.1, we get Fk = F̃k −R+

k −R
−
k with

F̃k = −d◦


(k−k−)(k+−θ◦)

k+−k− , k ≤ θ◦,
(k+−k)(θ◦−k−)

k+−k− , k ≥ θ◦,

R+
k =

k − k−
k+ − k−

d+r+, R−k =
k+ − k
k+ − k−

d−r−.

Note that

WkF̃k = −d◦


k+−θ◦
k+−k , k ≤ θ◦,
θ◦−k−
k−k− , k ≥ θ◦,

WkF̃2
k = d2

◦


(k+−θ◦)2 (k−k−)
(k+−k)(k+−k−) k ≤ θ◦,
(θ◦−k−)2 (k+−k)
(k−k−) (k+−k−) , k ≥ θ◦,

(C.7)
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which yields

WkF̃k −Wθ◦F̃θ◦ = d◦

 θ◦−k
k+−k , k ≤ θ◦,
k−θ◦
k−k− , k ≥ θ◦,

(C.8)

Wθ◦F̃2
θ◦ −WkF̃2

k = d2
◦


(θ◦−k)(k+−θ◦)

k+−k , k ≤ θ◦,
(k−θ◦)(θ◦−k−)

k−k− , k ≥ θ◦.
(C.9)

Concerning the remainder term, we get

WkR
+
k =

d+r+

k+ − k
, WkR

−
k =

d−r−
k − k−

, WkR
+
k R
−
k =

d+r+ · d−r−
k+ − k−

, (C.10)

as well as

WkR
+
k −Wθ◦R

+
θ◦

= d+r+
k − θ◦

(k+ − k)(k+ − θ◦)
,

WkR
−
k −Wθ◦R

−
θ◦

= d−r−
θ◦ − k

(k − k−)(θ◦ − k−)
. (C.11)

Furthermore,

Wk(R
+
k )2 = d2

+ r
2
+

k − k−
(k+ − k−)(k+ − k)

, Wk(R
−
k )2 = d2

− r
2
−

k+ − k
(k+ − k−)(k − k−)

and thus

Wk(R
+
k )2 −Wθ◦(R

+
θ◦

)2 = d2
+r

2
+

k − θ◦
(k+ − k)(k+ − θ◦)

,

Wθ◦(R
−
θ◦

)2 −Wk(R
−
k )2 = d2

−r
2
−

k − θ◦
(k − k−)(θ◦ − k−)

. (C.12)

Finally, for the terms involving both F̃k and Rk, we get

Wθ◦F̃θ◦R+
θ◦
−Wk◦F̃k◦R+

k◦
= d+r+d◦

θ◦ − k◦
k+ − k◦

Ik◦≤θ◦

Wθ◦F̃θ◦R−θ◦ −Wk◦F̃k◦R−k◦ = d−r−d◦
k◦ − θ◦
k◦ − k−

Ik◦≥θ◦ (C.13)

Concerning the error terms, onM(12)
n ∩M(13)

n , it holds uniformly in k◦ ∈ V◦ and k∗◦ ∈ V∗◦ ,

|Ek◦ − Ek∗◦ | ≤

∣∣∣∣∣∣
θ◦∑

t=k◦+1

εt

∣∣∣∣∣∣+

∣∣∣∣∣∣
max(k∗◦ ,θ◦)∑

t=min(k∗◦ ,θ◦)+1

εt

∣∣∣∣∣∣+
k∗◦ − k◦
k+ − k−

∣∣∣∣∣∣
k+∑

t=k−+1

εt

∣∣∣∣∣∣
≤ (θ◦ − k◦)ω(1)

n√
d−2
◦ ρnνn

+

√
d−2
◦ ρn ω

(2)
n +

2(θ◦ − k◦)ωn√
k+ − k−

(C.14)
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as well as

|Ek| ≤

∣∣∣∣∣∣
k∑

t=k−+1

εt

∣∣∣∣∣∣+

∣∣∣∣∣∣ k − k−k+ − k−

k+∑
t=k−+1

εt

∣∣∣∣∣∣ ≤√k − k− ωn +
k − k−√
k+ − k−

ωn ≤ 2
√
k − k− ωn

and by symmetry of Ek also |Ek| ≤ 2
√
k+ − k ωn, such that

|Ek| ≤ 2
√

min(k − k−, k+ − k)ωn. (C.15)

In what follows, we consider the following two cases: When k◦ is closer to one of the boundary
points than to θ◦, i.e. |θ◦ − k◦| ≥ min(k◦ − k−, k+ − k◦), and when this is not so.

Case 1: |θ◦ − k◦| ≥ min(k◦ − k−, k+ − k◦).

We further distinguish the following two cases:

(a) |θ◦ − k◦| ≥ k◦ − k−, which can occur only if k◦ < θ◦ and r− = 0 (otherwise k◦ is closer
to θ− than θ◦ which contradicts that k◦ detects θ◦). In particular, this implies that

k◦ − k− < (θ◦ − k−)/2. (C.16)

(b) |θ◦ − k◦| ≥ k+ − k◦, which can occur only if k◦ < k+ and r+ = 0.

We detail the proof of (a) below; the assertion under (b) follow by symmetry (reversing time).
First, by (C.7) and (C.15), it holds for any k− < k < k+

WkE2
k ≤ 2Wθ◦F̃2

θ◦

(k+ − k−)2 min(k − k−, k+ − k)ω2
n

d2
◦ (k+ − θ◦)(θ◦ − k−)(k+ − k)(k − k−)

≤ 8Wθ◦F̃2
θ◦

ω2
n

d2
◦min(k+ − θ◦, θ◦ − k−)

≤ 8Wθ◦F̃2
θ◦

ω2
n

c∗ξn
= o

(
Wθ◦F̃2

θ◦

)
.

Concerning the remainder term (keeping in mind that in this situation, r− = 0), we get by
(C.12)

W
k◦ (R

+
k◦

)2 ≤ Wθ◦F̃2
θ◦

d2
+r

2
+

d2
◦(k+ − θ◦)2

(k◦ − k−)(k+ − θ◦)
(θ◦ − k−) (k+ − k◦)

≤ Wθ◦F̃2
θ◦

(C∗)2ξ2
n

D2
n

= o
(
Wθ◦F̃2

θ◦

)
. (C.17)

Furthermore, by (C.7) it holds for all k− < k < k+

WkF̃2
k ≤ Wθ◦F̃2

θ◦ ,
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which is used to deal with the mixed terms to arrive at

|Xk−,k◦,k+ |2 =Wk◦F̃2
k◦ + o

(
Wθ◦F̃2

θ◦

)
.

For k◦ replaced by k∗◦ in (C.17) we get

W
k∗◦

(R+
k∗◦

)2 ≤ Wθ◦F̃2
θ◦

(C∗)2ξ2
n

D2
n

1 + ρn
c∗ξn

1− ρn
c∗ξn

= o
(
Wθ◦F̃2

θ◦

)
,

resulting in

|Xk−,k∗◦ ,k+ |
2 =Wk∗◦ F̃

2
k∗◦

+ o
(
Wθ◦F̃2

θ◦

)
.

By (C.7) and (C.9) we get

Wθ◦F̃2
θ◦ −Wk◦F̃2

k◦ =Wθ◦F̃2
θ◦

θ◦ − k◦
θ◦ − k−

k+ − k−
k+ − k◦

≥ Wθ◦F̃2
θ◦

(
1− k◦ − k−

θ◦ − k−

)
≥ 1

2
Wθ◦F̃2

θ◦ ,

where the last inequality follows from (C.16). Similarly,

Wθ◦F̃2
θ◦ −Wk∗◦ F̃

2
k∗◦

=Wθ◦F̃2
θ◦ |θ◦ − k

∗
◦|

k+ − k−
(k+ − k∗◦)(θ◦ − k−)

≤ Wθ◦F̃2
θ◦

(
d2
◦|θ◦ − k∗◦|

d2
◦min(k+ − θ◦, θ◦ − k−)

)
(2 + o(1))

≤ Wθ◦F̃2
θ◦

ρn
c∗ξn

(2 + o(1)) = o
(
Wθ◦F̃2

θ◦

)
. (C.18)

Putting the above together and by Lemma C.2,

RSS(A ∪ {k◦})− RSS(A ∪ {k∗◦}) = |Xk−,k∗◦ ,k+ |
2 − |Xk−,k◦,k+ |2

=Wθ◦F̃2
θ◦ −Wk◦F̃2

k◦ + o
(
Wθ◦F̃2

θ◦

)
≥ Wθ◦F̃2

θ◦

(
1

2
+ o(1)

)
> 0,

which proves the claim.

Case 2: min(k◦ − k−, k+ − k◦) > |k◦ − θ◦|.

In this case, we have

k◦ − k− > (θ◦ − k−)/2 and k+ − k◦ > (k+ − θ◦)/2. (C.19)

By Lemma C.2, the following decomposition holds:

RSS(A ∪ {k◦})− RSS(A ∪ {k∗◦}) = |Xk−,k∗◦ ,k+ |
2 − |Xk−,k◦,k+ |2

=Wk∗◦(Fk∗◦ + Ek∗◦)
2 −Wk◦(Fk◦ + Ek◦)2
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=
(
Wθ◦F2

θ◦ −Wk◦F2
k◦

)
+
(
Wk∗◦F

2
k∗◦
−Wθ◦F2

θ◦

)
+ 2Wk◦Fk◦(Ek∗◦ − Ek◦)

+ 2(Wk∗◦Fk∗◦ −Wθ◦Fθ◦)Ek∗◦ + 2(Wθ◦Fθ◦ −Wk◦Fk◦)Ek∗◦
+Wk◦(E2

k∗◦
− E2

k◦) + (Wk∗◦ −Wk◦)E2
k∗◦

=: A1(F) +A2(F) +A3(F) +A4(F) +A5(F) +A6 +A7. (C.20)

We now show that for n large enough,

A1(F̃) > 0,
|A1(F̃)−A1(F)|

A1(F̃)
= o(1),

|Aj(F)|
A1(F̃)

= o(1) for j = 2, . . . , 5, and
|Aj |
A1(F̃)

= o(1) for j = 6, 7

onMn, uniformly in k±, k◦ and k∗◦ meeting the conditions of the proposition. Consequently,
RSS (A ∪ {k◦}) > RSS (A ∪ {k∗◦}), which proves the assertion.
W.l.o.g., let k◦ < θ◦ (otherwise consider the time series in reverse). In what follows, all
the inequalities are uniform in the sense that they hold provided that the conditions of the
proposition are met.
Firstly, from (C.9),

A1(F̃) =Wθ◦F̃2
θ◦ −Wk◦F̃2

k◦ =
d2
◦(θ◦ − k◦)(k+ − θ◦)

k+ − k◦
≥ d2

◦
2

min(θ◦ − k◦, k+ − θ◦)

≥

{
ρnνn

2 > 0 when θ◦ − k◦ ≤ k+ − θ◦,
c∗ξn

2 > 0 when θ◦ − k◦ > k+ − θ◦.
(C.21)

Next, under the conditions imposed on k± and from (C.12), when θ+ < k+ such that r+ 6= 0,

∣∣Wk◦(R
+
k◦

)2 −Wθ◦(R
+
θ◦

)2
∣∣ =

d2
+r

2
+(θ◦ − k◦)

(k+ − k◦)(k+ − θ◦)
≤ A1(F̃) ·

d4
+r

2
+

d2
◦d

2
+(k+ − θ◦)2

≤ A1(F̃) ·
(
C∗ξn
Dn

)2

= o(A1(F̃)). (C.22)

Similarly, when k− < θ− such that r− 6= 0, by (C.19)

∣∣Wk◦(R
−
k◦

)2 −Wθ◦(R
−
θ◦

)2
∣∣ =

d2
−r

2
−(θ◦ − k◦)

(k◦ − k−)(θ◦ − k−)
= A1(F̃) ·

d4
−r

2
−

d2
◦(k◦ − k−) d2

−(θ◦ − k−)

k+ − k◦
k+ − θ◦

≤ 2A1(F̃) ·
(
C∗ξn
Dn

)2 (
1 +

d2
◦(θ◦ − k◦)
d2
◦(k+ − θ◦)

)
= o

(
A1(F̃)

)
(C.23)

since d2
◦(θ◦ − k◦) ≤ C̃ξn. Furthermore, from (C.13), if r+ 6= 0,∣∣∣Wθ◦F̃θ◦R+

θ◦
−Wk◦F̃k◦R+

k◦

∣∣∣+
∣∣∣Wθ◦F̃θ◦R−θ◦ −Wk◦F̃k◦R−k◦

∣∣∣ =
|d+|r+ · |d◦|(θ◦ − k◦)

k+ − k◦
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= A1(F̃) ·
d2

+r+

|d◦d+| (k+ − θ◦)
≤ A1(F̃) · C

∗ξn
Dn

= o
(
A1(F̃)

)
. (C.24)

Together, (C.21)–(C.24) establish that |A1(F̃)−A1(F)| = o
(
A1(F̃)

)
.

For A2(F), first note that by (C.9) it holds

A2(F̃) ≤ d2
◦|k∗◦ − θ◦| ≤ ρn = o

(
A1(F̃)

)
.

By analogous arguments to those adopted in (C.22)–(C.24), we also obtainA2(F) = o
(
A1(F̃)

)
.

From (C.7), (C.21) and (C.14), we yield

|A3(F̃)| = 2|Wk◦F̃k◦ | |Ek∗◦ − Ek◦ | =
2(k+ − θ◦)|d◦|

k+ − k◦
|Ek∗◦ − Ek◦ |

≤ 2A1(F̃)

(
ω

(1)
n√
ρnνn

+

√
ρnω

(2)
n

d2
◦(θ◦ − k◦)

+
2ωn

|d◦|
√
k+ − k−

)
≤ 2A1(F̃)

(
ω

(1)
n√
ρnνn

+
ω

(2)
n

νn
√
ρn

+
2ωn√
c∗ξn

)
= o

(
A1(F̃)

)
.

Also, by (C.10) and because k+ − θ◦ ≥ θ+ − θ◦ when r+ > 0, we get

|A3(R+)| = 2r+|d+|
k+ − k◦

|Ek∗◦ − Ek◦ |

≤ 2A1(F̃)

(
ω

(1)
n r+|d+|√

ρnνn |d◦| (k+ − θ◦)
+

√
ρnω

(2)
n r+ |d+|

|d◦|3 (θ◦ − k◦) (k+ − θ◦)
+

2ωn r+ |d+|
d2
◦
√
k+ − k− (k+ − θ◦)

)

≤ 2C∗A1(F̃)
ξn
Dn

(
ω

(1)
n√
ρnνn

+
ω

(2)
n

νn
√
ρn

+
2ωn√
c∗ξn

)
= o

(
A1(F̃)

)
.

Similarly, using (C.19) for the last inequality,

|A3(R−)| = 2r−|d−|
k◦ − k−

|Ek∗◦ − Ek◦ |

≤ 2A1(F̃)
k+ − k◦
k+ − θ◦

(
|d−| r− ω(1)

n

|d◦| (k◦ − k−)
√
ρnνn

+
|d−| r−

√
ρn ω

(2)
n

|d◦|3(k◦ − k−) (θ◦ − k◦)
+

2 |d−| r− ωn
d2
◦(k◦ − k−)

√
k+ − k−

)

≤ 4A1(F̃)C∗

(
1 +

C̃

c∗

)
ξn
Dn

(
ω

(1)
n√
ρnνn

+
ω

(2)
n

νn
√
ρn

+
2ωn√
c∗ξn

)
= o

(
A1(F̃)

)
.

As for A4(F), (C.8), (C.21) and (C.15) lead to

|A4(F̃)| ≤ 2|d◦||k∗◦ − θ◦|
min(k+ − k∗◦, k∗◦ − k−)

|Ek∗◦ | ≤
4 |d◦| |k∗◦ − θ◦|ωn√

min(k+ − k∗◦, k∗◦ − k−)

20



≤ 8A1(F̃)
ωn√

c∗ξn

(
1− ρn

c∗ξn

) ρn
min(ρnνn, c∗ξn)

= o
(
A1(F̃)

)
,

while from (C.11),

|A4(R+)| ≤
4|d+|r+|k∗◦ − θ◦|ωn

√
min(k+ − k∗◦, k∗◦ − k−)

(k+ − k∗◦)(k+ − θ◦)

≤ 4A1(F̃)
|d+| r+

|d◦| (k+ − θ◦)
ωn |k∗◦ − θ◦|

|d◦|
√
k+ − k∗◦ min(θ◦ − k◦, k+ − θ◦)

≤ 4A1(F̃)
C∗ξn
Dn

ωn√
c∗ξn

(
1− ρn

c∗ξn

) ρn
min(ρnνn, c∗ξn)

= o
(
A1(F̃)

)
.

Analogously, we obtain the bound of the same order for |A4(R−)|.
For A5(F), from (C.8), (C.11) and (C.19),

|A5(F̃)| = 2 |Ek∗◦ |
|d◦| (θ◦ − k◦)
k+ − k◦

≤ 4A1(F̃)

√
min(k+ − k∗◦, k∗◦ − k−)ωn

|d◦|(k+ − θ◦)

≤ 4A1(F̃)
ωn

|d◦|
√
k+ − θ◦

√
k+ − k∗◦
k+ − θ◦

≤ 4A1(F̃)
ωn√
c∗ξn

√
1 +

ρn
c∗ξn

= o
(
A1(F̃)

)
.

Furthermore, by (C.11), (C.19), (C.21) and (C.15) it holds

|A5(R−)| = 2
|d−| r− (θ◦ − k◦)

(k◦ − k−) (θ◦ − k−)
|Ek∗◦ |

≤ 4A1(F̃)
|d−| r−

d2
◦ (k◦ − k−)

k+ − k◦
(k+ − θ◦) (θ◦ − k−)

ωn
√

min(k+ − k∗◦, k∗◦ − k−)

≤ 16A1(F̃)
|d−| r−

|d◦| (θ◦ − k−)

ωn

|d◦|
√

min(k+ − θ◦, θ◦ − k−)

√
min(k+ − k∗◦, k∗◦ − k−)

min(k+ − θ◦, θ◦ − k−)

≤ 16A1(F̃)
C∗ξn
Dn

ωn√
c∗ξn

√
1 +

ρn
c∗ξn

= o
(
A1(F̃)

)
.

Similar but slightly easier arguments give the same bound (with the factor 16 replaced by 4)
for |A5(R+)|. Since

k+ − k−
(k+ − θ◦)(θ◦ − k−)

|Ek∗◦ + Ek◦ | ≤ 2ωn

√
min(k+ − k◦, k◦ − k−) + min(k+ − k∗◦, k∗◦ − k−)

min(k+ − θ◦, θ◦ − k−)

≤ 2ωn

√
2 + C̃

c∗ + ρn
c∗ξn√

min(k+ − θ◦, θ◦ − k−)
,
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we yield from (C.19) and (C.14)–(C.15)

|A6| =
k+ − k−

(k◦ − k−)(k+ − k◦)
|Ek∗◦ + Ek◦ | |Ek∗◦ − Ek◦ |

≤ 8A1(F̃)

√
2 +

C̃

c∗
+

ρn
c∗ξn

ωn

|d◦|
√

min(k+ − θ◦, θ◦ − k−)

×

(
ω

(1)
n√
ρnνn

+

√
ρn ω

(2)
n

|d◦|2(θ◦ − k◦)
+ 2

ωn

|d◦|
√
k+ − k−

)

≤ 8A1(F̃)

√
2 +

C̃

c∗
+

ρn
c∗ξn

ωn√
c∗ξn

(
ω

(1)
n√
ρnνn

+
ω

(2)
n

νn
√
ρn

+
2ωn√
c∗ξn

)
= o

(
A1(F̃)

)
.

Finally, noting that by (C.19)

|Wk∗◦ −Wk◦ | ≤
(k+ − k−)

(k+ − k∗◦)(k∗◦ − k−)

|k∗◦ − k◦| {(k+ − k∗◦) + (k◦ − k−)}
(k+ − k◦)(k◦ − k−)

≤ 2A1(F̃)
1

min(k+ − k∗◦, k∗◦ − k−)

|k◦ − k∗◦|
|θ◦ − k◦|

(
1

d2
◦ (k◦ − k−)

k+ − k∗◦
k+ − θ◦

+
1

d2
◦(k+ − θ◦)

)
≤ 2A1(F̃)

1

min(k+ − k∗◦, k∗◦ − k−)

(
1 +

1

νn

) (
3 +

2ρn
c∗ξn

)
1

c∗ξn

we bound A7 as

|A7| ≤ 8A1(F̃)

(
1 +

1

νn

) (
3 +

2ρn
c∗ξn

)
ω2
n

c∗ξn
= o

(
A1(F̃)

)
,

which concludes the proof.

D Proof of the results in Section 4

D.1 Proof of Proposition 4

The following lemma is used for the proofs of Proposition 4 and Corollary D.1.

Lemma D.1. (a) Under the assumption of Proposition 4, consider

Sn(j) =

{∣∣Tθj ,n(G(j))
∣∣ ≥ max

(
max

|k−θj |>(1−η)G(j)
|Tk,n(G(j))| , τ Dn(G(j), α)

)}
,

and Sn =
⋂

1≤j≤qn Sn(j). Then for any α, η ∈ (0, 1), we have

P(Sn(j))→ 1 for any j = 1, . . . , qn and P(Sn)→ 1.

(b) Under the assumptions of Corollary D.1 below, analogous assertions hold with S̃n(j)
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replacing Sn(j), where

S̃n(j) =
⋂

0≤r≤2/η−2

[{∣∣∣Tθj+rηG/2,n(G)
∣∣∣ > max

k∈[θj+(r+1)ηG/2,θj+(r+2)ηG/2]
|Tk,n(G)|

}
⋂{∣∣∣Tθj−rηG/2,n(G)

∣∣∣ > max
k∈[θj−(r+2)ηG/2,θj−(r+1)ηG/2

|Tk,n(G)|
}]

.

Proof. Adopting the arguments analogous to those used in the proof of Lemma 5.1 (a) of
Eichinger and Kirch (2018), we get

√
2 |Tθj ,n(G(j))| ≥ |dj |

√
G(j) +OP (ωn) = |dj |

√
G(j) (1 + oP (1)),

max
|k−θj |>(1−η)G(j)

√
2 |Tk,n(G(j))| ≤ η |dj |

√
G(j) +OP (ωn) = η |dj |

√
G(j) (1 + oP (1)).

Also, noting that Dn(G(j), α) = O(
√

log(n)) and Dn/
√

log(n) → ∞, the ‘significance’ of
|Tθj ,n(G(j))| follows, and so does the assertion for Sn(j). For the set Sn, the assertion follows
because all OP -terms hold uniformly in j. The assertion of (b) follows analogously.

With the help of Lemma D.1, we can now prove Proposition 4 by adopting the arguments of
the proof of Theorem 3.2 of Eichinger and Kirch (2018). Therefore we only sketch the proof by
emphasizing the differences using the notations adopted therein. In particular the quantities
V

(j)
l,n (G(j)) and Ai(l, n;G(j)) = Ai(l, n), i = 1, 2 are defined as in that proof.

On Sn(j) defined in Lemma D.1 (a), the maximiser of |Tb,n(G(j))| over b satisfying |b −
θj | ≤ (1− η)G(j), fulfils the η-criterion and as such is a candidate produced by the MOSUM
procedure which we denote by kj in the following. For this candidate, it holds:{
kj − θj < −CM (ω(1)

n /dj)
2
}
⊂{

max
θj−G(j)+1≤l<θj−CM (ω

(1)
n /dj)2

V
(j)
l,n (G(j)) ≥ max

θj−CM (ω
(1)
n /dj)2≤l≤θj+G(j)

V
(j)
l,n (G(j))

}
.

Furthermore, by Condition (b) we obtain

max
1≤j≤qn

1

|dj |
√
G(j)

max
|l−θj |<G(j)

|A2(l, n;G(j))| = oP (1).

Also by Condition (c), we can find a suitable constant C̃M > 0 such that for all CM > 0, it
holds

P

 max
1≤j≤qn

√
2G(j) max

θj−G(j)≤l≤θj−CM (ω
(1)
n /dj)2

√
CM (ω

(1)
n /dj)2

|θj − l|
|A1(l, n;G(j))| > C̃M ω(1)

n

→ 0,
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from which we can find a suitable choice of CM depending only on C̃M such that

P

(
max

1≤j≤qn

√
2G(j)

|dj |
max

θj−G(j)≤l≤θj−CM (ω
(1)
n /dj)2

|A1(l, n;G(j))|
|θj − l|

≥ 1

3

)
→ 0.

Consequently,

P

(
min

1≤j≤qn
d2
j (kj − θj) < −CM (ω(1)

n )2,Sn
)

= o(1).

The case kj − θj > CM (ω
(1)
n /dj)

2 can be dealt with analogously, which concludes the proof.

D.2 Proof of Proposition 5

Firstly note that the η-criterion employed by the MOSUM procedure implicitly imposes an
upper bound on the number of estimators returned: At bandwidths G = (G`, Gr), for each
local maximiser k of the MOSUM detector, it is checked whether the local maximum corre-
sponds to the maximum absolute MOSUM value within the interval (k − η G`, k + η Gr] and,
if so, k is marked as a candidate change point. Therefore, the maximal number of possible
candidates detectable at scale (G`, Gr) is (ηmin(G`, Gr))

−1n. Then, by (9), it holds

min(G`, Gr) ≥
max(G`, Gr)

Casym
≥ G` +Gr

2Casym
.

From this and by the construction of G with G` = F`G0, it holds

|K(H, α)| ≤
Hn∑
`,r=1

|K(G`, Gr, α)| ≤ 2Casym
n

ηG0

Hn∑
`,r=1

1

F` + Fr
≤ 2Casym

ψ

η

n

G0
,

for some universal constant ψ satisfying

∞∑
`,r=1

1

F` + Fr
≤ ψ <∞.

This holds as the Fibonacci numbers are asymptotically bounded from below by an exponen-
tially decreasing sequence, i.e. F` ≥ (3/2)` for all ` ≥ 10 which is easily seen by induction.
Then, the conclusion follows from ω2

n/G0 → 0.

D.3 Single-scale MOSUM procedure

As a corollary, we show that the single-bandwidth MOSUM procedure yields consistent esti-
mators with optimal localisation rate either under sub-Gaussianity, or when there are finitely
many change points, but only under the assumption that the change points are homogeneous
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as defined in Definition 1 (a). It improves upon Theorem 3.2 of Eichinger and Kirch (2018)
where the optimal rate is obtained only in the case when qn is finite. By construction, when
the change points are heterogeneous, the single-bandwidth MOSUM procedure cannot produce
consistent estimators.

Corollary D.1. Let K(G,αn) = {kG,j : 1 ≤ j ≤ q̂G} denote the set of estimated change
points from a single-bandwidth MOSUM procedure, obtained according to either the η- or ε-
criterion (see Meier et al. (2021b) for their description) with η, ε ∈ (0, 1), where the bandwidth
G and the significance level αn satisfy

min
0≤j≤qn

(θj+1 − θj) > 2G, min
1≤j≤qn

d2
jG

log(n/G)
→∞, and

αn → 0 with Dn(G;αn) = O(
√

log(n/G)).

We further assume that the invariance principle holds as in Proposition 1 (c.i) with

λ2
n log(n/G)

G
→ 0.

Then, there exists a universal constant CM > 0 such that

P

(
q̂G = qn; max

1≤j≤qn
d2
j |kG,j − θj | ≤ CM (ω(1)

n )2

)
→ 1.

Proof. First, we need to show that asymptotically, (i) there is exactly one significant local
maximum in the G-environment of each change point, and (ii) there are no other significant
local maxima. The second assertion follows by Lemma 5.1 (b) of Eichinger and Kirch (2018).
Concerning (i), by Lemma D.1 (b), there is only one (and significant by (a)) local maximum
within a G-environment of every change point on an asymptotic one set, which also fulfils
the ε-criterion by Lemma 5.1 (a) in Eichinger and Kirch (2018). Then, the localisation rate
follows by the same arguments as in the proof of Proposition 4, completing the proof.

E CUSUM-based candidate generation

The CUSUM statistic in (3) is designed to test the null hypothesis of no change point (H0 :

qn = 0) against the at-most-one-change alternative (H1 : qn = 1). It corresponds to the
likelihood ratio statistic under i.i.d. Gaussian errors and as such, is particularly appropriate
for single change point estimation.
For multiple change point detection, Vostrikova (1981) and Venkatraman (1992) establish the
consistency of the Binary Segmentation algorithm that makes recursive use of CUSUM-based
estimation. However, its sub-optimality, both in terms of the conditions required for the
consistency and the rate of change point localisation, has been noted in Fryzlewicz (2014). As
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an alternative, he proposes the Wild Binary Segmentation (WBS) which aims at isolating the
change points by drawing a large number of random intervals. When a sufficient number of
random intervals are drawn, with large probability, there exists at least one interval which is
well-suited for the detection and localisation of each θj , j = 1, . . . , qn. Since then, Fryzlewicz
(2020) proposes its variation (WBS2) that draws random intervals in a more systematic fashion
and generates a complete solution path, while Kovács et al. (2020) propose a ‘seeded’ version
of WBS that constructs the background intervals in a deterministic fashion. In the WBS and
its variants, the candidates are generated by scanning the data multiple times over a large
number of (randomly drawn) intervals, and various pruning methods have been proposed
including thresholding, sequential application of an information criterion (Fryzlewicz, 2014)
and the steepest-drop to low levels (SDLL) method (Fryzlewicz, 2020).
We propose the following version of WBS2 as a candidate generating mechanism. It requires
the tuning parameters Rn, the maximal number of random intervals to be drawn at each
iteration, and Q̃n, which relates to the maximal depth of recursion Ln as Ln = blog2(Q̃n+1)c.
The step-by-step description of the WBS2 is provided below.

Step 0: Initialise the input arguments: The set of candidates K(Rn, Q̃n) = ∅, s = 0, e = n

and the recursion depth ` = 1.

Step 1: Quit the routine if e−s = 1 or ` > Ln; if not, let R̃ = min{Rn, (e−s)(e−s−1)/2}.
If R̃ ≤ Rn, let Rs,e = {(l, r) ∈ Z2 : s ≤ l < r ≤ e and r − l > 1} serve as [sm, em], m =

1, . . . , R̃. If not, draw R̃ intervals [sm, em], m = 1, . . . , R̃, uniformly at random from the
set Rs,e.

Step 2: Identify (m◦, k◦) = arg max
(m,b): 1≤m≤R̃, sm<b<em |Xsm,b,em |.

Step 3: Update K(Rn, Q̃n) by adding k◦ and store its natural detection interval IN (k◦) =

(s◦, e◦].

Step 4: Repeat Steps 1–3 separately with (s, k◦, `+ 1) and (k◦, e, `+ 1).

Through implementing the maximal recursion depth into the procedure, it trivially holds that
the size of candidate set satisfies |K(Rn, Q̃n)| ≤ Q̃n. We propose to apply the localised pruning
to the thus-generated set of candidates K(Rn, Q̃n), which satisfies Assumptions 4 and 5 on
the set of candidate estimators.

Proposition E.1.

(a) Let P(M(11)
n )→ 1 whereM(11)

n is defined in Assumption 1 (a). Also, suppose that there
exist some β ∈ (0, 1] and cδ ∈ (0, 1) satisfying

min
1≤j≤qn

δj ≥ cδnβ and
ω2
n

min1≤j≤qn d
2
jn

5β−4
→ 0 (E.1)

26



where, as before, δj = min(θj − θj−1, θj+1 − θj) and ωn is as in Assumption 1 (a). In
addition, suppose that

n2−2β log(n)

Rn
→ 0,

qn

Q̃n
→ 0 (E.2)

and let ρ(W)
n = cWn

4−4βω2
n for some cW ∈ (0,∞). Then, it holds

P
(

max
1≤j≤qn

min
k∈K(Rn,Q̃n)

d2
j |k − θj | ≤ ρ(W)

n

)
→ 1.

(b) Suppose n−1ω2
nQ̃n → 0. Then, for any realisation of the random intervals, we have

n−1ω2
n|K(Rn, Q̃n)| → 0.

(c) Suppose that conditions in (a) hold. Then, for each j = 1, . . . , qn, there exists ǩ ∈ {k ∈
K(Rn, Q̃n) : d2

j |k − θj | ≤ ρ
(W)
n } such that min(ǩ − š, ě− ǩ) ≥ cδj , where IN (ǩ) = (š, ě]

represents the natural detection interval of ǩ and c is a universal constant satisfying
c ∈ (0, 1].

Remark E.1. For each k ∈ K(Rn, Q̃n), the natural detection interval IN (k) = (s, e] can serve
as its detection interval I(k) in which case the detection distances are given by GL(k) = k− s
and GR(k) = e− k. Proposition E.1 (c) indicates that K(Rn, Q̃n) fulfils Assumption 5 under
Assumption 2. Besides, by construction, each estimator in K(Rn, Q̃n) is distinct and therefore
K(Rn, Q̃n) bypasses the issue discussed in Remark 7 (b).

Compared to the condition (a) of Proposition 4 on the minimal size of change, measured by
the jump size dj and spacing δj , for the MOSUM-based candidate generating mechanism,
the corresponding condition in (E.1) is considerably stronger. Also, the rate of localisation
reported in Proposition 4 is always tighter than ρ(W)

n given in the above theorem. The bottle-
neck in our theoretical analysis of the CUSUM-based candidate generation procedure is the
following: The WBS-type procedures looking for the largest CUSUM at each iteration, do
not rule out that a change point θj is detected by its estimator k◦ within an interval (s◦, e◦)

which also contains θj−1 or θj+1 (and more) well within the interval. In such a case, the local-
isation rate |k◦ − θj | depends not only on dj but also on the minimum spacing min1≤j≤qn δj ,
which results in the sub-optimal localisation rate as well as the detection lower bound given
in Proposition E.1. Besides, the theoretical guarantee therein is for the homogeneous change
points only. An analogous result is reported in Wang and Samworth (2018a) where the WBS
is adopted for high-dimensional change point detection which, to the best of our knowledge,
is the best available result on the detection lower bound and the localisation rate of the WBS.

The maximum number of intervals to be drawn at each iteration, Rn, is required to increase
as the minimal spacing min1≤j≤qn δj decreases (see (E.2)), thus increasing the total computa-
tional complexity of the candidate generating procedure as O(Rnn).
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The consistency of the localised pruning algorithm in combination with the CUSUM-based
candidate generating mechanism follows from Proposition E.1 and Theorem 2.

Theorem E.1. Let Assumptions 1–2 and 3 hold and additionally, let ξ−1
n n4−4βω2

n → 0. Also
suppose that the conditions in Proposition E.1 are satisfied. Then, the localised pruning
algorithm LocAlg applied to K(Rn, Q̃n) yields Θ̂ = {θ̂j , 1 ≤ j ≤ q̂n : θ̂1 < . . . < θ̂q̂n} which
consistently estimates Θ, i.e.,

P

{
q̂n = qn; max

1≤j≤qn
d2
j |θ̂j − θj | ≤ ρ(W)

n νn

}
→ 1,

with ρ(W)
n as in Proposition E.1 and νn →∞ arbitrarily slow.

The additional requirement on the penalty ξn is necessary due to the localisation rate achieved
by the CUSUM-based candidate generation always dominating ω2

n, such that the penalty
needs to be chosen accordingly larger; see also the discussion following (C.1). In view of the
discussion below Proposition E.1, we believe that such a requirement on the penalty term
cannot be lifted when performing model selection on the candidates generated by a WBS-type
method using an information criterion, unless some modification of the WBS such as that
proposed in Baranowski et al. (2019) is adopted.
In practice, it is not straightforward to select Q̃n which effectively imposes an upper bound
on the number of candidates. For numerical studies in Section 5, instead of selecting Q̃n,
we choose a weak threshold ζn as a multiple of

√
log(n), and keep only those candidates for

which the corresponding CUSUM statistics (after standardisation) exceed ζn. This approach
provides more flexibility to deal with heavy-tailedness or serial dependence present in the error
sequence.

E.1 Proof of Proposition E.1

Firstly, (b) follows directly from the construction of WBS2 and the condition on Q̃n, since

|K(Rn, Q̃n)| ≤
Ln∑
j=0

2j = 2Ln − 1 ≤ Q̃n.

The following proof of (a) is an adaptation of the proof of Theorem 3.1 (iii) of Fryzlewicz
(2020) and that of Theorem 2 of Wang and Samworth (2018a). Throughout the proof, we
adopt Ci, i ≥ 1 to denote positive constants. Also, Xs,b,e(f) (resp. Xs,b,e(ε)) denotes the
CUSUM statistic analogously defined as Xs,b,e in (3) with ft (εt) replacing Xt.
We define the following intervals for j = 0, . . . , qn,

Ij = [rj , `j+1] where rj = θj + d(θj+1 − θj)/3e, `j+1 = θj+1 − d(θj+1 − θj)/3e
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and for 1 ≤ u+ 1 < v ≤ qn + 1,

It1,t2u,v = [max(0, θu + t1),min(θv + t2, n)] with t1, t2 ∈ [−∆n,∆n], where ∆n =
ρ

(W )
n

min1≤j≤n d2
j

.

Suppose that on each interval It1,t2u,v , we draw Rn intervals {[sm, em], m = 1, . . . , R} randomly
and uniformly from

{
(l, r) ∈ It1,t2u,v × It1,t2u,v : l + 1 < r

}
. When Rn ≥ |It1,t2u,v |(|It1,t2u,v | − 1)/2, we

use {[sm, em], m = 1, . . . , R̃} with R̃ = |It1,t2u,v |(|It1,t2u,v | − 1)/2 which contains all feasible sub-
intervals of It1,t2u,v . For notational convenience, we do not specify the (stochastic) dependence
of (sm, em) on u, v, t1 or t2.
For each interval It1,t2u,v , consider the event At1,t2u,v =

⋂v−1
j=u+1

⋃
m{(sm, em) ∈ Ij−1 × Ij}. If

R̃ ≤ Rn, we have P((At1,t2u,v )c) = 0; if not,

P
(
(At1,t2u,v )c

)
≤ qn

Rn∏
m=1

max
u+1≤j≤v−1

{1− P((sm, em) ∈ Ij−1 × Ij)} ≤ qn
(

1−
c2
δ

9n2−2β

)Rn

such that for Ωn :=
⋂
t1,t2,u,v

At1,t2u,v , by log(1− x) ≤ −x for x ∈ [0, 1),

P(Ωn) ≥ 1−
∑

t1,t2,u,v

P((At1,t2u,v )c) ≥ 1− 1

2
qn(qn + 1)(qn + 2)(2∆n + 1)2 exp

(
−
c2
δ Rn

9n2−2β

)
→ 1

under (E.2). We claim that on Ωn ∩M(11)
n ,

(W1) at some iteration, if there exist 1 ≤ u + 1 < v ≤ qn + 1 such that s and e satisfy
max{d2

u|s− θu|, d2
v|e− θv|} ≤ ρ

(W)
n ,

(W2) the call of Steps 1–3 of WBS2 with such s and e as its arguments adds k◦ which satisfies
d2
j |k◦ − θj | ≤ ρ

(W )
n for some j ∈ {u+ 1, . . . , v − 1}.

The condition in (W1) trivially holds at the very first iteration of WBS2 with s = θ0 = 0 and
e = θqn+1 = n. Then by induction, each θj , j = 1, . . . , qn is detected by an estimator within
(d−2
j ρ

(W)
n )-distance before the depth exceeds dlog2(qn + 1)e+ 1 thanks to (W2), since we add

(at most) 2`−1 elements to K(Rn, Q̃n) at each depth `, which completes the proof of (a).
It remains to show that (W2) holds given that (W1) is met by some s and e. Let

(s◦, k◦, e◦) = arg max
(sm,b,em): sm<b<em,1≤m≤Rn

|Xsm,b,em |.

On the event Ωn, there exists at least one interval (sm(j), em(j)] ∈ {(sm, em] ⊂ (s, e], m =

1, . . . , R̃} satisfying (sm(j), em(j)) ∈ Ij−1 × Ij for each j ∈ {u + 1, . . . , v − 1}, which is non-
empty by (W1). Denoting by k∗j = arg maxsm(j)<b<em(j)

|Xsm(j),b,em(j)
|, we have

|Xs◦,k◦,e◦ | ≥ max
u+1≤j≤v−1

|Xsm(j),k
∗
j ,em(j)

| ≥ max
u+1≤j≤v−1

|Xsm(j),θj ,em(j)
|. (E.3)
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OnM(11)
n , it holds as in (C.3)

|Xs,b,e(ε)| ≤ 2ωn. (E.4)

Also, under (E.1), it follows straightforwardly that

(d2
jδj)

−1ω2
n → 0. (E.5)

Then, we have

|Xs◦,k◦,e◦(f)| ≥ max
u+1≤j≤v−1

|Xsm(j),θj ,em(j)
| − 2ωn ≥ max

u+1≤j≤v−1
|Xsm(j),θj ,em(j)

(f)| − 4ωn

≥ min
1≤j≤qn

√
d2
jδj
√

6
− 4ωn > min

1≤j≤qn

√
d2
jδj

2
√

6
(E.6)

by (E.5) for n large enough, which shows in particular that there is at least one change point
within (s◦, e◦).
Let θ± denote the two change points θ− < k◦ ≤ θ+ satisfying (θ−, k◦)∩Θ = ∅ and (k◦, θ+)∩Θ =

∅. From (E.6), at least one of θ± belongs to (s◦, e◦). If θ+ /∈ (s◦, e◦), then by Lemma 8 (b)
of Wang and Samworth (2018b), Xs◦,b,e◦(f) does not change sign and has strictly decreasing
absolute values for θ− ≤ b ≤ k◦. In this case, we set θj = θ−. If θ− /∈ (s◦, e◦), similarly,
Xs◦,b,e◦(f) does not change sign and has strictly increasing absolute values for k◦ ≤ b ≤ θ+

(their Lemma 8 (a)), and we set θj = θ+. If both θ± ∈ (s◦, e◦), by Lemma 8 (c)–(d) of Wang
and Samworth (2018b) and Lemma 2.2 of Venkatraman (1992), Xs◦,b,e◦(f) is either strictly
decreasing in modulus without sign change for θ− ≤ b ≤ k◦, or strictly increasing in modulus
without sign change for k◦ ≤ b ≤ θ+. In the first case, we set θj = θ− while in the latter, we
set θj = θ+.
If the thus-identified θj ≥ k◦, we consider the time series in reverse such that w.l.o.g., we
suppose that k◦ ≥ θj and |Xs◦,b,e◦(f)| is strictly decreasing between θj and k◦. In addition,
we assume that Xs◦,k◦,e◦ > 0; otherwise, consider −Xt (resp. −ft and −εt) in place of Xt (ft
and εt).
Then, by (E.4), (E.5) and the arguments analogous to those adopted in (E.6), we yield
|Xs◦,k◦,e◦(ε)|/Xs◦,k◦,e◦ = o(1) and in particular,

Xs◦,k◦,e◦(f) > 0 (E.7)

for large enough n. Also from (E.3)–(E.4) and by the construction of (sm(j), em(j)], we yield

Xs◦,θj ,e◦(f) ≥ Xs◦,k◦,e◦(f) ≥ Xs◦,k◦,e◦ − 2ωn ≥ Xsm(j),θj ,em(j)
(f)− 4ωn
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≥

√
d2
jδj
√

6
− 4ωn ≥

√
d2
jδj

2
√

6
(E.8)

under (E.5). Besides, since Xs◦,k◦,e◦ ≥ Xs◦,θj ,e◦ , it holds

Xs◦,θj ,e◦(f)−Xs◦,k◦,e◦(f) ≤ Xs◦,k◦,e◦(ε)−Xs◦,θj ,e◦(ε) (E.9)

and further, the positivity of the LHS of (E.9) implies

1 ≤
|Xs◦,θj ,e◦(ε)−Xs◦,k◦,e◦(ε)|
Xs◦,θj ,e◦(f)−Xs◦,k◦,e◦(f)

. (E.10)

Using the notations adopted in the proof of Proposition C.3, we denote Xs,b,e(ε) =
√
WbEb

(suppressing the dependence on s and e). Then,

|Xs◦,k◦,e◦(ε)−Xs◦,θj ,e◦(ε)| ≤
∣∣∣√Wk◦ −

√
Wθj

∣∣∣ ∣∣Eθj ∣∣+
√
Wk◦ |Eθj − Ek◦ |.

By the mean value theorem,

∣∣∣√Wk◦ −
√
Wθj

∣∣∣ ≤ √
2(k◦ − θj)

min(θj − s◦, e◦ − θj)3/2
.

Also, onM(11)
n ,

|Eθj | =

∣∣∣∣∣∣e◦ − θje◦ − s◦

θj∑
t=s◦+1

εt −
θj − s◦
e◦ − s◦

e◦∑
t=θj+1

εt

∣∣∣∣∣∣ ≤
√

2 min(θj − s◦, e◦ − θj) ωn,

|Eθj − Ek◦ | =

∣∣∣∣∣∣
k◦∑

t=θj+1

εt −
k◦ − θj
e◦ − s◦

e◦∑
t=s◦+1

εt

∣∣∣∣∣∣ ≤√k◦ − θj ωn +
k◦ − θj√
e◦ − s◦

ωn ≤ 2
√
k◦ − θj ωn.

Combining the above, we arrive at

|Xs◦,k◦,e◦(ε)−Xs◦,θj ,e◦(ε)| ≤
2 (k◦ − θj)

min(θj − s◦, e◦ − θj)
ωn +

√
8(k◦ − θj)

min(k◦ − s◦, e◦ − k◦)
ωn. (E.11)

The proof proceeds by considering the following possible scenarios.
Case 1: There is at least one change point to the right of θj in (s◦, e◦), i.e. θj+1 < e◦, and
Xs◦,θj ,e◦(f) ≥ Xs◦,θj+1,e◦(f). Adopting the arguments in the proof of Theorem 2 in Wang and
Samworth (2018a) under their Case 2 (b), we can show that θj − s◦ ≥ c1δj for some universal
constant c1 ∈ (0, 1]; otherwise, we cannot have Xs◦,θj ,e◦(f) ≥ Xs◦,θj+1,e◦(f). This ensures that
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j ∈ {u+ 1, . . . , v − 1}. Then,

c1δjXs◦,θj ,e◦(f)(k◦ − θj)
2n2

≤ Xs◦,θj ,e◦(f)−Xs◦,k◦,e◦(f)

≤ |Xs◦,θj ,e◦(ε)−Xs◦,k◦,e◦(ε)| ≤ 4ωn

where the first inequality follows from Lemma 9 of Wang and Samworth (2018b) (with
Xs◦,s◦+t,e◦(f), e◦ − s◦, θj − s◦, θj+1 − s◦ and c1δj/n taking the roles of g(t), n, z, z′ and
τ therein, respectively), the second from (E.9) and the last from (E.4). Together with (E.8)
and that min(θj − s◦, e◦ − θj) ≥ c1δj , we obtain

k◦ − θj ≤ 24
√

6(c1|dj |δ3/2
j )−1n2ωn <

c1

2
δj (E.12)

under (E.1) for n large enough which, together with (E.11), leads to

|Xs◦,k◦,e◦(ε)−Xs◦,θj ,e◦(ε)| ≤ 8

√
k◦ − θj

min(θj − s◦, e◦ − θj)
ωn. (E.13)

Then, combining this with (E.8)–(E.10), we yield

1 ≤
|Xs◦,θj ,e◦(ε)−Xs◦,k◦,e◦(ε)|
Xs◦,θj ,e◦(f)−Xs◦,k◦,e◦(f)

≤
8ωn

√
(k◦ − θj)/min(θj − s◦, e◦ − θj)

c1δjXs◦,θj ,e◦(f)(k◦ − θj)/(2n2)
≤ 32

√
6n2ωn√

c3
1d

2
jδ

4
j (k◦ − θj)

such that under (E.1), we can find some fixed cW for ρ(W)
n = cWn

4−4β(ωn)2 satisfying d2
j (k◦−

θj) ≤ 6144c−3
1 δ−4

j n4ω2
n ≤ ρ

(W)
n .

Case 2: θj+1 < e◦ and Xs◦,θj ,e◦(f) < Xs◦,θj+1,e◦(f). In this case, from Lemma 8 (d) of Wang
and Samworth (2018b), Xs◦,b,e◦(f) strictly decreases and then increases for θj ≤ b ≤ θj+1

without changing sign, and thus we can find τ := max{θj + 1 ≤ b ≤ θj+1 : Xs◦,b,e◦(f) ≤
Xs◦,θj+1,e◦(f)− 4ωn}. Adopting the arguments in the proof of Theorem 2 in Wang and Sam-
worth (2018a) under their Case 2 (c), we have e◦ − θj+1 ≥ c1δj+1, which in turn leads to
θj+1 − τ + 1 < c1δj+1/2. Since by construction and the first line of (E.8) we get

Xs◦,θj ,e◦(f) ≥ Xs◦,θj+1,e◦(f)− 4ωn ≥ Xs◦,τ,e◦(f),

we can then adopt the same argument as in Case 1 and prove the claim, by applying Lemma 9
of Wang and Samworth (2018b) with Xs◦,s◦+t,e◦(f), e◦ − s◦, θj − s◦, τ − s◦ and c2δj/n for
some c2 ∈ (0, c1/2] taking the roles of g(t), n, z, z′ and τ in the lemma, respectively.

Case 3: There is no change point to the right of θj in (s◦, e◦), i.e. θj+1 ≥ e◦. We first
establish that min(θj − s◦, e◦ − θj) ≥ min(c2, c3)δj for c2 introduced under Case 2 and some
c3 ∈ (0, 1/24], which ensures that j ∈ {u + 1, . . . , v − 1}. To this end, consider the following
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two cases: (a) θj−1 ≤ s◦ and (b) θj−1 > s◦. Under (a), if min(θj − s◦, e◦ − θj) < c3δj , by
construction and from (E.4)–(E.5) we yield

Xs◦,k◦,e◦ ≤
√
c3d2

jδj + 2ωn < |Xsm(j),θj ,em(j)
(f)| − 2ωn ≤ |Xsm(j),k

∗
j ,em(j)

|

for large enough n, which contradicts (E.3). Under (b), we have either Xs◦,θj ,e◦(f) ≥ Xs◦,θj−1,e◦(f)

or not. In either situations, applying the arguments borrowed from Wang and Samworth
(2018b) under Cases 1–2 in the reverse direction, we can establish that e◦ − θj ≥ c2δj .
Next, define ϑ = 1

θj−s◦
∑θj

t=s◦+1 ft − fθj+1. Then,

Xs◦,θj ,e◦(f) ≤ ϑ
√

min(θj − s◦, e◦ − θj).

Applying Lemma 7 of Wang and Samworth (2018b) with e◦ − s◦ and θj − s◦ taking the roles
of n and z in the lemma, respectively, we obtain

Xs◦,θj ,e◦(f)−Xs◦,k◦,e◦(f) ≥ 2ϑ(k◦ − θj)
3
√

6 min(θj − s◦, e◦ − θj)
≥

2Xs◦,θj ,e◦(f)(k◦ − θj)
3
√

6 min(θj − s◦, e◦ − θj)
. (E.14)

Combining (E.4), (E.5), (E.8), (E.9) and (E.14),

k◦ − θj ≤ 72(d2
jδj)

−1/2ωn min(θj − s◦, e◦ − θj) ≤
1

2
min(θj − s◦, e◦ − θj)

for large enough n. Then, (E.8) and (E.10) with (E.13) yields

1 ≤
|Xs◦,θj ,e◦(ε)−Xs◦,k◦,e◦(ε)|
Xs◦,θj ,e◦(f)−Xs◦,k◦,e◦(f)

≤
4ωn

√
(k◦ − θj)/min(θj − s◦, e◦ − θj)

Xs◦,θj ,e◦(f)(k◦ − θj)/{3
√

6 min(θj − s◦, e◦ − θj)}

≤
144ωn

√
min(θj − s◦, e◦ − θj)√
d2
jδj(k◦ − θj)

≤ 144 ωn√
d2
j (k◦ − θj)

by noting that δj ≥ e◦− θj ≥ min(θj − s◦, e◦− θj) under Case 3. Therefore, there exists some
large cW > 0 such that d2

j (k◦ − θj) ≤ 1442 ω2
n ≤ ρ

(W)
n .

In all Cases 1–3, we have established that min(θj − s◦, e◦ − θj) ≥ min(c2, c3)δj (recalling that
c2 < c1/2). From that d2

j |k◦ − θj | ≤ ρ
(W)
n and (E.1), we yield

|k◦ − θj |
δj

≤
cWd

−2
j n4−4βω2

n

cβnβ
→ 0

as n → ∞. Hence, min(k◦ − s◦, e◦ − k◦) ≥ {min(c2, c3) + o(1)}δj and we conclude that (c)
holds with some c ∈ (0,min(c2, c3)).

33



F Computational complexity

Analysing the computational complexity of the localised pruning is challenging without further
assumption on the number of the candidates analysed at each iteration (denoted by D in Step 2
of LocAlg). In implementing the algorithm, we impose a fixed upper bound of N = 24 on |D|;
if |D| > N at a particular iteration, we modify the order in which the candidates remaining
in C are processed which often resolves the issue. Theorem 1 holds irrespective of which
candidate is chosen in Step 1 of LocAlg, and thus this step does not harm the theoretical
guarantee. To guard against the contingency where all other candidates in C also have more
than N conflicting candidates, a manual thinning step for the set D is implemented in the
R package mosum which triggers a warning message, see Appendix A of Meier et al. (2021b)
for further details. In practice, this manual thinning step is rarely activated; for example, for
the dense test signals with frequent change points and n ≥ 2× 104 considered in simulations
(see Section G.1), we did not encounter a single occurrence over 1000 realisations for each test
signal. Since there are at most O(n log−1(n)) candidates in total (see Assumption 4 (b)), the
localised pruning requires O(n+ 2Nn log−1(n)) operations in the worst case.
The MOSUM-based candidate generating procedure discussed in Section 4 requires O(n|H|)
operations, where H denotes the set of asymmetric bandwidths. In Section 4, we propose a
scheme for bandwidth generation which ensures the adaptivity of the multiscale MOSUM pro-
cedure while bounding the total number of bandwidths to be considered at |H| = O(log(n))

through a condition on the balancedness of asymmetric bandwidths (see (9)), which amounts
to the computation time of O(n log(n)) for the multiscale MOSUM procedure. The compu-
tational complexity of the CUSUM-based candidate generation depends on the number Rn
of the random intervals drawn as O(Rnn), which in turn needs to increase in (minj δj)

−1 as
n2(minj δj)

−2 log(n)/Rn → 0 (see (E.2)) for adaptivity.
In summary, with the MOSUM-based candidate generating mechanism, the combined two-
stage methodology requires O(n log(n) + 2Nn log−1(n)) operations in total, which is much
faster than many competitors requiring dynamic programming-type solutions (such as those
proposed in Frick et al. (2014), Wang et al. (2020) and Fromont et al. (2020)) whose computa-
tional complexity is O(n2), see also Table 1 for the summary of the computational complexity
of various methods for univariate data segmentation.

G Complete simulation results

G.1 Set-up

G.1.1 Models

We consider the five test signals from Fryzlewicz (2014) referred to as blocks, fms, mix,
teeth10 and stairs10, see Appendix B therein for further details. In addition, we include
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the following test signals extending the original ones in order to investigate the scalability of
the localised pruning algorithm:

Dense test signals. Each test signal is concatenated until the length of the resultant signal
exceeds 2× 104.

Sparse test signals: Each test signal is embedded in the series of i.i.d. random variables of
length n = 2× 104 at t = 500.

For εt, we consider

(E1) independent Gaussian random variables as in Fryzlewicz (2014),

(E2) independent random variables following the t5 distribution, and

(E3) AR(1) processes with Gaussian innovations and the AR parameter % ∈ {0.3, 0.9},

while keeping the signal-to-noise ratio defined by {Var(εt)}−1/2 min1≤j≤qn |dj | constant across
different error distributions. Under (E3), in order to account for the information loss due to
the serial dependence, the length of each segment between adjacent change points is increased
by the factor of b1/(1− %)c.

G.1.2 Tuning parameter selection

We apply the localised pruning algorithm outlined in Section 3.1.1 together with the two
candidate generating mechanisms described in Section 4 and Section E.
For the localised pruning procedure, the main tuning parameter is ξn for the penalty of
SC. To investigate the sensitivity of the localised pruning with respect to its choice, we
consider ξn ∈ {log1.01(n), log1.1(n)} for (E1); ξn ∈ {log1.1(n), n2/4.99} for (E2) as well as ξn ∈
{log1.1(n), log2(n)} for (E3), referred to as the ‘light’ and ‘heavy’ penalties respectively. These
penalty terms are chosen in line with the discussion below Assumption 3 on how the choice
of ξn should reflect the behaviour of {εt}nt=1. As a candidate sorting function for the LocAlg;
we consider hJ (k) in (5), which is readily available for any multiscale candidate generation
methods, and hP(k) that is compatible with the MOSUM-based candidate generation method.
Our theoretical results do not depend on the choice of a particular sorting function and this
is confirmed by the simulation studies. In practice, the use of hP may slow down the pruning
algorithm by generating many ties when many of the p-values are artificially set to zero by
the machine (see Appendix B of Meier et al. (2021b)).
Each candidate generation method requires additional tuning parameters.

MOSUM-based candidate generation (‘MoLP’): We use the multiscale extension of
the MOSUM procedure with the asymmetric bandwidths H selected by the automatic band-
width generation procedure described in Section 4, setting G0 = 10 in the case of (E1)–(E2)
and G0 = max(10, b8/(1 − %)c) in the case of (E3), and Casym = 4. We justify the choice
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G0 = 10 by noting that our interest lies in change point detection rather than outlier detec-
tion, working under the assumption that min1≤j≤qn δj → ∞ as n → ∞. Since asymmetric
bandwidths are adopted for their small sample performance only, we do not anticipate differ-
ent values for Casym would change the result greatly, provided that the bandwidths are not
too unbalanced.

In deriving the asymptotic critical value, we consider α ∈ {0.1, 0.2} except when the change
points are dense, we consider α ∈ {0.2, 0.4} to ensure that K(H, α) meets Assumption 4 (a).
Later, we observe that the choice of α does not influence the results greatly with one exception
(teeth10 requires a slightly more generous choice for higher true positive rate (TPR) when
there are dense change points, see Table 4); as a rule of thumb, we recommend α = 0.2

as a generous enough choice to ensure that the candidate set includes estimators for all the
change points, while any spurious estimators can be removed by the pruning. We set η = 0.4

for locating the change points according to the η-criterion; while not reported here, we have
considered different values of η and found that its choice has little influence on the results
when used in combination with the pruning step.

For variance estimation, we adopt the scale-dependent, MOSUM variance estimator σ̂2
k,G =

(2G)−1{
∑k

t=k−G+1(Xt − X̄(k−G+1):k)
2 +

∑k+G
t=k+1(Xt − X̄(k+1):(k+G))

2} proposed in Eichinger
and Kirch (2018), in the case of the independent errors in (E1)–(E2). When serial dependence
is present under (E3), we use the MOSUM variance estimator inflated by the factor of (1 +

%̂)/(1 − %̂) with an estimator of the AR parameter %̂. For this, we first generate candidates
via the multiscale MOSUM procedure. Here, through using the MOSUM variance estimator
without any correction, the procedure is expected not to under-estimate the number of change
points. Then, %̂ is obtained as the Yule-Walker estimator from the resultant residuals, which
is fed into correct the MOSUM variance estimator as above.

MoLP is implemented in the R package mosum (Meier et al., 2021a).

CUSUM-based candidate generation (‘CuLP’): We select the number of random inter-
vals for each recursion of WBS2 as recommended in Fryzlewicz (2020). Instead of selecting
an upper bound Q̃n on its cardinality, we use the following subset of K(Rn, Q̃n = n)

K(Rn, n, ζn) =
{
k◦ : k◦ ∈ K(Rn, Q̃n = n) with the corresponding |Xs◦,k◦,e◦ | ≥ ζn

}
,

which provides more flexibility with respect to the choice of the threshold ζn. In addition,
for numerical stability in local variance estimation (described below), we consider only those
k◦ ∈ K(Rn, n, ζn) with min(k◦ − s◦, e◦ − k◦) ≥ 5. As the thresholding is intended only
to remove ‘obviously’ spurious estimators (corresponding to small |Xs◦,k◦,e◦ |), we can choose
ζn quite small even in the presence of heavy-tailed or serially dependent errors. We use
ζn = Cζ ·Kτ̂n

√
2 log(n), where K is a constant chosen as per Fryzlewicz (2020). The deflation

factor Cζ is set at Cζ = 0.9, except when change points are dense, in which case we also
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consider stronger deflation by Cζ = 0.5 to ensure that K(Rn, n, ζn) meets Assumption 4 (a).

As in MoLP, we estimate the (long-run) variance using a local estimator extending the MO-
SUM variance estimator of Eichinger and Kirch (2018): for (E1)–(E2), it is obtained as the
sample variance of the residuals over I(k) after fitting a stump function with a break at the
candidate change point k; for (E3), we inflate the local variance estimator by the factor of
(1 + %̂)/(1− %̂).

G.1.3 Competing methods

The following competitors are considered for the comparative study.

1. The multiscale MOSUM procedure with the ‘bottom-up’ merging (bottom.up) imple-
mented in the R package mosum (Meier et al., 2021a) (see Messer et al. (2014) and also
Meier et al. (2021b)).

2. WBS (Fryzlewicz, 2014) applied with the strengthened Bayesian information criterion
(WBS.sBIC, implemented in the R package breakfast (Anastasiou et al., 2021)). For
the generation of random intervals, the same approach as that in CuLP is taken.

3. WBS2.SDLL proposed in Fryzlewicz (2020), whose implementation is available on https:

//github.com/pfryz/wild-binary-segmentation-2.0).

4. Pruned exact linear time (PELT) algorithm of Killick et al. (2012) (R package changepoint
(Killick et al., 2016)).

5. The dynamic programming algorithm based on functional pruning (S3IB) proposed in
Rigaill (2015) (R package Segmentor3IsBack (Cleynen et al., 2016)).

6. Tail-greedy unbalanced Haar (TGUH) algorithm of Fryzlewicz (2018) (R package breakfast
(Anastasiou et al., 2021)).

7. FDRSeg (Li et al., 2016), the multiscale segmentation method controlling the false dis-
covery rate (R package FDRSeg (Li and Sieling, 2017)).

8. cumSeg (Muggeo and Adelfio, 2010), the method based on transforming the data and
iteratively fitting a linear model (R package cumSeg (Muggeo, 2012)).

Unless stated otherwise, we apply the above methods with default choices of parameters
recommended by the authors. Additionally, we consider:

9. Functional pruning optimal partitioning (FPOP) algorithm of Maidstone et al. (2017)
(R package FPOP (Rigaill and Hocking, 2019)) with the penalty set at

√
2 log(n) is

considered for the test signals with n ≥ 2× 104.
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10. Jump segmentation for dependent data (JUSD) of Tecuapetla-Gómez and Munk (2017)
and DepSMUCE of Dette et al. (2020) are considered for (E3). the latter extending
the simultaneous multiscale change point estimator (SMUCE) (Frick et al., 2014) to the
dependent case (both implemented using the R package stepR (Pein et al., 2019)). For
JUSD, the estimator of the long-run variance relies on the assumption of m-dependence
yet there does not exist an automatic way of determining m; instead we use m =

[log(0.1)/ log(%)] utilising the typically unavailable knowledge of %; For DepSMUCE,
the recommended choice of block length K = 10 often severely under-estimates the
long-run variance, and thus we supply K = [log(0.1)/ log(%)].

Note that PELT, S3IB and FPOP set out to solve the `0-penalised least squares estimation
problem; theoretical investigation into the performance of such an approach is provided in
Wang et al. (2020). Many of the algorithms mentioned above are specifically tailored for
the data with i.i.d. innovations following sub-Gaussian distributions, with the exception of
cumSeg, JUSD and DepSMUCE.

G.2 Results

All simulations are based on 1000 replications.
We define that a change point θj is detected if there exists at least one estimator that falls be-
tween max{(θj+θj−1)/2, θj− δ̄} and min{(θj+θj+1)/2, θj+ δ̄}, where δ̄ = min1≤j≤qn−1(θj+1−
θj). Based on this, we report the true positive rate (TPR, the proportion of the correctly
identified change point out of the qn true change points) and false positive rate (FPR, the
proportion of the spurious estimators out of the q̂ estimated change points). Also reported are
the Adjusted Rand Index (ARI) measuring the similarity between the estimated and true seg-
mentations (Rand, 1971; Hubert and Arabie, 1985), the relative mean squared error (MSE) of
the estimated piecewise constant signal to that of the signals estimated using the true change
points, Bayesian information criterion (BIC) with the penalty term log(n), and the weighted
average of trimmed distances δtrim = (

∑qn
j=1 d

2
j )
−1
∑qn

j=1 d
2
j · δtrim,j where

δtrim,j = min

{
θj+1 − θj

2
,
θj − θj−1

2
, min

1≤j′≤q̂
|θ̂j′ − θj |

}
, (G.1)

averaged over 1000 replications. Also, we provide vtrim = q−1
n

∑qn
j=1 MAD(δtrim,j), where the

MAD operator is taken over 1000 replications for each change point θj . Finally, for the dense
and sparse test signals, we report the average execution time.

(E1) Independent Gaussian errors

Tables 3–5 report the simulation results in the presence of independent Gaussian errors for
the original five test signals and their dense and sparse versions. Figures 3–12 visualise the
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performance of various methods by plotting the weighted densities of estimated change point(s)
falling between two adjacent change points [(θj−1 + θj)/2 + 1, (θj + θj+1)/2] for j = 1, . . . , qn.
Table 3 indicate that choices of α for the MoLP or the sorting function h and the penalty
ξn for the localised pruning algorithm do not greatly influence the results. In particular,
with n relatively small (≤ 2048), the choice of penalty ξn does not alter the results much.
Difference in performance due to these choices are more apparent when n is large (≥ 2× 104),
see Tables 4–5.
When change points are dense, a lighter penalty ξn and a generous choice of the critical value
for the candidate generation method (larger α for the MoLP, smaller C for the CuLP) are
preferable for some test signals such as teeth10, which ensures that the candidate set contains
at least one valid estimator for each θj (Assumption 4 (a)). On the other hand, when the
change points are sparse, a heavier penalty ξn is successful in removing spurious false positives
over a long stretch of stationary observations without harming the TPR much. Between the
two methods equipped with different candidate generating methods CuLP tends to incur more
false positives than the MoLP. Overall, the MoLP produces estimators of better localisation
accuracy, possibly benefiting from the systematic approach to candidate generation adopted
by the multiscale MOSUM procedure. This is also reflected on the execution time of the two
methods when the change points are dense.
bottom.up, compared to the MoLP, tends to return many false positives. This reflects the
corresponding theoretical requirements on the MOSUM procedure, that the significance level
is small (α = αn → 0, Eichinger and Kirch (2018)) and that the bandwidths are in the order
of n (Messer et al., 2014), and the problem is further amplified with increasing n (see Table 5)
and heavy-tailed errors as observed under (E2). An interesting phenomenon is observed in
Figure 4 which plots the weighted densities of estimated change points for the fms test signal,
where bottom.up incurs several false positives systematically. This is attributed to spurious
estimators detected with large bandwidths between the first and the second change points.
There is no single method that outperforms the rest universally for all test signals and evalu-
ation criteria. While S3IB marginally outperforms other competitors in terms of TPR, it is at
the price of larger FPR. FPOP, another functional pruning algorithm, is computationally fast
and generally performs well, but fails at handling the teeth-like jump structure of teeth10
(see Tables 4–5). WBS2.SDLL shows its strength in handling frequent changes, although
returning marginally more false positives compared to other methods achieving comparable
TPR. Both PELT and cumSeg tend to under-estimate the number of change points across
all test signals and so does WBS.sBIC. The latter result indicates that minimisation of an
information criterion along a solution path is not as efficient as the pruning criteria (C1)–
(C2) adopted by PrunAlg, both computationally or empirical performance-wise. Interestingly,
when the frequent changes in teeth10 are repeated over n ≥ 2× 104 observations, the BIC is
minimised at the null model (Table 4), further suggesting that the sequential minimisation of
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BIC often leads to less favourable results compared to PrunAlg.
In terms of computation time, FPOP, PELT and bottom.up take less than 0.1 seconds to pro-
cess a long signal. It is followed by the MoLP and TGUH, demonstrating that the localised
pruning is scalable to long signals. While CuLP tends to be slower than MoLP, it still sur-
passes WBS.sBIC and WBS2.SDLL in this respect (except for the dense block signal), which
demonstrates the computational gain achievable by the localised exhaustive search adopted
in the proposed methodology. FDRSeg and S3IB, while showing good performance for short
test signals, are computationally too expensive for long signals and, along with cumSeg, are
omitted in these situations.
Meier et al. (2021b) observed that for the MoLP, the ordering function hP incurs many ties
as the p-values associated with candidates detected at larger bandwidths are set exactly to be
zero by the machine, which increases the search space for the inner algorithm PrunAlg and
consequently slows down the pruning procedure. As there is no meaningful difference in terms
of change point detection accuracy, we recommend the use of hJ .

Table 3: Summary of change point estimation over 1000 realisations for the test signals with
Gaussian errors: we use ξn ∈ {log1.01(n), log1.1(n)} as the ‘light’ and ‘heavy’ penalties for the
localised pruning.

model α penalty method TPR FPR ARI MSE BIC δtrim vtrim

blocks 0.1 light MoLP-hP 0.954 0.009 0.977 5.155 4784.242 351.119 262.916
MoLP-hJ 0.955 0.009 0.978 5.003 4783.629 332.611 246.996

heavy MoLP-hP 0.944 0.004 0.977 5.231 4784.409 377.367 195.167
MoLP-hJ 0.945 0.004 0.978 5.1 4783.634 347.61 179.247

0.2 light MoLP-hP 0.96 0.014 0.975 5.217 4784.947 365.521 258.931
MoLP-hJ 0.961 0.014 0.977 4.911 4783.747 327.638 227.091

heavy MoLP-hP 0.949 0.006 0.977 5.08 4784.11 356.655 195.167
MoLP-hJ 0.949 0.005 0.978 5.01 4783.597 338.395 163.327

light CuLP 0.934 0.095 0.919 10.091 4805.107 1001.623 284.352
heavy CuLP 0.936 0.033 0.95 7.631 4794.349 708.949 197.160

0.2 - bottom.up 0.958 0.278 0.877 6.308 4812.993 372.152 309.686
- - WBS.sBIC 0.938 0.032 0.962 7.304 4795.326 694.854 264.426
- - WBS2.SDLL 0.94 0.027 0.971 5.51 4785.457 359.36 195.167
- - PELT 0.878 0.001 0.961 6.413 4785.848 588.644 220.480
- - S3IB 0.974 0.019 0.979 4.773 4782.984 306.041 186.930
- - cumSeg 0.772 0.002 0.914 13.119 4818.988 1743.155 555.444
- - TGUH 0.948 0.023 0.967 6.589 4788.875 488.462 342.805

0.2 - FDRSeg 0.975 0.081 0.956 5.367 4788.694 328.394 235.020
fms 0.1 light MoLP-hP 0.982 0.015 0.954 4.402 -564.883 0.175 0.168

MoLP-hJ 0.981 0.015 0.955 4.356 -564.894 0.175 0.151
heavy MoLP-hP 0.98 0.009 0.955 4.407 -564.878 0.178 0.168

MoLP-hJ 0.979 0.01 0.955 4.354 -564.897 0.178 0.168
0.2 light MoLP-hP 0.99 0.02 0.958 4.138 -565.219 0.148 0.151
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MoLP-hJ 0.99 0.021 0.957 4.119 -565.183 0.148 0.151
heavy MoLP-hP 0.989 0.012 0.958 4.129 -565.219 0.152 0.151

MoLP-hJ 0.988 0.012 0.959 4.064 -565.258 0.15 0.151
light CuLP 0.997 0.149 0.905 5.379 -562.971 0.137 0.033
heavy CuLP 0.997 0.074 0.937 4.446 -565.116 0.139 0.033

0.2 - bottom.up 0.976 0.32 0.836 6.266 -548.575 0.312 0.151
- - WBS.sBIC 0.975 0.014 0.96 4.747 -564.272 0.235 0.103
- - WBS2.SDLL 0.995 0.032 0.955 4.187 -566.031 0.139 0.033
- - PELT 0.934 0.001 0.954 5.016 -565.769 0.389 0.033
- - S3IB 0.999 0.1 0.944 4.98 -566.096 0.101 0.033
- - cumSeg 0.754 0.012 0.918 14.05 -549.512 1.841 0.103
- - TGUH 0.995 0.04 0.945 4.822 -565.036 0.15 0.067

0.2 - FDRSeg 0.998 0.086 0.953 4.441 -564.844 0.113 0.033
mix 0.1 light MoLP-hP 0.911 0.007 0.738 4.195 842.617 30.552 18.818

MoLP-hJ 0.913 0.007 0.74 4.178 842.562 29.944 18.818
heavy MoLP-hP 0.9 0.003 0.717 4.262 842.654 30.849 23.436

MoLP-hJ 0.901 0.004 0.716 4.238 842.554 30.361 23.436
0.2 light MoLP-hP 0.929 0.009 0.772 4.096 842.634 30.252 16.765

MoLP-hJ 0.93 0.009 0.772 4.083 842.564 29.729 16.765
heavy MoLP-hP 0.916 0.005 0.749 4.178 842.633 30.459 17.791

MoLP-hJ 0.916 0.005 0.748 4.14 842.547 29.933 18.818
light CuLP 0.937 0.054 0.788 4.844 845.765 43.738 17.905
heavy CuLP 0.926 0.026 0.77 4.609 844.302 40.569 15.738

0.2 - bottom.up 0.951 0.064 0.805 4.326 848.366 32.832 19.160
- - WBS.sBIC 0.817 0.034 0.638 9.916 869.485 131.693 18.533
- - WBS2.SDLL 0.91 0.021 0.735 4.562 843.571 35.944 18.304
- - PELT 0.771 0.002 0.461 6.148 846.354 48.85 12.659
- - S3IB 0.96 0.074 0.815 4.774 843.513 33.146 20.642
- - cumSeg 0.333 0 0.273 25.195 904.25 752.167 87.473
- - TGUH 0.902 0.026 0.702 5.374 845.653 47.727 30.336

0.2 - FDRSeg 0.936 0.075 0.775 4.951 846.699 36.313 16.765
teeth10 0.1 light MoLP-hP 0.95 0.001 0.92 2.337 -73.202 0.333 0.000

MoLP-hJ 0.95 0.001 0.92 2.337 -73.202 0.333 0.000
heavy MoLP-hP 0.944 0 0.912 2.421 -73.173 0.362 0.000

MoLP-hJ 0.944 0 0.912 2.421 -73.173 0.362 0.000
0.2 light MoLP-hP 0.97 0.001 0.945 1.986 -73.584 0.235 0.000

MoLP-hJ 0.97 0.001 0.945 1.986 -73.584 0.235 0.000
heavy MoLP-hP 0.965 0.001 0.938 2.077 -73.552 0.263 0.000

MoLP-hJ 0.965 0.001 0.938 2.077 -73.552 0.263 0.000
light CuLP 0.985 0.017 0.904 3.65 -76.47 0.463 0.000
heavy CuLP 0.979 0.011 0.899 3.702 -76.476 0.488 0.000

0.2 - bottom.up 0.983 0.004 0.965 1.813 -73.084 0.164 0.000
- - WBS.sBIC 0.644 0.02 0.579 9.065 -71.534 2.029 1.140
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- - WBS2.SDLL 0.977 0.023 0.896 3.879 -76.254 0.501 0.000
- - PELT 0.391 0.007 0.287 13.038 -69.041 3.194 0.342
- - S3IB 0.997 0.101 0.902 4.039 -76.144 0.392 0.000
- - cumSeg 0.001 0 0 18.287 -63.097 4.995 0.000
- - TGUH 0.961 0.018 0.867 4.385 -75.328 0.631 0.000

0.2 - FDRSeg 0.958 0.061 0.859 4.511 -75.015 0.623 0.000
stairs10 0.1 light MoLP-hP 0.998 0.002 0.979 2.097 -120.634 0.103 0.000

MoLP-hJ 0.998 0.002 0.979 2.097 -120.634 0.103 0.000
heavy MoLP-hP 0.998 0.001 0.979 2.091 -120.63 0.103 0.000

MoLP-hJ 0.998 0.001 0.979 2.096 -120.629 0.103 0.000
0.2 light MoLP-hP 0.998 0.002 0.979 2.097 -120.634 0.103 0.000

MoLP-hJ 0.998 0.002 0.979 2.097 -120.634 0.103 0.000
heavy MoLP-hP 0.998 0.001 0.979 2.091 -120.63 0.103 0.000

MoLP-hJ 0.998 0.001 0.979 2.096 -120.629 0.103 0.000
light CuLP 0.999 0.021 0.961 2.924 -120.123 0.172 0.000
heavy CuLP 0.999 0.012 0.963 2.874 -120.195 0.174 0.000

0.2 - bottom.up 0.997 0.005 0.978 2.094 -119.81 0.104 0.000
- - WBS.sBIC 1 0.034 0.959 2.95 -120.052 0.165 0.000
- - WBS2.SDLL 0.998 0.014 0.958 3.085 -119.333 0.196 0.000
- - PELT 0.993 0.001 0.966 2.729 -120.597 0.175 0.000
- - S3IB 1 0.09 0.953 3.165 -120.419 0.134 0.000
- - cumSeg 0.986 0.006 0.878 7.533 -95.203 0.639 0.424
- - TGUH 0.999 0.009 0.963 2.93 -120.113 0.178 0.000

0.2 - FDRSeg 1 0.059 0.957 3.013 -119.874 0.146 0.000

Table 4: Summary of change point estimation over 1000 realisations for the test signals with
dense change points and Gaussian errors; we use h = hJ and ξn ∈ {log1.01(n), log1.1(n)} for
the localised pruning.

model α/Cζ penalty method TPR FPR ARI MSE BIC δtrim vtrim speed
blocks 0.2 light MoLP 0.935 0.005 0.981 5.011 48093.8 2.313 220.54 0.660

0.2 heavy MoLP 0.91 0.001 0.979 5.473 48095.6 2.743 235.905 0.675
0.4 light MoLP 0.937 0.007 0.98 5.051 48098.09 2.308 218.629 0.778
0.4 heavy MoLP 0.912 0.002 0.979 5.472 48098.12 2.674 228.336 0.808
0.5 light CuLP 0.863 0.018 0.899 15.378 48513.02 9.978 290.71 16.819
0.5 heavy CuLP 0.873 0.003 0.934 11.312 48333.58 7.139 246.124 15.557
0.9 light CuLP 0.933 0.007 0.977 5.408 48105.5 2.528 200.072 4.978
0.9 heavy CuLP 0.904 0.002 0.97 6.285 48124.13 3.362 211.04 5.090
0.2 - bottom.up 0.914 0.206 0.887 6.468 48360.28 2.76 274.792 0.050
- - WBS.sBIC 0.908 0.034 0.955 7.892 48242.17 4.946 212.22 77.772
- - WBS2.SDLL 0.951 0.063 0.962 5.319 48143.77 2.101 204.006 5.028
- - PELT 0.81 0 0.955 8.098 48128.61 6.336 293.799 0.029
- - TGUH 0.919 0.005 0.974 6.32 48131.39 3.241 287.898 1.497
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- - FPOP 0.931 0.002 0.983 4.782 48076.92 2.331 198.34 0.010
fms 0.2 light MoLP 0.98 0.003 0.97 4.222 -22251.66 0.539 0.124 1.186

0.2 heavy MoLP 0.968 0.001 0.968 4.563 -22248.33 0.676 0.155 1.187
0.4 light MoLP 0.985 0.003 0.971 4.032 -22257.81 0.48 0.093 1.301
0.4 heavy MoLP 0.973 0.001 0.969 4.392 -22253.62 0.623 0.142 1.325
0.5 light CuLP 0.973 0.006 0.962 4.291 -22238.88 0.533 0.055 4.571
0.5 heavy CuLP 0.941 0.001 0.95 5.403 -22175.93 0.823 0.086 4.568
0.9 light CuLP 0.986 0.002 0.976 3.625 -22300.42 0.41 0.046 3.992
0.9 heavy CuLP 0.973 0.001 0.973 3.988 -22294.87 0.547 0.049 3.990
0.2 - bottom.up 0.906 0.28 0.728 7.563 -21260.04 1.615 0.392 0.054
- - WBS.sBIC 0.923 0.004 0.965 15.452 -21006.43 1.892 0.079 74.857
- - WBS2.SDLL 0.997 0.017 0.973 3.605 -22278.99 0.321 0.053 6.443
- - PELT 0.74 0 0.945 9.446 -22159.09 2.756 0.057 0.026
- - TGUH 0.986 0.002 0.963 4.099 -22258.01 0.459 0.103 1.433
- - FPOP 0.958 0.001 0.977 3.859 -22335.57 0.627 0.033 0.010

mix 0.2 light MoLP 0.879 0.002 0.678 4.211 31852.09 0.786 11.113 1.004
0.2 heavy MoLP 0.852 0.001 0.634 4.431 31835.61 0.871 12.482 1.014
0.4 light MoLP 0.887 0.002 0.695 4.154 31863.58 0.76 10.792 1.105
0.4 heavy MoLP 0.858 0.001 0.647 4.401 31843.89 0.855 12.38 1.134
0.5 light CuLP 0.906 0.005 0.733 4.364 31905.35 0.786 19.431 8.807
0.5 heavy CuLP 0.868 0.003 0.667 4.779 31878.13 0.941 11.417 9.170
0.9 light CuLP 0.837 0.003 0.631 6.9 32114.51 1.671 12.574 7.334
0.9 heavy CuLP 0.739 0.002 0.511 11.338 32547.75 3.198 21.751 11.187
0.2 - bottom.up 0.887 0.025 0.705 4.385 32016.71 0.784 21.159 0.060
- - WBS.sBIC 0.676 0 0.464 11.937 32905.97 3.445 22.272 73.173
- - WBS2.SDLL 0.908 0.013 0.735 4.338 31917.1 0.751 18.889 9.400
- - PELT 0.625 0 0.34 9.266 32013.18 2.766 5.743 0.032
- - TGUH 0.821 0.002 0.564 5.593 31877.43 1.212 29.959 1.420
- - FPOP 0.803 0.002 0.541 5.105 31766.6 1.142 31.329 0.011

teeth10 0.2 light MoLP 0.784 0 0.694 5.785 -2301.625 1.187 0 1.068
0.2 heavy MoLP 0.592 0 0.492 9.512 -3259.876 2.177 0.047 1.054
0.4 light MoLP 0.821 0 0.743 5.124 -2138.238 1.004 0 1.121
0.4 heavy MoLP 0.639 0 0.542 8.704 -2987.338 1.936 0 1.108
0.5 light CuLP 0.903 0.004 0.814 4.904 -1962.88 0.84 0 4.319
0.5 heavy CuLP 0.751 0.002 0.631 7.505 -2478.257 1.56 0 4.349
0.9 light CuLP 0.688 0.003 0.532 8.439 -2617.247 1.885 0.414 4.156
0.9 heavy CuLP 0.438 0.001 0.309 12.302 -4266.959 3.111 0.234 4.185
0.2 - bottom.up 0.847 0 0.799 5.01 -1478.868 0.879 0 0.091
- - WBS.sBIC 0 0 0 16.854 -8928.946 5.382 0 69.941
- - WBS2.SDLL 0.932 0.005 0.859 4.612 -1831.672 0.712 0 10.689
- - PELT 0 0.001 0 16.851 -8927.371 5.379 0 0.018
- - TGUH 0.594 0.003 0.329 9.436 -3818.443 2.331 1.594 1.389
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- - FPOP 0.114 0.004 0.036 15.588 -7955.71 4.747 0 0.012
stairs10 0.2 light MoLP 0.998 0 0.977 3.103 -6871.387 0.13 0 8.376

0.2 heavy MoLP 0.997 0 0.976 2.339 -6902.29 0.139 0 8.566
0.4 light MoLP 0.998 0 0.977 3.103 -6871.408 0.13 0 8.416
0.4 heavy MoLP 0.997 0 0.976 2.339 -6902.319 0.139 0 8.574
0.5 light CuLP 0.989 0.001 0.948 3.966 -6282.889 0.311 0 9.660
0.5 heavy CuLP 0.983 0.001 0.944 4.222 -6265.687 0.34 0 9.607
0.9 light CuLP 0.988 0.001 0.948 3.982 -6279.911 0.313 0 9.768
0.9 heavy CuLP 0.982 0.001 0.944 4.239 -6262.338 0.342 0 9.777
0.2 - bottom.up 0.994 0.004 0.976 2.243 -6683.881 0.126 0 0.170
- - WBS.sBIC 0.985 0.011 0.946 4.016 -5946.003 0.303 0 70.928
- - WBS2.SDLL 0.992 0.009 0.95 3.775 -6354.621 0.293 0 7.340
- - PELT 0.87 0 0.866 9.5 -5624.565 0.888 0 0.028
- - TGUH 0.991 0 0.961 3.165 -6725.094 0.225 0 1.377
- - FPOP 0.99 0 0.968 2.803 -6892.929 0.189 0 0.010

Table 5: Summary of change point estimation over 1000 realisations for the test signals with
sparse change points and Gaussian errors; we set α = 0.2 (for MoLP and bottom.up) and
Cζ = 0.9 for CuLP, and use h = hJ and ξn ∈ {log1.01(n), log1.1(n)} for the localised pruning.

model penalty method TPR FPR ARI MSE BIC δtrim vtrim speed
blocks light MoLP 0.93 0.019 0.928 5.501 46,137.59 2.361 204.58 0.262

heavy MoLP 0.906 0.004 0.986 5.909 46,137.37 2.882 204.58 0.264
light CuLP 0.936 0.043 0.862 5.85 46,139.66 2.25 178.918 1.399
heavy CuLP 0.913 0.006 0.977 5.796 46,137.67 2.561 178.918 1.435

- bottom.up 0.918 0.454 0.146 8.264 46,218.74 2.831 262.171 0.042
- WBS.sBIC 0.91 0.004 0.998 6.512 46,141.24 4.047 178.918 62.783
- WBS2.SDLL 0.915 0.018 0.945 5.982 46,139.19 2.38 178.918 8.163
- PELT 0.811 0.001 0.999 8.588 46,140.96 6.272 615.151 0.022
- TGUH 0.92 0.007 0.998 6.849 46,141.3 3.236 324.322 1.361
- FPOP 0.931 0.002 0.999 5.1 46,135.74 2.336 188.331 0.013

fms light MoLP 0.954 0.031 0.907 5.569 -24,026.74 0.805 0.151 0.272
heavy MoLP 0.941 0.007 0.981 5.527 -24,027.52 0.949 0.151 0.272
light CuLP 0.984 0.063 0.801 5.205 -24,025.83 0.465 0.033 1.145
heavy CuLP 0.969 0.008 0.973 4.658 -24,028.14 0.618 0.033 1.295

- bottom.up 0.909 0.635 0.063 11.633 -23,932.78 1.595 0.372 0.047
- WBS.sBIC 0.757 0.013 0.933 50.855 -23,928.6 4.764 0.338 70.233
- WBS2.SDLL 0.978 0.023 0.92 4.857 -24,026.59 0.552 0.103 9.007
- PELT 0.751 0 0.999 10.924 -24,025.52 2.722 0.068 0.025
- TGUH 0.965 0.002 0.995 5.548 -24,024.01 0.652 0.136 1.560
- FPOP 0.96 0.001 0.998 4.066 -24,029.76 0.619 0.033 0.013

mix light MoLP 0.885 0.015 0.883 4.724 27,834.89 0.797 12.431 0.218
heavy MoLP 0.862 0.004 0.922 4.934 27,834.06 0.882 12.431 0.218
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light CuLP 0.879 0.041 0.763 5.434 27,837.56 0.906 12.431 2.057
heavy CuLP 0.845 0.006 0.901 5.554 27,834.88 1.04 14.256 2.759

- bottom.up 0.905 0.372 0.063 6.041 27,902.7 0.781 16.252 0.043
- WBS.sBIC 0.638 0.002 0.863 14.56 27,873.07 3.43 21.099 62.190
- WBS2.SDLL 0.847 0.021 0.835 6.169 27,840.44 1.087 16.081 8.049
- PELT 0.665 0 0.844 9.118 27,839.65 2.255 13.8 0.039
- TGUH 0.535 0.006 0.682 48.116 28,025.52 12.786 35.24 1.377
- FPOP 0.834 0.002 0.922 5.133 27,832.15 0.992 12.431 0.017

teeth10 light MoLP 0.738 0.02 0.914 6.857 -18,210.56 1.745 0 0.213
heavy MoLP 0.639 0.006 0.981 8.82 -18,212.2 2.601 0.114 0.217
light CuLP 0.783 0.045 0.788 7.588 -18,207.1 1.848 0 0.981
heavy CuLP 0.671 0.011 0.957 9.464 -18,210.74 3.091 1.026 1.294

- bottom.up 0.848 0.386 0.048 6.646 -18,139.38 2.621 0 0.041
- WBS.sBIC 0.42 0.006 0.995 13.294 -18,215.21 3.806 0 63.106
- WBS2.SDLL 0.825 0.038 0.811 6.99 -18,206.21 1.483 0 7.996
- PELT 0.164 0.015 0.999 16.11 -18,213.93 4.682 0 0.022
- TGUH 0.8 0.007 0.994 6.922 -18,210.9 1.652 0 1.402
- FPOP 0.444 0.01 0.999 12.511 -18,219.81 3.354 0.342 0.013

stairs10 light MoLP 0.996 0.016 0.898 2.599 -23,948.07 0.139 0 0.227
heavy MoLP 0.989 0.003 0.973 2.707 -23,948.82 0.174 0 0.229
light CuLP 0.974 0.035 0.792 6.56 -23,934.51 0.628 0 0.990
heavy CuLP 0.966 0.006 0.964 6.536 -23,936.69 0.668 0 1.055

- bottom.up 0.994 0.32 0.05 3.375 -23,886.67 0.161 0 0.042
- WBS.sBIC 0.988 0.01 0.987 4.655 -23,943.36 0.385 0 63.537
- WBS2.SDLL 0.981 0.018 0.906 5.169 -23,941.01 0.524 0 8.097
- PELT 0.955 0 1 4.625 -23,947.28 0.396 0 0.013
- TGUH 0.943 0.002 0.991 9.605 -23,915.32 7.433 0 1.382
- FPOP 0.998 0 1 2.521 -23,949.57 0.152 0 0.013
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Figure 3: Test signal blocks with Gaussian errors: weighted density of estimated change
points over [(θj−1 + θj)/2, (θj + θj+1)/2], j = 1, . . . , qn, with the vertical lines indicating the
locations of true change points. We set α = 0.2 for MoLP and bottom.up and Cζ = 0.9 for
CuLP, and use h = hJ and ξn = log1.01(n) for the localised pruning.
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Figure 4: Test signal fms with Gaussian errors: weighted density of estimated change points.
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Figure 5: Test signal mix with Gaussian errors: weighted density of estimated change points.

(E2) Independent heavy-tailed errors

Tables 6–7 report the results when εt ∼iid t5. Figures 13–17 visualise the performance of
various methods by plotting the weighted densities of estimated change point(s).
The heavy penalty ξn = n2/4.99 is a theoretically valid choice conforming to Assumption 3
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Figure 6: Test signal teeth10 with Gaussian errors: weighted density of estimated change
points.
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Figure 7: Test signal stairs10 with Gaussian errors: weighted density of estimated change
points.

in light of Remark 2 (b). When n is small (Table 6), this penalty successfully prevents
false positives but the resulting procedure lacks power. The light penalty ξn = log1.1(n)
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Figure 8: Long test signal blocks with sparse change points and Gaussian errors: weighted
density of estimated change points with the vertical lines indicating the locations of true
change points. We set α = 0.2 for MoLP and bottom.up and Cζ = 0.9 for CuLP, and use
h = hJ and ξn ∈ {log1.01(n), log1.1(n)} for the localised pruning.
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Figure 9: Long test signal fms with sparse change points and Gaussian errors: weighted
density of estimated change points.
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Figure 10: Long test signal mix with sparse change points and Gaussian errors: weighted
density of estimated change points.
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Figure 11: Long test signal teeth10 with sparse change points and Gaussian errors.

works reasonably well in not causing false positives while attaining high TPR, yielding the
performance comparable to that observed with Gaussian errors (see Table 3). When n is large
and change points are sparse (Table 7), the localised pruning under-estimates the number of
change points for some test signals such as fms, teeth10 and stairs10. This, in part, is due to
that the candidate generating method fails to produce at least one valid estimator for each true
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Figure 12: Long test signal stairs10 with sparse change points and Gaussian errors.

change point, e.g. compare the TPR for MoLP (resp. CuLP) and bottom.up (WBS2.SDLL),
thus failing Assumption 4 (a). In addition, for theoretical consistency, Assumption 2 requires
the magnitude of changes to be larger for their detection in the presence of heavy-tailed errors
whereas it is kept at the same level as in (E1) with Gaussian errors. Most of the competitors
are tailored for sub-Gaussian errors, and they incur considerable false positives, a phenomenon
that is amplified in Table 7 as n is large and change points sparse.

Table 6: Summary of change point estimation over 1000 realisations for the test signals with
t5 errors; we set α = 0.2 for MoLP and bottom.up and Cζ = 0.9 for CuLP, and use h = hJ
and ξn ∈ {log1.1(n), n2/4.99} for the localised pruning.

model penalty method TPR FPR ARI MSE BIC δtrim vtrim

blocks light MoLP 0.948 0.005 0.98 4.76 4781.907 312.528 49.512
heavy MoLP 0.775 0 0.928 10.072 4796.438 808.116 261.309
light CuLP 0.943 0.013 0.974 5.255 4783.241 366.154 110.24
heavy CuLP 0.743 0 0.908 11.676 4800.744 1360.405 208.862

- bottom.up 0.95 0.217 0.921 6.295 4805.876 390.389 297.751
- WBS.sBIC 0.902 0.248 0.891 16.965 4785.934 852.116 195.167
- WBS2.SDLL 0.974 0.611 0.694 28.436 4808.934 288.258 111.779
- PELT 0.927 0.17 0.935 13.346 4761.393 398.671 57.462
- S3IB 0.965 0.265 0.913 15.858 4758.723 303.6 121.246
- cumSeg 0.768 0.001 0.915 13.462 4817.388 1758.934 592.281
- TGUH 0.961 0.35 0.885 15.58 4794.246 467.44 353.441
- FDRSeg 0.992 0.678 0.713 33.873 4822.753 312.756 252.471

fms light MoLP 0.984 0.009 0.961 4.429 -567.376 0.204 0.151
heavy MoLP 0.948 0.003 0.937 5.543 -566.093 0.312 0.168
light CuLP 0.988 0.012 0.963 3.871 -568.467 0.175 0.033
heavy CuLP 0.967 0.001 0.956 4.239 -568.043 0.249 0.033

- bottom.up 0.983 0.302 0.869 6.099 -550.932 0.325 0.237
- WBS.sBIC 0.978 0.174 0.91 10.382 -572.498 0.198 0.033
- WBS2.SDLL 0.999 0.464 0.749 17.344 -561.768 0.108 0.033
- PELT 0.984 0.108 0.941 8.202 -575.528 0.185 0.033
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- S3IB 1 0.427 0.813 16.341 -572.761 0.111 0.033
- cumSeg 0.757 0.012 0.916 13.595 -552.024 1.777 0.120
- TGUH 0.998 0.306 0.866 11.119 -565.622 0.141 0.067
- FDRSeg 1 0.523 0.777 18.759 -562.495 0.116 0.050

mix light MoLP 0.916 0.005 0.753 3.874 839.603 30.371 12.659
heavy MoLP 0.854 0.001 0.634 4.428 841.166 34.099 6.501
light CuLP 0.905 0.007 0.736 4.202 840.603 38.31 13.686
heavy CuLP 0.822 0.001 0.577 5.118 843.018 46.415 14.028

- bottom.up 0.941 0.034 0.795 4.37 845.202 39.285 19.274
- WBS.sBIC 0.835 0.14 0.652 11.853 860.71 123.284 23.722
- WBS2.SDLL 0.961 0.303 0.769 9.536 843.276 29.806 15.624
- PELT 0.837 0.065 0.582 6.918 833.81 37.444 13.8
- S3IB 0.973 0.261 0.812 9.019 833.356 29.335 13.8
- cumSeg 0.346 0 0.286 23.734 900.692 742.379 75.442
- TGUH 0.93 0.229 0.724 8.453 842.304 40.007 27.257
- FDRSeg 0.971 0.409 0.775 11.321 850.546 32.429 19.274

teeth10 light MoLP 0.937 0.001 0.905 2.49 -75.183 0.394 0
heavy MoLP 0.908 0 0.873 2.941 -74.966 0.531 0
light CuLP 0.843 0.001 0.76 5.507 -73.049 1.044 0
heavy CuLP 0.781 0.001 0.696 6.431 -72.824 1.33 0

- bottom.up 0.986 0.003 0.969 1.687 -75.091 0.147 0
- WBS.sBIC 0.722 0.064 0.655 8.248 -74.897 1.63 0
- WBS2.SDLL 0.988 0.092 0.903 4.353 -80.031 0.387 0
- PELT 0.643 0.036 0.539 9.114 -75.593 1.994 0.912
- S3IB 0.998 0.172 0.904 4.802 -81.069 0.317 0
- cumSeg 0.001 0 0 18.377 -63.278 4.996 0
- TGUH 0.985 0.082 0.896 4.628 -80.295 0.457 0
- FDRSeg 0.99 0.187 0.88 5.184 -78.135 0.408 0

stairs10 light MoLP 0.994 0.001 0.972 2.352 -122.885 0.14 0.000
heavy MoLP 0.993 0.001 0.971 2.382 -122.851 0.145 0
light CuLP 0.99 0.001 0.952 3.424 -120.553 0.248 0
heavy CuLP 0.989 0.001 0.951 3.461 -120.514 0.255 0

- bottom.up 0.686 0.099 0.555 36.307 -44.435 3.031 2.859
- WBS.sBIC 1 0.082 0.953 3.643 -125.895 0.155 0
- WBS2.SDLL 0.999 0.07 0.951 3.682 -124.76 0.172 0
- PELT 0.997 0.015 0.967 2.905 -125.858 0.154 0
- S3IB 1 0.158 0.943 4.088 -126.209 0.124 0
- cumSeg 0.981 0.007 0.881 7.23 -98.274 0.625 0.424
- TGUH 0.999 0.074 0.956 3.636 -125.944 0.157 0
- FDRSeg 1 0.199 0.929 4.504 -122.972 0.138 0
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Table 7: Summary of change point estimation over 1000 realisations for the test signals with
sparse change points and t5 errors; we set α = 0.2 for MoLP and bottom.up and Cζ = 0.9
for CuLP, and use h = hJ and ξn ∈ {log1.1(n), n2/4.99} for the localised pruning.

model penalty method TPR FPR ARI MSE BIC δtrim vtrim speed
blocks light MoLP 1 0.007 0.979 2.271 23,128.27 369.841 0 0.174

heavy MoLP 0.995 0 1 2.749 23,130.49 3.024 0 0.174
light CuLP 1 0.02 0.934 3 23,129.62 1,047.866 0 5.167
heavy CuLP 0.996 0 1 3.05 23,130.73 2.753 0 5.170

- bottom.up 1 0.383 0.326 5.17 23,189.64 11,697.4 0 0.021
- WBS2.SDLL 1 0.899 0.016 155.253 23,393.5 17,507.5 0 3.735
- PELT 1 0.509 0.156 53.467 22,995.83 14,698.61 0 0.007
- TGUH 1 0.647 0.174 47.33 23,151.79 14,031.65 0 0.816
- FPOP 1 0.755 0.053 97.408 22,997.7 16,684.8 0 0.080

fms light MoLP 0.525 0.019 0.955 9.429 -11,996.67 497.164 0.208 0.174
heavy MoLP 0.113 0 0.588 29.304 -11,959.72 64.733 0 0.179
light CuLP 0.525 0.05 0.893 9.741 -11,996.39 1,314.255 0.208 5.075
heavy CuLP 0.012 0 0.056 29.968 -11,962.25 6.072 0 7.484

- bottom.up 0.644 0.523 0.183 12.73 -11,953.4 12,939.04 0.865 0.021
- WBS2.SDLL 0.73 0.958 0.006 300.3 -11,724.1 18,837.29 0.54 3.774
- PELT 0.493 0.784 0.067 107.746 -12,130.48 16,040.72 0.243 0.007
- TGUH 0.501 0.874 0.048 114.887 -11,972.02 15,887.4 1.211 0.813
- FPOP 0.634 0.899 0.02 188.625 -12,128.99 18,015.36 0.634 0.081

mix light MoLP 1 0.005 0.969 2.468 13,982.47 425.41 0.456 0.205
heavy MoLP 0.806 0 0.908 14.593 14,033.51 157.413 16.423 0.234
light CuLP 0.999 0.106 0.535 4.964 13,986.6 6,802.449 0.456 12.851
heavy CuLP 0.819 0.001 0.909 12.7 14,022.57 201.298 1.825 19.848

- bottom.up 1 0.246 0.205 4.795 14,020.46 12,786.47 1.939 0.023
- WBS2.SDLL 0.999 0.884 0.007 128.533 14,248.03 18,671.8 0.456 4.028
- PELT 0.998 0.469 0.08 44.492 13,849.79 15,860.93 0.456 0.007
- TGUH 0.951 0.637 0.072 52.071 14,027.56 15,578.4 3.307 0.874
- FPOP 1 0.723 0.024 80.491 13,851.49 17,852.09 0.456 0.088

teeth10 light MoLP 0.165 0.088 0.963 7.109 -9,105.34 480.773 0.228 0.188
heavy MoLP 0.075 0.028 0.953 12.442 -9,088.252 106.865 0 0.191
light CuLP 0.177 0.35 0.493 9.382 -9,100.71 7,072.111 0.228 15.962
heavy CuLP 0.077 0.009 0.954 12.195 -9,090.402 140.83 0 21.479

- bottom.up 0.286 0.474 0.161 8.533 -9,069.533 13,124.67 0.228 0.022
- WBS2.SDLL 0.398 0.952 0.004 133.288 -8,820.831 19,022.91 0.228 3.851
- PELT 0.143 0.85 0.054 49.521 -9,239.104 16,239.11 0.342 0.007
- TGUH 0.257 0.853 0.065 47.879 -9,086.805 15,828 0.342 0.857
- FPOP 0.183 0.934 0.015 85.667 -9,236.122 18,214.47 0.228 0.083

stairs10 light MoLP 0.59 0.007 0.966 10.283 -11,936.32 436.29 2.012 0.481
heavy MoLP 0.377 0 0.993 23.415 -11,883.82 12.535 0.212 0.625
light CuLP 0.599 0.025 0.894 10.521 -11,932.84 1,353.719 2.012 4.987
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heavy CuLP 0.396 0 0.994 22.688 -11,886.22 13.098 0.424 5.221
- bottom.up 0.585 0.314 0.162 20.418 -11,861.37 13,113.7 1.906 0.023
- WBS2.SDLL 0.725 0.907 0.004 124.732 -11,662.26 19,024.46 1.059 4.216
- PELT 0.591 0.576 0.055 49.277 -12,069.15 16,222.22 2.012 0.007
- TGUH 0.651 0.68 0.086 47.761 -11,902.81 15,607.59 2.012 0.889
- FPOP 0.691 0.777 0.016 80.377 -12,067.29 18,207.36 1.589 0.085
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Figure 13: Test signal blocks with t5 errors: weighted density of estimated change points
with the vertical lines indicating the locations of true change points. We set α = 0.2 for MoLP
and bottom.up and Cζ = 0.9 for CuLP, and use h = hJ and ξn = log1.1(n) for the localised
pruning.
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Figure 14: Test signal fms with t5 errors: weighted density of estimated change points.
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Figure 15: Test signal mix with t5 errors: weighted density of estimated change points.
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Figure 16: Test signal teeth10 with t5 errors: weighted density of estimated change points.
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Figure 17: Test signal stairs10 with t5 errors: weighted density of estimated change point.

(E3) Serially correlated errors

Tables 8 –9 report the simulation results obtained from the test signals generated with serially
correlated errors following AR(1) processes. Figures 18–27 visualise the performance of various
methods by plotting the weighted densities of estimated change point(s).
In the presence of week serial dependence (AR parameter % = 0.3), the choice of light penalty
ξn = log1.1(n) is observed to be effective in suppressing the false positives in the localised
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pruning procedure, while attaining the TPR close to 90%. When the serial dependence is
strong (% = 0.9), a heavier penalty of ξn = log2(n) is required to control the FPR. Overall the
proposed localised pruning is successful in handling serial dependence.
JUSD tends to over-estimate τ2 even with an informed choice of the parameter for its esti-
mation. DepSMUCE shows weakness in detecting frequent jumps as in teeth10, whether the
serial correlations are small or large, due to the block-based approach to the estimation of τ2.
We also consider those methods that do not require an explicit estimation of τ2 (WBS.sBIC,
cumSeg), or use a threshold involving its estimator only as a secondary check (WBS2.SDLL),
to which we supply the estimator of τ2 used by DepSMUCE; for bottom.up, we supplied the
true τ2. WBS.sBIC tends to over-estimate the number of change points due to the inadequacy
of the chosen penalty when the serial dependence is strong, which is confirmed by that this set
of many spurious estimators returns the minimum BIC. Although the final model returned by
WBS2.SDLL does not critically depend on the estimator of τ2, its performance appears to be
heavily dependent on its estimator in some settings. The cumSeg, when the serial correlations
are weak, tends to under-estimate the number of change points as in (E1) whereas when the
AR parameter is large, it returns many false positives.

Table 8: Summary of change point estimation over 1000 realisations for the test signals with
Gaussian AR(1) process as εt where % = 0.3 is used as the AR parameter; we set α = 0.2
for MoLP, bottom.up, JUDS and DepSMUCE and Cζ = 0.9 for CuLP, and use h = hJ and
ξn ∈ {log1.1(n), log2(n)} for the localised pruning.

model penalty method TPR FPR ARI MSE BIC δtrim vtrim

blocks light MoLP 0.887 0.027 0.943 5.479 4774.904 740.203 319.633
heavy MoLP 0.348 0 0.66 20.411 4884.454 6922.511 444.873
light CuLP 0.878 0.04 0.931 6.193 4779.81 995.415 434.106
heavy CuLP 0.316 0 0.61 20.57 4885.94 7516.739 128.913

- bottom.up 0.851 0.148 0.903 6.75 4795.408 986.112 598.441
- WBS.sBIC 0.909 0.094 0.92 6.921 4785.532 1059.468 414.596
- WBS2.SDLL 0.943 0.226 0.864 6.832 4781.659 606.197 332.621
- cumSeg 0.742 0.007 0.887 9.407 4814.161 2347.276 961.464
- JUSD 0.757 0.007 0.921 8.575 4800.773 1889.446 658.822
- DepSMUCE 0.804 0.013 0.932 7.46 4792.994 1461.211 506.747

fms light MoLP 0.892 0.064 0.88 5.812 -566.721 0.576 0.287
heavy MoLP 0.411 0 0.595 17.571 -527.843 2.096 0
light CuLP 0.95 0.084 0.903 4.729 -570.251 0.392 0.136
heavy CuLP 0.42 0.001 0.605 16.863 -530.367 1.917 0

- bottom.up 0.834 0.261 0.825 7.536 -551.757 0.975 1.692
- WBS.sBIC 0.962 0.104 0.892 5.166 -569.772 0.33 0.136
- WBS2.SDLL 0.975 0.103 0.885 4.702 -570.251 0.287 0.136
- cumSeg 0.74 0.029 0.884 9.685 -551.414 2.167 0.465
- JUSD 0.397 0.001 0.586 17.694 -525.871 2.151 0.000
- DepSMUCE 0.824 0.009 0.912 7.265 -558.459 1.15 0.225
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mix light MoLP 0.864 0.023 0.637 3.915 833.581 56.885 24.52
heavy MoLP 0.24 0 0.123 15.707 907.876 706.508 34.214
light CuLP 0.851 0.042 0.618 4.499 836.491 75.568 29.994
heavy CuLP 0.157 0 0.082 17.166 918.815 842.511 0

- bottom.up 0.863 0.014 0.649 4.173 840.582 72.021 30.907
- WBS.sBIC 0.857 0.101 0.658 6.551 856.824 128.398 35.810
- WBS2.SDLL 0.89 0.043 0.677 4.2 833.53 59.276 36.837
- cumSeg 0.399 0 0.33 13.36 893.913 703.169 184.755
- JUSD 0.423 0.004 0.299 15.69 919.363 695.591 290.019
- DepSMUCE 0.587 0.006 0.409 11.989 895.764 484.526 167.534

teeth10 light MoLP 0.873 0.002 0.83 2.611 -79.075 0.718 0
heavy MoLP 0.084 0 0.075 10.437 -63.117 4.581 0
light CuLP 0.874 0.035 0.773 3.882 -80.887 1.042 0
heavy CuLP 0.081 0 0.067 10.4 -62.294 4.615 0

- bottom.up 0.78 0.003 0.736 3.979 -74.989 1.163 0
- WBS.sBIC 0.8 0.07 0.704 4.737 -79.29 1.37 0.000
- WBS2.SDLL 0.098 0.004 0.087 10.081 -65.161 4.558 0.000
- cumSeg 0.01 0 0.005 10.693 -63.908 4.956 0.000
- JUSD 0 0 0 10.727 -63.434 5 0.000
- DepSMUCE 0.002 0 0.001 10.724 -63.469 4.992 0.000

stairs10 light MoLP 0.989 0.005 0.966 1.977 -127.028 0.174 0
heavy MoLP 0.616 0 0.669 17.122 -71.541 2.04 0.318
light CuLP 0.994 0.041 0.944 2.568 -127.349 0.235 0
heavy CuLP 0.688 0 0.709 13.441 -82.097 1.864 0

- bottom.up 0.651 0.083 0.543 23.182 -48.558 3.155 2.012
- WBS.sBIC 0.998 0.084 0.94 2.556 -128.074 0.193 0.000
- WBS2.SDLL 0.984 0.022 0.936 2.798 -125.513 0.319 0.000
- cumSeg 0.968 0.008 0.84 6.048 -98.312 0.862 0.847
- JUSD 0.524 0 0.616 19.1 -63.866 2.651 0.741
- DepSMUCE 0.551 0 0.627 18.169 -67.326 2.576 1.906

Table 9: Summary of change point estimation over 1000 realisations for the test signals with
Gaussian AR(1) process as εt where % = 0.9 is used as the AR parameter; we set α = 0.2
for MoLP, bottom.up, JUDS and DepSMUCE and Cζ = 0.9 for CuLP, and use h = hJ and
ξn ∈ {log1.1(n), log2(n)} for the localised pruning.

model penalty method TPR FPR ARI MSE BIC δtrim vtrim

blocks light MoLP 0.965 0.555 0.738 8.856 46624.3 4598.286 2825.82
heavy MoLP 0.942 0.14 0.905 5.792 46941.57 6350.733 3242.88
light CuLP 0.941 0.316 0.849 6.529 46908.09 6314.565 2814.783
heavy CuLP 0.916 0.059 0.94 5.445 47029.13 7342.356 3070.561

- bottom.up 0.824 0.067 0.918 6.786 47293.08 10658.44 5986.544
- WBS.sBIC 1 0.985 0.023 78.455 41629.19 764.912 176.043
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- WBS2.SDLL 0.97 0.443 0.723 9.548 46582.41 5485.552 3300.133
- cumSeg 0.929 0.343 0.722 7.914 47207.89 10499.69 6610.925
- JUSD 0.782 0.009 0.928 7.675 47399.17 16699.38 5104.590
- DepSMUCE 0.917 0.137 0.876 5.602 47045.95 7352.367 3336.377

fms light MoLP 0.962 0.398 0.758 6.1 -6128.199 1.448 0.993
heavy MoLP 0.951 0.116 0.856 4.743 -6050.056 2.128 1.288
light CuLP 0.976 0.302 0.815 5.463 -6111.884 2.702 0.862
heavy CuLP 0.962 0.079 0.906 4.312 -6060.462 3.078 0.965

- bottom.up 0.74 0.04 0.771 9.335 -5761.415 10.171 15.326
- WBS.sBIC 1 0.973 0.039 40.62 -7663.268 0.133 0.050
- WBS2.SDLL 0.982 0.176 0.84 5.383 -6122.909 2.406 0.923
- cumSeg 0.959 0.565 0.518 11.825 -6044.72 12.896 8.774
- JUSD 0.762 0.01 0.878 8.301 -5811.716 12.849 1.678
- DepSMUCE 0.876 0.041 0.902 6.363 -5920.303 8.368 8.838

mix light MoLP 0.902 0.3 0.671 4.467 7585.826 341.03 284.26
heavy MoLP 0.868 0.046 0.64 4.034 7695.666 500.375 256.946
light CuLP 0.927 0.179 0.718 4.323 7598.369 464.118 306.1
heavy CuLP 0.886 0.038 0.673 3.934 7669.327 509.42 337.063

- bottom.up 0.739 0.013 0.461 5.539 7981.962 1040.016 406.518
- WBS.sBIC 1 0.948 0.104 19.779 5946.152 88.406 14.256
- WBS2.SDLL 0.937 0.093 0.742 4.128 7586.685 464.132 291.616
- cumSeg 0.864 0.28 0.738 8.866 8083.526 4268.618 728.527
- JUSD 0.624 0.007 0.454 11.194 8450.092 4347.482 1298.358
- DepSMUCE 0.828 0.009 0.643 5.659 7906.877 1559.279 447.061

teeth10 light MoLP 0.924 0.003 0.877 2.75 -1301.465 6.007 0
heavy MoLP 0.898 0.001 0.843 2.901 -1290.286 7.262 0
light CuLP 0.887 0.113 0.803 3.878 -1262.316 9.108 0
heavy CuLP 0.807 0.02 0.726 4.243 -1215.827 12.82 0

- bottom.up 0.689 0.002 0.632 5.783 -1086.38 17.678 6.273
- WBS.sBIC 1 0.844 0.345 5.45 -1793.232 0.468 0.000
- WBS2.SDLL 0.651 0.017 0.605 5.568 -1138.749 19.842 4.505
- cumSeg 0.997 0.292 0.801 3.976 -1375.372 6.059 3.878
- JUSD 0.151 0.003 0.156 10.515 -680.996 44.887 0.000
- DepSMUCE 0.079 0.002 0.081 10.607 -658.432 47.344 0.000

stairs10 light MoLP 0.99 0.008 0.968 1.959 -1854.062 1.632 0
heavy MoLP 0.99 0.002 0.97 1.943 -1851.876 1.65 0
light CuLP 0.991 0.128 0.936 2.507 -1893.471 1.895 0
heavy CuLP 0.99 0.024 0.958 2.314 -1862.168 2.083 0

- bottom.up 0.771 0.083 0.708 13.097 -1263.68 19.22 5.825
- WBS.sBIC 1 0.843 0.351 5.299 -2399.815 0.011 0.000
- WBS2.SDLL 0.864 0.01 0.871 6.744 -1612.956 8.71 0.000
- cumSeg 1 0.262 0.848 4.329 -1793.323 3.954 2.700
- JUSD 0.535 0 0.648 18.334 -975.106 25.541 8.419
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- DepSMUCE 0.469 0 0.59 25.603 -772.494 29.519 5.242
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Figure 18: Test signal blocks with AR(1) process as εt where % = 0.3: weighted density of
estimated change points. We set α = 0.2 for MoLP, bottom.up, JUSD and DepSMUCE and
Cζ = 0.9 for CuLP, and use h = hJ and ξn = log1.1(n) for the localised pruning.

0 100 200 300 400 500

0.
00

0.
05

0.
10

0.
15

0.
20

MoLP
CuLP

bottom.up
WBS.sBIC

WBS2.SDLL
cumSeg

JUSD
DepSMUCE

Figure 19: Test signal fms with AR(1) process as εt where % = 0.3: weighted density of
estimated change points.
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Figure 20: Test signal mix with AR(1) process as εt where % = 0.3: weighted density of
estimated change points.
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Figure 21: Test signal teeth10 with AR(1) process as εt where % = 0.3: weighted density
of estimated change points.
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Figure 22: Test signal stairs10 with AR(1) process as εt where % = 0.3: weighted density
of estimated change points.
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Figure 23: Test signal blocks with AR(1) process as εt where % = 0.9: weighted density of
estimated change points. We set α = 0.2 for MoLP, bottom.up, JUSD and DepSMUCE and
Cζ = 0.9 for CuLP, and use h = hJ and ξn = log2(n) for the localised pruning.
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Figure 24: Test signal fms with AR(1) process as εt where % = 0.9: weighted density of
estimated change points.
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Figure 25: Test signal mix with AR(1) process as εt where % = 0.9: weighted density of
estimated change points.
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Figure 26: Test signal teeth10 with AR(1) process as εt where % = 0.9: weighted density
of estimated change points.
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Figure 27: Test signal stairs10 with AR(1) process as εt where % = 0.9: weighted density
of estimated change points.
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H Algorithms

Algorithm 1 provides the pseudo code for the outer algorithm of the proposed localised prun-
ing methodology, which iteratively identifies the local interval over which pruning is to be
performed.

Algorithm 1: Outer algorithm for localisation (LocAlg)
Input: Data {Xt}nt=1, a set of candidate change point estimators K, a candidate

sorting function h(·)
Step 0: set Θ̂ = ∅ and C ← K
repeat

Step 1: find C◦ as C◦ ← {k ∈ C : h(k) = maxk′∈C h(k′)}
if |C◦| = 1 then k◦ ← C◦
else k◦ ← arg mink∈C◦ |I(k)|

Step 2: find

kL ← max{k < k◦ : k ∈ Θ̂ ∪ {0} or (k ∈ C and I(k) ∩ I(k◦) = ∅)},

kR ← min{k > k◦ : k ∈ Θ̂ ∪ {n} or (k ∈ C and I(k) ∩ I(k◦) = ∅)}

and set D ← (kL, kR) ∩ C
Step 3: Â ← PrunAlg(D, C, Θ̂, kL, kR)

Step 4: set R ← {k◦} ∪ (D ∩ [min Â,max Â])

if kL ∈ Θ̂ ∪ {0} then R ← R∪ {D ∩ (kL,min Â)}
if kR ∈ Θ̂ ∪ {n} then R ← R∪ {D ∩ (max Â, kR)}

Step 5: set Θ̂← Θ̂ ∪ Â and C ← C \ R
until C is empty

Output: Θ̂
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Algorithm 2 outlines the efficient implementation of the inner algorithm employed in Step 3
of the outer algorithm (Algorithm 1). For further details on its implementation, see Meier
et al. (2021b).

Algorithm 2: Inner algorithm for pruning (PrunAlg)

Function PrunAlg(D, C, Θ̂, s, e):

Enumerate all M = 2|D| subsets of D (including ∅) denoted by Di, i = 1, . . . ,M .
Set F ← ∅, Â ← ∅, `← |D|, and assign flagi ← true for all i = 1, . . . ,M .
repeat

for Di with |Di| = ` and flagi = false do
identify

child(Di) = {j : Dj ⊂ Di with |Dj | = `− 1 and flagj = true}

for j ∈ child(Di) do flagj ← false
end
for Di with |Di| = ` and flagi = true do

update F ← F ∪ {i} and identify child(Di)
for j ∈ child(Di) do

if SC(Di|C, Θ̂, s, e) < SC(Dj |C, Θ̂, s, e) then flagj ← false
end

end
`← `− 1

until ` = 0
if F 6= ∅ then

find m∗ ← mini∈F |Di|
identify i∗ ← arg mini:Di⊂RDi′ ,i

′∈F ,m∗≤|Di′ |≤m∗+2 SC(Di|C, Θ̂, s, e)
set Â ← Di∗

end
return Â
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