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This document is an addendum to the theory developed in the main
manuscript (MB). This supplementary material is organized as follows.

In Section S-1, we numerically validate the results of MB, in the contexts
of linear regression (LR), Gaussian process regression (GPR) and AR(1)
process regression (AR-1).

Next we consider the problem of Bayes factor based variable selection
from among 2p − 1 available models. In this regard, in Section S-2 we
introduce our TTMCMC sampler for general Bayesian variable selection
problems. The method of computation of Bayes factors using TTMCMC
samples is detailed in Section S-3. In Section S-4 we provide the proof of
convergence of our TTMCMC sampler.

In Section S-5 we provide the details of our TTMCMC based variable
selection experiments in the contexts of LR, GPR, and AR-1.

In Section S-6 we address variable selection among a set of 4088 covari-
ates in a real, riboflavin dataset, using our Bayes factor oriented TTMCMC
methodology, considering both linear and Gaussian process regression, and
obtain interesting insights with respect to existing results on variable se-
lection in the same dataset obtained using linear regression and classical
methods.

Finally, in Section S-7, we provide the proof of the lemmas and results
stated in the MB.
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S-1 Direct validation of the theoretical results us-
ing simulation experiments

S-1.1 Linear regression

Here we assume yi = βT
s0xi,s0 + ϵi where ϵi

iid∼ N(0, 1). As stated above
the covariates are generated from scaled t3 distribution, where scale matrix
Σ0 is AR(1) structured, with ρ = 0.25. We assign Zellner’s g-prior on
the regression coefficients βs, with β0,s = (1/p, . . . , 1/p), σ2

β = 1 and g =
10. As set of |s0| covariates are chosen at random, and the values of the
corresponding coefficients are chosen from an Uniform(0, 1) distribution.

The results are summarized in Figure S-1. Note that, the supermodel
has exactly one extra variable and the altered model has exactly one variable
different from the true model. Even for such small changes, the Bayes factor
identifies the true model efficiently. Further, as the size of the true model
increases, Bayes factor becomes more efficient.

S-1.2 Gaussian process with squared exponential kernel

Next we generate data from Gaussian process with squared exponential ker-
nel as given in (11). We choose Ds = diag{10, . . . , 10} for all s, and σ2

f = 1.
We choose a constant mean function, µs = logistic (x′

sβs) for all s. Note
that, the assumptions (A1)-(A3) are satisfied by these choices of the pa-
rameters. The coefficients, βs,j , are generated randomly from independent
Uniform(−0.5, 0.5) distributions.

As before the covariates are generated from scaled t3 distribution, where
scale matrix Σ0 is AR(1) structured, with ρ = 0.1. In this case the super-
model has k = 5 more covariates, and the altered model has k = 5 different
covariates than the true model. These covariates are randomly selected from
the pool of p−|s0| covariates. Figure S-2 shows the performance of the Bayes
factor as n grows. Observe that, unlike both linear regression and AR(1)
regression, the Bayes factor detects the true model much faster when some
covariates are altered, than a supermodel.

S-1.3 Autoregressive model

The response is now generated from AR(1) model (19) with ρ = 0.25. The
distribution of the covariates, choice of prior on βs, and the definition of
supermodel and altered model are same as that in Section S-1.1.
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Figure S-1: Line diagram showing how the Bayes factors decrease as sample
sizes increase in linear regression when |s0| = 10 (left panel), |s0| = 40
(middle panel), and |s0| = 40 (right panel)

Figure S-2: Line diagram showing how the Bayes factors decrease as sample
sizes increase in GP with squared exponential kernel when |s0| = 10 (left
panel), |s0| = 40 (middle panel), and |s0| = 40 (right panel)

As the true value of ρ is not known, we numerically find the integrated
marginal likelihood of the true model and the competing model, considering
an Uniform(−1, 1) prior on ρ. The integrated Bayes factor is the ratio of
the integrated likelihood of the competing and the true model.

The results are summarized in Figure S-3. As in the case of linear model,
Bayes factor efficiently captures the true model even when the competing
model is the closest one to the truth.

S-1.4 Misspecified models

Now we compare two nested supermodels of the true model, Ms1 ⊂ Ms2 ,
with dimensions |s1| = k1 and |s2| = k2, respectively. Clearly, the super-
model with lower dimension, Ms1 , is closer to the true model, and the theory
suggests that the Bayes factor logBFs2,s1 decays with growing n. The linear
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Figure S-3: Line diagram showing how the Bayes factors decrease as sample
sizes increase in autoregressive model when |s0| = 10 (left panel), |s0| = 40
(middle panel), and |s0| = 40 (right panel)

regression and Gaussian process regression with squared exponential kernel
is considered.

In the linear regression, we choose k1 = 1 and k2 = 5. Everything else is
kept same as in Section S-1.1, expect here we choose β0,s = (1/2, . . . , 1/2).
In the Gaussian process regression, we choose k1 = 5 and k2 = 15. Every-
thing is kept same as in Section S-1.2. The results are summarized in Figure
S-4.

Observe that for both the cases we observe a sharp linear decrease of log
Bayes factors as n increases, which validates our theoretical results.

S-2 A generic TTMCMC sampler for variable se-
lection

Here we devise a novel TTMCMC algorithm for generic variable selection
problems using mixtures of additive and multiplicative transformations of
singleton variables, further supplementing with a deterministic transforma-
tion step to enhance mixing. Given a set of existing covariates, we propose
a new covariate in the “birth move” by Bayes Information Criterion (BIC).
We compute Bayes factors from the available TTMCMC realizations to com-
pare subsets of the covariates. Interestingly, the acceptance ratios of neither
TMCMC, nor TTMCMC, depend upon the proposal distributions, even if
they are not symmetric, and even for dimension-changing moves. Thus,
these approaches are novel compared to the traditional fixed-dimensional
Metropolis-Hastings and the variable-dimensional RJMCMC approach.

We provide our general TTMCMC sampler for variable selection in the
form of Algorithm S-2.1. We assume that θ = (β,ϑ) is the set of parameters

4



Figure S-4: Line diagram showing how the Bayes factor favors the better
model as sample sizes increase in the misspecified models setup, in linear
regression (top row), and Gaussian process regression (bottom row), when
|s0| = 10 (left panel), |s0| = 40 (middle panel), and |s0| = 70 (right panel).
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associated with the model, β being the k-dimensional regression coefficients
associated with the chosen covariates, where k is a random variable. The
parameter vector ϑ consists of other sets of parameters, and may even con-
tain several other parameter vectors associated with the covariates, having
the same (variable) dimension k as β. For instance, in a Gaussian process
regression, the mean function may be modeled by a linear regression with
regression coefficients β and the covariance function may be modeled by a
squared exponential kernel consisting of smoothness parameters having the
same random dimension k as β. We shall denote by π(θ, s, k) as propor-
tional to the product of the prior and the likelihood, where s and k, the
random subset of covariate indices and its cardinality, are also considered
unknown and suitable priors are envisaged for the same. Thus, with abuse
of notation for convenience and simplicity, we write the posterior π(θ, k) as

π(θ, s, k) ∝ L(θ|s, k)π(θ|s, k)π(s|k)π(k), (S-1)

where π(k) denotes the prior for k, π(θ|s, k) stands for the prior for θ given
s and k, π(s|k) is the prior for s given k and L(θ|s, k) is the likelihood for
θ given s and k. Given k, we set the uniform prior for s:

π(s|k) = 1(
p
k

) , for k = 1, . . . , p. (S-2)

Algorithm S-2.1. General TTMCMC algorithm for variable selection.

� Let the initial value be θ(0) = (β(0),ϑ(0)), where β(0) ∈ Rk(0),

are the coefficients of the k(0) covariates in the current regression

model, and ϑ(0) consists of the initial values of the other

model parameters, which may even include other k(0)-dimensional
parameters associated with the covariates in the model. Also

let s(0) denote the initial choice for the subset of indices

for the covariates associated with the model.

� For t = 0, 1, 2, . . .

1. Generate u = (u1, u2, u3) ∼ Multinomial(1;wb,k(t) , wd,k(t) , wnc,k(t)),
where wb,k(t) , wd,k(t) , wnc,k(t) are birth, death and no-change

probabilities, given k(t). Hence, wb,k(t) , wd,k(t) , wnc,k(t) are

non-negative and wb,k(t)+wd,k(t)+wnc,k(t) = 1. Also, wb,k(t) =

0 if k(t) = |S| and wd,k(t) = 0 if k(t) = 1.
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2. If u1 = 1 (increase dimension by selecting a new covariate),

generate U ∼ U(0, 1) and do the following:

(a) If U ≤ p̃, where p̃ ∈ [0, 1] (use additive transformation

for dimension change),

i. Given s(t), the current subset of covariates and the

current set of parameters θ(t), select a new covariate

{xir : i = 1, . . . , n}, where r ∈ S\s(t), by minimizing

BIC(u), for u ∈ S\s(t). Here BIC(u) stands for

the BIC when the model consists of the covariates

indexed by {s(t), u}. Let s′ = {s(t), r}.
ii. Randomly select a co-ordinate from β(t) = (β

(t)
1 , . . . , β

(t)

k(t)
)

assuming uniform probability 1/k(t) for each co-ordinate.

Let j denote the chosen co-ordinate.

iii. Generate ϵ1 ∼ N(0, 1) and propose the following birth

move:

β′ = (β
(t)
1 , . . . , β

(t)
j−1, β

(t)
j +aβ,j |ϵ1|, β

(t)
j −aβ,j |ϵ1|, β

(t)
j+1, . . . , β

(t)

k(t)
).

Here aβ,j is the appropriate positive scaling constant

associated with the j-th co-ordinate of β. In general,

aθ,j will stand for the appropriate positive scaling

constant associated with the j-th co-ordinate of

θ.

iv. Re-label the elements of β′ as (β′
1, β

′
2, . . . , β

′
k(t)+1

).

A. If there is another set of real-valued variable-dimensional

parameters, say, γ, associated with the covariates,

then also generate ϵ2 ∼ N(0, 1) and propose

γ ′ = (γ
(t)
1 , . . . , γ

(t)
j−1, γ

(t)
j +aγ,j |ϵ2|, γ(t)j −aγ,j |ϵ2|, γ(t)j+1, . . . , γ

(t)

k(t)
).

B. Re-label the elements of γ ′ as (γ′1, γ
′
2, . . . , γ

′
k(t)+1

).

C. Repeat the procedure for further sets of variable-dimensional

parameters related to the covariates.

D. Keep all other elements of θ unchanged, and refer

to the entire set of proposed parameter values

as θ′.

v. If β is the only variable-dimensional parameter

related to the covariates, then the acceptance probability
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of the birth move is:

ab = min

1,
1

k(t) + 1
×

wd,k(t)+1

wb,k(t)

π
(
θ′, s′, k(t) + 1

)
π
(
θ(t), s(t), k(t)

) × 2aβ,j

 .

A. If γ is another real-valued variable-dimensional

parameter related to the covariates, then the

acceptance probability of the birth move is:

ab = min

1,
1

k(t) + 1
×

wd,k(t)+1

wb,k(t)

π
(
θ′, s′, k(t) + 1

)
π
(
θ(t), s(t), k(t)

) × 2aβ,j × 2aγ,j

 ,

that is, 2aγ,j must also be multiplied to the acceptance

ratio.

B. For further real-valued variable-dimensional parameter

associated with the covariates, the process must

be continued by further multiplying twice the

scaling constant of the relevant parameter to

the acceptance ratio.

vi. Set

(θ(t+1), s(t+1), k(t+1)) =

{
(θ′, s′, k(t) + 1) with probability ab
(θ(t), s(t), k(t)) with probability 1− ab.

(b) If U > p̃ (use multiplicative transformation for dimension

change),

i. Given s(t), the current subset of covariates and the

current set of parameters θ(t), select a new covariate

{xir : i = 1, . . . , n}, where r ∈ S\s(t), by minimizing

BIC(u), for u ∈ S\s(t). Let s′ = {s(t), r}.
ii. Randomly select a co-ordinate from β(t) = (β

(t)
1 , . . . , β

(t)

k(t)
)

assuming uniform probability 1/k(t) for each co-ordinate.

Let j denote the chosen co-ordinate.

iii. Generate ϵ1 ∼ U(−1, 1) and propose the following

birth move:

β′ = (β
(t)
1 , . . . , β

(t)
j−1, β

(t)
j ϵ1, β

(t)
j /ϵ1, β

(t)
j+1, . . . , β

(t)

k(t)
).

iv. Re-label the elements of β′ as (β′
1, β

′
2, . . . , β

′
k(t)+1

).
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A. If there is another set of real-valued variable-dimensional

parameters, say, γ, associated with the covariates,

then also generate ϵ2 ∼ U(−1, 1) and propose

γ ′ = (γ
(t)
1 , . . . , γ

(t)
j−1, γ

(t)
j ϵ2, γ

(t)
j /ϵ2, γ

(t)
j+1, . . . , γ

(t)

k(t)
).

B. Re-label the elements of γ ′ as (γ′1, γ
′
2, . . . , γ

′
k(t)+1

).

C. Repeat the procedure for further sets of variable-dimensional

parameters related to the covariates.

D. Keep all other elements of θ unchanged, and refer

to the entire set of proposed parameter values

as θ′.

v. If β is the only variable-dimensional parameter

related to the covariates, then the acceptance probability

of the birth move is:

ab = min

1,
1

k(t) + 1
×

wd,k(t)+1

wb,k(t)
×

π
(
θ′, s′, k(t) + 1

)
π
(
θ(t), s(t), k(t)

) ×
|β(t)

j |
|ϵ1|

 .

A. If γ is another real-valued variable-dimensional

parameter related to the covariates, then the

acceptance probability of the birth move is:

ab = min

1,
1

k(t) + 1
×

wd,k(t)+1

wb,k(t)

π
(
θ′, s′, k(t) + 1

)
π
(
θ(t), s(t), k(t)

) ×
|β(t)

j |
|ϵ1|

×
|γ(t)j |
|ϵ2|

 .

B. For further variable-dimensional parameter associated

with the covariates, noting that the process must

be continued by further multiplying the ratio

of the absolute value of the current parameter

value and the relevant ϵ, to the acceptance ratio.

vi. Set

(θ(t+1), s(t+1), k(t+1)) =

{
(θ′, s′, k(t) + 1) with probability ab
(θ(t), s(t), k(t)) with probability 1− ab.

3. If u2 = 1 (decrease dimension by deleting an existing

covariate), generate U ∼ U(0, 1) and do the following:

(a) If U ≤ p̃ (use additive transformation for dimension

change),
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i. Randomly select a co-ordinate j from {1, . . . , k(t)} assuming

uniform probability 1/k(t) for each co-ordinate, and

randomly select a co-ordinate j′ from {1, . . . , k(t)}\{j}
with probability 1/(k(t)−1). Assuming j < j′, let

β∗
j = (β

(t)
j +β

(t)
j′ )/2. Replace β

(t)
j with β∗

j and delete

β
(t)
j′ .

ii. Delete {xij′ : i = 1, . . . , n}. Let s′ = s(t)\{j′}.
iii. Propose the following death move:

β′ = (β
(t)
1 , . . . , β

(t)
j−1, β

∗
j , β

(t)
j+1, . . . , β

(t)
j′−1, β

(t)
j′+1, . . . , β

(t)

k(t)
).

iv. Re-label the elements of β′ as (β′
1, β

′
2, . . . , β

′
k(t)−1

).

A. If there is another set of real-valued variable-dimensional

parameters, say, γ, associated with the covariates,

then propose

γ ′ = (γ
(t)
1 , . . . , γ

(t)
j−1, γ

∗
j , γ

(t)
j+1, . . . , γ

(t)
j′−1, γ

(t)
j′+1, . . . , γ

(t)

k(t)
),

where γ∗j = (γ
(t)
j + γ

(t)
j′ )/2.

B. Re-label the elements of γ ′ as (γ′1, γ
′
2, . . . , γ

′
k(t)−1

).

C. Repeat the procedure for further sets of variable-dimensional

parameters related to the covariates.

D. Keep all other elements of θ unchanged, and refer

to the entire set of proposed parameter values

as θ′.

v. If β is the only variable-dimensional parameter

related to the covariates, then the acceptance probability

of the death move is:

ad = min

1, k(t) ×
wb,k(t)−1

wd,k(t)

π
(
θ′, s′, k(t) − 1

)
π
(
θ(t), s(t), k(t)

) × 1

2aβ,j

 .

A. If γ is another real-valued variable-dimensional

parameter related to the covariates, then the

acceptance probability of the death move is:

ad = min

1, k(t) ×
wb,k(t)−1

wd,k(t)

π
(
θ′, s′, k(t) − 1

)
π
(
θ(t), s(t), k(t)

) × 1

2aβ,j
× 1

2aγ,j

 ,
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that is, 1/(2aγ,j) must also be multiplied to the

acceptance ratio.

B. For further real-valued variable-dimensional parameter

associated with the covariates, the process must

be continued in the above manner.

vi. Set

(θ(t+1), s(t+1), k(t+1)) =

{
(θ′, s′, k(t) − 1) with probability ad
(θ(t), s(t), k(t)) with probability 1− ad.

(b) If U > p̃ (use multiplicative transformation for dimension

change),

i. Randomly select a co-ordinate j from {1, . . . , k(t)} assuming

uniform probability 1/k(t) for each co-ordinate, and

randomly select a co-ordinate j′ from {1, . . . , k(t)}\{j}
with probability 1/(k(t)−1). Assuming j < j′, let

β∗
j =

√
|β(t)

j β
(t)
j′ | with probability 1/2 and set β∗

j =

−
√

|β(t)
j β

(t)
j′ | with the remaining probability. Replace

β
(t)
j with β∗

j and delete β
(t)
j′ .

ii. Delete {xij′ : i = 1, . . . , n}. Let s′ = s(t)\{j′}.
iii. Propose the following death move:

β′ = (β
(t)
1 , . . . , β

(t)
j−1, β

∗
j , β

(t)
j+1, . . . , β

(t)
j′−1, β

(t)
j′+1, . . . , β

(t)

k(t)
).

iv. Re-label the elements of β′ as (β′
1, β

′
2, . . . , β

′
k(t)−1

).

A. If there is another set of real-valued variable-dimensional

parameters, say, γ, associated with the covariates,

then propose

γ ′ = (γ
(t)
1 , . . . , γ

(t)
j−1, γ

∗
j , γ

(t)
j+1, . . . , γ

(t)
j′−1, γ

(t)
j′+1, . . . , γ

(t)

k(t)
),

where γ∗j =
√
|γ(t)j γ

(t)
j′ | or −

√
|γ(t)j γ

(t)
j′ | with equal

probabilities.

B. Re-label the elements of γ ′ as (γ′1, γ
′
2, . . . , γ

′
k(t)−1

).

C. Repeat the procedure for further sets of variable-dimensional

parameters related to the covariates.

D. Keep all other elements of θ unchanged, and refer

to the entire set of proposed parameter values

as θ′.
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v. If β is the only variable-dimensional parameter

related to the covariates, then the acceptance probability

of the death move is:

ad = min

1, k(t) ×
wb,k(t)−1

wd,k(t)

π
(
θ′, s′, k(t) − 1

)
π
(
θ(t), s(t), k(t)

) × 1

|β(t)
j′ |

 .

A. If γ is another real-valued variable-dimensional

parameter related to the covariates, then the

acceptance probability of the death move is:

ad = min

1, k(t) ×
wb,k(t)−1

wd,k(t)

π
(
θ′, s′, k(t) − 1

)
π
(
θ(t), s(t), k(t)

) × 1

|β(t)
j′ |

× 1

|γ(t)j′ |

 ,

that is, 1/|γ(t)j′ | must also be multiplied to the

acceptance ratio.

B. For further real-valued variable-dimensional parameter

associated with the covariates, the process must

be continued in the above manner.

vi. Set

(θ(t+1), s(t+1), k(t+1)) =

{
(θ′, s′, k(t) − 1) with probability ad
(θ(t), s(t), k(t)) with probability 1− ad.

4. If u3 = 1 (dimension remains unchanged), then given that

there are d dimensions in the current iteration, generate

U ∼ U(0, 1).

(a) If U ≤ p̃, then do the following:

(i) For parameters β, γ, etc. associated with the covariates,

for j = 1, . . . , k(t), set ãβ,j = caβ,j, ãγ,j = caγ,j,
etc. where c ∈ (0, 1) is some appropriate constant.

For all other parameter co-ordinates θj, let ãθ,j =
aθ,j.

(ii) Generate ε ∼ N(0, 1), bj
iid∼ U({−1, 1}) for j = 1, . . . , d,

and set θ′j = θ
(t)
j + bj ãθ,j |ε|, for j = 1, . . . , d.

(iii) Evaluate

α1 = min

1,
π(θ′, s(t), k(t))

π
(
θ(t), s(t), k(t)

)
 .
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(iv) Set (θ(t+1), s(t+1), k(t+1)) = (θ′, s(t), k(t)) with probability

α1, else set (θ(t+1), s(t+1), k(t+1)) = (θ(t), s(t), k(t)).

(b) If U > p̃, then do the following:

(i) Generate ε ∼ U(−1, 1), bj
iid∼ U({−1, 0, 1}) for j =

1, . . . , d, and set θ′j = θ
(t)
j ε if bj = 1, θ′j = θ

(t)
j /ε if

bj = −1 and θ′j = θ
(t)
j if bj = 0, for j = 1, . . . , d.

Calculate |J | = |ε|
∑d

j=1 bj.

(ii) Evaluate

α2 = min

{
1,

π(θ′, s(t), k(t))

π(θ(t), s(t), k(t))
× |J |

}
.

(iii) Set (θ(t+1), s(t+1), k(t+1)) = (θ′, s(t), k(t)) with probability

α2, else set (θ(t+1), s(t+1), k(t+1)) = (θ(t), s(t), k(t)).

5. (Mixing-enhancement step) Assume that there are d dimensions

in the current iteration after implementing either of the

birth, death and no-change steps. Generate U ∼ U(0, 1).

(a) If U ≤ q̃, where q̃ ∈ (0, 1), then do the following

(i) For parameters β, γ, etc. associated with the covariates,

for j = 1, . . . , k(t+1), set ãβ,j = caβ,j, ãγ,j = caγ,j,
etc. where c ∈ (0, 1) is some appropriate constant.

For all other parameter co-ordinates θj, let ãθ,j =
aθ,j.

(ii) Generate Ũ ∼ U(0, 1) and ε ∼ N(0, 1). If Ũ < 1/2,

set θ′′j = θ
(t+1)
j + ãθ,j |ε|, for j = 1, . . . , d; else, set

θ′′j = θ
(t+1)
j − ãθ,j |ε|, for j = 1, . . . , d.

(iii) Letting θ′′ = (θ′′1 , . . . , θ
′′
d), evaluate

α3 = min

{
1,

π(θ′′, s(t+1), k(t+1))

π(θ(t+1), s(t+1), k(t+1))

}
.

(iv) Set (θ̃
(t+1)

, s(t+1), k(t+1)) = (θ′′, s(t+1), k(t+1)) with probability

α3, else set (θ̃
(t+1)

, s(t+1), k(t+1)) = (θ(t+1), s(t+1), k(t+1)).

(b) If U > q̃, then

(i) Generate ε ∼ U(−1, 1) and Ũ ∼ U(0, 1). If Ũ <

1/2, set θ′′j = θ
(t+1)
j ε for j = 1, . . . , d and |J | = |ε|d,
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else set θ′′j = θ
(t+1)
j /ε for j = 1, . . . , d and |J | =

|ε|−d.

(ii) Evaluate

α4 = min

{
1,

π(θ′′, s(t+1), k(t+1))

π(θ(t+1), s(t+1), k(t+1))
× |J |

}
.

(iii) Set (θ̃
(t+1)

, s(t+1), k(t+1)) = (θ′′, s(t+1), k(t+1)) with probability

α4, else set (θ̃
(t+1)

, s(t+1), k(t+1)) = (θ(t+1), s(t+1), k(t+1)).

� End for

� Store {(θ̃(0)
, s(0), k(0)), (θ̃

(1)
, s(1), k(1)), . . .} for Bayesian inference.

The main strategies proposed in the general TTMCMC Algorithm S-2.1
for variable selection require some elucidation. In this regard, a few remarks
are in order.

First, we propose a mixture of additive and multiplicative transforma-
tions in all the steps of the algorithm, since it has been observed in Dey and
Bhattacharya (2016) that such mixture proposal induces better mixing that
either additive or multiplicative transformations using the localised moves of
the additive transformation and the non-localised (“random dive”) moves of
the multiplicative transformation (see also Dutta (2012) for some theoretical
details on random dive).

In the dimension-changing steps 2. and 3. of Algorithm S-2.1, except
for the parameters associated with increase or decrease of the dimension,
we have proposed to keep all the remaining parameters fixed. Fixing the
other parameters is not necessary for the validity of TTMCMC; indeed, Das
and Bhattacharya (2019) proposed to update all the parameters even in the
dimension-changing steps. However, in our variable selection experiments,
fixing the remaining parameters led to significantly improved acceptance
rates of the birth and death steps compared to the strategy of updating
all the unknowns simultaneously. The choice of the positive scales aθ,j in
the additive transformation part plays important role here. To elucidate,
note that it is natural to expect high acceptance rates with sufficiently small
scales in fixed-dimensional problems, but in our variable-dimensional setup,
observe that the acceptance ratios for the birth and death steps depend upon
the scales of the parameters selected for birth and death. If the scales are
generally chosen to be small, then the acceptance rate for the birth move
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would be small as well. On the other hand, if the scales are generally chosen
to be relatively large, then the acceptance rate for the entire dimension-
changing move would be small, for a relatively large number of parameters.
With these small or large scale choices, the acceptance ratios in the no-
change (fixed-dimensional) step 4. and the mixing-enhancement step 5.
would also be small.

We attempt to solve all the above problems with the strategy of choosing
somewhat large scales aθ,j and by fixing the parameters in the birth and
death steps that are not involved in dimension-change. The relatively large
scales would ensure adequate acceptance rate for the birth move; note that
the scales should not be so large as to reduce the death rate significantly.
Now, these large scales would also diminish the acceptance rates in the no-
change and the mixing-enhancement steps. To counter this, we multiply
the scales of the parameters associated with the covariates by c ∈ (0, 1) in
those steps, which is a valid mathematical strategy in the sense of satisfying
detailed balance. Further discussion regarding these will be provided in
course of the applications of Algorithm S-2.1.

The fixed-dimensional mixing-enhancement step has parallels with Liu
and Sabatti (2000) (see also the supplement of Dutta and Bhattacharya
(2014) and Algorithm 2 of Roy and Bhattacharya (2020)). Indeed, it has
been observed that the strategy can often drastically improve the mixing
properties in fixed-dimensional setups.

Finally, note that s and k are not updated in the no-change and mix-
ing enhancing steps, so that π(s|k)π(k) gets cancelled in the corresponding
acceptance ratios.

S-3 Bayes factor computation using TTMCMC re-
alizations

Assuming that there are N realizations of TTMCMC stored for Bayesian
inference after discarding a suitable burn-in period, the Bayes factors asso-
ciated with the distinct subsets of the covariates featuring in the TTMCMC
samples can be calculated as follows.

Let there be Ñ (< N) distinct subsets
{
s∗1, s

∗
2, . . . , s

∗
Ñ

}
in the TTMCMC

sample, each subset consisting of distinct indices of a set of covariates which
is a subset of the entire pool of covariates indexed by S. Thus, the TTMCMC
sample consists of Ñ distinct subsets of covariates out of a total 2p − 1
possibilities, p = |S| being the total available number of covariates. The
subsets of covariates that did not feature in the TTMCMC sample will be
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interpreted as having negligible posterior probabilities and will be not be
considered any further for our Bayesian analyses.

For i = 1, . . . , Ñ , assuming that s∗i is repeated Ni times in the TTMCMC

sample, so that
∑Ñ

i=1Ni = N , we estimate its posterior probability by
π̃(s∗i ) = Ni/N . Let k∗i = |s∗i | be the cardinality of s∗i . Note that the prior
for the model associated with any subset s consisting of k covariates is
uniform over all

(
p
k

)
possibilities, given by (S-2). Hence, the marginal prior

probability of s with |s| = k is

π(s) =

p∑
j=1

π(s|j)π(j) = π(s|k)π(k) = π(k)(
p
k

) , (S-1)

since π(s|j) = 0 if j ̸= k. In the above, π(k) denotes the prior for k.
Using (S-1), we compute for each i = 1, . . . , Ñ ,

Bi =
π̃(s∗i )

π(s∗i )
=

Ni

N
×

(
p
k∗i

)
π(k∗i )

. (S-2)

For any i, j ∈ {1, . . . , Ñ}, the (approximate) Bayes factor of the model
associated with s∗i against that associated with s∗j is given by

BFij = Bi/Bj . (S-3)

Thus, the best model is the one with the largest Bi; i = 1, . . . , Ñ . Note
that Bi is proportional to the marginal density of the data, given the i-th
model, where the proportionality constant is the same for all the competing
models.

S-4 Proof of convergence of the TTMCMC algo-
rithm

To prove convergence of Algorithm S-2.1 it is sufficient to establish detailed
balance, irreducibility and aperiodicity of the algorithm, which we undertake
step-by-step in this section. For simplicity, let us assume that β is the only
parameter vector associated with the covariates. The extension is trivial for
other parameter vectors associated with the covariates.

S-4.1 Proof of detailed balance

S-4.1.1 Additive transformation

Let us first consider the case of the additive transformation, which we select
with probability p̃. To see that detailed balance is satisfied for the birth
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and death moves, note that associated with the birth move, the probability
(essentially) of transition (β(t), s(t), k) 7→ (β′, s′, k + 1), with k = |s(t)| and
k + 1 = |s′| (so that β(t) ∈ Rk and β′ ∈ Rk+1), while the other elements of
θ are held fixed, is given by:

π(θ(t), s(t), k)× p̃× 1

k
× wb,k ×N(ϵ : 0, 1)

×min

{
1,

1

k + 1
×

wd,k+1

wb,k
× π(θ′, s′, k + 1)

π(θ(t), s(t), k)
×
∣∣∣∣ ∂β′

∂(β, ϵ)

∣∣∣∣
}

= p̃×N(ϵ : 0, 1)×min

{
π(θ(t), s(t), k + 1)× 1

k
× wb,k,

1

k(k + 1)
× wd,k+1 × π(θ′, s′, k + 1)×

∣∣∣∣∣ ∂β′

∂(β(t), ϵ)

∣∣∣∣∣
}
, (S-1)

where N(ϵ : 0, 1) is the density of the normal distribution with mean 0 and

variance 1, evaluated at ϵ. Assuming that β
(t)
j was selected, and was split

into β
(t)
j + aβ,jϵ and β

(t)
j − aβ,jϵ,

∣∣∣ ∂β′

∂(β,ϵ)

∣∣∣ = 2aβ,j .

At the reverse death move we must be able to return to (β(t), s(t), k)
from (β′, s′, k + 1), while the other elements of θ are held fixed. We select
β′
j with probability 1/(k + 1), then select β′

j+1 without replacement with
probability 1/k, and take the resultant average.

Let ϵ∗ be such that β
(t)
j + aβ,jϵ

∗ = β′
j and β

(t)
j − aβ,jϵ

∗ = β′
j+1, so that

ϵ∗ = (β′
j − β′

j+1)/2. The transition probability of the death move is hence
given by:

π(θ′, s′, k + 1)× p̃× wd,k+1 ×N(ϵ, 0, 1)× 1

k + 1
× 1

k
×

∣∣∣∣∣ ∂(β′, ϵ)

∂(β(t), ϵ∗, ϵ)

∣∣∣∣∣
×min

{
1, (k + 1)×

wb,k

wd,k+1
× π(θ(t), s(t), k)

π(θ′, s′, k + 1)
×

∣∣∣∣∣∂(β(t), ϵ∗, ϵ)

∂(β′, ϵ)

∣∣∣∣∣
}

= p̃×N(ϵ : 0, 1)×min

{
π(θ′, s′, k + 1)× wd,k+1 ×

1

k(k + 1)
×

∣∣∣∣∣ ∂(β′, ϵ)

∂(β(t), ϵ∗, ϵ)

∣∣∣∣∣ ,
1

k
× wb,k × π(θ(t), s(t), k)

}
= p̃×N(ϵ : 0, 1)×min

{
π(θ′, s′, k + 1)× wd,k+1 ×

1

k(k + 1)
× 2aβ,j ,
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1

k
× wb,k × π(θ(t), s(t), k)

}
. (S-2)

Thus, (S-1) = (S-2), showing that detailed balance holds for the birth and
the death moves. The proof of detailed balance for the no-change move type
where the dimension remains unchanged is the same as that of TMCMC,
and has been been proved in the supplement of Dutta and Bhattacharya
(2014).

S-4.1.2 Multiplicative transformation

Now let us consider the multiplicative transformation, which we select with
probability 1 − p̃. For the birth move, the probability (essentially) of the
transition (β(t), s(t), k) 7→ (β′, s, k + 1)), while the other elements of θ are
held fixed, is given by:

π(θ(t), s(t), k)× (1− p̃)× 1

k
× wb,k × U(ϵ : −1, 1)

×min

{
1,

1

k + 1
×

wd,k+1

wb,k
× 1

2
× π(θ′, s′, k + 1)

π(θ(t), s(t), k)
×

∣∣∣∣∣ ∂β′

∂(β(t), ϵ)

∣∣∣∣∣
}

= (1− p̃)× U(ϵ : −1, 1)×min

{
π(θ(t), s(t), k)× 1

k
× wb,k,

1

k(k + 1)
× wd,k+1 × π(θ′, s′, k + 1)× 1

2
×

∣∣∣∣∣ ∂β′

∂(β(t), ϵ)

∣∣∣∣∣
}
, (S-3)

where U(ϵ : −1, 1) is the density of the uniform distribution on [−1, 1],

evaluated at ϵ. Assuming that β
(t)
j was selected, and was split into β

(t)
j ϵ and

β
(t)
j /ϵ,

∣∣∣ ∂β′

∂(β(t),ϵ)

∣∣∣ = 2|β(t)
j |/|ϵ|.

At the reverse death move we must be able to return to (β(t), s(t), k) from
(β′, s′, k+1), while the other elements of θ are held fixed. We select β′

j with
probability 1/(k+1), then select β′

j+1 without replacement with probability

1/k, and take
√
|β′

jβ
′
j+1|) or −

√
|β′

jβ
′
j+1|) with equal probabilities.

Let ϵ∗ be such that β
(t)
j ϵ∗ = β′

j and β
(t)
j /ϵ∗ = β′

j+1, so that ϵ∗ =

±
√
|β′

jβ
′
j+1|). The transition probability of the death move is hence given
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by:

π(θ′, s′, k + 1)× (1− p̃)× wd,k+1 × U(ϵ,−1, 1)× 1

k + 1
× 1

k
× 1

2
×

∣∣∣∣∣ ∂(β′, ϵ)

∂(β(t), ϵ∗, ϵ)

∣∣∣∣∣
×min

{
1, (k + 1)×

wb,k

wd,k+1
× π(θ(t), s(t), k)

π(θ′, s′, k + 1)
× 2×

∣∣∣∣∣∂(β(t), ϵ∗, ϵ)

∂(β′, ϵ)

∣∣∣∣∣
}

= (1− p̃)× U(ϵ : −1, 1)×min

{
π(θ′, s′, k + 1)× wd,k+1 ×

1

k(k + 1)
× 1

2

×

∣∣∣∣∣ ∂(β′, ϵ)

∂(β(t), ϵ∗, ϵ)

∣∣∣∣∣ , 1k × wb,k × π(θ(t), s(t), k)

}

= (1− p̃)× U(ϵ : −1, 1)×min

{
π(θ′, s′, k + 1)× wd,k+1 ×

1

k(k + 1)

×|β′
j′ |,

1

k
× wb,k × π(θ(t), s(t), k)

}
. (S-4)

Noting that |β′
j′ | = |β(t)

j |/|ϵ|, it is seen that (S-3) = (S-4); that is, de-
tailed balance holds for the birth and the death moves with respect to the
multiplicative transformation. Again, the proof of detailed balance for the
no-change move type where the dimension remains unchanged is the same
as that of TMCMC.

Also, the proof of detailed balance of the mixing-enhancement step (Step
5. of Algorithm S-2.1) is the same as that of TMCMC.

S-4.2 Irreducibility and aperiodicity

The proof of irreducibility and aperiodicity of Algorithm S-2.1 follows easily
from the general arguments provided in the supplements of Das and Bhat-
tacharya (2019) and Dutta and Bhattacharya (2014).

S-5 Bayes factor based variable selection experi-
ments with TTMCMC

We now provide details of our simulation studies with respect to variable se-
lection. We consider linear regression (Section 4.1 of MB), Gaussian process
regression with squared exponential covariance kernel (Section 4.2 of MB)
as well as autoregressive regression (Section 7.1 of MB) for our purpose.

19



S-5.1 Linear regression

S-5.1.1 Data generation with random sets of covariates

As in Section 4.1 of MB, we consider the model of the form yi = β′
sxi,s+ ϵi,

where ϵi
iid∼ N(0, σ2

ϵ ). For the true, data-generating model, we set σ2
ϵ = 0.1,

and set, for i = 1, . . . , n and j = 1, . . . , p = |S|, xij = 5/j + ηij , where

ηij
iid∼ N(0, σ2

η), with σ2
η = 0.1. For generating the data, we randomly select

a subset s from the set S associated with p covariates, construct xi,s and
simulate the elements of the regression coefficient vector βs independently
from N(0, σ2

b ), with σ2
b = 5. We also consider an intercept α in our data-

generating model, which we simulate as α ∼ N(µα, σ
2
α), with µα = 1 and

σ2
α = 0.1. Abusing notation for convenience, we shall assume that α is the

first element of βs and that the vector of ones is the first column of the
design matrix Xs. With this setup, we then generate the data from the
resulting true regression model.

For data generation, we consider three scenarios. Setting p = 10, 20, 30,
we generate n = 25, 25, 35 data-points for the respective values of p. We
repeat the data-generation procedure 1000 times for each pair (p, n), so that
for every (p, n), we have 1000 datasets, each consisting of n data-points and
a random subset of covariates selected from the possible p covariates. For
each of the 1000 simulated datasets, we attempt to select the best subset
of covariates using Bayes factor obtained through TTMCMC. The Bayesian
model and prior specifications that we used for the purpose is detailed next.

S-5.1.2 Bayesian linear regression model and prior specification
for variable selection using TTMCMC and Bayes factors

Then assuming that the model for the simulated data yi is normal linear re-
gression (with intercept) on an unknown subset of covariates of the complete
set of p covariates, and with all parameters unknown, we attempt to select
the best subset of covariates, using our TTMCMC algorithm (Algorithm
S-2.1) and Bayes factors resulting from TTMCMC, as detailed in Section
S-3. For the prior on βs, we consider the same form of Zellner’s g prior
considered in Section 4.1 of MB; here we assume the following equivalent
form:

βs ∼ N
(
0, exp(ϕ− g)

(
X ′

sXs

)−1
)
, (S-1)

where g and ϕ are real-valued parameters. Rather than fixing g and ϕ,
we consider them as random variables, to be updated in TTMCMC. Thus,
priors are needed on these parameters. As in the case of Zellner-Siow prior
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(Zellner and Siow (1980); see also Liang et al. (2008) for further discussion),
we assume that a priori, exp(g) ∼ Gamma(1/2, n/2), so that the log-prior
for g is given, after ignoring an additive constant, by

log π(g) = −n

2
exp(g) +

g

2
. (S-2)

We also assume that
π(ϕ) ∝ 1. (S-3)

As regards the prior for σ2
ϵ , we re-parameterize this as exp(−τ), and as-

sume that exp(τ) ∼ Gamma(aτ , bτ ), so that the log-prior, after ignoring an
additive constant, is given by

log π(τ) = −bτ exp(τ) + aττ. (S-4)

We set aτ = bτ = 0.01.
We put a discrete normal prior on k = |s|, given by

π(k) ∝ exp

{
− 1

2σ2
k

(k − µk)
2

}
; k = 1, 2, . . . , p. (S-5)

Note that although the Poisson distribution is commonly used for specifying
priors on the dimension in variable-dimensional problems, the above discrete
normal prior is more flexible, since it can control both the mean and variance
of the dimensionality, unlike the Poisson prior which has the same mean and
variance.

In (S-5) we set µk = 8, 16, 24, respectively, when p = 10, 20, 30, and fix
σ2
k = 1 for all the chosen values of p. These relatively large values of µk with

respect to p are chosen to avoid the Lindley’s paradox which creates the
tendency among Bayes factors to select parsimonious models, irrespective
of the truth. The variance σ2

k = 1 is expected to disallow significant drift of
the dimension towards small values, unless the data dictates so.

S-5.1.3 TTMCMC implementation for Bayesian linear regression

For TTMCMC implementation, we set wb,k = wd,k = wnc,k = 1/3 for all k =
2, . . . , p− 1; for k = 1 and k = p, we set wd,k = 0 and wb,k = 0, respectively.
For the latter two cases, we set wb,k = wnc,k = 1/2 and wd,k = wnc,k = 1/2,
respectively.

We also set p̃ = q̃ = 1/2, so that we select additive and multiplicative
transformations with equal probabilities. We set the scales aβ,j = 0.5, for
j = 1, . . . , p, and aθ,j = 0.05 for the remaining parameters. However, when
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p is as large as 20 and 30, we set aθ,j = 0.005 for the remaining parame-
ters to make the acceptance rates reasonably large. For the no-change and
mixing-enhancement steps, we set c = 0.01. Recall from the discussion in
Section S-2 that the goal of this strategy is to improve acceptance rates of
the birth moves as well as of the no-change and mixing-enhancing moves,
induced by the additive transformation. Indeed, note that with the additive
transformation, the acceptance ratio of the birth move depends significantly
on twice aβ,j , so that relatively large value of aβ,j would lead to higher
acceptance probability. However, too large aβ,j would of course lead to in-

creased rejection rate, since β
(t)
j + aβ,j |ϵ1| and β

(t)
j − aβ,j |ϵ1| may take the

new β-vector too far from the current β(t)-vector. Thus, relatively large,
but adequate choices of aβ,js are necessary. This also ensures that the ac-
ceptance rate of the death move, which depends upon inverse of aβ,j , is not
too small.

Now, relatively large choice of aβ,js would make the acceptance rates
associated with the no-change and the mixing-enhancing steps induced by
the additive transformation too small, since in those steps, all the unknown
quantities are updated simultaneously. To avoid this undesirable situation,
we multiply aβ,js by c = 0.01, so that they are rendered adequately small
in these steps. Detailed balance is easily seen to hold with respect to this
multiplication by c, in the same way as in fixed-dimensional TMCMC.

We standardize all the available covariates so that their empirical means
and variances are 0 and 1, respectively. Now note that minimizing BIC(u) in
the linear regression case reduces to minimizing the residual sum of squares∑n

i=1(yi − β̂
′
s(t)xi,s(t) − β̂uxi,u)

2 with respect to u ∈ S\s(t), where (β̂s(t) , β̂u)
is the least squares estimator associated with the current covariate index
subset s(t).

For our TTMCMC implementation, we discard the first 104 × 150 itera-
tions as burn-in, and store one in every 150 iterations in the next 5×104×150
iterations, to obtain 5 × 104 iterations for our Bayesian inference. We ini-
tialise our TTMCMC algorithm with only one covariate, {xi1; = 1, . . . , n}.

S-5.1.4 Parallelization

Recall that for every pair (p, n), 1000 datasets are generated and TTMCMC
must be implemented for variable selection in each of the 1000 datasets.
Thus, 1000 TTMCMC implementations are necessary for each pair (p, n).
For Bayesian linear regression, a single typical TTMCMC run in our C code
implementation on each core (with 2.8 GHz CPU speed) of our VMWare
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(about 2 TB memory) takes about 2 minutes, 4 minutes and 11 minutes,
respectively, for (p = 10, n = 25), (p = 20, n = 25) and (p = 30, n =
35). Hence, for completing our simulation experiments in reasonable times,
parallelization of our computations is indispensable.

Although our VMWare that we use for our current research consists of
80 single-threaded cores, using only the best 50 of them yields the optimum
performance. As such, using shell scripting language, we parallelise the 1000
C code based TTMCMC runs for each (p, n) combination into 50 cores, so
that 50 TTMCMC runs are simultaneously implemented for each (p, n); each
core implementing only 20 TTMCMC runs. This parallelization strategy
allowed us to obtain the results for all our simulation experiments in very
reasonable times, as is obvious from the aforementioned timings for the
single TTMCMC runs.

A typical TTMCMC run for the (p = 10, n = 25) case yields the overall
acceptance rate 0.193, birth rate 0.064, death rate 0.081 and no-change rate
0.410. For (p = 20, n = 25), these rates are 0.191, 0.039, 0.039 and 0.496,
respectively, and for (p = 30, n = 35), these are 0.234, 0.101, 0.101 and 0.498,
respectively. These rates are computed on the basis of the entire TTMCMC
run, not just on the stored samples. That is, these rate computations are
based on 104 × 150 + 5× 104 × 150 = 9× 106 TTMCMC realizations.

S-5.1.5 Results of the linear regression simulation experiments

After every TTMCMC run in each processor of our VMWare, we implement
an R code that computes Bi given by (S-2), for i = 1, . . . Ñ . The R code
selects that set of covariates indexed by sbest which corresponds to Bmax =
max{B1, . . . , BÑ}. We also consider a binary vector V = (v1, . . . , vp), where,
for j = 1, . . . , p, vj = 1 or 0 accordingly as j ∈ sbest or j /∈ sbest. Also,
let V0 denote the binary vector associated with s0, the set of indices of
the data-generating covariates. The R code also computes the Hamming
distance between the binary vectors V and V0, which, simply put, is the
total number of position-wise mismatches in the two vectors consisting of
p positions. Thus, the Hamming distance is zero if and only if V = V0,
that is, when the best model obtained is the same as the true model. The
Bayes factor of the best model against the true, data-generating model is
also computed in the R code using the formula (S-3), provided that the
true model appears in the stored TTMCMC sample. Furthermore, we also
compute the rank of the true model based on the Bi values, again provided
that the true model features in the stored TTMCMC sample.

For each (p, n), these results for all the 1000 TTMCMC runs are com-
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bined to yield the proportions of times the Hamming distance takes the
values 0, 1, . . . , p − 1, among the 1000 runs. We also compute the average
log-Bayes factor of the best model against the true model and the aver-
age rank of the true model, the averaging done over those TTMCMC sam-
ples which consist of the true model and Hamming distance value r, for
r = 0, 1, . . . , p − 1. These results are depicted in Figure S-1. Panel (a) of
the figure shows that for p = 10, n = 25, the Hamming distance gives the
highest probability (about 0.527) to 0, that is, the true set of covariates is
selected with the highest probability, which is also significantly higher com-
pared to the other values of the Hamming distance. The average log-Bayes
factor, as shown in panel (b), is the highest when the Hamming distance is
5, while for Hamming distance 7, 8 and 9, the average log-Bayes factor is not
available since the true set of covariates did not appear in the TTMCMC
samples in those cases. Note that the average log-Bayes factor is not in-
creasing with the Hamming distance, which is indeed not to be expected in
general. The average true model rank, displayed in panel (c), is increasing
with the Hamming distance, but again, is unavailable for the values 7, 8 and
9 of the Hamming distance since the true set of covariates has probability
zero with respect to the respective TTMCMC samples.

The scenario when p = 20, n = 25, is not significantly different from the
p = 10, n = 25 case. Panel (d) shows that the Hamming distance gives the
highest probability 0.143 to both 0 and 1, which is again significantly higher
than those for the other values. The highest probability is of course much
less than in the corresponding (p = 10, n = 25) scenario, which is expected,
since the number of covariate subsets to search for the true covariate subset
is far greater than in the previous case. Since n = 25 is also the same as
before, the information about the true covariate set is not increased either.
But that in spite of these issues the true covariate sets are found with the
highest probability, vindicates the efficacy of our variable selection theory
and the TTMCMC based methodology. The average log-Bayes factor is
the highest when the Hamming distance is 9 and the average true model
rank is the highest for Hamming distance 7. Note that unlike the case of
(p = 10, n = 25), the true model rank is not increasing with the Hamming
distance in this case, and this is to be expected in general

The case of p = 30, n = 35 is the most challenging situation among all
the (p, n) pairs considered, as searching for the true set of covariates from
among a set of 230 − 1 = 1073741823 possible subsets is akin to looking for
a needle in a haystack! Yet, as panel (g) of Figure S-1 shows, the Hamming
distance gives significant probability to 0, while the value 2 gets the highest
probability. This performance of our TTMCMC based Bayes factor should
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not be considered unsatisfactory at all. Note that the average log-Bayes
factor is the highest when the Hamming distance is 10, but the average
model rank is the worst when the Hamming distance is as small as 5, relative
to p−1 = 29. In other words, even for Hamming distance 5, there are many
models that perform better than the true model on a average, in terms of
Bayes factor. Since for most of the larger values of the Hamming distance
the true sets of covariates have probabilities zero with respect to TTMCMC,
it is clear that for most values of the Hamming distance, the true, data-
generating model is outperformed by the other models. It must also be
remarked that for a limited TTMCMC sample size, reliably measuring the
performances of many important models among a set of such a huge number
of models, is infeasible.

S-5.2 Gaussian process regression

We now consider simulation experiments with Gaussian process regression
as described in Section 4.2 of MB. That is, now the model that we consider
is of the form y = f(xs) + ϵ, where f(·) is modeled by a Gaussian process
with mean function µ (xs) and squared exponential covariance kernel of the
form

Cov
(
f(xs), f(x

′
s)
)
= σ2

f exp

{
−1

2

(
xs − x′

s

)T
Ds

(
xs − x′

s

)}
,

where σ2
f is the process variance and the diagonal elements of Ds are the

smoothness parameters.
Here the data are modeled as yi = f(xi,s) + ϵi, where, for i = 1, . . . , n,

ϵi
iid∼ N(0, σ2

ϵ ). As before, we reparameterize σ2
ϵ as exp(−τ); we also repa-

rameterize σ2
f as exp(−τf ), where τ and τf are real parameters. But unlike

the linear regression case, here we assume that a priori, τ ∼ N(µτ , σ
2
τ ) and

τf ∼ N(µτf , σ
2
τf
), with µτ = µτf = 0, σ2

τ = 0.5 and σ2
τf

= 0.1, the variances
reflecting the belief that uncertainty about the process variance is less than
that of the noise variance.

For i = 1, . . . , |s|, we reparameterize the i-th diagonal element of Ds as

exp(−γi), where we assume a priori that γi
iid∼ N(0, σ2

γ), with σ2
γ = 2.

We model the mean function µ (xs) as linear regression containing the
intercept, that is, we set µ (xs) = β′

sxs, assuming that the first element of
xs is 1. We consider the same Zellner-Siow prior form for βs as in Sec-
tion S-5.1. As before, we standardize all the available covariates for model
implementation with TTMCMC.
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(a) p = 10, n = 25.
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(b) p = 10, n = 25.
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(c) p = 10, n = 25.
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(d) p = 20, n = 25.
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(e) p = 20, n = 25.

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 5 10 15

0
10

20
30

40
50

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

(f) p = 20, n = 25.
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(g) p = 30, n = 35.

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

0 5 10 15 20 25 30

0
5

10
15

20
25

Average Log Bayes Factor

Hamming Distance

A
ve

ra
ge

 L
og

 B
ay

es
 F

ac
to

r

(h) p = 30, n = 35.
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(i) p = 30, n = 35.

Figure S-1: Simulation study: Bayesian linear regression variable selection
results.
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Letting γs denote the vector of smoothness parameters, note that βs and
γs are both variable-dimensional vectors, the dimensions of which must be
increased or decreased simultaneously. Recall that such updating provision
is of course considered in our TTMCMC algorithm (Algorithm S-2.1). The
prior for k remains the same as in the linear regression setup.

The data simulation principle from the true model consisting of random
sets of covariates and the formation of the covariates remain the same as
in the linear regression case; here (y1, . . . , yn) is generated from the joint
multivariate normal model dictated by the above Gaussian process setup,
given βs, γs, τ and τf . We set τ = − log(0.1) and τf = − log(0.2), and
simulate the elements of βs and γs from the zero mean normal distribution
with variance 5.

As before, we consider the settings (p = 10, n = 25), (p = 20, n = 25)
and (p = 30, n = 35) for evaluating our Bayes factor based variable selec-
tion obtained via TTMCMC. The TTMCMC algorithm in this Gaussian
process setup is similar to that for linear regression, with the extra variable-
dimensional parameter γs and the fixed-dimensional variable τf being ac-
counted for. The procedure for updating these remain the same as before,
in accordance with the details provided in Algorithm S-2.1.

As regards computation of BIC(u) in this Gaussian process setup, we
first obtain the least squares estimates β̂s corresponding to βs pretend-
ing a linear regression context, and substitute β̂s in the Gaussian process
likelihood. Also, in the Gaussian process likelihood, we set γ̂i = 0, for
i = 1, . . . , |s|, corresponding to γs. Finally, we substitute the current values

τ (t) and τ
(t)
f for τ and τf in the likelihood, and proceed to compute the BIC

version with these substitutions. As we shall demonstrate, our experiments
reveal that this method yields quite reliable propositions for the new covari-
ates. However, computation of BIC(u) is quite demanding in this setup due
to the requirement of n×n-order matrix inversions for every u. Thus, in this
setup, for p even moderately large, our TTMCMC takes considerably more
implementation time than for linear regression. Indeed, for (p = 10, n = 25)
the time taken is about 26 minutes for a typical run, and for (p = 20, n = 25)
and (p = 30, n = 35), the respective run times are about 46 minutes and 2
hours 22 minutes. We parallelise our simulation experiments consisting of
1000 TTMCMC runs for each (p, n) pair in the same way as in the linear
regression setup.

The overall acceptance rate, birth rate, death rate and the no-change
rate for a typical TTMCMC run in the (p = 10, n = 25) case are about
0.182, 0.014, 0.014 and 0.518, respectively. For (p = 20, n = 25), these
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numbers are 0.217, 0.065, 0.065 and 0.522, while in the (p = 30, n = 35)
scenario, the respective rates are 0.201, 0.046, 0.046 and 0.511. Again, these
rates are computed on the basis of 9× 106 TTMCMC realizations.

S-5.2.1 Results of the Gaussian process regression simulation ex-
periments

The results of our variable selection method in the Gaussian process setup
are encapsulated in Figure S-2. Note that although for (p = 10, n = 25)
the Hamming distance assigns significantly higher probability to 0 com-
pared to all the other values, in the other two more challenging scenarios
(p = 20, n = 25) and (p = 30, n = 35), this good performance is not kept up.
This observation is in line with the average log-Bayes factors and the average
true model ranks, as displayed in Figure S-2. Thus, compared to the linear
regression setup, our variable selection methods in the Gaussian process re-
gression setup seems to be less robust with respect to increasing dimensions.
This is, however, not unexpected due to the structured dependence in the
Gaussian process regression datasets.

S-5.3 AR(1) regression

Now let us consider the variable selection problem in the following AR(1)
context, the Bayes factor asymptotics of which is detailed in Section 7.1:

yt = ρyt−1 + β′
sxt,s + ϵt, and ϵt

iid∼ N
(
0, σ2

ϵ

)
, for t = 1, . . . , n,

where y0 ≡ 0 and |ρ| < 1. We reparameterize ρ as ρ = −1 + 2 exp(ρ̃)/(1 +
exp(ρ̃)), and assume that ρ̃ ∼ N(0, 1). As before we consider the Zellner-
Siow prior for βs and reparameterize σ2

ϵ as exp(−τ) and use the log-prior
form (S-4), with ατ = λτ = 0.01. For data generation, we generate ρ from
U(−1, 1).

To form the likelihood, we considered the product
∏n

t=1[yt|yt−1], where
[yt|yt−1] stands for the distribution (19) of MB. We did not consider the
correlated error form yt = β′

szt,s+ ϵ̃t considered in Section 7.1 for likelihood
formation as this would involve a multivariate normal distribution which
would require n× n matrix inversions in each step of TTMCMC.

For BIC(u), first note that given the value of ρ at the current TTMCMC
iteration, y1 and yt−ρyt−1 for t ≥ 2 has a linear regression form, using which
we compute the least squares estimator of the regression coefficients. The
rest of the BIC(u) minimization procedure is the same as in the linear
regression setup.
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(a) p = 10, n = 25.
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(b) p = 10, n = 25.

0 2 4 6 8

0
10

20
30

40

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 2 4 6 8

0
10

20
30

40

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 2 4 6 8

0
10

20
30

40

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 2 4 6 8

0
10

20
30

40

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 2 4 6 8

0
10

20
30

40

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 2 4 6 8

0
10

20
30

40

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 2 4 6 8

0
10

20
30

40

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 2 4 6 8

0
10

20
30

40

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 2 4 6 8

0
10

20
30

40

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

0 2 4 6 8

0
10

20
30

40

Average True Model Rank

Hamming Distance

A
ve

ra
ge

 T
ru

e 
M

od
el

 R
an

k

(c) p = 10, n = 25.
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(d) p = 20, n = 25.
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(e) p = 20, n = 25.
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(f) p = 20, n = 25.
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(g) p = 30, n = 35.
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(h) p = 30, n = 35.
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(i) p = 30, n = 35.

Figure S-2: Simulation study: Bayesian Gaussian process regression variable
selection results.
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Indeed, the remaining methodological and implementation details are
also akin to the linear regression situation. In this case, typical TTMCMC
runs for (p = 10, n = 25), (p = 20, n = 25) and (p = 30, n = 35) took about
9 minutes, 14 minutes and 36 minutes, respectively. The overall acceptance
rate, birth rate, death rate and no-change rates in the first case was about
0.553, 0.552, 0.564 and 0.544, respectively. In the second and third sce-
narios they were (0.582, 0.602, 0.601, 0.543) and (0.580, 0.605, 0.605, 0.533),
respectively.

S-5.3.1 Results of the AR(1) regression simulation experiments

Figure S-3 displays the results of our variable selection experiments in the
AR(1) context. Note that for (p = 10, n = 25), the Hamming distance
gives the highest probability to 0, which is also significantly higher than
those for the other values. However, as in the Gaussian process regression
experiments, here also the situation deteriorates for (p = 20, n = 25) and
(p = 30, n = 35), as the Hamming distance concentrates around larger
and larger values for the latter two scenarios. This gradual worsening of
the performance is also reflected in the respective average log-Bayes factors
and the average true model ranks, demonstrating that compared to linear
regression, variable selection in time series regression is a much more delicate
problem, with marked sensitivity with respect to larger dimensions.

At the first glance, this lack of robustness with respect to dimension
might seem surprising since the structure of AR(1) regression closely resem-
bles that of linear regression. However, recall from Section 7.1 of MB that
although the data yt can be written in a linear regression form with modi-
fied covariate structures involving ρ, the regression errors in such as case are
correlated, rendering the AR(1) setup a Gaussian process structure. Hence,
it is not surprising that our AR(1) regression results are much more in re-
semblance with our Gaussian process regression results, as compared to the
linear regression results, when p = 20 and 30.

S-6 Variable selection in a real riboflavin dataset

Let us now apply our TTMCMC based variable selection procedure to a real
dataset on riboflavin (vitamin B2) production rate, which has been made
public by Bühlmann et al. (2014). The response variable in this dataset is
the log-transformed riboflavin production rate corresponding to p = 4088
possible covariates measuring the logarithm of the expression level of 4088
genes. The sample size is n = 71. Covariate selection of this dataset using
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(a) p = 10, n = 25.
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(b) p = 10, n = 25.
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(c) p = 10, n = 25.
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(d) p = 20, n = 25.
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(e) p = 20, n = 25.
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(f) p = 20, n = 25.
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(g) p = 30, n = 35.
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(h) p = 30, n = 35.
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(i) p = 30, n = 35.

Figure S-3: Simulation study: Bayesian AR(1) regression variable selection
results.
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classical methods based on linear regression model has been performed by
Javanmard and Montanari (2014) who report two significant genes YXLD at
and YXLE at. Meinshausen et al. (2009) on the other hand, found only
YXLD at to be significant, while the method of Bühlmann (2013) found
no significant gene. Thus, based on linear regression models and classical
methods of variable selection employed so far, either no gene, one gene or
two genes, are found to be significant.

We apply our Bayes factor based covariate selection technique using
TTMCMC to this dataset, considering both linear and Gaussian process
regression. We consider the same setups as in our simulation experiments,
with the same models and priors, with some variation in the prior for k,
to account for the uncertainty with respect to the large number of avail-
able covariates. Specifically, with the same discrete normal prior for k, we
consider the choices of (µk, σ

2
k) to be (25, 10) and (40, 10), respectively. We

allow a maximum of 50 covariates in the model, since, as is clear from the
aforementioned past analyses of this dataset, too many genes can not be
significant. In keeping with this, the maximum number of covariates in our
posterior simulations turned out to be less than 10 in all our setups for this
real data.

As in the simulation experiments, we discard the first 104 × 150 TTM-
CMC realizations as burn-in and store every 150-th realization in the next
5 × 104 × 150 iterations, to obtain 5 × 104 TTMCMC realizations for our
inference. For the additive transformation, the scales aθ,j and the constant
c in the mixing-enhancing step are chosen in the same way as in the sim-
ulation studies in the p = 30 setups. Since for Gaussian process regression
minimization of BIC(u) in the TTMCMC step is computationally too de-
manding for p = 4088 covariates, we replace this BIC(u) with that used
for linear regression. Theoretically, this is a perfectly valid procedure, and
our TTMCMC results demonstrate very reasonable final selection of the
covariates via Bayes factor.

S-6.1 Results for the linear regression model

For the linear regression model with (µk, σ
2
k) = (25, 10), the overall ac-

ceptance rate, birth rate, death rate, no-change rate turned out to be
(0.187, 0.002, 0.003, 0.497), and the implementation time is about 12 hours
and 11 minutes. Our Bayes factor computation based on TTMCMC yielded
the following best set of 4 covariates: (ARGB at, EXOA at, SIGY at, YOAB at).

When (µk, σ
2
k) = (40, 10), the overall acceptance rate, birth rate, death

rate, no-change rate are (0.175, 0.001, 0.001, 0.496) and the time taken is
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about 11 hours 33 minutes. In this case, the following set of 7 covari-
ates turned out to be the best: (ARGB at, YDAR at, YHDZ at, YJIA at,
YOAB at, YUZF at, YXLD at). The covariates common to both (µk, σ

2
k) =

(25, 10) and (µk, σ
2
k) = (40, 10) are (ARGB at,YOAB at), which does not

contain the covariates found significant by Javanmard and Montanari (2014)
or Meinshausen et al. (2009). More specifically, although the case (µk, σ

2
k) =

(40, 10) contains YXLD at, which has been found to be significant by both
Javanmard and Montanari (2014) and Meinshausen et al. (2009), none of
the cases (µk, σ

2
k) = (25, 10) or (µk, σ

2
k) = (40, 10) finds YXLE at, declared

as significant by Javanmard and Montanari (2014).

S-6.2 Results for the Gaussian process regression model

For the Gaussian process regression model with (µk, σ
2
k) = (25, 10), the

implementation time is about 8 hours 47 minutes and the overall acceptance
rate, birth rate, death rate, no-change rate are (0.185, 0.012, 0.012, 0.530).
The following 4 covariates are selected as the best by our TTMCMC based
Bayes factor: (ARGB at, YHDZ at, YOAB at, YXLD at).

For (µk, σ
2
k) = (40, 10), the implementation time was about 9 hours 56

minutes and the overall acceptance rate, birth rate, death rate, no-change
rate are (0.193, 0.024, 0.024, 0.529). Remarkably, here we obtain exactly the
same set of covariates (ARGB at, YHDZ at, YOAB at, YXLD at), as for
(µk, σ

2
k) = (25, 10), as the best set of covariates, which exhibits considerable

robustness of the Gaussian process regression model with respect

S-6.3 Comparison of the results for the linear regression and
the Gaussian process regression models

The results demonstrate that compared to the linear regression model for
this data, the Gaussian process regression is far more robust with respect
to the prior for k; moreover, it leads to much parsimony compared to linear
regression, as can be easily seen from the cardinalities of the best covariate
sets.

Note that YOAB at is common to all our linear regression and Gaussian
process regression implementations and hence we consider this to be an im-
portant discovery. Also, YXLD at is common to our Gaussian process and
linear regression implementations with (µk, σ

2
k) = (40, 10). Since this gene

is found to be significant by Javanmard and Montanari (2014) and Mein-
shausen et al. (2009) as well, it seems that this may also be an important
discovery. But the YXLE at gene, although declared significant by Javan-
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mard and Montanari (2014), did not appear in the best set of covariates in
any of our linear regression or Gaussian process regression analysis.

Now, the question arises that which of the four implementations of linear
and Gaussian process regression yields the best result in terms of Bayes
factor. In this regard, we first note that the maximum values of the log of
Bi given by (S-2) associated with the linear regression models for (µk, σ

2
k) =

(25, 10) and (µk, σ
2
k) = (40, 10) are given by 51.925 and 94.697, respectively,

while the same for the Gaussian process regression counterpart are 46.085
and 91.147. Thus, in this regard, the linear regression model with (µk, σ

2
k) =

(40, 10) given its Bayes factor guided best possible set of covariates, is the
best model, followed by Gaussian process regression with (µk, σ

2
k) = (40, 10),

given its best set of covariates. The next best models, given their respective
best set of covariates with respect to Bayes factors, in order, are provided
by the linear regressions model with (µk, σ

2
k) = (25, 10) and the Gaussian

process regression model with (µk, σ
2
k) = (25, 10).

Note that the genes YOAB at and YXLD at are common to the best
two models, which once again vindicates their importance.

S-7 Appendix

In this section we provide the proofs of all the lemmas stated in the paper.
Before proving the lemmas, we state some results which are useful in proving
the lemmas.

Result S-1. Let Cm×n denote the vector space of all m × n matrices. If
G,H ∈ Cn×n are positive semidefinite Hermitian matrices and 1 ≤ i1 <
· · · < ik ≤ n, then the following two inequalities hold:

k∑
t=1

λit (GH) ≤
k∑

t=1

λit (G)λt (H)

k∑
t=1

λt (GH) ≥
k∑

t=1

λit (G)λn−it+1 (H) .

A proof of this result can be found in Wang and Zhang (1992).

Result S-2. (a) For matrices A1 and A2, let A1 ⪯ A2 imply that A2 −A1

is nonnegative definite. Then for any symmetric matrix A,

λmin(A)I ⪯ A ⪯ λmax(A)I,
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(b) For symmetric matrices A1 and A2,

λmin(A1)+λmin(A2) ≤ λmin(A1+A2) ≤ λmax(A1+A2) ≤ λmax(A1)+λmax(A2).

Lemma S-1. Consider the setup of Section 7.1. The eigenvalues Cov (ϵ̃t+h, ϵ̃t) =
σ2
ϵ (1− ρ2)−1Σϵ are all positive, and bounded.

Proof. Let Cov (ϵ̃t+h, ϵ̃t) = σ2
ϵ (1 − ρ2)−1Σϵ. We first find the highest and

lowest eigenvalues of Σϵ. It can be shown that the inverse of Σϵ is a tridiag-
onal matrix as follows:

(
1− ρ2

)
Σ−1
ϵ =



1 −ρ 0 0 . . . 0 0
−ρ 1 + ρ2 −ρ 0 . . . 0 0
0 −ρ 1 + ρ2 −ρ . . . 0 0

. . . . . . . . .
0 0 0 0 . . . 1 + ρ2 −ρ
0 0 0 0 . . . −ρ 1


Stroeker (1983) shows that the approximations of the eigenvalues of(

1− ρ2
)
Σ−1
ϵ (arranged in increasing order if ρ > 0 and in decreasing or-

der if ρ < 0) are

λk

((
1− ρ2

)
Σ−1
ϵ

)
≈ 1− 2ρ cos

kπ

n+ 1
+ ρ2 − 4

n+ 1
ρ2
(
sin

kπ

n+ 1

)2

,

with corresponding error bound

ξk =
2ρ2√
n+ 1

sin
kπ

n+ 1
, for k = 1, . . . , n.

Combining the above facts, it can be seen that the eigenvalues of
(
1− ρ2

)
Σ−1
ϵ

are bounded by min{(1+ρ)2, (1−ρ)2}+o(1) and max{(1+ρ)2, (1−ρ)2}+o(1).

Thus the eigenvalues of
(
1− ρ2

)−1
Σϵ are bounded by

{
(1− |ρ|)2 + o(1)

}−1

and
{
(1 + |ρ|)2 + o(1)

}−1
. Thus all the eigenvalues of Σϵ are finite. As

|ρ| < 1 − γ for some small enough γ, clearly for sufficiently large n all the
eigenvalues of

(
1− ρ2

)
Σ−1
ϵ are positive. Also the highest eigenvalue is less

than 2/γ2.

Lemma S-2. Consider the setup in Section 7.1. Let Pn,s be the orthogonal
projection matrix onto the column space of Zn,s. Then the eigenvalues of
∂Pn,s/∂ρ are uniformly bounded.
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Proof. For simplicity we write Z instead of Zn,s. Recall Pn,s = Z
(
ZTZ

)−1
ZT .

Thus,

∂Pn,s

∂ρ

=
∂Z

∂ρ

(
ZTZ

)−1
ZT − Z

(
ZTZ

)−1 ∂
(
ZTZ

)
∂ρ

(
ZTZ

)−1
ZT

+Z
(
ZTZ

)−1 ∂ZT

∂ρ
(S-1)

First note that the t-th row of Z, zt,s =
∑t

k=1 ρ
t−kxk,s. Thus,

ZTZ = n

n∑
t=1

t∑
k1=1

t∑
k2=1

ρ2t−k1−k2

(
xk1,sx

T
k2,s

n

)
. (S-2)

Since the covariates lie in a compact space, the elements of the |s| × |s|
matrices xk1,sx

T
k2,s

in (S-2) are uniformly bounded. Further note that

1

n

n∑
t=1

t∑
k1=1

t∑
k2=1

ρ2t−k1−k2 ≤ 1

n

n∑
t=1

 t∑
k1=1

|ρ|t−k

2

=
1

n(1− |ρ|)2
n∑

t=1

(
1− |ρ|t

)2
= (1− |ρ|)−2

[
1− 2

|ρ|
n

(1− |ρ|n)
(1− |ρ|)

+
ρ2
(
1− ρ2n

)
n (1− |ρ|2)

]
.

As ρ ∈ [−1 + γ, 1 − γ], the above facts imply ZTZ = nBn, where Bn is
a |s| × |s| matrix whose elements are uniformly bounded. It follows that(
ZTZ

)−1
= n−1B−1

n = n−1Cn,s, where the elements of Cn,s are uniformly
bounded.

Let ∂Z/∂ρ = Hn. Then the t-th row ofHn is ht,s =
∑t

k=1(t−k)ρt−k−1xk,s.
then the first term of (S-1),

D :=
∂Z

∂ρ

(
ZTZ

)−1
ZT = n−1

hT
1,sCn,sz1,s . . . hT

1,sCn,szn,s
. . . . . .

hT
n,sCn,sz1,s . . . hT

n,sCn,szn,s

 .

The (t1, t2)-th element of D is

dt1,t2 =
1

n
hT
t1,sCn,szt2,s =

1

n

[
t1∑

k=1

(t1 − k)ρt1−k−1xT
k,s

]
Cn,s

[
t∑

k=1

ρt−kxk,s

]

=
1

n

t1∑
k1=1

t2∑
k1=1

(t1 − k1)ρ
t1−k1−1+t2−k2xT

k1,sCn,sxk2,s.
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Next note that xT
k1,s

Cn,sxk2,s =
∑|s|

j=1

∑|s|
l=1Cj,lxk1,jxk2,l. As elements of

Cn,s, as well as, the covariate space are uniformly bounded, the above
quadratic is bounded for any (k1, k2).
Now,

1

n

t1∑
k1=1

t2∑
k1=1

(t1 − k1)ρ
t1−k1−1+t2−k2

≤ 1

n

 t1∑
k1=1

(t1 − k1)|ρ|t1−k1−1

 t2∑
k1=1

ρt2−k2


=

1

n

{
1− |ρ|t1 (t1 + |ρ| − t1|ρ|)

(1− |ρ|)2

}(
1− |ρ|t2
1− |ρ|

)
. (S-3)

By Gerschgorin circle theorem the maximum eigenvalue of D is bounded by

max
t1∈{1,...,n}

1

n

{
1− |ρ|t1 (t+ |ρ| − t|ρ|)

(1− |ρ|)2

} n∑
t2=1

(
1− |ρ|t2
1− |ρ|

)
≤ (1− |ρ|)−3 ,

and the minimum eigenvalue is bounded below by − (1− |ρ|)−3. As ρ ∈
[−1 + γ, 1− γ], eigenvalues of D are uniformly bounded.

Next note that A and AT have same eigenvalues. As the third term
of (S-1) is the transpose of the first term, the third term also has finite
eigenvalues.

Next consider the second term of (S-1). Note that,

Z
(
ZTZ

)−1 ∂
(
ZTZ

)
∂ρ

(
ZTZ

)−1
ZT

= Pn,s
∂Z

∂ρ

(
ZTZ

)−1
ZT + Z

(
ZTZ

)−1 ∂ZT

∂ρ
Pn,s.

Recall, for two square matrices A and B, AB and BA have same eigen-
values. Thus eigenvalues of Pn,s

∂Z
∂ρ

(
ZTZ

)−1
ZT is same as eigenvalues of

∂Z
∂ρ

(
ZTZ

)−1
ZTPn,s =

∂Z
∂ρ

(
ZTZ

)−1
ZT , and eigenvalues of Z

(
ZTZ

)−1 ∂ZT

∂ρ Pn,s

is same as that of Pn,sZ
(
ZTZ

)−1 ∂ZT

∂ρ = Z
(
ZTZ

)−1 ∂ZT

∂ρ , as Pn,sZ = Z.

Finally, note that for any matrix A, λmax(A + AT ) is bounded above
by 2λmax(A), and λmin(A+ AT ) is bounded below by 2λmin(A). Hence the
second term of (S-1) has finite eigenvalues. Similarly, the sum of first and
third term of (S-1) has bounded eigenvalues.
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Combining the above results, note that the RHS of (S-1) can written
as sum of two symmetric matrices, and eigenvalues of each of them are
bounded. Using the result that for symmetric matrices A and B,
λmin(A) + λmin(B) ≤ λmin(A+B) ≤ λmax(A+B) ≤ λmax(A) + λmax(B),
the result follows.
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