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Abstract
The segmentation of a time series into piecewise stationary segments is an impor-
tant problem both in time series analysis and signal processing. In the presence of 
multiscale change points with both large jumps over short intervals and small jumps 
over long intervals, multiscale methods achieve good adaptivity but require a model 
selection step for removing false positives and duplicate estimators. We propose a 
localised application of the Schwarz criterion, which is applicable with any multi-
scale candidate generating procedure fulfilling mild assumptions, and establish its 
theoretical consistency in estimating the number and locations of multiple change 
points under general assumptions permitting heavy tails and dependence. In par-
ticular, combined with a MOSUM-based candidate generating procedure, it attains 
minimax rate optimality in both detection lower bound and localisation for i.i.d. sub-
Gaussian errors. Overall competitiveness of the proposed methodology compared to 
existing methods is shown through its theoretical and numerical performance.
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1  Introduction

Change point analysis has a long tradition in statistics since Page (1954). In recent 
years, there has been a surge of interest for computationally fast and statistically effi-
cient methods for change point analysis due to its importance in time series anal-
ysis, signal processing and many other applications where data are routinely col-
lected over time in naturally nonstationary environments. In particular, many papers 
address the problem of testing for a change point, either retrospectively or sequen-
tially, when at most one change is expected; see Csörgö and Horváth (1997) and 
Horváth and Rice (2014) for an overview. Based on such tests, the location of a 
single change point can be estimated with optimal localisation properties.

However, it is often unknown how many structural changes are present in the 
data, and allowing for multiple change points, the goal of change point analysis 
is to estimate both the total number and locations of the change points. Exam-
ples where data segmentation is popularly employed include genomics (detecting 
chromosomal copy number aberrations; see Olshen et al. (2004), Li et al. (2016), 
Niu and Zhang (2012), Chan and Chen (2017), neurophysiology [modelling the 
instabilities in the rate at which a neuron fires an action potential, Messer et al. 
(2014)], astronomy [detecting orbiting planets and their periodicity, Fisch et  al. 
(2018)] and finance [identifying and dating change points in financial time series, 
Cho and Fryzlewicz (2012)], to name but a few.

Broadly, approaches to retrospective change point analysis in the literature can 
be categorised into two: one line of research relates to the aforementioned tests, 
while the other aims at optimising objective functions constructed on the principle 
of penalised likelihood or minimum description length, via dynamic programming 
(Killick et  al. 2012; Maidstone et  al. 2017) or genetic algorithm (Davis and Yau 
2013). There are also methods based on hidden Markov models with algorithms for 
estimating the sequence of hidden states (Titsias et al. 2016). For an overview of the 
literature on data segmentation methods; see Cho and Kirch (2020).

Recent algorithmic developments include multiscale methodologies which 
focus on isolating each change point within an interval sufficiently large for its 
detection, whereby the tests and the estimators designed for the at-most-one-
change alternatives are applicable to detect multiple change points. The wild 
binary segmentation (WBS) algorithm proposed in Fryzlewicz (2014) accom-
plishes this by drawing a large number of random intervals. Eichinger and Kirch 
(2018) investigate a moving sum (MOSUM) procedure which systematically tests 
for at most a single change point over moving windows at a single bandwidth, and 
briefly discuss its multiscale extension for better adaptivity. On the one hand, such 
multiscale methods enjoy the near-optimal localisation of change points through 
scanning the same regions of the data at multiple resolutions. On the other, this 
may result in conflicting (duplicate) estimators detected for the identical change 
point, as well as false positives spuriously detected without any change points in 
their vicinity, which makes a model selection step inevitable.

There exist post-processing and pruning procedures specifically tailored for 
particular multiscale candidate generating methods and settings to handle false 
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positives and duplicates, but there is a lack of a unified approach to this task. In 
this paper, we propose a generic methodology for this purpose, which utilises the 
Schwarz criterion (Schwarz 1978) and performs an exhaustive search for change 
point estimators in a localised way on a candidate set generated by multiscale 
methods. Contrary to the common usage of information criteria in change point 
problems, the proposed localised pruning algorithm does not require the maxi-
mum number of change points as an input, nor does it seek for the global mini-
miser of the criterion which is computationally costly.

We show that as a generic tool, the localised pruning algorithm inherits the prop-
erties of the candidate generating method. Therefore, with a suitable, multiscale 
candidate generating method, it consistently estimates the total number of change 
points as well as locating the change points with accuracy while being computation-
ally feasible. In this paper, we verify the suitability of two candidate generating mul-
tiscale methods based on the MOSUM and cumulative sum (CUSUM) statistics; the 
implementation of the algorithm combining the localised pruning with the former 
is available in the R package mosum (Meier et al. 2021a), with an accompanying 
paper detailing its efficient implementation (Meier et al. 2021b).

1.1 � Main contributions

Below, we summarise the main contributions made in this paper. 

(a)	 Two-stage procedure. We explicitly separate the statistical analysis of the can-
didate generating method (Stage 1, see Sect. 4) from that of the model selection 
(pruning) methodology (Stage 2, see Sect. 3). This allows us (i) to easily extend 
our statistical conclusions to different candidate generating methods, and (ii) to 
gain insights into the assumptions required for each stage separately.

(b)	 Truly multiscale change points. In contrast to the assumptions commonly found 
in the literature that require homogeneity on the change point structure, we 
adopt a truly multiscale setting that accommodates the situation when both large 
changes over short stretches of stationarity, as well as small changes over long 
stretches of stationarity are present simultaneously in the signal; see Definition 1.

(c)	 Minimax optimality. We show that the proposed localised pruning, combined 
with a MOSUM-based multiscale candidate generating mechanism, achieves 
minimax optimality in change point localisation as well as matching the rate 
of the minimax detection lower bound when the errors are distributed as i.i.d. 
sub-Gaussian random variables; see Corollary 2.

(d)	 Assumptions on the error distribution. We provide insights into which sto-
chastic properties of the error distribution affect the detection lower bound and 
the localisation rate of the proposed methodology, which allow for very general 
assumptions on the error distribution permitting both serial dependence and 
heavy tails beyond the i.i.d. (sub-)Gaussianity commonly imposed in the litera-
ture; see Assumption 1.

(e)	 Universally competitive performance in simulations and data analysis. For 
a range of test signals of varying length, frequency of change points and error 
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distributions, the proposed method performs uniformly well in both model selec-
tion consistency and localisation accuracy, and within reasonable computation 
time (see Sect. 5.1). Applied to real data examples, our procedure is capable of 
handling the issues often encountered in practice such as heteroscedasticity and 
low signal-to-noise ratio. We provide its implementation with a MOSUM-based 
candidate generating procedure in the R package mosum available on CRAN 
(Meier et al. 2021a).

(f)	 Computational complexity. The computational complexity of the localised 
pruning algorithm with the MOSUM-based candidate generating method is 
given by O(n log(n)) , which is comparable to or much lower than that of most 
competing methods (see Table 1). With other candidate generating methods, 
the computational complexity of the combined procedure will effectively be 
determined by that of the first-stage candidate generation.

The problem of detecting multiple change points in the mean has been extensively 
studied in the literature, often laying the groundwork for generalisations to more 
complex and high-dimensional problems. The proposed localised pruning method-
ology has been constructed with such extensions in view, and we discuss these pos-
sibilities in Sect. 6.

The rest of the paper is organised as follows: In Sect. 2, we define a truly mul-
tiscale change point problem and introduce the assumptions for theoretical 

Table 1   Comparison of change point detection methodologies on the rates of detection lower bound and 
localisation derived under (sub-)Gaussianity where �n = min

1≤j≤qn
�j , and whether they are formulated in 

a multiscale way according to Definition 1

We also provide their computational complexity, and whether their theoretical guarantee goes beyond the 
(sub-)Gaussian setting. Wang et al. (2020b) †refers to their �

0
-penalised LSE estimator, while Wang et al. 

(2020b) ∗refers to their modified WBS

Methodology Detection lower 
bound

Localisation Computational 
complexity

Beyond 
sub-Gauss-
ianity

Multiscale Rate Multiscale Rate

MoLP ✓ log(n) ✓ log(qn) O(n log(n)) ✓

Chan and Chen 
(2017)

× log(n∕�n) × log(n) O(n log(n)) ×

Single-scale 
MOSUM

× log(n∕�n) ✓ log(qn) O(n) ✓

Fromont et al. 
(2020)

✓ log(n∕�n) ✓ log(qn) O(n2) ×

Wang et al. (2020b)† × log(n) ✓ log(n) O(n2) ×

Wang et al. (2020b)∗ × log(n) ✓ log(n) O(nRn) with ×

Baranowski et al. 
(2019)

× log(n) ✓ log(n) (n∕�n)
2∕Rn → 0 ×

Frick et al. (2014) × log(n∕�n) × log(n) O(n2) ✓

Li et al. (2019) × qn log(n) × qn log(n) – ×

Fryzlewicz (2018) × log2(n) × log2(n) O(n log2(n)) ✓
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consistency. Also, we present the minimax optimality results available from the lit-
erature, and provide a comparative study of our proposed methodology and those 
shown to be near-minimax optimal. In Sect. 3, we motivate and propose the local-
ised pruning as a generic methodology applicable with a class of candidate gen-
erating mechanisms and establish its theoretical consistency. Section 4 discusses a 
MOSUM-based candidate generating procedure and shows the minimax optimality 
of the combined two-stage methodology. In Sect. 5, we briefly summarise the simu-
lation studies and apply the proposed methodology to a genomic dataset. Section 6 
concludes the paper. The proofs of the theoretical results, discussion of an alterna-
tive, CUSUM-based candidate generating procedure related to the WBS (Fryzlewicz 
2014), complete simulation results and additional real data example are provided in 
the Supplementary Appendix.

1.1.1 � Notations

Throughout the paper, we adopt �n to denote a sequence satisfying �n → ∞ at an 
arbitrarily slow rate, which may differ from one occasion to another. We adopt the 
notation an ≍ bn to denote that an = O(bn) and bn = O(an) . For convenience, the 
assumptions are formulated with asymptotic arguments but the proofs work directly 
with non-asymptotic conditions on the corresponding quantities on the set Mn 
defined in Theorem 1 (collected in Eq (C.1) of the supplementary document), mak-
ing constants traceable in principle.

2 � Multiscale change point analysis

2.1 � Multiscale change point detection problem

We consider the canonical change point model

where 𝜃1 < 𝜃2 < … < 𝜃qn
 with �j = �j,n denote the qn change points (with �0 = 0 

and �qn+1 = n ), at which the mean of Xt undergoes changes of size |dj| where, 
again, dj = dj,n . We denote by �j = �j,n = min(�j − �j−1, �j+1 − �j) the minimum dis-
tance of �j to its neighbouring change points, and by � = �n = {�1,… , �qn} the set 
of change points. The sequence of errors {�t}nt=1 satisfies �(�t) = 0 and is allowed 
both serial dependence and heavy-tailedness as specified later. We assume that 
max1≤j≤qn |dj| = O(1) as well as min1≤j≤qn �j → ∞ , separating the problem of change 
point detection under (1) from that of outlier detection; see Cho and Kirch (2020) 
for further discussion on this point.

Operating under  (1), a change point detection methodology is deemed consist-
ent if it returns a set of change point estimators �𝛩 = {�𝜃j, 1 ≤ j ≤ �q ∶ �𝜃1 < … < �𝜃

�q} 
which satisfies

(1)Xt = ft + �t = f0 +

qn∑
j=1

dj ⋅ �t≥�j+1 + �t,
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 for suitable wj and �n which fulfil at least (wjn)
−1
�n → 0 (a more detailed discussion 

from the minimax perspective is given in Sect. 2.3). Here, the weight wj is related to 
the squared magnitude of the change, d2

j
 , and thus signifies the difficulty associated 

with localising individual change points �j . In combination with this weight, �n 
denotes the rate of localisation. The above consistency is typically established under 
some conditions on how fast the detection lower bound �n , relating the squared mag-
nitude of the change d2

j
 to the minimum distance to adjacent change points �j , 

diverges as n → ∞.
In this paper, our interest lies in studying the performance of the proposed change 

point detection methodology in a truly multiscale, heterogeneous change point set-
ting, by formulating the associated detection lower bound such that signals contain-
ing both frequent large jumps as well as small jumps over long stretches of stationar-
ity are allowed. Definition 1 distinguishes multiscale formulations of the detection 
lower bound and localisation rate from their non-multiscale counterparts.

Definition 1 

(a)	 Detection lower bound and separation rate. We distinguish the following 
change point scenarios that are linked to different detection lower bounds: 
Changes are detectable with asymptotic power one as soon as �n defined below 
diverges faster than the separation rate associated with a given methodology. 

	 (i)	 Homogeneous change points: �n = min1≤j≤qn d
2
j
⋅min1≤j≤qn �j.

	 (ii)	 Finite mixture of homogeneous change points: There are N < ∞ dis-
joint subsets of change points with their indices given by Jk, k = 1,… ,N , 
such that 

⋃N

k=1
Jk = {1,… , qn} , whereby change points within each sub-

s e t  a r e  h o m o g e n e o u s  a s  d e f i n e d  i n   ( i )  a n d 
�n = min1≤k≤N(minj∈Jk

d2
j
⋅minj∈Jk

�j ). When there are finitely many 
changes ( qn = N ) is a special case.

	 (iii)	 Multiscale change points: �n = min1≤j≤qn d
2
j
�j.

(b)	 Localisation rate: We distinguish between a homogeneous localisation rate 
where the estimation error in localising the jth change point is weighted globally 
with wj = min1≤j≤qn d

2
j
 , and a multiscale localisation rate where it is weighted 

locally with wj = d2
j
.

Definition  1  (a) shows different extensions of the assumption 
d2
1
min(�1, n − �1) → ∞ commonly found in the change point testing literature 

[where qn = 1 at most; see e.g. Csörgö and Horváth (1997)]. Proceeding from (i) 
to (iii), the associated parameter space becomes more general and only (iii) truly 
requires multiscale methods that scan the data for change points at diverging num-
ber of scales. Nevertheless, most papers in the change point detection literature 

𝖯

{
q̂ = qn and max

1≤j≤qn

wj|�̂j − �j| ≤ �n

}
→ 1 as n → ∞
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formulate the detection lower bound for the homogeneous setting only (see Table 1 
and Sect.  2.4). Theoretical guarantees for some methodologies considered therein 
may be extended to accommodate the multiscale change points in (iii), while some 
cannot (see Appendix  E in the supplementary document for the discussion on 
the WBS). For our proposed methodology, we adopt the most general setting and 
impose an assumption on the size of changes correspondingly (see Assumption 2).

The multiscale localisation rate in (b) reflects that the difficulty in accurate locali-
sation of each change point depends on the corresponding jump size only.

2.2 � Main assumptions

The mathematical analysis in this paper is based on the following properties of the 
error distributions only, which makes the results very general permitting e.g. heavy 
tails, dependence and even non-stationarity.

Assumption 1  (Error distribution) We assume that {�t}nt=1 is ergodic with �(�t) = 0 
and 0 < c ≤ ���(𝜀t) ≤ C < ∞ for some c,C > 0 . Further: 

(a)	 For some �n satisfying 
√
log(n) = O(�n) , let 𝖯(M(11)

n
) → 1 where 

(b)	 For any sequences 1 ≤ an, bn ≤ Dn with Dn defined in Assumption  2, let 
𝖯(M(12)

n
∩M

(13)
n

) → 1 where 

M
(11)
n

=

�
max

0≤s<e≤n

1√
e − s

���
e�

t=s+1

𝜀t
��� ≤ 𝜔n

�
.

M(12)
n

=

⎧
⎪⎨⎪⎩
max
1≤j≤qn

max
d−2
j
an≤�≤�j−�j−1

�
d−2
j
an

�

������

�j�
t=�j−�+1

�t

������
≤ �

(1)
n

⎫
⎪⎬⎪⎭

�⎧⎪⎨⎪⎩
max
1≤j≤qn

max
d−2
j
an≤�≤�j+1−�j

�
d−2
j
an

�

������

�j+��
t=�j+1

�t

������
≤ �

(1)
n

⎫⎪⎬⎪⎭
, and

M
(13)
n

=

⎧⎪⎨⎪⎩
max
1≤j≤qn

max
1≤�≤d−2

j
bn

1�
d−2
j
bn

������

�j�
t=�j−�+1

�t

������
≤ �

(2)
n

⎫⎪⎬⎪⎭
�⎧⎪⎨⎪⎩

max
1≤j≤qn

max
1≤�≤d−2

j
bn

1�
d−2
j
bn

������

�j+��
t=�j+1

�t

������
≤ �

(2)
n

⎫
⎪⎬⎪⎭
.
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Remark 1 

(a)	 The lower bound on �n in Assumption 1 (a) is quite natural in light of Theorem 1 
of Shao (1995) which derives the corresponding result for i.i.d. random variables 
whose moment-generating function exists. The bound �n is closely linked to the 
detection lower bound of our proposed methodology as shown in Assumption 2.

(b)	 The rates �(1)
n

 and �(2)
n

 are closely connected with the localisation rate of the 
localised pruning method (see Assumption 4) for the precise statement. Also, the 
bound �(1)

n
 gives the rate of localisation for the multiscale MOSUM procedure 

considered as one of the candidate generating mechanisms in Sect. 4. Note that 
�
(1)
n

 and �(2)
n

 are always dominated by �n and are often much smaller, particularly 
in the presence of heavy tails and when qn is bounded (see Proposition 1 for 
specific examples).

(c)	 The bounds for the respective second set in M(12)
n

 and M(13)
n

 follow from the 
bounds of the first set in the case of i.i.d. errors, but this is not necessarily so for 
time series errors.

Assumption 2  (Multiscale lower bound on the size of changes) For 
Dn ∶= min1≤j≤qn d

2
j
�j , we require D−1

n
�
2
n
→ 0 for �n as in Assumption 1. In addi-

tion, Dn dominates the penalty used in the localised pruning algorithm (see 
Assumption 3).

The next proposition provides the exact rates for �n , �(1)
n

 and �(2)
n

 in Assump-
tion 1 for some special cases.

Proposition 1  In all follows, �n → ∞ arbitrarily slow. 

(a)	 Sub-Gaussianity. Let {�t}nt=1 be a sequence of i.i.d. random variables fol-
lowing a sub-Gaussian distribution as defined e.g. in Section  2.5 of 
Vershynin (2018). Then, Assumption  1 holds with �n ≍

√
log(n) and 

�
(1)
n

= �
(2)
n

≍ max(
√
log(qn), �n).

(b)	 Heavy tails. Let {�t}nt=1 be a sequence of i.i.d. regularly varying random variables 
with index of regular variation 𝛼 > 0 as defined e.g. in Mikosch and Račkauskas 
(2010). Then Assumption 1 holds with �n ≍ n1∕� and �(1)

n
= �

(2)
n

≍ max(q
1∕�
n , �n) 

for any 𝛽 < 𝛼.
(c)	 In the following situations, Assumption 1 holds with the rates given below which, 

however, are generally not tight: 

	 (i)	 Invariance principle. If there exists (possibly after changing 
the probability space) a standard Wiener process W(⋅) such that ∑�

t=1
�t −W(�) = O(�

�
) a.s. with �

�
= o(

√
�), then Assumption 1 (a) 

holds with �n ≍ max(�n�n,
√
log(n)).

	 (ii)	 Moment condit ions.  I f  ��∑r

t=l+1
�t�� ≤ C(r − l)�∕2  for  any 

−∞ < l < r < ∞ and some constants C > 0 and 𝛾 > 2, then Assump-
tion 1 (b) holds with �(1)

n
= �

(2)
n

≍ q
1∕�
n �n.
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Remark 2 

(a)	 In Proposition 1 (a)–(b), the term �n can be ignored in the requirement on �(1)
n

 
and �(2)

n
 when qn → ∞ . If qn is fixed, �(1)

n
 and �(2)

n
 can diverge arbitrarily slowly.

(b)	 For regularly varying jump size distributions, �n in Proposition 1 (b) cannot be 
improved beyond �n = n1∕�L(n) for some slowly varying function L (see Theo-
rem 1.1 of Mikosch and Račkauskas (2010) and Proposition B.1.9 (9) of De 
Haan and Ferreira (2007)). For dependent errors, similar results are derived in 
Mikosch and Moser (2013). Furthermore, in the special case of a t-distribution 
with � degrees of freedom, then Assumption 1 holds with �n ≍ n1∕� (Schlüter 
and Fischer 2009, Section 4.2).

(c)	 Invariance principles as in Proposition 1 (c.i) have been derived for a vari-
ety of situations including dependent data under weak dependency conditions 
such as mixing (Kuelbs and Philipp 1980, Theorem 4) and functional depend-
ence measure conditions (Berkes et al. 2014), to name but a few. The rate �n 
is typically directly linked to the number of moments that exist, e.g. for i.i.d. 
errors, �

�
= log(�) if the moment generating function exists, and �

�
= �

1∕(2+�) 
if �(𝜀2+𝛥

t
) < ∞ (Komlós et al. 1975, 1976). Comparing the rate of �n in Proposi-

tion 1 (c.i) with the one in 1 shows that the rates from the invariance principle 
are usually not tight.

	   Moment conditions as in Proposition 1 (c.ii) have been shown for many time 
series; see e.g. Appendix B.1 in Kirch (2006).

2.3 � Minimax optimality

In this section, we state the benchmark for the minimax optimal separation and 
localisation rates. The following result is from Proposition 1 of Arias-Castro et al. 
(2011).

Proposition 2  (Lower bound on the minimax separation rate) Under  (1), let 
H0,n ∶ qn = 0 and H1,n describe the setting where qn = 2 , dn ∶= d1 = −d2 and 
�n ∶= �2 − �1 with n−1�n → 0. Then, H0,n and H1,n are asymptotically inseparable if 
�dn�

√
�n ≤

√
2 log(n∕�n) − �n where �n → ∞.

Proposition  2 provides an instance under  (1) where the change points are not 
detectable by any method. Together with Table  1, which provides a summary of 
various methodologies for multiple change point detection including their sepa-
ration rates under the column ‘Detection lower bound’, the proposition shows 
that the minimax optimal separation rate is given by log(n∕�n) for the detection 
lower bounds defined in Definition 1  (a). In the case of sublinear changes, where 
max1≤j≤qn �j = O(n1−�) for some 𝜅 > 0 , this rate amounts to log(n).

The next proposition is from Proposition  6 of Fromont et  al. (2020) which is 
stated here with an enlarged parameter space for ready comparison.
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Proposition 3  (Lower bound on the minimax localisation rate for possibly an 
unbounded number of change points) Under  (1), let |dj| =∶ dn for all j = 1,… , qn 
with qn ≥ 2, and denote by 𝛯 = {(𝜃

1
,… , 𝜃qn

) ∶ 0 ≡ 𝜃
0
< 𝜃

1
< … < 𝜃qn

< 𝜃qn+1

≡ n and d2
n
min1≤j≤qn (𝜃j+1 − 𝜃j−1) > c log(qn)} for some c > 0, the parameter space 

for the locations of change points. Then, for some C > 0,

 where dH(K,�) = max{maxk∈K min
�∈� |k − �|, max

�∈� mink∈K |� − k|}, denotes 
the Hausdorff distance.

This proposition, together with the results reported in Table 1 (under the column 
‘Localisation’), establishes that the minimax optimal localisation rate is given by 
log(qn) when the number of change points qn is permitted to diverge with n.

Both Propositions 2–3 are derived under the special case where {�t}nt=1 are i.i.d. 
random variables following a (sub-)Gaussian distribution. To the best of our knowl-
edge, there do not exist equivalent results on the detection lower bound or the locali-
sation rate (when qn → ∞ ) beyond the i.i.d. sub-Gaussianity. We show that under 
sub-Gaussianity, the two-stage procedure combining a MOSUM-based candidate 
generating method and the proposed localised pruning algorithm, achieves minimax 
optimal rates in both localisation and detection lower bound, the latter in the sublin-
ear change point setting where log(n∕�j) ≍ log(n) for each j; if min1≤j≤qn �j is (near-)
linear, the rate it attains is greater than the minimax optimal rate by the factor of 
log(n) at most. Further, even in the presence of heavy-tailed errors and dependence, 
we obtain the same localisation rate as in the sub-Gaussian setting when there are 
finitely many change points (i.e. qn is finite); see Corollary 2. This rate is then auto-
matically minimax optimal also. We note that once the results equivalent to Propo-
sitions 2–3 become available in more general settings permitting heavier tails and 
serial dependence, the theoretical properties we derive for the proposed methodol-
ogy under Assumption 1 are general enough to be immediately compared to such a 
benchmark.

2.4 � Comparison with the existing literature

There exist various data segmentation algorithms which are shown to be near-mini-
max optimal in detecting and locating multiple change points. Here, we concentrate 
on procedures for univariate time series with changes in the mean, some of which have 
been extended to e.g. high-dimensional change point detection problems (see Sect. 6). 
Frick et al. (2014) and Li et al. (2016) propose procedures that are termed as multiscale 
change point segmentation methods in Li et al. (2019); noting empirical and theoretical 
limitations of the WBS as proposed in Fryzlewicz (2014), Baranowski et al. (2019) and 
Wang et al. (2020b) propose modifications of the WBS which require additional tuning 
parameters such as a threshold or a lower bound on �n ∶= min1≤j≤qn �j ; Boysen et al. 
(2009), Wang et al. (2020b) and Fromont et al. (2020) investigate an �0-penalised least 
squares (LSE) estimator, the former two with the Schwarz criterion-type penalty and 

inf
K∈ℕqn

sup
�∈�

�
�
{dH(K,�)} ≥ Cd−2

n
log(qn)
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the latter with an adaptive one; Chan and Chen (2017) propose two methods, where 
one bears some resemblance to a multiscale MOSUM procedure with ‘bottom-up’ 
merging [see also Messer et al. (2014)] while the other to the tail-greedy unbalanced 
Haar (TGUH) method of Fryzlewicz (2018). All the papers discussed above present 
their theoretical findings under the assumption that {�t}nt=1 is a sequence of i.i.d. (sub-)
Gaussian random variables, with the exception of Fryzlewicz (2018) providing the 
results under heavy-tails and serial dependence, and Frick et  al. (2014) allowing for 
i.i.d. errors following exponential family distributions; an extension of their results to 
dependent error processes is studied in Dette et al. (2020).

Table 1 provides an overview of these methodologies alongside the localised prun-
ing applied with a multiscale MOSUM procedure for candidate generation (referred to 
as ‘MoLP’), on their theoretical performance, computational complexity and general-
ity beyond the sub-Gaussian setting. Boysen et al. (2009) assume that |dj| and �j∕n are 
bounded away from zero, and thus we exclude it from the table. We also note that the 
separation rate reported in Wang et al. (2020b) is slightly larger than log(n) by a loga-
rithmic factor, and the requirement on Rn for the computational complexity associated 
with Wang et al. (2020b)∗ and Baranowski et al. (2019) is also slightly stronger by a 
logarithmic factor.

Apart from the current paper and Fromont et al. (2020), all others derive the separa-
tion rates only for the case of homogeneous change points according to Definition 1 (a). 
Most procedures achieve the minimax optimal separation rate for sublinear changes 
(see Proposition  2 and the discussion below), and Chan and Chen (2017), Fromont 
et al. (2020) and Frick et al. (2014) slightly improve upon this when �n , the minimal 
distance between change points, is (near-)linear; see also Chan and Walther (2013) 
where similar observations are made on scan likelihood ratio statistic for a signal detec-
tion problem. Extension of our result beyond the sublinear setting would require the 
adoption of a scale-dependent penalty as in Fromont et al. (2020) for the pruning meth-
odology. To the best of our knowledge, such a choice of penalty is available only for 
light-tailed errors, and its extension to the general error distribution we consider in this 
paper has not been investigated in the literature.

The localisation rates are obtained in a multiscale formulation [according to Defini-
tion 1 (b)] by most methods but not all, and many achieve only near-minimax optimal-
ity in multiple change point localisation (see Proposition 3). In particular, their localisa-
tion rates are worse by the factor of log(n) or more, when there are a finite number of 
change points. Exceptions are the MoLP, the penalised LSE of Fromont et al. (2020) 
and the single-scale MOSUM procedure, which achieve the exact minimax optimal 
localisation rate of log(qn) . Our proposed method achieves this with the computational 
complexity of O(n log(n)) rather than O(n2) required for solving the �0-penalised least 
squares estimation problem; we defer a detailed discussion on the computational com-
plexity to Appendix F of the supplementary material. Additionally, theoretical analysis 
in this paper is conducted under Assumption 1 that permits heavy-tailed and serially 
correlated errors, which sets our paper apart from the rest.



664	 H. Cho, C. Kirch 

1 3

3 � Localised pruning via Schwarz criterion

Our goal is to estimate both the total number qn and the locations of the change 
points �j, j = 1,… , qn under (1). For this purpose, we introduce a generic, localised 
pruning methodology which, applicable to a set of candidate change point estima-
tors returned by multiscale change point procedures, achieves consistent estimation 
of multiple change points in their total number and locations.

Many multiscale change point procedures are based on the principle of isolating 
each change point for its detection and estimation, and typically attach extra infor-
mation to change point estimators about their detection intervals. Such examples 
include the multiscale extension of the MOSUM procedure (Eichinger and Kirch 
2018) and the WBS (Fryzlewicz 2014). The MOSUM procedure scans a series of 
MOSUM statistics

where X̄s∶e = (e − s + 1)−1
∑e

t=s
Xt , for a given bandwidth G and G ≤ b ≤ n − G , 

and marks as change point candidates the locations where |Tb,n(G;X)| simultaneously 
exceeds a critical value and forms local maxima; thus each candidate estimator k 
is associated with its natural detection interval IN(k) = (k − G, k + G] . The WBS 
examines the CUSUM statistics

for s + 1 ≤ b ≤ e − 1 over a large number of randomly drawn intervals (s, e] ⊂ [1, n] . 
The maximiser of the CUSUM statistics k = argmaxs<b<e |Xs,b,e| can be regarded as 
a change point candidate if the test statistic |Xs,k,e| exceeds a certain threshold, and 
the interval IN(k) = (s, e] is readily associated with its detection.

In what follows, we describe the proposed localised pruning methodology assum-
ing that a set of candidate estimators K is given. Specific candidate generating meth-
ods are discussed in Sect. 4 and Appendix E of the supplementary material.

3.1 � Methodology

Let K denote the set of all the candidate change point estimators to be pruned down. 
For each k ∈ K , we denote the detection interval of k by I(k) ≡ (k − GL, k + GR] , 
where the left detection distance GL = GL(k) is the distance from k to the left-
most point of the interval, and the right detection distance GR = GR(k) is defined 
analogously.

Information criteria are frequently adopted for model selection in change point 
problems, and we adopt the Schwarz criterion (Schwarz 1978, SC) for this purpose. 
For a given set of change point candidates A = {k̃1 < … < k̃m} ⊂ K , the SC is eval-
uated as

(2)Tb,n(G;X) ∶=

√
G

2

(
X̄(b−G+1)∶b − X̄(b+1)∶(b+G)

)

(3)Xs,b,e ≡ Xs,b,e(X) =

√
(b − s)(e − b)

e − s

(
X̄(s+1)∶b − X̄(b+1)∶e

)
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where it balances between the goodness-of-fit measured by the residual sum of 
squares

and the penalty imposed on the model complexity |A|.

Assumption 3  (Penalty) The penalty parameter �n satisfies

where �n and Dn are as in Assumptions 1 (a) and 2, respectively.

The assumption shows the connection between the penalty parameter �n , the 
noise level �n and the detection lower bound Dn . For i.i.d. sub-Gaussian ran-
dom variables, the rate of �n in Proposition  1  (a) cannot be improved (Shao 
1995, Theorem 1) and thus the (strengthened) Schwarz penalty of �n = log1+�(n) 
with some 𝛥 > 0 can be allowed by Assumption  3 [see e.g. Yao (1988) and 
Fryzlewicz (2014)]. Proposition 1 (b) and Remark 2 (b) indicate that a penalty 
stronger than logarithmic in n is required for heavy-tailed errors in order to 
guarantee consistent estimation of the number of change points by means of the 
SC , an observation also made by Kühn (2001).

In the literature, exhaustive minimisation of an information criterion over all 
A ⊂ K for a given candidate set K has been considered as a model selection 
method (see e.g. Niu and Zhang (2012), Chan et  al. (2014) and Yau and Zhao 
(2016)). Such an exhaustive approach may result in a computationally inhibi-
tive search space as its size grows exponentially with |K| . Moreover, it does not 
utilise the information immediately available about the detection intervals of 
change point estimators. For example, if the detection interval of a candidate k 
does not overlap with that of any other estimator, there is little to be gained by 
having k considered alongside other candidates in the evaluation of SC . On the 
other hand, if I(k) overlaps with the detection interval of another candidate, say 
k′ , it is possible that k and k′ are conflicting estimators of the identical change 
point, which justifies the joint consideration of the two.

Based on these observations, we propose the localised pruning methodology 
consisting of two nested algorithms, where the outer algorithm iteratively selects 
the local environment on which the inner algorithm performs the pruning.

(4)SC (A) =
n

2
log

{
RSS (A)

n

}
+ |A| ⋅ �n,

RSS (A) =

m∑
j=0

k̃j+1∑
t=k̃j+1

(
Xt − X̄(k̃j+1)∶k̃j+1

)2

with k̃0 = 0 and k̃m+1 = n,

�n

Dn

→ 0 and
�
2
n

�n

→ 0,
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3.1.1 � Outer algorithm: localisation (LocAlg)

Taking the set of change point candidates K as an input, the outer algorithm for 
localisation iteratively selects a subset of candidates to be pruned down by the inner 
algorithm (PrunAlg) described in Sect. 3.1.2. For this, the algorithm sorts the can-
didates in K according to a sorting function h. One possibility is to use the jump 
size associated with each k ∈ K , which is calculated within the detection interval 
I(k) = (k − GL(k), k + GR(k)] as

If (asymptotic) null distributions of the test statistics are available, another possibil-
ity is to use the inverse of the p-values, say hP , as a sorting function. Either with 
hJ  or hP , additional tie-breaking rules can be employed, e.g. by preferring the can-
didates associated with the smallest detection interval according to GL(k) + GR(k) , 
GL(k) or GR(k) ; if there are still ties, an arbitrary choice can be made. When some 
candidate k is detected at different scales, the sorting function and the tie-breaking 
rule will select only a single instance of k , and any other duplicates will be removed 
in Step  4 of LocAlg given below. Our theoretical results do not depend on the 
choice of the sorting function or the tie-breaking rule (see Theorem 1).

Denote by C the candidates for which no decision has been reached yet, and by �̂ 
the set of already accepted candidates. At the beginning of the algorithm, the active 
candidate set C is given by the complete candidate set K and �̂ is set to be empty. 
Then, the outer algorithm iteratively processes the candidates in the following way.

Step 1 Find the most prominent candidate. According to a sorting function h 
(and tie-breakers if necessary), find a candidate k

◦
∈ C from the active candidate 

set that maximises h.
Step 2 Define the local search environment. Find kL that is closest to k

◦
 while 

being strictly left to k
◦
 from the candidates which either

•	 have already been accepted (and belong to �̂ ∪ {0} ), or
•	 are still to be accepted or discarded ( C ) whose detection intervals 

do not overlap with that of k
◦
 , i.e. I(kL) ∩ I(k

◦
) = � or equivalently 

|k
◦
− kL| ≥ GR(kL) + GL(k◦).

 Identify kR strictly to the right of k
◦
 from �̂ ∪ {n} ∪ C with analogous restric-

tions. Then, any candidates without decision that fall within (kL, kR) are consid-
ered as candidates competing with k

◦
 . We denote this set of change point candi-

dates by D , i.e. D = C ∩ (kL, kR).
Step 3 Pruning Algorithm (PrunAlg, see Sect. 3.1.2). Apply the inner algo-
rithm for pruning, PrunAlg, with the arguments (D, C, �̂, kL, kR) . As an out-
put, we yield a subset �A ⊂ D (possibly empty) which contains candidates to be 
accepted in the next step.
Step 4 Update the accepted ( ̂� ) and active ( C ) candidate sets. We accept all esti-
mators from the output of PrunAlg, Â , but not all of D ⧵ Â are discarded yet. This 
is because D may contain acceptable estimators of change points that are too close to 

(5)hJ(k) =
|||X̄(k−GL(k)+1)∶k

− X̄(k+1)∶(k+GR(k))
|||.
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the boundaries kL or kR , for which we cannot guarantee their acceptance at the cur-
rent iteration (see Theorem 1 and Definition 3). However, if kL (resp. kR ) has already 
been accepted, we discard any candidates in D ⧵ Â which lie to the left (right) of 
the leftmost (rightmost) candidate in Â . Similarly, unaccepted candidates in D ⧵ Â 
that lie between any two elements of Â are discarded. In addition, we remove k

◦
 

identified in Step 1 from the future consideration regardless of whether it has been 
accepted by PrunAlg or not.
In summary, we denote by R the set of all the candidates for which a decision has 
been reached, either because it has been accepted or discarded according to the 
above consideration.
Then, we add Â to �̂ and remove all the candidates in R from C.
Step 5 Iteration. Repeat Steps 1 to 4 until C is empty. The set �̂ is the final set of 
estimators and the output of the algorithm.

A pseudo-code of the outer algorithm can be found in Algorithm 1 of Appendix H in 
the supplementary material.
LocAlg is guaranteed to terminate since at each iteration, Step 4 discards at least 

one candidate k
◦
 from the active candidate set. Under a mild condition on K , we show 

that this yields consistent estimation by guaranteeing that at least one suitable estima-
tors remain in C for all the undetected change points (see Assumption 5 and the discus-
sion thereafter).

In Step  3 of LocAlg, the inner algorithm PrunAlg makes a decision between 
competing candidates using SC , which are evaluated at each A ⊂ D = C ∩ (kL, kR) as

By construction, it makes a decision which of the candidates in D to accept while 
treating all other currently surviving candidates outside of (kL, kR) as given. Therefore, 
at any iterations of LocAlg, all Xt, 1 ≤ t ≤ n , enter in the computation of SC . In other 
words, LocAlg has the interpretation of performing an adaptively selected subset of 
the exhaustive search over the complete candidate set K in a localised manner, by uti-
lising the information readily available about the detection intervals of change point 
candidates.

3.1.2 � Inner algorithm: pruning (PrunAlg)

The inner pruning algorithm PrunAlg in Step 3 of the outer localisation algorithm 
LocAlg takes as its input (D, C, �̂, kL, kR) and looks for a subset �A ⊂ D to be added to 
the finally accepted candidates according to the following rules:

Let F  denote the collection of all subsets A ⊂ D for which it holds:

and denote by m∗ = minA∈F |A| . Then, we select Â as

SC (A|C, �̂, kL, kR) =
n

2
log

{
RSS (A ∪ �̂ ∪ (C ⧵D))

n

}
+ (|A| + |�̂| + |C ⧵D|) ⋅ �n.

(6)
adding further change point candidates toA

monotonically increases the SC
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where, by A ⊂R A
� = {k̃j, 1 ≤ j ≤ m ∶ k̃1 < k̃2 < … < k̃m} , we indicate that 

A
� ⧵A ⊂ {k̃1, k̃m} , i.e. A contains all inner elements of A′ (if exist) while the first 

and the last elements of A′ may or may not be included in A . If there are multiple 
subsets yielding the minimum SC in (C2), we choose the one with the minimum car-
dinality. If there are ties in the cardinality as well, we arbitrarily select one.

Remark 3  By performing a top-down search, the condition  (C1) typically prunes 
down the search space quickly: If removing k ∈ A from A leads to an increase in 
SC , no subset of A ⧵ {k} can be an element of F  . Efficient application of the prun-
ing rules (C1)–(C2), including the computation of F  , involves careful implementa-
tion of this search process. For a complete algorithmic description of PrunAlg, see 
Algorithm 2 in Appendix H, and also Meier et al. (2021b) for computational details.

Remark 4  It is possible to apply the search criteria (C1)–(C2) to K directly, without 
going through the outer algorithm. In such a case, (C2) is simplified to

This approach still gains computationally compared to minimising the SC among all 
the 2|K| subsets of K while, as shown in Corollary 1, achieves consistency in multi-
ple change point estimation. However, it is still to be avoided when there are many 
candidates to be pruned down, and LocAlg greatly reduces the computational cost 
by breaking down the scope of PrunAlg at each iteration.

Remark 5  We highlight the key differences between the use of SC in the proposed 
localised pruning, and the conventional use of information criteria as a model selec-
tion tool in the change point literature. Once candidate change points are generated, 
a commonly adopted pruning strategy is to evaluate and minimise an information 
criterion along a sequence of nested candidate models with an increasing number 
of change points. Such an approach requires the ordering of the candidate estima-
tors according to their importance, as well as the maximum allowable number of 
change points, say qmax , as an input parameter. This ordering plays an important role 
in establishing the consistency of such an approach because a spurious estimator 
added to the nested model sequence at an early stage cannot be removed. On the 
other hand, the sorting function h adopted in LocAlg does not play any role in the 
theoretical result presented in the next section (see Theorem 1).

Also, the selection of qmax is not straightforward especially when n is large, with-
out pre-supposing the frequency or the sparsity of the change points, and some 
approaches require qmax to be finite in their theoretical consideration (Fryzlewicz 
2014; Baranowski et  al. 2019). In contrast, PrunAlg does not need this quan-
tity to be explicitly set in its application, and the theoretical results require only 
that the candidate set K is not too large. This is a natural requirement in view of 

(7)
�A = argmin

{
A ⊂R A

� with A� ∈ F and

m∗
≤ |A�| ≤ m∗ + 2 ∶ SC (A|C, �𝛩, kL, kR)

}

Â = argmin{A ∈ F with |A| = m∗ ∶ SC (A|K, �, 0, n)}. (C2�)
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Proposition 2, which implies an upper bound on the number of change points that 
any change point detection procedure can handle. In simulation studies, we observe 
empirical evidence of the sub-optimality of sequential evaluation and minimisa-
tion of an information criterion, particularly when there are frequent changes in the 
signal (see e.g. Table 4 in the supplementary material), which further supports the 
search criteria (C1)–(C2) adopted by PrunAlg.

3.2 � Consistency of the localised pruning algorithm

In this section, we show that the localised pruning algorithm combining LocAlg 
and PrunAlg consistently estimates the total number of change points when 
applied to a suitable set of candidates. Furthermore, it ‘almost’ inherits the rate of 
convergence of the change point estimators from the candidate generating mecha-
nisms and thus achieves consistency in change point localisation under mild condi-
tions on the set of candidates.

We make the following assumption on candidate generation.

Assumption 4  (Candidate generating algorithm) Let K = Kn denote the set of can-
didates obtained from {Xt}

n
t=1

 and Qn = |K| the total number of candidates. Then, 
with �(1)

n
 , �(2)

n
 and �n as in Assumption 1: 

(a)	 With probability approaching one, each change point has at least one candidate 
in its (d−2

j
�n)-environment, i.e. as n → ∞ , 

 for a sequence �n with max(�(1)
n
,�(2)

n
)2 = O(�n) and �n = O(�2

n
).

(b)	 The total number of candidates Qn fulfils n−1�2
n
Qn → 0.

The sequence �n is the precision associated with the candidate generating method. 
We show that the proposed pruning algorithm almost inherits this rate in the sense 
made more precise in Theorem  1. We conjecture that typically, �(1)

n
≍ �

(2)
n

 as in 
all of the examples in Proposition 1. We further conjecture that, if so, (�(1)

n
)2 (or a 

related term) gives a lower bound for the minimax optimal localisation rate: This 
agrees with our observations in Propositions 1 and 3 under sub-Gaussian errors and 
when there are a finite number of change points, and thus indicates that the lower 
bound max(�(1)

n
,�(2)

n
)2 on �n is a reasonable one. The requirement �n = O(�2

n
) is a 

weak one with �n always dominating �(1)
n

 and �(2)
n

 (see Remark 1 (a)). If the preci-
sion attained by a particular candidate generating procedure is worse than �2

n
 , the 

localised pruning can still achieve consistency but with a stronger penalty �n fulfill-
ing �n∕�n → 0 ; see Equation (C.1) in the supplementary document and the discus-
sion underneath.

Assumption 4 (b) on the number of candidates replaces a more stringent condi-
tion requiring qn to be fixed, which is found in the literature adopting the information 

𝖯(M(2)
n
) → 1 where M(2)

n
=

{
max
1≤j≤qn

min
k∈K

d2
j
|k − �j| ≤ �n

}
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criterion for determining the number of change points (Yao 1988; Kühn 2001). In 
particular, this rules out applying the localised pruning algorithm with every pos-
sible point as candidate estimators, i.e. K = {1,… , n − 1} . However, a reasonably 
good candidate generating method ought not to return too many candidates while 
meeting Assumption 4 (a), and we show that the MOSUM- and CUSUM-based can-
didate generating methods fulfils this requirement; see Proposition 5 and Proposi-
tion E.1 (b) of the supplementary material, respectively.

The following definitions that categorise the candidate estimators in K are fre-
quently used throughout the paper.

Definition 2 

(a)	 A candidate k∗ ∈ K that yields d2
j
|k∗ − �j| ≤ �n with �n as in Assumption 4 (a) 

is referred to as a strictly valid estimator for �j , and the set of such candidates is 
denoted by V∗

j
 for each j = 1,… , qn.

(b)	 For �n → ∞ at an arbitrarily slow rate, a candidate k� ∈ K with d2
j
|k� − �j| ≤ �n�n 

is referred to as an acceptable estimator for �j , and the set of such candidates is 
denoted by V′

j
.

(c)	 The remaining candidates k ∈ K ⧵ V�
j
 are unacceptable for �j.

The gap between the best localisation rate �n of the candidate generating proce-
dure and what is acceptable for the localised pruning algorithm is unavoidable: For 
two very close candidates, the SC evaluated with the one slightly further away from 
a change point than the other can end up being smaller simply by chance.

We now show that PrunAlg described in Sect.  3.1.2, as a generic pruning 
algorithm, achieves consistent estimation of the number of change points as well 
as returning acceptable estimators for all �j, j = 1,… , qn . Although the boundary 
points (kL, kR) supplied as input arguments to PrunAlg are always chosen among 
the change point candidates (including 0 and n) in Step 2 of LocAlg, our theory 
below is applicable to any (s, e] with 0 ≤ s < e ≤ n as the interval of consideration 
and D = K ∩ (s, e) as the set of local candidates to be pruned down. In this context, 
it is understood that �̂ contains candidates lying outside (s, e) only.

It may be the case that some change points are too close to either s or e and thus 
may or may not be detectable by PrunAlg within (s,  e], which necessitates the 
pruning criterion (C2) instead of the simpler (). We define the following sets of local 
change points with universal constants 0 < c∗ < C∗

< ∞ defined in Proposition C.1 
of the supplementary document:

Theorem 1 establishes the connection between the output of PrunAlg and the sets 
defined in (6)–(7).

(6)�
(s,e) =

{
�j ∶ d2

j
min(�j − s, e − �j) ≥ C∗

�n

}
,

(7)𝛩̄
(s,e) =

{
𝜃j ∶ d2

j
min(𝜃j − s, e − 𝜃j) ≥ c∗𝜉n

}
.
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Theorem  1  Let Assumptions    1,  2,  3 and  4 hold and denote by �̂(s,e) the out-
put of PrunAlg from applying the criteria (C1)–(C2) to the local candidates 
D = K ∩ (s, e) within an interval (s, e], and by P(s,e)

n
 the following event: The output 

set �̂(s,e) contains 

(a)	 exactly one acceptable candidate for each �j ∈ �
(s,e), i.e. |�̂(s,e) ∩ V

�
j
| = 1 for 

�j ∈ �
(s,e),

(b)	 at most one acceptable candidate for each 𝜃j ∈ 𝛩̄
(s,e) ⧵ 𝛩(s,e), i.e. |�̂(s,e) ∩ V

�
j
| ≤ 1 

for 𝜃j ∈ 𝛩̄
(s,e) ⧵ 𝛩(s,e), and

(c)	 no other candidates, i.e. �𝛩(s,e) ⧵
⋃

j∶ 𝜃j∈𝛩̄
(s,e) V

�
j
= �.

Then, with Mn ∶= M
(11)
n

∩M
(12)
n

∩M
(13)
n

∩M
(2)
n

, we have

In view of Theorem  1, we categorise the change points according to their 
detectability within a given interval in the following definition.

Definition 3  For any 0 ≤ s < e ≤ n , we refer to 

(a)	 any change points in �(s,e) as surely detectable within (s, e],
(b)	 any change points in 𝛩̄(s,e) as detectable within (s, e], and
(c)	 any change points in {𝛩 ∩ (s, e)} ⧵ 𝛩̄(s,e) as undetectable within (s, e].

The following corollary establishes that PrunAlg, when applied to the com-
plete candidate set K directly, achieves consistency in multiple change point 
estimation.

Corollary 1  Under the assumptions of Theorem  1, applying the search 
criteria (C1) and (C2) to the candidate set K within (0,  n] yields 
�𝛩
(0,n) = {�𝜃j, 1 ≤ j ≤ �qn ∶

�𝜃1 < … < �𝜃
�qn
} which consistently estimates �, i.e.,

As pointed out in Remark 4, pruning down K according to  (C1) and  (C2) is 
computationally more efficient than the exhaustive minimisation of SC over all 
subsets of K . Nevertheless, the localisation from the outer algorithm LocAlg 
results in a considerable computational advantage when a large set of candidates 
needs to be pruned down.

Next, we establish that the consistency achieved by PrunAlg within local 
search environments (as in Theorem 1), is carried over to the entire data set via 
the outer localisation algorithm LocAlg.

𝖯

( ⋂
0≤s<e≤n

P
(s,e)
n

, Mn

)
→ 1 as n → ∞.

𝖯

{
q̂n = qn; max

1≤j≤qn

d2
j
|�̂j − �j| ≤ �n�n

}
≥ 𝖯(Mn) + o(1) → 1.
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Assumption 5  Recall that the detection interval of each k ∈ K is denoted by 
I(k) = (k − GL(k), k + GR(k)] . Then, for each j = 1,… , qn , there exists at least one 
acceptable candidate ǩj ∈ V

�
j
 which is situated well within its own detection interval 

by satisfying

Assumption 5 justifies the removal of k
◦
 identified in Step 1 of each iteration from 

the future consideration, regardless of whether it is accepted by PrunAlg or not: If 
k
◦
 is an acceptable estimator for some �j while meeting (8), such �j is surely detect-

able within (kL, kR] and either k
◦
 or some k ∈ V

�
j
 is accepted by PrunAlg at the 

current iteration; if not, there still remain at least one acceptable estimators in the 
active candidate set C for any undetected change points after removing k

◦
 . We dis-

cuss how Assumption 5 is met by the MOSUM-based candidate generating proce-
dure in Remark 7, and provide a similar discussion for the CUSUM-based procedure 
in Appendix E of the supplementary material.

Theorem 2 proves that PrunAlg combined with the outer algorithm LocAlg 
achieves consistency in multiple change point estimation.

Theorem 2  Under the assumptions of Theorem 1 and Assumption 5, the localised 
pruning algorithm LocAlg outputs �𝛩 = {�𝜃j, 1 ≤ j ≤ �qn ∶

�𝜃1 < … < �𝜃
�qn
} which 

consistently estimates � , i.e.

 for some �n → ∞ at an arbitrarily slow rate.

Its proof follows from the following two observations:

•	 When a change point is surely detectable for the first time at some iteration (in 
the sense of Definition  3  (a)), it gets detected by an acceptable estimator by 
Theorem 1 and consequently is no longer detectable in the subsequent iterations 
thanks to how the local environments are defined in Step 2 of LocAlg.

•	 On the other hand, those change points which are yet to be detected have cor-
responding acceptable estimators in the pool of candidates C due to how C is 
reduced in Step 4 of LocAlg.

4 � Candidate generation

In this section, we investigate a two-stage procedure combining the localised prun-
ing methodology with a multiscale extension of the MOSUM procedure of Eich-
inger and Kirch (2018). In Appendix E of the supplementary material, we provide 
the corresponding results for a CUSUM-based procedure motivated by the WBS 

(8)
𝜉n

d2
j
min{GL(ǩj),GR(ǩj)}

→ 0.

𝖯

{
q̂n = qn; max

1≤j≤qn

d2
j
|�̂j − �j| ≤ �n�n

}
≥ 𝖯(Mn) + o(1) → 1,
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(Fryzlewicz 2014). Our theoretical analysis indicates that both the detection lower 
bound and the localisation rate achieved with the MOSUM-based candidate generat-
ing procedure are always better than those achievable with the CUSUM-based one.

4.1 � MOSUM procedure and its multiscale extension

Eichinger and Kirch (2018) analyse the properties of a single-scale MOSUM proce-
dure which, for a bandwidth G = Gn , estimates the locations of the change points by 
the locations of significant local maxima of the MOSUM statistic (2) according to 
two different criteria. For the purpose of generating candidates for the localised 
pruning, we adopt the method termed �-criterion with a lower false negative rate 
(see Section 2.2 of Meier et al. (2021b)). Let K(G) = {kG,j, 1 ≤ j ≤ q̂G} denote the 
set of candidate estimators obtained with a bandwidth G. By the �-criterion, each 
kG,j is the local maximiser of the MOSUM detector  (2) within its ⌊�G⌋-radius for 
some � ∈ (0, 1) , and |TkG,j,n(G;X)| > 𝜋n,G with a threshold fulfilling 
�n,G = O(

√
log(n)) . As we can show that (log(n))−1∕2|T

�j,n
(G(j);X)| → ∞ with a 

suitable bandwidth G(j) for all j = 1,… , qn , we can make sure that suitable estima-
tors are added to the candidate set for all �j via this approach (see Proposition 4).

One way of selecting the threshold is to use the asymptotic distribution of 
maxG≤k≤n−G �

−1|Tk,n(G;�)| (with �2 denoting the (long-run) variance of the error 
sequence {�t}nt=1 ), which can be derived under mild assumptions (see Theorem 2.1 
of Eichinger and Kirch (2018)). Then, we can set �n,G = �̂nDn(G;�) , where �̂2

n
 is an 

estimator of �2 and Dn(G;�) a critical value chosen from this distribution with the 
significance level � ∈ (0, 1) ; accordingly, we denote the corresponding candidate set 
by K(G, �) . This threshold fulfils the OP(

√
log(n)) bound for any fixed � provided 

that �̂2
n
 is bounded.

When a single-scale MOSUM procedure is adopted for estimating both the num-
ber and the locations of the change points, �̂2

n
 and � need to be chosen with care. 

Specifically, it requires that |�̂2
n
− �

2| = oP(log
−1(n)) and also that � is sufficiently 

small (for the asymptotic analysis, we need � = �n → 0 ) in order not to incur any 
false positives, at the cost of possibly incurring false negatives.

On the other hand, when the MOSUM procedure is adopted solely for candidate 
generation, followed by the localised pruning procedure, accurate estimation of �2 
is of less importance. This is particularly beneficial as consistent estimation of �2 
in the presence of multiple mean shifts is a difficult task; see e.g. Chan (2020) for 
a robust estimator of �2 . More complicated arguments, as given in Section 2.3 of 
Eichinger and Kirch (2018), are needed when a scale-dependent, local estimator 
�̂
2
t,G

 is adopted in place of �2 , but this estimator needs not be uniformly consistent 
(in G ≤ t ≤ n − G ); we adopt this local estimator in our simulation studies for the 
threshold selection (see Appendix G for details). Similarly, we can select � gener-
ously or even do without thresholding. In practice, it is recommended to apply a 
mild threshold since setting �n,G = 0 adds to computational burden and possibly 
leads to a loss of estimation accuracy. Based on our numerical experiments, we rec-
ommend � = 0.2 as a generous enough choice balancing between the two require-
ments on the candidate set in Assumption 4.
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For simplicity, in all our theoretical analysis below, we assume that 
�n,G = �Dn(G;�) is used with � known. The following proposition extends Theo-
rem 3.2 of Eichinger and Kirch (2018).

Proposition 4  Let � ∈ (0, 1) for the �-criterion and suppose: 

(a)	 For each j = 1,… , qn, there exists G(j) such that 2G(j) ≤ �j and d2
j
G(j) ≥ cMDn 

for some constant cM > 0 that does not depend on j.
(b)	 𝖯(M(11)

n
) → 1 with D−1

n
�
2
n
→ 0, where M(11)

n
 is as in Assumption 1 (a).

(c)	 𝖯(M(12)
n

∩M
(12+)
n

∩M
(12−)
n

) → 1 with M(12)
n

 from Assumption 1 (b), and M(12±)
n

 
defined analogously as 

Then, for a set Sn (specified in Lemma D.1 of the supplementary document) fulfilling 
𝖯(Sn) → 1, there exists a universal constant CM > 0 (not depending on the signal or 
the distribution of {�t}nt=1) such that

Remark 6 

(a)	 Condition 4 of Proposition 4 requires that for each change point �j , there exists 
a bandwidth G(j) suitable for its detection.

(b)	 Condition 4 is also assumed for the consistency of the localised pruning method. 
Proposition 4 continues to hold under the following weaker condition: 

 This assertion follows e.g. when an invariance principle holds as in Proposi-
tion 1 (c.i), and there are a finite mixture of homogeneous change points with 
an appropriate bandwidth for each of the homogeneous subsets (see Defini-
tion 1 (a)), in addition to 

M(12±)
n

=

⎧
⎪⎨⎪⎩
max
1≤j≤qn

max
d−2
j
an≤�≤�j−�j−1

�
d−2
j
an

�

������

�j±G(j)�
t=�j−�±G(j)+1

�t

������
≤ �

(1)
n

⎫
⎪⎬⎪⎭

�⎧
⎪⎨⎪⎩
max
1≤j≤qn

max
d−2
j
an≤�≤�j+1−�j

�
d−2
j
an

�

������

�j±G(j)+��
t=�j±G(j)+1

�t

������
≤ �

(1)
n

⎫
⎪⎬⎪⎭
.

𝖯

(
max
1≤j≤qn

min
k∈K(G(j),�)

d2
j
|k − �j| ≥ CM(�

(1)
n
)2, Sn

)
→ 0.

max
1≤j≤qn

1

�dj�
√
G(j)

max
��−�j�≤ 3

2
G(j)

������
1√
G(j)

⌊�+G(j)∕2⌋�
t=⌊�−G(j)∕2+1⌋

�t

������
= oP(1).

�
2
n

min1≤j≤qn d
2
j
G(j)2

= o(1) and
log(n)

min1≤j≤qn d
2
j
G(j)

= o(1).
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(c)	 The assumptions on M(12±)
n

 in Condition 4 do not impose additional constraints 
in the following cases:

•	 When {�t}nt=1 are independent and identically distributed.
•	 When {�t}nt=1 are stationary time series errors and there are a finite mixture of 

homogeneous change points.

In Corollary D.1 of the supplementary document, we show that the single-scale 
MOSUM procedure yields consistent estimators with optimal localisation rate, 
either under sub-Gaussianity or when there are finitely many change points, but only 
under the assumption that the change points are homogeneous as defined in Defini-
tion 1 (a). On the other hand, when the change points are heterogeneous, it cannot 
produce consistent estimators by construction.

As noted in Remark 6 (a), a natural solution to this lack of adaptivity is to apply 
the MOSUM procedure with a range of bandwidths. At the same time, scanning 
the same data at multiple scales introduces duplicate estimators and false positives, 
necessitating the use of a pruning method. Messer et  al. (2014) and Messer et  al. 
(2018) propose to prune down the estimators from a multiscale MOSUM proce-
dure in a bottom-up manner, and a similar approach is also taken by Chan and Chen 
(2017): Accepting all the estimators from the smallest bandwidth, it proceeds to 
coarser scales and only accepts a change point estimator if its detection interval does 
not contain any estimators that are already accepted. While the bottom-up approach 
is applicable with multiple symmetric bandwidths, there is no canonical ordering 
when asymmetric bandwidths are used. More importantly, this approach rules out 
the possibility of removing any spurious estimators including those detected from 
the finest bandwidth and thus requires the finest bandwidth to be large relative to n 
in order to avoid spurious change point estimators. In Sect. 5.1, we observe on the 
simulated datasets that indeed, the bottom-up merging tends to incur a large number 
of false positives.

4.2 � Localised pruning with MOSUM‑based candidate generation

The localised pruning algorithm proposed in Sect.  3.1 is well-suited for prun-
ing down the candidates generated by the multiscale MOSUM procedure. Let 
G denote a set of bandwidths. Each estimator k ∈ K(G, �) for G ∈ G is associated 
with the natural detection interval IN(k) = (k − G, k + G] . Asymmetric bandwidths 
� = (G

�
,Gr) with (G

�
,Gr) ∈ H ⊂ G × G are readily incorporated into the meth-

odology using the MOSUM statistics defined as an appropriately scaled difference 
between X̄(b−G

�
+1)∶b and X̄(b+1)∶(b+Gr)

 for b = G
�
,… , n − Gr , and the corresponding 

IN(k) = (k − G
�
, k + Gr] for k ∈ K(�, �) . Then, the collection of all the estimators 

from the multiscale MOSUM procedure, K(H, �) =
⋃

�∈H K(�, �) , can serve as the 
set of candidates K . For Step 1 of the outer localisation algorithm LocAlg, we can 
sort the candidate change points either according to the size of associated jumps (see 
(5)) or using the p-values derived from the asymptotic null distribution defined for 
each pair of bandwidths, although care should be taken in their interpretation across 
multiple scales.
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Selection of bandwidths. We propose to generate the set of bandwidths G as fol-
lows. Selecting a single parameter G0 , which should be smaller than the minimal 
distance between adjacent change points, and setting G1 = G0 , we iteratively yield 
Gm, m ≥ 2, as a Fibonacci sequence, i.e. Gm = Gm−1 + Gm−2 . Equivalently, we set 
Gm = Fm G0 where Fm = Fm−1 + Fm−2 with F0 = F1 = 1 are the Fibonacci num-
bers. This is repeated until for some H = Hn , it holds that GH < ⌊n∕ log(n)⌋ while 
GH+1 ≥ ⌊n∕ log(n)⌋ . When using asymmetric bandwidths, it is advisable to avoid the 
pairs of bandwidths which are too unbalanced, both in view of the asymptotic theory 
and the finite sample performance as is well-known from the two-sample testing lit-
erature; a similar requirement is also found in Chan and Chen (2017). For this rea-
son, we only include the pairs of bandwidths � = (G

�
,Gr) in H that satisfy

for some constant Casym > 0.
With the thus-constructed set of asymmetric bandwidths H , Assumption 4 (b) is 

met by K(H, �).

Proposition 5  Suppose that �2
n
∕G0 → 0 with �n as in Assumption 1 (a). Then, for 

H fulfilling (9), we have n−1�2
n
|K(H, �)| → 0.

The assumption �2
n
∕G0 → 0 is made solely to obtain a crude deterministic upper 

bound on the number of possible candidates from the smallest bandwidth. We may 
replace it by a condition that directly limits the number of candidates detected at 
each bandwidth, or an assumption on qn in combination with a stochastic version of 
Assumption 4. The finiteness of Casym is also required for the bounding of |K(H, �)| . 
While the use of asymmetric bandwidths does not improve the asymptotic rates 
over symmetric bandwidths, it does improve the small sample performance; we find 
that Casym = 4 works well in practice and have used this choice in all our numerical 
experiments.

Remark 7 

(a)	 For each k ∈ K(H, �) , the natural detection interval IN(k) can serve as its detec-
tion interval I(k) = (k − GL, k + GR] , whereby the detection distances (GL,GR) 
are given by the set of bandwidths (G

�
,Gr) with which k has been detected. 

Then, we have Assumption 5 fulfilled by K(H, �) provided that there exists a 
single bandwidth G(j) ∈ G satisfying d2

j
G(j)∕�n → ∞ for each j = 1,… , qn , 

which is readily met under Condition 4 of Proposition 4 and Assumption 3.
(b)	 It may be the case that K(H, �) contains identical acceptable candidates k of �j 

returned at multiple scales, including some (G
�
,Gr) that does not satisfy 

d2
j
min(G

�
,Gr)∕�n → ∞ . Against such a contingency, we propose to assign as 

I(k) the natural detection interval that returns the smallest p-value for the 
MOSUM test associated with the detection of k . Because the p-values decrease 
with the increase of jump size as well as that of bandwidths, this strategy will 

(9)G
�
,Gr ∈ G = {G1,… ,GH} with

max(G
�
,Gr)

min(G
�
,Gr)

≤ Casym
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recommend a reasonably large natural detection interval as I(k) . In simulation 
studies, we use an implementation of the algorithm which simply supposes that 
Assumption 5 is satisfied by the candidate generating mechanism.

The consistency of the localised pruning algorithm in combination with the 
MOSUM-based candidate generating mechanism follows immediately from Propo-
sitions 4, 5 and Theorem 2.

Theorem 3  Let Assumptions 1, 2,  3 and 5 hold, and suppose that the conditions in 
Propositions 4 and 5 are satisfied. Then, the localised pruning algorithm LocAlg 
applied to K(H, �), yields �𝛩 = {�𝜃j, 1 ≤ j ≤ �qn ∶

�𝜃1 < … < �𝜃
�qn
} which consistently 

estimates �, i.e.

for any �n → ∞ arbitrarily slowly.

The next corollary provides the consistency of �̂ in specific settings, which fol-
lows directly from Proposition 1 and Theorem 3.

Corollary 2  Let Assumptions  2,  3,  5 and Condition  4 of Proposition  4 hold and 
�
2
n
∕G0 → 0, with �n specified below. 

(a)	 Sub-Gaussianity. Let {�t}nt=1 meet the conditions of Proposition 1 (a). Then, with 
�n ≍

√
log(n), we have 

(b)	 Heavy tails. Let {�t}nt=1 meet the conditions of Proposition 1 (b). Then, with 
�n ≍ n1∕� for any 𝛽 < 𝛼, we have 

(c)	 Invariance principle and moment conditions. Let {�t}nt=1 meet the con-
ditions of Propositions  1  (c) and  4  (c) with �(1)

n
≍ �nq

1∕�
n . Then, with 

�n ≍ max(�n�n,
√
log(n)), we have 

In light of Propositions 2 and 3, Corollary 2 shows that under sub-Gaussianity, 
the localisation pruning applied with the MOSUM-based candidate generating pro-
cedure yields minimax optimal rates both in terms of the detection lower bound in 

𝖯

{
q̂n = qn; max

1≤j≤qn

d2
j
|�̂j − �j| ≤ �n(�

(1)
n
)2
}

→ 1

𝖯

{
q̂n = qn; max

1≤j≤qn

d2
j
|�̂j − �j| ≤ �n log(qn)

}
→ 1.

𝖯

{
q̂n = qn; max

1≤j≤qn

d2
j
|�̂j − �j| ≤ �nq

2∕�
n

}
→ 1.

𝖯

{
q̂n = qn; max

1≤j≤qn

d2
j
|�̂j − �j| ≤ �nq

2∕�
n

}
→ 1.
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the sublinear change point regime, and the localisation rate. Also, even when {�t}nt=1 
is heavy-tailed, if the number of change points qn is finite, the combined methodol-
ogy achieves the minimax optimal localisation rate.

5 � Numerical results

5.1 � Simulation results

We conducted an extensive simulation study comparing the performance of the 
proposed localised pruning algorithm combined with the MOSUM- and CUSUM-
based candidate generation, respectively, discussed in Sect. 4 and Appendix E of the 
supplementary material, against that of a variety of competitors whose implementa-
tions are readily available in R. For a complete description of the simulation results, 
see Appendix G.

We consider the five test signals from Fryzlewicz (2014) and their extensions 
( n ≥ 2 × 104 ) with both frequent and sparse change points, in order to assess the 
scalability of different methods. As error sequences, we consider i.i.d. random vari-
ables following Gaussian and t5 distributions, and AR(1) processes with both weak 
and strong autocorrelations. The localised pruning procedure requires the selec-
tion of �n for the penalty of SC , for which we consider �n ∈ {log1.01(n), log1.1(n)} 
in the case of independent Gaussian errors, �n ∈ {log1.1(n), n2∕4.99} for independent 
t5-distributed errors and �n ∈ {log1.1(n), log2(n)} for AR(1) processes as the ‘light’ 
and ‘heavy’ penalties, in view of Assumption 3. We consider two candidate sort-
ing function for Step  1 of LocAlg including  (5); as indicated by the theoretical 
results (Theorem 1), its choice has little influence on the numerical results. We dis-
cuss in details the selection of tuning parameters for individual candidate genera-
tion methods in Appendix G.1.2. Based on the numerical results, we provide default 
parameter choices in the implementation of the localised pruning algorithm with the 
MOSUM-based candidate generation in the R package mosum (Meier et al. 2021a).

Overall, the proposed localised pruning performs well according to a variety of 
criteria, often performing as well as or even better than many competitors both in 
terms of the total number of estimated change points and their locations. At the same 
time, the localised pruning is shown to be scalable to long signals with n ≥ 2 × 104 . 
Most competing methods are specifically tailored for i.i.d. Gaussian errors and thus 
struggle with heavy tails or serial correlations. In the i.i.d. Gaussian settings, our 
proposed method is robust to the choice between the light and the heavy penalties. 
When the errors are heavy-tailed, the heavy penalty chosen in line with Assump-
tion 3 is successful in not causing false alarms, while the light penalty leads to good 
power at the price of slightly increased false positive rate (which still is much lower 
than that obtained by other competitors). Similar observations are made under serial 
dependence. From the above, our conclusion is that the simulation results well-
support the theoretical findings relating the behaviour of {�t}nt=1 to the choice of 
penalty, and that the former should be considered in selecting �n , an observation 
that applies to all change point detection methodologies. Between the two different 
candidate generating methods, the MOSUM-based method produces estimators of 
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better localisation accuracy while the CUSUM-based one tends to incur more false 
positives.

5.2 � Real data analysis: array CGH data

In this section, we illustrate the performance of the proposed methodology using 
array comparative genomic hybridisation (CGH) data that has previously been ana-
lysed in the literature. In Appendix A, an application to Kepler light curve data first 
analysed in Fisch et al. (2018) is provided as a second example.

Microarray-based comparative genomic hybridisation (array CGH) provides 
a means to quantitatively measure DNA copy number aberrations and to map 
them directly onto genomic sequences (Snijders et al. 2001). We analyse a dataset 
obtained from a breast tumour specimen ( S0034 ) described in Snijders et al. (2001) 
( n = 2227 ). A number of algorithms have been proposed which, regarding any gains 
or losses in the copy number from the normalised copy number ratios between two 
DNA samples as change points, identify their total number and locations under the 
model (1) (see e.g. Olshen et al. (2004), Li et al. (2016) and Niu and Zhang (2012)).

Olshen et al. (2004) proposed to smooth the array CGH data for outlier removal 
prior to change point analysis. Noticing that such a step may introduce serial cor-
relations, we choose to analyse the raw data and account for possible outliers by 
adopting the penalty �n = log1.1(n) (used as the heavy penalty in the case of inde-
pendent Gaussian errors in the simulation studies, see Sect.  5.1 and also Appen-
dix  G.1) for the localised pruning algorithm, with � = 0.2 and � = 0.4 for the 
MOSUM-based candidate generation (MoLP) and C

�
= 0.5 (see Appendix G.1.2 for 

the description of its role) for the CUSUM-based one (CuLP). In addition to the 
methods included in the comparative simulation study in Sect. 5.1, we consider the 
circular binary segmentation algorithm of Olshen et al. (2004) (CBS, implemented 
in Seshan and Olshen (2018)) and the modified screening and ranking algorithm of 
Xiao et al. (2014) (modSaRa, implemented in Xiao et al. (2016)). It is important to 
note that the CBS takes all boundary markers between neighbouring chromosomes 
as an input unlike any other procedures in consideration, and automatically reports 
all of them as change points.

Figure  1 plots the normalised fluorescence ratios from S0034 and the change 
point estimators returned by various methods, and Table  2 reports the number of 
estimated change points. Overall, MoLP and CuLP detect fewer number of change 
points compared to most of the competitors, and many elements of the two sets of 
estimators either coincide or lie very close to each other. Also, many change point 
estimators coincide with the boundary markers although they are detected without 
knowing their positions unlike the CBS.

The data exhibit heteroscedasticity particularly beyond the genome order 2274 
where there is a dramatic increase in the variability. Both candidate generating 
methods return a large number of candidates (MoLP has 137 candidates, CuLP has 
82) and our localised approach to pruning manages to reduce the size of the can-
didate sets reasonably well. On the other hand, WBS.sBIC, WBS2.SDLL, TGUH, 
PELT, S3IB and FDRSeg are susceptible to returning (possibly) spurious change 
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point estimators particularly in this region of increased volatility. cumSeg misses 
some of the change points commonly detected by many methods, which is consist-
ent with the findings from the simulation studies reported in Appendix G.

We node that CuLP, WBS.sBIC, WBS2.SDLL and FDRSeg are affected by the 
randomness involved in generating either the candidate estimators or the critical val-
ues, and yield different results on different runs when applied to this data set. It may 
be due to that the underlying signal is not exactly piecewise constant, a phenom-
enon known as genomic waves (Diskin et al. 2008). The results for these methods 
reported here were obtained by setting the seed of R’s random number generator to 
be one.

6 � Conclusions and outlook

In this paper, we propose the localised pruning algorithm which, together with a 
class of multiscale candidate generating procedures, forms a two-stage methodol-
ogy for data segmentation. Adopting a truly multiscale framework, we prove the 
consistency of the proposed methodology in multiple change point estimation under 
mild conditions, and show that it inherits the localisation property of the candidate 
generating mechanism. Theoretical properties for the second-stage localised prun-
ing algorithm are discussed independently from the choice of first-stage candidate 
generating methods, allowing an easy extension of the results to other candidate 

0 500 1000 1500 2000 2500
order

CBS
modSaRa
WBS.sBIC

WBS2.SDLL
TGUH
PELT
S3IB

cumSeg
FDRSeg

Fig. 1   Normalised copy number ratios of a comparison of DNA from cell strain S0034 . Vertical solid 
lines indicate the boundaries between chromosomes, longdashed lines are change points estimated by 
MoLP and dashed lines are those estimated by CuLP. Change-point estimators from different methods 
are also plotted ( ×)

Table 2   Number of change points estimated from the S0034 data set

MoLP CuLP CBS mod-
SaRa

WBS.
sBIC

WBS2.
SDLL

TGUH PELT S3IB cumSeg FDRSeg

17 18 31 17 46 82 58 46 49 12 126
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generating methods. Two examples for this choice are provided: A multiscale 
MOSUM procedure and a WBS algorithm. Combined with the former, the localised 
pruning algorithm achieves minimax rate optimality both in change point localisa-
tion and detection lower bound in those settings where such optimality results are 
available. Importantly, we work with meta-assumptions on the key elements of the 
change point structure and the error distribution, the latter of which only concern 
the bounds given in Assumption 1 and thus permit both heavy-tailedness and serial 
dependence. In doing so, the influence of each element on our theoretical arguments 
is made transparent and discussed in details, allowing for their ready extension to 
other error distributions in the future.

A comparison with competitors in terms of (a) theoretical properties such as the 
detection lower bound and the localisation rate, (b) computational complexity, speed 
and scalability to large sample sizes, and (c) the performance on a variety of simula-
tions and real data examples shows that our proposed methodology performs univer-
sally well, especially when combined with the MOSUM-based candidate generating 
method, whose implementation is provided in the R package mosum available on 
CRAN (Meier et al. 2021a).

While we focus on the univariate mean change point detection problem in this 
paper, there are natural ways for extending the proposed methodology to more gen-
eral change point problems: Via an appropriate transformation of the data, e.g. by 
adopting an M-estimation framework, change points in the stochastic properties of 
interest can be made detectable as change points in the mean of the transformed time 
series. With a suitably modified information criterion, our methodology becomes 
applicable to a variety of more complex change point scenarios, such as the detec-
tion of changes in regression parameters (e.g. neural network-based nonparamet-
ric (auto-)regression); other distributional parameters (e.g. for integer-valued time 
series) and robust change point detection (Kirch and Kamgaing 2015a, b; Kirch and 
Weber 2018). Some first results in this direction based on the current paper have 
already been obtained in Reckrühm (2019), where the necessity for a model selec-
tion strategy in such general change point problems is well-motivated (see Chap-
ter 2.4 therein). Besides, our results can be adapted to detect parameter changes in 
renewal processes (Kühn 2001; Messer et al. 2014; Kirch and Klein 2021).

Another venue for extensions is high-dimensional data segmentation, where algo-
rithms developed for multiple change point detection in the mean of univariate data 
have been adopted for that in the mean (Wang and Samworth 2018), covariance 
(Wang et  al. 2020a) and model parameters (Safikhani and Shojaie 2020) in high 
dimensions. The development of a methodology for multiscale data segmentation 
is a separate problem from the aggregation of information on change points across 
components in high-dimensional settings. We refer to Cho and Kirch (2020) for fur-
ther discussions on extending univariate mean change point detection procedures to 
general change point problems.

With such extensions—to high dimensions and more complex changes—in mind, 
attaining deeper understanding into the properties of multiscale data segmentation 
and proposing a methodology of improved performance is of particular interest 
even in the univariate mean change problem. The present work can be seen as an 
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important first step towards an extended methodology for more general data seg-
mentation problems.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10463-​021-​00811-5.
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