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Abstract
We investigate Bayesian variable selection in models driven by Gaussian processes, 
which allows us to treat linear, nonlinear and nonparametric models, in conjunc-
tion with even dependent setups, in the same vein. We consider the Bayes factor 
route to variable selection, and develop a general asymptotic theory for the Gaussian 
process framework in the “large p, large n” settings even with p ≫ n , establishing 
almost sure exponential convergence of the Bayes factor under appropriately mild 
conditions. The fixed p setup is included as a special case. To illustrate, we apply 
our result to variable selection in linear regression, Gaussian process model with 
squared exponential covariance function accommodating the covariates, and a first-
order autoregressive process with time-varying covariates. We also follow up our 
theoretical investigations with ample simulation experiments in the above regression 
contexts and variable selection in a real, riboflavin data consisting of 71 observa-
tions and 4088 covariates. For implementation of variable selection using Bayes fac-
tors, we develop a novel and effective general-purpose transdimensional, transfor-
mation-based Markov chain Monte Carlo algorithm, which has played a crucial role 
in simulated and real data applications.
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1 Introduction

The importance of variable selection is undeniable, since most statistical proce-
dures involve a large number of observed variables, or covariates, only a few of 
which are expected to have significant influence on the experiment and future pre-
diction. It is thus important to judiciously select those few important covariates 
from a relatively large pool of available covariates. This task involves multiple 
challenges. Even in the simple classical linear regression setup, false inclusion or 
exclusion of the variables may lead to false inclusion or exclusion of correlated 
variables. That, in turn, can influence the variance of predictions and hence the 
root mean square error (RMSE), and the bias of predictions. The most popular 
methods developed in the classical paradigm, the penalty-based methods such as 
the Akaike Information Criterion and the Bayesian Information Criterion, are not 
immune to these problems, the former having the ill reputation of preferring mod-
els consisting of relatively large number of variables. Although the latter employs 
a more appropriate penalty and is preferable, in practice, it can lead to underfit-
ting. The popular LASSO method (see, for example, Tibshirani 1996) often has 
the effect of drastically reducing RMSE, but at the cost of increasing prediction 
errors. See Heinze et  al. (2018) for a relatively recent review regarding several 
of these issues; see also Draper and Smith (2005), Weisberg (2005). Asymptotic 
theory of the variable selection criterion in multiple regression has been consid-
ered in Nishii (1996) and Shao (1997); see also Eubank (1999) and Giraud (2015) 
for various issues regarding variable selection in linear models. Since even for 
simple linear regression models the variable selection issues can be of significant 
concern, it is well imaginable how grave the issues can be in the case of more 
realistically complex models such as nonlinear and nonparametric regression.

Apart from some of the issues touched upon, all the classical methods of 
variable selection have the major drawback of selecting a single set of variables 
without quantifying the uncertainty associated with such selection. This calls for 
the Bayesian paradigm of variable selection, which is also rich in its repertoire 
of philosophies and methodologies. One philosophy is Bayesian model averag-
ing, which recommends a mixture of all possible models for better prediction 
(see Fragoso et  al. 2018 for a review). Another philosophy is to infer from the 
posterior distribution of the regression coefficients (see, for e.g., Ishwaran and 
Rao 2005). An alternative philosophy is to obtain the posterior distribution of 
the subsets of the covariates, and form a single posterior that encapsulates all 
the relevant information. Covariate selection in this case proceeds by stochas-
tic search variable selection methods, which often involve variable-dimensional 
Markov chain Monte Carlo (MCMC) procedures (see O’Hara and Sillanpää 2009 
for a review). Even though these methods are usually computationally demand-
ing, most of them avoid the problems faced by the classical variable selection 
ideas. For details regarding various ideas on Bayesian model and variable selec-
tion along with relevant computational strategies, see, for example, Gilks and 
Roberts (1996), DiCiccio et al. (1997), Han and Carlin (2001), Fernández et al. 
(2001), Moreno and Girón (2008), Casella et  al. (2009), Ando (2010), Bayarri 



583

1 3

Bayes factor asymptotics in Gaussian process framework

et  al. (2012), Johnson and Rossell (2012), Hong and Preston (2012), Marin 
et  al. (2014), Dawid and Musio (2015). Asymptotic theories on Bayesian vari-
able selection can be found in Moreno et al. (2010), Shang and Clayton (2011), 
Moreno et al. (2015), Mukhopadhyay et al. (2015), although most of these theo-
ries are developed in the linear regression setup.

However, perhaps the most principled way of comparing the subsets of covariates 
is offered by Bayes factors, through the ratio of the posterior and prior odds associ-
ated with the competing models, which follows directly from the coherent proce-
dure of Bayesian hypothesis testing of preferring one model compared to other. The 
idea is also closely related to the aforementioned principle of obtaining posterior 
distributions of the covariate subsets. For a general account of Bayes factors and its 
numerous advantages, see, for example, Kass and Raftery (1995). However, care-
less use of Bayes factors can lead to selecting the more parsimonious but wrong 
model in large samples even in very simple setups for ill-chosen priors, as the well-
known Jeffreys-Lindley-Bartlett paradox demonstrates (see Jeffreys 1939; Lindley 
1957; Bartlett 1957; Robert 1993; Villa and Walker 2015 for details). It is thus of 
utmost importance to carefully investigate the asymptotic theory of Bayes factors in 
different setups and construct appropriate priors that ensure consistency in the sense 
that the Bayes factor selects the correct set of covariates asymptotically. Note that 
priors that ensure consistency of posterior distributions need not guarantee consist-
ency of Bayes factors, which is again demonstrated by the Jeffreys-Lindley-Bartlett 
and information paradox (see, for example, Section 2.3 of Liang et al. (2008)). Thus, 
the asymptotic theory of Bayes factors does not follow from the asymptotic theory 
of posterior distributions.

Compared to the asymptotic theory of posterior distributions, that of Bayes fac-
tors for general model selection have seen relatively slow development. Indeed, 
most of the theory for variable selection using Bayes factors have hitherto concen-
trated around nested linear regression models; see, for example, Guo and Speckman 
(1998), Liang et al. (2008), Moreno et al. (2010), Rousseau and Choi (2012), Wang 
and Sun (2014), Kundu and Dunson (2014), Choi and Rousseau (2015). However, 
see also Wang and Maruyama (2016) for a non-nested setup. This seems to be a 
very restrictive setup for the Bayesian framework, particularly in light of the current 
advancement in research on highly complex physical phenomena, where simplistic 
models are untenable. For a general account of advancements in the area of Bayes 
factor asymptotics, see Chib and Kuffner (2016), which also asserts the same fact.

Although variable selection has been considered in nonlinear and nonparametric 
frameworks such as generalized linear models, generalized additive models, addi-
tive partial linear models, generalized additive partial linear models, semiparametric 
additive partial linear models, additive nonparametric regression models (see, for 
example, Chen et  al. 1999; Huang et  al. 2010; Liu et  al. 2011; Marra and Wood 
2011; Meyer and Laud 2002; Ntzoufras et al. 2003; Reich et al. 2009; Shively et al. 
1999; Wang et al. 2011; Wang and George 2007; Banerjee and Ghosal 2014), Bayes 
factor is not the selection criterion for the existing approaches.

It is thus crucially important to build appropriate asymptotic theory for Bayes factors 
with respect to variable selection in general setups. Recognizing this requirement, our 
endeavor in this paper is to establish consistency of Bayes factors for variable selection 



584 M. Mukhopadhyay, S. Bhattacharya 

1 3

in models driven by Gaussian processes. The Gaussian process framework enables us 
to consider linear and nonlinear, parametric, as well as nonparametric models including 
appropriate dependence structures, under the same umbrella, allowing the usage of a 
general body of mathematical apparatus to establish our asymptotic theory. Encourag-
ingly, such a treatment allowed us to guarantee almost sure exponential convergence of 
the Bayes factor in favour of the true set of covariates under reasonably mild, verifiable 
assumptions, not only as the sample size increases indefinitely, but also as the number 
of available covariates increase with the sample size, possibly at faster rates, defining 
the so-called large p, large n paradigm, which also includes the fixed p situation as a 
special case. We are not aware of any asymptotic theory of Bayes factors in the “large 
p, large n” scenario.

We follow up the general Bayes factor convergence result with both theoretical and 
simulation-based illustrations of variable selection in linear regression, Gaussian pro-
cess regression with squared exponential covariance function, and a first-order autore-
gressive model consisting of time-varying covariates.

The rest of this paper is structured as follows. We introduce the general setup for 
Bayes factor-based variable selection in Sect. 2. Section 3 shows almost sure conver-
gence of the Bayes factor of any model with respect to the true model. Section 4 pro-
vides illustrations of our main result in linear regression and Gaussian process model 
with squared exponential covariance function. In Sect. 5, we generalize the results of 
Sect. 3 to the case with unknown error variance. Section 6 provides further generaliza-
tion of the result, assuming arbitrary priors on compact spaces for all other parameters 
and hyperparameters. In Sect. 7 we treat the case of correlated errors and present the 
problem of time-varying covariate selection in a first-order autoregressive model as an 
illustration, establishing almost sure exponential convergence of the relevant Bayes fac-
tor. The important case of misspecification is dealt with in Sect. 8, where almost sure 
exponential convergence of Bayes factor in favor of selection of the best possible sub-
set of covariates, is established. In Sect. 9 an overview of our simulation and real data 
experiments are provided; complete details are relegated to the supplement. Finally, we 
make concluding remarks, and provide future directions in Sect. 10.

2  General setup for Bayes factor variable selection

Let yi and �i denote the i-th response variable and the associated vector of covariates, 
i = 1,… , n . We assume that the predictor � consists of p (> 1) components, or covari-
ates, and that it is required to select a subset of the p components that best explains the 
response variable y. We allow p to grow with n at a rate p = O(nr) , r > 0.

Let � denote any subset of the indices � = {1, 2,… , p} , and �� denote the co-ordi-
nates of � associated with � . To relate �� to y we consider the following nonparametric 
regression setup:

where � ∼ N(0, �2
�
) is the random error and the function f (⋅) is considered unknown. 

We assume that f ∶ � ↦ IR , where � = ∪
p

�=1
IR�.

(1)y = f (��) + �,
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By assuming this framework we include the possibility that the domain of f can 
range from one to p-dimensions. We further assume that there exists a true set of 
regressors, �0 , which influences the dependent variable y. Our problem is to identify 
�0 . Note that we do not consider any specific form of the function. Irrespective of 
the functional form, we are only interested in identifying the set of active regressors 
�0.

2.1  The Gaussian process prior

We assign a Gaussian process prior on f (⋅) which leads, for any given subset � and 
covariate values 

{
�i,�;i = 1,… , n

}
 , to the joint multivariate normal distribution of (

f (�1,�),… , f (�n,�)
)T with mean and variance-covariance matrix as follows:

The marginal distribution of �n = (y1,… , yn)
T is then the n-variate normal,

where In is the identity matrix of order n. We denote this marginal model by M� . It 
will be increasingly evident as we proceed, that this relatively simple consideration 
is the key to unlocking a sufficiently general asymptotic theory of Bayes factors for 
variable selection that allows handling of wide range of situations including para-
metric, nonparametric, independence and dependence, using the same basic concept 
and mathematical manoeuvre.

2.2  The true model

We assume that there exists exactly one particular subset �0 of � which is actually 
associated with the data generating process of y, which is termed as the true subset. 
The evaluation procedure of the proposed set of model selection basically rests on 
its ability to identify this true subset, irrespective of the form of the function f.

We denote the mean vector and the covariance matrix of the Gaussian process 
prior associated with the true model by �t

n,�0
 and Σt

n,�0
 , respectively, and denote the 

corresponding marginal distribution of �n as Mt
�0

 . For notational convenience we 
drop the suffix n from �n,� , �t

n,�0
 , Σn,� and Σt

n,�0
.

2.3  The Bayes factor for covariate selection

It follows from the general model setup and the Gaussian process prior that the 
Bayes factor of any model M� to the true model Mt

�0
 associated with the data is 

given by

(2)
�n,� =

(
�(�1,�),… ,�(�n,�)

)T
;

Σn,� =
(
(Cov

(
f (�i,�), f (�j,�)

))
; i = 1,… , n; j = 1,… , n.

�n ∼ Nn

(
�n,�, �

2
�
In + Σn,�

)
,
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which is the ratio of the marginal likelihoods of the observed data �n , under M� to 
M

t
�0

 . This is the same as the ratio of the posterior odds and prior odds for � and �0 , 
for any prior on the models. If the models for � and �0 have the same prior distribu-
tion, then (3) is the same as the posterior odds.

The aim of this paper is to establish that (3) converges to zero exponentially fast 
as n → ∞ , if � ≠ �0 . We shall begin with known �2

�
 and other parameters, but will 

subsequently generalize our theory when such quantities are unknown, and almost 
arbitrary, albeit sensible priors, are assigned to them. In the next section we estab-
lish the almost sure convergence of the log-Bayes factor.

3  Almost sure convergence of the log‑Bayes factor

In this section we investigate Bayes factor consistency of Gaussian process regres-
sion in strong sense. We will show that for � ≠ �0 , there exists an �� ∈ [0, 1] , and 
𝛿� > 0 such that

The quantities �� , for � ⊆ � , as we shall make precise in the applications, is related 
to the sparsity conditions of the underlying model �0 and the competing model 
� . One way to interpret �� is to set O(p��) = O(nr��) as the difference in effective 
dimensionality of the true model �0 and competing model � . Thus, when the effec-
tive dimensionality of the models indexed by � and �0 is bounded, as n → ∞ , then 
�� = 0 . Note that depending upon the value of �� , we can compare models of differ-
ent dimensionalities.

We first state the assumptions under which the result holds. 

(A1)  Let �n,�

def
=(�� − �t

�0
)T
(
�
2
�
In + Σ�

)−1
(�� − �t

�0
) . We assume that for any � ⊆ � , 

for some �� ∈ [0, 1] and 𝜉� > 0 , 

Define An,� =
(
�
2
�
In + �

t
�0

)(
�
2
�
In + Σ�

)−1 . We further assume the following: 

(A2)  Let 𝜆1 ≥ ⋯ ≥ 𝜆n > 0 be the eigenvalues of An,� , then for �� defined in (A1),   
�max(An,�) = O

(
p2��

)
= O

(
n2r��

)
.

(3)

BFn
�,�0

=
M�(�n)

M
t
�0
(�n)

=
||�2

�
In + Σ�

||−1∕2
|||�2

�
In + Σt

�0

|||
−1∕2

×
exp

{
−
(
�n − ��

)T(
�
2
�
In + Σ�

)−1(
�n − ��

)
∕2

}

exp

{
−
(
�n − �t

�0

)T(
�2
�
In + Σt

�0

)−1(
�n − �t

�0

)
∕2

} ,

lim sup
n

n−(1+2r��) logBFn
�,�0

a.s.
= − ��.

lim inf
n

n−(1+2r��)�n,� = ��.
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(A3)  Finally we assume that for all � , and for �� defined in (A1), 

We will show that, the quantity �n,� in (A1) is asymptotically equivalent to the 
Kullback-Leibler (KL) divergence between the marginal density of �n under � and 
that under �0 , in most of the frameworks including linear model. Thus requiring 
(A1) is same as requiring positive KL divergence between M� and Mt

�0
 after 

proper scaling. Assumptions (A2) and (A3) are reasonable and verifiable 
restrictions.

In the illustrations with linear and Gaussian process regression, we will show 
that p�� can be interpreted essentially as the cardinality of set difference of � and 
�0 . Further, in the illustration with a first-order autoregressive model, we demon-
strate that p�� may be interpreted essentially as max

{|�|, |�0|
}
.

Our first result shows that limit supremum of the expected log Bayes factor of 
any model and the true model is negative, when scaled by n1+2r��.

Result 1 Assume (A1) holds for some �� ∈ [0, 1] . Then for some 𝛿� > 0 depending 
upon � ( ≠ �0),

for the same choice of �� as given in (A1).

Proof From (3) we find that the expectation of log Bayes factor is given by

To evaluate the first part in the above equation, note that

For the second term of (4) we obtain

‖�� − �t
�0
‖2 = O

�
n1+bp2𝜔�

�
= O

�
n1+b+2r𝜔�

�
, for some b < 1∕2.

lim sup
n→∞

E�0

(
1

n1+2r��

logBFn
�,�0

)
= −��,

(4)

E�0

[
log

(
BFn

�,�0

)]
=
1

2
log

|||�2
�
In + Σt

�0

|||
||�2

�
In + Σ�

||
−

1

2
E�0

[(
�n − ��

)T(
�
2
�
In + Σ�

)−1(
�n − ��

)]

+
1

2
E�0

[(
�n − �t

�0

)T(
�
2
�
In + Σt

�0

)−1(
�n − �t

�0

)]
.

1

2
log

|||�2
�
In + Σt

�0

|||
||�2

�
In + Σ�

||
=

1

2
log ||An,�

|| = 1

2

n∑
j=1

log �j(An,�).

E�0

[(
�n − ��

)T(
�
2
�
In + Σ�

)−1(
�n − ��

)]

= tr(An,�) +
(
�� − �t

�0

)T(
�
2
�
In + Σ�

)−1(
�� − �t

�0

)
= tr(An,�) + �n,�.
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The last term of (4) is given by E�0

[(
�n − �t

�0

)T(
�
2
�
In + Σt

�0

)−1(
�n − �t

�0

)]
= n. 

Using the above facts and from (4) observe that

Note that g(x) = log x − x + 1 is an increasing function on (0,  1] and decreasing 
function on (1,∞) , having maximum at 0. Thus 

∑
i

�
log �i − �i + 1

� ≤ 0.
Thus, combining the above facts and (A1) we write

Hence, there exists 𝛿� > 0 such that lim sup
n→∞

E�0

(
1

n1+2r��

logBFn
�,�0

)
= −��.   ◻

Next we will prove L4 convergence of log
(
BFn

�,�0

)
∕n1+2r�� towards its expecta-

tion, which in turn would imply L2 convergence.
Let B�0

 be the appropriate matrix associated with the Cholesky factorization of 
�
2
�
In + Σt

�0
 , i.e., �

2
�
In + Σt

�0
= B�0

BT
�0

 , and Cn,� = BT
�0

(
�
2
�
In + Σ�

)−1
B�0

 . Then 
�n − �t

�0
= B�0

zn , with zn ∼ Nn

(
0, In

)
 . Then

and 
(
�n − �t

�0

)T(
�
2
�
In + Σ�

)−1(
�n − �t

�0

)
= z

T
n
Cn,�zn. Note further that An,� and Cn,� 

have the same eigenvalues. Thus, by assumption (A2), �max(Cn,�) = O
(
n2r��

)
.

Result 2 Assume (A2) and (A3) hold for some �� ∈ [0, 1] . Then

Proof For convenience, we write Ẽn ∶= E�0

[
log

(
BFn

�,�0

)]
 . Now note that for An,� , 

zn , B�0
 and Cn,� as defined above

2E�0

[
log

(
BFn

�,�0

)]
+ �n,� =

n∑
i=1

(
log �i − �i + 1

)
.

lim sup
n

1

n1+2r��

E�0

[
log

(
BFn

�,�0

)] ≤ −��∕2.

(
�n − �t

�0

)T(
�
2
�
In + Σt

�0

)−1(
�n − �t

�0

)
= z

T
n
zn,

n−1−2r��

{
log

(
BFn

�,�0

)
− E�0

[
log

(
BFn

�,�0

)]}
a.s.
⟶0, as n → ∞.

(5)

2E�0

[
log

(
BFn

�,�0

)
− Ẽn

]4

=E�0

[
−zT

n
Cn,�zn + E�0

(
z
T
n
Cn,�zn

)
+ 2zT

n
BT
�0

(
𝜎
2
𝜖
In + Σ�

)−1(
�� − �t

�0

)
+ z

T
n
zn − n

]4

≤C
[
E�0

|||z
T
n
Cn,�zn − tr(Cn,�)

|||
4

+ E�0

||||z
T
n
BT
�0

(
𝜎
2
𝜖
In + Σ�

)−1(
�� − �t

�0

)||||
4

+E�0

|||z
T
n
zn − n

|||
4
]
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where C is a positive constant. The above result follows by repeated application of 
the inequality (a + b)q ≤ 2q−1(aq + bq) , for non-negative a, b, where q ≥ 1.

We first obtain the asymptotic order of the first term of (5). Note that for any n 
vector zn and any n × n matrix Cn

To evaluate (6), we make use of the following results (see, for example, Magnus 
1978; Kendall and Stuart 1947).

Substituting the above expressions in (6) we obtain

If �1,… , �n are the eigenvalues of Cn,� , then �k
1
,… , �k

n
 are the eigenvalues of Ck

n,�
 , for 

k ∈ ℕ . Therefore the above quantity reduces to

due to the fact that �max(Cn,�) = �max(An,�) , (A2) and as 
�∑n

i=1
ai
�2 ≤ n

∑n

i=1
a2
i
.

Let us now obtain the asymptotic order of second term of (5). Note that, the ran-
dom variable zT

n
BT
�0

(
�
2
�
In + Σ�

)−1(
�� − �t

�0

)
 is univariate normal with mean zero 

and variance

(6)

E
{
z
T
n
Cnzn − E�0

(
z
T
n
Cnzn

)}4
= E

(
z
T
n
Cnzn

)4

− 4E
(
z
T
n
Cnzn

)3
E
(
z
T
n
Cnzn

)
+ 6E

(
z
T
n
Cnzn

)2{
E
(
z
T
n
Cnzn

)}2

− 4E
(
z
T
n
Cnzn

){
E
(
z
T
n
Cnzn

)}3
+
{
E
(
z
T
n
Cnzn

)}4
.

E�0

(
z
T
n
Cn,�zn

)
= tr

(
Cn,�

)
;

E�0

(
z
T
n
Cn,�zn

)2
=
[
tr
(
Cn,�

)]2
+ 2tr

(
C2
n,�

)
;

E�0

(
z
T
n
Cn,�zn

)3
=
[
tr
(
Cn,�

)]3
+ 6tr

(
Cn,�

)
tr
(
C2
n,�

)
+ 8tr

(
C3
n,�

)
;

E�0

(
z
T
n
Cn,�zn

)4
=
[
tr
(
Cn,�

)]4
+ 32tr

(
Cn,�

)
tr
(
C3
n,�

)
+ 12

[
tr
(
C2
n,�

)]2

+ 12
[
tr
(
Cn,�

)]2
tr
(
C2
n,�

)
+ 48tr

(
C4
n,�

)
.

E�0

{
z
T
n
Cn,�zn − E�0

(
z
T
n
Cn,�zn

)}4
= 12

[
tr
(
C2
n,�

)]2
+ 48tr

(
C4
n,�

)
.

(7)12

(∑
i

�
2
i

)2

+ 48
∑
i

�
4
i
≤ Cn

∑
i

�
4
i
= O

(
n2+8r��

)
,

�̂�
2
n
=
�
�� − �t

�0

�T�
𝜎
2
𝜖
In + Σ�

�−1�
𝜎
2
𝜖
In + Σt

�0

��
𝜎
2
𝜖
In + Σ�

�−1�
�� − �t

�0

�

≤𝜆max

��
𝜎
2
𝜖
In + Σ�

�−1∕2�
𝜎
2
𝜖
In + Σt

�0

��
𝜎
2
𝜖
In + Σ�

�−1∕2�

×
�
�� − �t

�0

�T�
𝜎
2
𝜖
In + Σ�

�−1�
�� − �t

�0

�

≤𝜎−2
𝜖
𝜆max(An,�)‖�� − �t

�0
‖2 = O

�
n1+b+4r𝜔�

�
,
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due to (A2) and (A3). Hence it follows that

Finally, we deal with the third term of (5). As zT
n
zn − n =

∑n

i=1

�
z2
i
− 1

�
 , where, for 

i = 1,… , n , z2
i

iid
∼�2

1
 . By Lemma B of Serfling (1980, p. 68), it follows that

Substituting (7), (8) and the above in (5) we obtain

Chebychev’s inequality, in conjunction with (9) guarantees that for any 𝜂 > 0,

as b < 1∕2 , proving almost sure convergence of n−1−2r𝜔�

{
log

(
BFn

�,�0

)
− Ẽn

}
 to 0, 

as n → ∞.  ◻

Now we state the main theorem, the proof of which follows as an application 
of the above result, and Result 1.

Theorem  1 (Main theorem) Suppose the assumptions (A1)–(A3) hold for some 
�� ∈ [0, 1], and 𝛿� > 0 depending upon � (≠ �0 ), then

Remark 1 Recall that p�� is related to the effective dimensionality of the models � 
and �0 . When p is fixed, then p�� is zero. Indeed, keeping p fixed and proceeding 
exactly in the same way as the proof of Theorem 1, and setting �� = 0 in assump-
tions (A1)–(A3), would yield the result:

Further, if p were fixed, then the number in the class of all competing models, 
2p − 1 , would be finite. In that case, under assumptions (A1)–(A3) (with �� = 0 for 
all � ∈ � ), there would exist 𝛿 > 0 , such that

Remark 2 One can establish a relatively weaker version of consistency result,

(8)E�0

||||z
T
n
BT
�0

(
𝜎
2
𝜖
In + Σ�

)−1(
�� − �t

�0

)||||
4

= 3�̂�4
n
= O

(
n2+2b+8r𝜔�

)
.

E�0

(
z
T
n
zn − n

)4
= O

(
n2
)
.

(9)E�0

[
log

(
BFn

�,�0

)
− Ẽn

]4
= O

(
n2+2b+8r𝜔�

)
.

∞∑
n=1

P�0

(||||log
(
BFn

�,�0

)
− Ẽn

|||| > n1+2r𝜔�𝜂

)
< ∞,

lim sup
n

1

n1+2r��

log
(
BFn

�,�0

)
a.s.
= − ��.

lim sup
n

n−1 log
(
BFn

�,�0

)
a.s.
= − ��.

max
�≠�0 lim sup

n

1

n
log

(
BFn

�,�0

)
a.s.
= − �.



591

1 3

Bayes factor asymptotics in Gaussian process framework

under a weaker variant of assumption (A1), (A1⋆) : lim infn n
−1+�−2r���n,� = ��. How-

ever, assumption (A3) should be replaced by (A3⋆) ∶ 
‖�� − �t

�0
‖2 = O

�
np2��

�
= O

�
n1+2r��

�
 , for all � , which, nonetheless, remains a mild 

assumption. When r�� is large, this version of consistency becomes more appropri-
ate than the traditional one.

Remark 3 Theorem 1 remains valid for nested models M� and M�0
 where one model 

has |���0| = O(p��) covariates more than the other, where �� ∈ [0, 1].

4  Illustrations

This section provides illustrations of our main result in two different contexts, lin-
ear regression and Gaussian process regression with squared exponential covariance 
function.

4.1  Linear regression

For illustration of the Bayes factor theory we first consider the linear regression. Let 
yi = �T

�
�i,� + �i , where �i

iid
∼N

(
0, �2

�

)
 , for i = 1,… , n . Let �0 (⊆ � = {1, 2,… , p}) be 

the set of indices of the true set of covariates, and p = O(nr) (r > 0) . We assign a 
normal prior on �� , �� ∼ N

(
�0,�, gn�

2
�

(
XT
�
X�

)−1) , which is similar to the well known 
Zellner’s g prior. Zellner’s g-prior assigns �0,� = � . We instead make the prior more 
flexible by assuming that ‖�0,�‖L1 =

∑���
j=1

��0,j� = O(���) for all � . We further assume 
that gn = O(p�� ).

We assume that the space of covariates is compact, which, as we show, is suffi-
cient to ensure (A1)–(A3). Observe that Zellner’s g-prior induces a Gaussian process 
prior on the function f (�i,�) = �T

i,�
�� with mean function

and the covariance between �T
�
�i,� and �T

�
�j,� is given by

Therefore, Σ� = �
2
�
gnX

T
�

(
XT
�
X�

)−1
X� = �

2
�
gnPn,� , where Pn,� is the projection matrix 

on the space of X�.
We verify assumptions (A1)–(A3) under this setup. To see that assumption (A1) 

holds, we first calculate the Kullback-Leibler divergence between the marginal den-
sity of �n under � and that under �0 , KL

n(�, �0) , which is

lim sup
n

1

n1−𝜖+2r𝜔�

log
(
BFn

�,�0

)
a.s.
= − 𝛿�, 𝜖 < 1∕4,

�

(
�i,�

)
= �T

0,�
�i,� = ��,

Cov
(
�T
�
�i,�, �

T
�
�j,�

)
= �

2
�
gn�

T
i,�

(
XT
�
X�

)−1
�j,�.
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As the eigenvalues of a projection matrix can only be zero or one, and the traces of 
Pn,�0

 and Pn,� are |�0| and |�| , respectively, we have

where Dn,� =
(
�
2
�
In + �

2
�
gnPn,�

)−1(
Pn,�0

− Pn,�

)
 . By Result S-2 (see Section S-7 of 

the Supplement Material) we have

so that

Substituting the above in (10) yields

As |�0| − |�| ≤ |���0| , assuming that |���0| = O(p��) = O(nr��) , in conjunction with 
the assumption that gn = O(p�� ) , as n → ∞,

Further,

Therefore,

KL
n(�, �0) ∝ tr

(
An,�

)
− log |An,�| − n

+
(
�� − �t

�0

)T(
�
2
�
In + �

2
�
gnPn,�

)−1(
�� − �t

�0

)

= tr
(
An,�

)
− log |An,�| − n + �n,�.

(10)

tr
(
An,�

)
= tr

[(
�
2
�
In + �

2
�
gnPn,�

)−1(
�
2
�
In + �

2
�
gnPn,�0

)]

= tr

[
In + �

2
�
gn

(
�
2
�
In + �

2
�
gnPn,�

)−1(
Pn,�0

− Pn,�

)]

= n + �
2
�
gntr

(
Dn,�

)
,

(
�
2
�

)−1
In ≥

(
�
2
�
In + �

2
�
gnPn,�

)−1 ≥ (
�
2
�
+ gn�

2
�

)−1

In,

|�0| − |�|
�2
�
+ gn�

2
�

≤ tr
(
Dn,�

) ≤ |�0| − |�|
�2
�

.

n + �
2
�
gn

|�0| − |�|
�2
�
+ gn�

2
�

≤ tr
(
An,�

) ≤ n + �
2
�
gn

|�0| − |�|
�2
�

.

tr
(
An,�

)
n1+2r��

→

{
1 if �� = 0;

0 if �� ∈ (0, 1].

|An,�| =
|||I + �

2
�
gn�

−2
�
Pn,�0

|||
|||I + �

2
�
gn�

−2
�
Pn,�

|||
=

(
1 +

�
2
�
gn

�2
�

)|�0|−|�|
.

1

n1+2r��

log |An,�| =
|�0| − |�|
n1+2r��

log
(
1 + �

2
�
gn∕�

2
�

)
∕ → 0, as n → ∞.
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Combining the above facts, we get, for all �� ∈ [0, 1],

Thus,   lim infn n
−(1+2r��)KL

n(�, �0) = lim infn n
−(1+2r��)�n,�.

The assumption (A1) is thus implied by lim infn n
−(1+2r𝜔�)KL

n(�, �0) > 0 , which 
is a natural assumption. Bounded, positive eigenvalues of �2

�
In + Σ� , along with 

Result S-2 imply that �n,� is of the same order as ‖�� − �t
�0
‖2 , which again, is of 

order O(n1+2r��) , as we show below. Viewing the requirement of (A1) from this 
perspective, it seems natural to demand that the mean functions of the competing 
and the true models be distinct in the sense that lim infn ‖�� − �t

0,�0
‖2∕n1+2r𝜔� > 0.

To check assumption (A2) note that for positive definite Hermitian matrices A 
and B, �max(AB) ≤ �max(A)�max(B) . Using this fact and as �2

�
gn�

−2
�

= O(p�� ) , it is 
easily seen that

Finally we check (A3). Note that ‖‖‖�� − �t
0,�0

‖‖‖
2 ≤ ‖‖‖X���0

�0,���0

‖‖‖
2

, as the prior mean 
of the j-th regression coefficient �0,j remains the same accross different models 
which include the j-th covariate, xj.

Further, recall that for any � , ‖�0,�‖L1 = O(���) . Since the covariates lie on a 
compact space, it follows that 
���X���0

�0,���0

���
2

=
∑n

i=1

�
�T
i,���0

�0,���0

�2

= O
�
np2��

�
= O(n1+2r��) , if |���0| = O(p��) . 

Thus (A3) holds.
Thus Theorem 1 holds for the linear regression setup. This result is summa-

rized in the form of the following theorem.

Theorem 2 Consider the linear regression model yi = �T
�
�i,� + �i, where �i

iid
∼N

(
0, �2

�

)
 

, for i = 1,… , n. Let �� ∼ N
(
�0,�, gn�

2
�

(
XT
�
X�

)−1), where 1 ≤ |�| ≤ p and p = O(nr), 
r > 0. Assume that the space of covariates is compact, and 
‖�0,�‖L1 =

∑���
j=1

��0,j� = O(���) . Further, if there exists some �� ∈ [0, 1] such that 
|���0| = O(p��), and KL

n(�, �0)∕(n
1+2r𝜔�) > 0, then for gn = O(p�� ) the statement of 

Theorem 1 holds.

4.2  Gaussian process with squared exponential kernel

We now consider the problem of variable selection in nonparametric model of 
the form y = �T

�
�� + f (��) + � , where f belongs to a Hilbert space H . Let f (��) be 

modeled by a zero-mean Gaussian process with squared exponential covariance 
kernel of the form

n−(1+2r��)
{
tr
(
An,�

)
− log |An,�| − n

}
→ 0, as n → ∞.

�max(An,�) ≤
(
1 + �

2
�
gn�

−2
�

)
= O(p��).
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Here �2
f
 can be interpreted as the process variance, and the diagonal elements of D� 

can be interpreted as the smoothness parameters. As in the case of linear regression, 
we consider the Zellner’s g-prior for �� . Thus, the mean function �� here is of the 
same form as in the linear regression case. The (i,  j)-th element of the covariance 
matrix Σ� is given by

   True model. As before we indicate a particular subset of � = {1,… , p} as the true 
set of regressors �0 . The corresponding mean vector and variance matrices are 
denoted by �t

�0
 and Σt

�0
 , respectively.

Assumption. Before verifying assumptions (A1)-(A3), we state the following 
assumption on the design matrix. 

 (A4) We assume that 
{
�j,� ∶ j = 1, 2,…

}
 and D� are such that for all i ≥ 1 , 

where K� (> 0) may depend upon �.
Verification of the assumptions. We verify assumptions (A1)–(A3) under this 

setup and assuming (A4) holds.
First observe that (A3) is satisfied in the same way as in the linear regression case. 

Before verifying (A1)-(A2), note that by Gerschgorin’s circle theorem, every eigen-
value � of any n × n matrix A with (i, j)-th element aij satisfies �� − aii� ≤ ∑

j≠i �aij� , 
for at least one i ∈ {1,… , n} (see, for example, Lange 2010). It then follows by 
(A4) that the maximum eigenvalue of the covariance matrix associated with f (⋅) is 
bounded above by K� . Also, the covariance matrix associated with the linear part 
�T
�
�� , being a projection matrix, has maximum eigenvalue 1. Hence, by Result S-2, 

we conclude that the maximum eigenvalue of Σ� is bounded above by finite K̃� > 0.
To verify (A1), note that 

(
𝜎
2
𝜖
In + Σ�

)−1
≻

(
𝜎
2
𝜖
+ K̃�

)−1
In by the first part of Result 

S-2. Hence,

Now, if we wish to enforce distinguishability of only the mean functions of the com-
peting models in the sense that

then it is clear from (12) that (A1) holds.
Next we check (A2). As before, it can be shown that the maximum eigenvalue of 

Σ�0
 is bounded above by K̃�0

 for some constant K̃�0
> 0 . Then

(11)Cov
(
f (��), f (�

�
�
)
)
= �

2
f
exp

{
−
1

2

(
�� − ��

�

)T
D�

(
�� − ��

�

)}
.

�
2
�
gn�

T
i,�

(
XT
�
X�

)−1
�j,� + �

2
f
exp

{
−
1

2

(
�i,� − �j,�

)T
D�

(
�i,� − �j,�

)}
.

n∑
j≠i=1

exp
{
−
1

2

(
�i,� − �j,�

)T
D�

(
�i,� − �j,�

)
∕2

}
= K� = O(1),

(12)n−1−2r𝜔�𝛥n,� >

�
𝜎
2
𝜖
+ K̃�

�−1
n−1−2r𝜔�‖�� − �t

�0
‖2.

lim inf
n

n−1−2r𝜔�‖�� − �t
�0
‖2 > 0,
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showing that (A2) holds.
Therefore, we have established the following theorem:

Theorem  3 Consider the regression model yi = �T
�
�i,� + f (�i,�) + �i, where 

�i

iid
∼N

(
0, �2

�

)
 for i = 1,… , n, and � ⊆ � = {1,… , p} with p = O(nr), r > 0. Let 

�� ∼ N
(
�0,�, gn�

2
�

(
XT
�
X�

)−1) with gn = O(p�� ), and f (⋅) be a zero-mean Gaussian 
process with a squared exponential covariance kernel of the form (11). Assume that 
the space of covariates is compact, and ‖�0,�‖L1 = O(���). If there exists some 
�� ∈ [0, 1] such that |���0| = O(p��), and lim inf

n
n−1−2r𝜔�‖�� − ��0

‖2 > 0 , and fur-
ther if (A4) holds, then the statement of Theorem 1 holds.

Additionally, consider the following remarks.

Remark 4 The condition in (12) also implies that lim infn n
−1−2r��KL

n(�, �0) 
= lim inf

n
n
−1−2r𝜔�

{
tr(A

n,�) − log |A
n,�| − n + 𝛥

n,�

}
> 0 , since tr(An,�) − log |An,�| − n ≥ 0 . 

Recall that in the linear regression setup as well we had replaced the KL-divergence 
lim infn n

−1−2r𝜔�KL
n(�, �0) > 0 with the above mean divergence condition (12) to 

verify (A1), since the eigenvalues of Σ� in that setup are also bounded.
Remark 5 The linear regression term in the mean function can be replaced by any 
function �� subject to the condition ‖‖��

‖‖L1 = O(np2��) = O(n1+2r��) , where 
0 ≤ �� ≤ 1 . It is easy to verify assumptions (A1) and (A3) under the aforementioned 
restriction on ��.

5  The case with unknown error variance

So far we have assumed that the error variance �2
�
 is known. In reality, this may also 

be unknown and we need to assign a prior on the same. For our purpose, for any 
�i, �i ∈ � , we now set Cov(f (�i), f (�j)) = �

2
�
c(�i, �j) , where c(�, �) is some appropri-

ate correlation function, i, j = 1,… , n . Thus, we set the process variance of f (⋅) to 
be the same as the error variance. Although this might seem somewhat restrictive 
from the inference perspective, for Bayes factor-based variable selection this is quite 
appropriate, as we establish almost sure exponential convergence of the resultant 
Bayes factor associated with this prior, in favour of the true set of covariates.

With the aforementioned modification, we assign the conjugate inverse-gamma 
prior on �2

�
 with parameters �, � as follows:

𝜆1(An,�) =𝜆max

[(
𝜎
2
𝜖
In + Σ�

)−1(
𝜎
2
𝜖
In + Σt

�0

)]

≤𝜆max

(
𝜎
2
𝜖
In + Σt

�0

)

𝜆min

(
𝜎2
𝜖
In + Σ�

) ≤ 𝜎
2
𝜖
+ K̃�0

𝜎2
𝜖

= O(1),
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Under the same prior setup on f, the marginal of �n = (y1,… , yn)
T given �2

�
 is the 

n-variate normal, given by

where Σ� is as given in (2). After marginalizing �2
�
 the marginal of �n is

which is proportional to the density of multivariate t distribution with loca-
tion parameter �� , covariance matrix �

(
In + Σ�

)
∕(� − 1) , and degrees of freedom 

2(� − 1) . Thus, E(�n) = �� , and Var(�n) = �

(
In + Σ�

)
∕(� − 2) , under M�.

Here the Bayes factor of any model � to the true model �0 is

As before, define zn ∼ N(�, In) such that

It then follows that

(13)𝜋

(
𝜎
2
𝜖

)
=

𝛽
𝛼

𝛤 (𝛼)
𝜎
−2(𝛼+1)
𝜖

exp

(
−

𝛽

𝜎2
𝜖

)
, 𝛼 > 2, 𝛽 > 0.

�n ∼ Nn

(
��, �

2
�

(
In + Σ�

))
,

m�

(
�n
)
∝ ||I + Σ�

||−1∕2
{(

�n − ��

)T(
In + Σ�

)−1(
�n − ��

)
+ 2�

}−(�+n∕2)+1

,

BFn
�,�0

=

���In + Σt
�0

���
1∕2

��In + Σ�
��1∕2

×

⎡
⎢⎢⎢⎣

�
�n − ��

�T�
In + Σ�

�−1�
�n − ��

�
+ 2�

�
�n − �t

�0

�T�
In + Σt

�0

�−1�
�n − �t

�0

�
+ 2�

⎤
⎥⎥⎥⎦

−(�+n∕2)+1

.

z
T
n
zn =

(
�n − �t

�0

)T(
In + Σt

�0

)−1(
�n − �t

�0

)
,

�n,� = (�� − �t
�0
)T
(
In + Σ�

)−1
(�� − �t

�0
),

An,� =
(
In + Σt

�0

)(
In + Σ�

)−1
,

Cn,� =
(
In + Σt

�0

)1∕2(
In + Σ�

)−1(
In + Σt

�0

)1∕2

, and therefore,

(
�n − ��

)T(
In + Σ�

)−1(
�n − ��

)
= z

T
n
Cn,�zn + �n,�

− 2
(
�� − �t

�0

)T(
In + Σ�

)−1(
�n − �t

�0

)
.
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where the last inequality is due to the log-sum inequality. We modify assumptions 
(A1)–(A3) by replacing �2

�
 by 1, and term them (A1�)–(A3�).

Next observe the following facts: 

(i) E
[(
z
T
n
Cn,�zn − tr(Cn,�)

)]4
= O(n2+8r��) implying that

 
[
z
T
n
Cn,�zn − tr(Cn,�)

]
∕n1+2r��

a.s.
������������→ 0 . One can prove this in exactly similar way as 

done in Result 2, using assumptions (A1�)–(A3�).
(ii) Similarly, it can be shown that E

[(
z
T
n
zn − n

)]4
= O(n2) implying

 z
T
n
zn∕n

a.s.
������������→ 1.

(iii) From the above fact, it follows that log
(
z
�
n
zn∕n

) a.s.
������������→ 0 by continuous mapping 

theorem.
(iv) Applying (A3�) , it can be shown that 

 which in turn implies 

(v) Finally, tr(Cn,�) = tr(An,�) ≤ n�max(An,�) , and �max(An,�) = O(p2�� ).

Using the above facts, it is easy to see that the right hand side of (14) has lim sup 
−2r�� = −�� , which is strictly negative when �� ∈ (0, 1].

When �� = 0 , similar steps as above would lead to the result

(14)

1

n log n
logBFn

�,�0

=
log ��Cn,�

��
2n log n

−
1

log n

�
1 − �

n
−

1

2

�⎡⎢⎢⎢⎣
log

�
z
T

n
z
n
+ 2�

n1+2r��

�

− log

⎧⎪⎨⎪⎩

�
n,� + 2� + z

T

n
C
n,�zn

n1+2r��

− 2

�
�� − �t

�0

�T�
I
n
+ Σ�

�−1�
�
n
− �t

�0

�

n1+2r��

⎫⎪⎬⎪⎭

⎤⎥⎥⎥⎦

≤ 1

2 log n
log

�
tr(C

n,�)

n

�
−

1

log n

�
1 − �

n
−

1

2

��
log

�
z
T

n
z
n
+ 2�

n

�

−2r�� log n − log

�
�
n,� + tr(C

n,�) + 2�

n1+2r��

+
z
T

n
C
n,�zn − tr(C

n,�)

n1+2r��

+
2

n1+2r��

�
�� − �t

�0

�T�
I
n
+ Σ�

�−1�
�
n
− �t

�0

���
,

E

[(
�� − �t

�0

)T(
In + Σ�

)−1(
�n − �t

�0

)]4
= O(n2+8r��+2b),

(
�� − �t

�0

)T(
In + Σ�

)−1(
�n − �t

�0

)
∕n1+2r��

a.s.
������������→ 0.
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Consequently, the following result holds:

Theorem  4 Consider the setup of Theorem  1 except that the error variance �2
�
 is 

now unknown. Let an inverse gamma prior with parameters � and � be applied to �2
�
.  

Assume that (A1′)–(A3′) hold for some �� ∈ (0, 1], and some positive constant �� 
depending upon � (≠ �0). Then

For �� = 0, the following holds:

Moreover, if the number of models is finite then there exists 𝛿 > 0 such that

6  Convergence of integrated Bayes factor

Let us suppose, as is usual, that the Bayes factor BFn
�,�0

 depends on a set of parame-
ters and hyperparameters, denoted by � . We denote the Bayes factor by BFn

�,�0
(�) 

instead of BFn
�,�0

 to indicate it’s dependence on � . If �(�) is the prior for � , supported 
on � , then the integrated Bayes factor is given by

The following convergence result provides conditions under which the integrated 
Bayes factor converges to zero almost surely.

Theorem  5 Consider the set up of Theorem  1 (or, the set up of Theorem  4), and 
assume that (A1)–(A3) (or, (A1′ )–(A3′)) hold for some �� ∈ [0, 1] and 𝛿� > 0, and 
for each � ∈ �, and that � is compact. Let g(n) = n1+2r�� (under the setup of Theo-
rem  1); and g(n) = n log n, or n if �� ∈ (0, 1], or �� = 0, respectively, (under the 
setup of Theorem 4). Also assume the following:

 (i) log
(
BFn

�,�0
(�)

)
∕g(n) is stochastically equicontinuous,

 (ii) E
[
log

(
BFn

�,�0
(�)

)
∕g(n)

]
 is equicontinuous with respect to � as n → ∞, and

lim sup
n

n−1 logBFn
�,�0

a.s.
= − ��.

lim sup
n

1

n log n
log

(
BFn

�,�0

)
a.s.
= − ��.

lim sup
n

1

n
log

(
BFn

�,�0

)
a.s.
= − ��.

max
�≠�0 lim sup

n

1

n
log

(
BFn

�,�0

)
a.s.
= − �.

IBFn
�,�0

= ∫�

BFn
�,�0

(�)�(�)d�.
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 (iii) The lim sup and lim inf of E
[
log

(
BFn

�,�0
(�)

)
∕g(n)

]
 are upper and lower sem-

icontinuous in �, respectively.

Then, there exists 𝛿� > 0 such that

Proof As assumptions (A1)–(A3) (or ( A1′)–(A3′ )) hold by hypothesis, Theorem  1 
(or Theorem 4) holds. While proving the theorem we have shown

By conditions (i) and (ii) of Theorem 5, the difference of the above two functions 
is stochastically equicontinuous. Further, as � is compact, by the stochastic Ascoli 
lemma (see, e.g., Newey 1991),

In other words, given any data sequence, for any 𝜖 > 0 , there exists n0(�) such that 
for n ≥ n0(�),

for all � ∈ �.
Let us now define ��(�) and ��(�) such that
−��(�) = lim supn E�0

[
log

(
BFn

�,�0
(�)

)
∕g(n)

]
 and

−��(�) = lim infn E�0

[
log

(
BFn

�,�0
(�)∕g(n)

)]
 , where 𝛿�(�), 𝛿�(�) > 0 for all � ∈ � . 

By assumption (iii), ��(�) is upper semicontinuous in � and ��(�) is lower semicon-
tinuous in �.

Now, by compactness of � , we have � ⊂ ∪m
i=1

�̃ i , for some finite m > 0 , where �̃ i 
are such that sup�1,�2∈�̃ i

‖�1 − �2‖ < 𝛿 . Here 𝛿 (> 0) is such that

for large n, due to equicontinuity. Now, for any � ∈ � , � must lie in �̃ i for some 
i = 1, 2,… ,m . Let �i ∈ �̃ i , for i = 1,… ,m . Then, let us write

(15)lim sup
n

1

g(n)
log

(
IBFn

�,�0

)
a.s.
= − ��.

1

g(n)
log

(
BFn

�,�0
(�)

)
− E

[
1

g(n)
log

(
BFn

�,�0
(�)

)]
a.s.
⟶0 pointwise in � ∈ �.

sup
�∈�

|||||
1

g(n)
log

(
BFn

�,�0
(�)

)
− E

[
1

g(n)
log

(
BFn

�,�0
(�)

)]|||||
a.s.
⟶0, as n → ∞.

(16)
|||||

1

g(n)
log

(
BFn

�,�0
(�)

)
− E

[
1

g(n)
log

(
BFn

�,�0
(�)

)]|||||
< 𝜖∕2,

(17)
|||||
E�0

{
1

g(n)
log

(
BFn

�,�0
(�1)

)}
− E�0

{
1

g(n)
log

(
BFn

�,�0
(�2)

)}|||||
<

𝜖

6
,
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The first term on the right hand side of of (18) is less than �∕6 due to (17), since 
both �,�i ∈ �̃ i . The second term on the right hand side of of (18) is less than �∕6 
for large enough n by definition of lim sup . Since m is finite, the requisite n1(�) that 
n needs to exceed, remains finite for all values of � . The third term is less than �∕6 
by definition of upper semicontinuity, given that �,�i ∈ �̃ i . In other words, for all 
� ∈ � , there exists n1(�) , such that n ≥ n1(�),

Similarly, using the definition of equicontinuity, lim inf and lower semicontinuity, it 
follows that there exists n2(�) ≥ 1 for all � ∈ � such that for n ≥ n2(�),

From (16) and the above facts, we see that for n ≥ n3(�) = max{n1(�), n2(�)} , and all 
� ∈ �,

Integrating the above with respect to �(�)d� , and taking g(n)−1 log we obtain,

where In = ∫
�
exp

(
−g(n)��(�)

)
�(�)d� , I

n
= ∫

�
exp

(
−g(n)��(�)

)
�(�)d� . Since 

both In and I
n
 are less than one, the statement of Theorem 5 holds.   ◻

Remark 6 Note that a sufficient condition for stochastic equicontinuity of 
log

(
BFn

�,�0
(�)

)
∕g(n) is almost sure Lipschitz continuity of the same, with a bounded 

Lipschitz constant, as n → ∞ . Similarly, a sufficient condition of equicontinuity of 
E�0

[
log

(
BFn

�,�0
(�)

)
∕g(n)

]
 is Lipschitz continuity. Again, Lipschitz continuity is 

ensured by boundedness of the partial derivatives. Hence, if the partial derivatives 
of log

(
BFn

�,�0
(�)

)
∕g(n) and its expectation with respect to the components of � exist 

(18)

E�0

{
1

g(n)
log

(
BFn

�,�0
(�)

)}
+ ��(�)

=

[
E�0

{
1

g(n)
log

(
BFn

�,�0
(�)

)}
− E�0

{
1

g(n)
log

(
BFn

�,�0
(�i)

)}]

+

[
E�0

{
1

g(n)
log

(
BFn

�,�0
(�i)

)}
+ ��(�i)

]
−
(
��(�i) − ��(�)

)
.

E�0

{
1

g(n)
log

(
BFn

�,�0
(�)

)}
+ 𝛿�(�) <

𝜖

2
.

E�0

{
1

g(n)
log

(
BFn

�,�0
(�)

)}
+ 𝛿�(�) > −

𝜖

2
.

− 𝛿�(�) − 𝜖 <
1

g(n)
log

(
BFn

�,�0
(�)

)
< −𝛿�(�) + 𝜖,

⟹ exp
{
−g(n)(𝜖 + 𝛿�(�))

}
< BFn

�,�0
(�) < exp

{
g(n)(𝜖 − 𝛿�(�))

}
.

−𝜖 +
1

g(n)
log I

n
<

1

g(n)
log

(
IBFn

�,�0

)
< 𝜖 +

1

g(n)
log In,
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and are almost surely bounded for large n, then Lipschitz continuity would follow. 
This would also imply the semicontinuity assumptions on 
E�0

{
log

(
BFn

�,�0
(�)

)
∕g(n)

}
 . In our applications, we shall often make use of this suf-

ficient condition.

Remark 7 Note that Theorem 5 is applicable to Gaussian process regression setup 
where the error variance �2

�
 , the process variance �2

f
 , or the diagonal elements of D� 

are unknown. The relevant priors, however, need to have compact supports. 
Although for �2

�
 and �2

f
 compactly supported prior is not necessary for proving con-

vergence of Bayes factor (as we have shown consistency under an inverse-gamma 
prior setup with �2

�
= �

2
f
 ), but very general priors, albeit with compact supports, can 

be envisaged for these unknown quantities, without any loss of generality of conver-
gence result for the corresponding integrated Bayes factor. In real problems, some 
other parameters may be assigned compactly supported priors, while the inverse-
gamma prior may be allotted to the variance parameters.

For illustration of the method for verifying the conditions of Theorem  5, in 
Sect. 7.1, we consider the case of variable selection in an autoregressive regression 
model with unknown autoregressive parameter.

7  Bayes factor asymptotics for correlated errors

So far we assumed �i
iid
∼N(0, �2

�
) . However, correlated errors play significant roles in 

time series models. Indeed, except some simple cases, i.i.d. errors will not be appro-
priate for such models. For instance, the problem of time-varying covariate selection 
in the AR(1) model yt = �0yt−1 +

∑���
i=0

�ixit + �t , t = 1, 2,… , where �t
iid
∼N(0, �2

�
) and 

�0 is known, admits the same treatment as in linear regression considered in Sect. 4.1 
by treating zt = yt − �0yt−1 as the response. However if �0 is unknown, such simple 
method is untenable.

In general, we must allow correlated errors, that is, for 
�n = (𝜖1,… , 𝜖n)

T ∼ Nn

(
0, 𝜎2

𝜖
Σ̃n

)
 , the zero-mean normal distribution with covariance 

matrix 𝜎2
𝜖
Σ̃n . Let the correlation matrix under the true model be Σ̃t

n
 . With these, we then 

replace the previous notions �2
�
In + Σ� and �2

�
In + Σt

�0
 by 𝜎2

𝜖
Σ̃n + Σ� and 𝜎2

𝜖
Σ̃t
n
+ Σt

�0
 , 

respectively, and prove similar results with the assumptions on An,� and �n,� , where 
An,� =

(
𝜎
2
𝜖
Σ̃t
n
+ Σt

�0

)(
𝜎
2
𝜖
Σ̃n + Σ�

)−1 , and 𝛥n,� = (�� − �t
�0
)T
(
𝜎
2
𝜖
Σ̃n + Σ�

)−1
(�� − �t

�0
).

7.1  Illustration 3: autoregressive model

Consider the time-varying covariate selection problem in the following AR(1) model

where y0 ≡ 0 and |𝜌| < 1.

(19)yt = �yt−1 + ��
�
�t,� + �t, and �t

iid
∼N

(
0, �2

�

)
, for t = 1,… , n.
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The above model admits the following representation

Thus, 𝜖t is an asymptotically stationary zero mean Gaussian process with covariance

Let the true model be of the same form as above but with � and � replaced by �0 and 
�0 , respectively, where |𝜌0| < 1 . As in the linear regression case we allow p = O(nr) 
covariates, with r > 0 , and �0 ⊆ � = {1,… , p}.

Let �� ∼ N
(
�0,�, gn�

2
�

(
Z�
�
Z�
)−1) , where Z� is the design matrix associated with 

zt,� ; t = 1,… , n , and gn = O(1) . This is again Zellner’s g prior, but modified to 
suit the AR(1) setup.

As before, �0,� is so chosen that ‖�0,�‖L1 =
∑���

=1
��0,j� = O(���) . We also assume 

compactness of the covariate space and that the set of covariates 
{
xj ∶ j ∈ �

}
 is 

nonzero. Let �(�) be any prior for � supported on [−1 + � , 1 − �] for some small 
enough 𝛾 > 0 . The reason for choosing this support will become clear as we 
proceed.

The conditional expectation of �′
�
zi,� , and the covariance between �T

�
zi,� and �T

�
zj,� 

given � , for i, j = 1,… , n are

Let Σ
�
 be the AR(1) correlation matrix ((�h)) , 𝜎2

𝜖
Σ̃n be the covariance matrix of �̃ as 

given in (20), i.e., Σ̃n = (1 − 𝜌
2)−1Σ

𝜖
 , Hn,� ∶=

(
𝜎
2
𝜖
Σ̃n + 𝜎

2
�
gnPn,�

)
 and 

Hn,�0
∶= 𝜎

2
𝜖
Σ̃n + 𝜎

2
�
gnPn,�0

 , where Pn,� is the projection matrix onto the column space 
of Z� . Then An,� = Hn,�0

H−1
n,�

.
We first verify (A1)–(A3) in this setup. For verification of (A3), note that

Now, by our assumptions, for any � , ‖�0,�‖L1 = O(���) . We further assume that 
max{|�|, |�0|} = O(p2��) , for 0 ≤ �� ≤ 1 . Also, since the covariates lie on a compact 
space and |�| is less than one, it follows that ��Z��0,�

��2 =
∑n

t=1

�
z
T
t,�
�0,�

�2

= O(np2�� )

= O(n1+2r��).
Similarly, since |𝜌0| < 1 , ‖‖‖Z�0�0,�

‖‖‖
2

= O(n1+2r��) . Thus (A3) holds.
Next we verify (A2). Note that, by Lemma S-1 (in Section S-7 of the supplement) 

the eigenvalues of Σ
�
∕(1 − �

2) have strictly positive lower and upper bounds, inde-
pendent of n if � ∈ [−1 + � , 1 − �] . Further, the eigenvalues of Pn,� are either 0 or 1. 
Thus by Result S-2, �max(An,�) = O(p�� ).

yt = ��
�
zt,� + 𝜖t, where zt,� =

t∑
k=1

𝜌
t−k�k,� and 𝜖t =

t∑
k=1

𝜌
t−k

𝜖k.

(20)Cov
(
𝜖t+h, 𝜖t

)
∼

𝜎
2
𝜖
𝜌
h

1 − 𝜌2
, where h ≥ 0.

�

(
zi,�

)
= ��

0,�
zi,�, and Cov

(
��
�
zi,�, �

�
�
zj,�

)
= �

2
�
gnz

�
i,�

(
Z�
�
Z�
)−1

zj,�.

‖‖‖�� − �t
�0

‖‖‖
2

=
‖‖‖Z��0,� − Z�0�0,�0

‖‖‖
2 ≤ 2

(
‖‖Z��0,�

‖‖2 + ‖‖‖Z�0�0,�0

‖‖‖
2
)
.



603

1 3

Bayes factor asymptotics in Gaussian process framework

Assuming, as before, that lim infn n
−1−2r𝜔�‖�� − �t

�0
‖2 > 0 , it is seen that (A1) 

also holds. Thus, (A1)–(A3) holds.
Next we verify conditions (i)–(iii) of Theorem 5. Note that

Consider the first term of (21).
By Lemma S-1 Hn,� has positive and bounded eigenvalues. Define Dn,� =

�

��

Hn,� , 

and note that

where An(�) = ((ai,j)) is defined by ai,j = |i − j|�|i−j|−1 . We will show that Dn,� has 
finite eigenvalues. From Lemma S-1 and Lemma S-2 (in Section S-7 of the sup-
plement), and the fact that � ∈ [−1 + � , 1 − �] , it is evident that the 2nd and 
3rd matrices in the RHS of (22) have bounded eigenvalues if gn is bounded. 
As both the matrices are symmetric, it follows from Result S-2 that the sum 
of these two matrices have finite eigenvalues. From Gerschgorin’s circle theo-
rem, �max

(
An(�)

) ≤ maxj R[j] , and �min

(
An(�)

) ≥ −maxj R[j] where R[j] is the 
sum of the absolute values of the non-diagonal entries in the [j]-th row of An(�) 
and [j] is the highest integer less than or equal to j. Little algebra shows that 
maxj R[j] = R[n∕2] = 2

{
1 − |�|[n∕2] − [n∕2]|�|[n∕2](1 − |�|)}(1 − |�|)−2 . As n is large 

(1 − |𝜌|)−2 < R[n∕2] < 2(1 − |𝜌|)−2 , which implies that the eigenvalues of the 1st 
matrix of RHS of (22) are bounded. Thus, Dn,� has bounded eigenvalues by Result 
S-2.

Let 𝛼0 > 0 be such that 𝜆min(Dn,�) > −𝛼0 . Then Dn,� + �0I is a symmetric positive 
definite matrix. Hence, the absolute value on first term of (21) is

The last equality holds as the eigenvalues of Hn,� are positive and bounded, that of 
Dn,� are bounded, and �0 is finite.

(21)

�

��

(
1

n1+2r��

logBFn
�,�0

(�)
)

= −
1

2n1+2r��

tr

[
H−1

n,�

�

��

(
Hn,�

)]
+

1

n1+2r��

(
���

��

)T

H−1
n,�
(�n − ��)

+
1

2n1+2r��

(�n − ��)
TH−1

n,�

�

��

(
Hn,�

)
H−1

n,�
(�n − ��).

(22)Dn,� =
�
2
�

1 − �2
An(�) +

2�2
�
�

(1 − �2)2
Σ
�
+ �

2
�
gn

�

��

Pn,�,

||||
1

2n1+2r��

tr
(
H−1

n,�
Dn,�

)|||| =
||||

1

2n1+2r��

tr
[
H−1

n,�
(Dn,� + �0I) − �0H

−1
n,�

]||||
≤ 1

2n1+2r��

[|||trH
−1
n,�
(Dn,� + �0I)

||| + �0
|||trH

−1
n,�

|||
]

≤ 1

2n1+2r��

�1

(
H−1

n,�

)
tr
(
Dn,� + �0I

)

+
�0

2n1+2r��

tr
(
H−1

n,�

)
= O(1).
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Next consider the third term of (21). Let H−1
n,�
(�n − ��) = �� , then this 

term is �T
n,�
Dn,��n,�∕2n

1+2r�� . Using Result S-2 we argue that the third term of 
(21) is lower bounded by �min(Dn,�)‖�n,�‖2∕2n1+2r�� and upper bounded by 
�max(Dn,�)‖�n,�‖2∕2n1+2r�� . Using Result S-2, it can also be shown that ‖�n,�‖2 is 
bounded by �−2

max
(Hn,�)‖�n − ��‖2 and �−2

min
(Hn,�)‖�n − ��‖2.

Next, we write �n − ��0
= H

1∕2
n,�0

z̃n , where z̃n ∼ N
(
0, In

)
 . It then follows that

Combining the facts that �max(Hn,�0
) is bounded, z̃T

n
z̃n∕n → 1 almost surely as 

n → ∞ , ‖�� − ��0
‖2∕n1+2r�� = O(1) , and since |𝜌0|, |𝜌| < 1 − 𝛾 , almost surely, it fol-

lows that ‖‖�n − ��
‖‖2∕n1+2r�� = O(1) , almost surely. In other words, the third term of 

(21) is O(1) almost surely, as n → ∞.
For the second term of (21), note that

Note that �
��

�� =
�

��

(
�T
0,�
z1,�,… , �T

0,�
zn,�

)T

 . Thus,

for an appropriate Mn of order O(p2��) as �k,� is uniformly bounded for all k, and 
‖�0,�‖2 = O(‖�‖2) = O(p2��) . As |𝜌| < 1 − 𝛾 , the last expression is O(n). Moreover, 
as �max

[
H−2

n,�

]
 is bounded and ‖�n − ��‖2∕n1+2r�� is O(1) almost surely, it follows that 

the second term of (21) is O(1) almost surely.
In other words, all the three terms of (21) are O(1) almost surely, as n → ∞ . That is, 

almost surely, as n → ∞,

‖�n − ��‖2 = ‖�n − �t
�0
‖2 + ‖�t

�0
− ��‖2 + 2(�n − ��)

T (�t
�0
− ��)

≤ z̃
T
n
Hn,�0

z̃n + 2‖�t
�0
− ��‖

�
z̃
T
n
Hn,�0

z̃n + ‖�t
�0
− ��‖2

≤ 𝜆max(Hn,�0
)��z̃n��2 + 2‖�t

�0
− ��‖𝜆1∕2max

(Hn,�0
)��z̃n�� + ‖�t

�0
− ��‖2.
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)
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=
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=
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t=1
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n∑
t=1

{
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}2

,

(23)
d

d�

(
1

n1+2r��

logBFn
�,�0

(�)
)
= O(1).
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Therefore, for any given data sequence in the relevant non-null set, the function 
logBFn

�,�0
(�)∕n1+2r�� is Lipschitz continuous in � . Importantly, (23) shows that there 

exists n0 ≥ 1 , such that for n ≥ n0 , the Lipschitz constant for logBFn
�,�0

(�)∕n1+2r�� 
remains the same. In the same way, it can be shown that E�0

[
logBFn

�,�0
(�)∕n1+2r��

]
 is 

also Lipschitz in � , with bounded Lipschitz constant, as n → ∞.
Further, assuming that the lim sup and lim inf of E�0

[
logBFn

�,�0
(�)∕n1+2r��

]
 are 

upper and lower semicontinuous, respectively, and appealing to Theorem 5, (15) holds.
We summarize this in the form of the following theorem.

Theorem  6 Consider the model selection problem in the AR(1) model (19) with 
p = O(nr), with r > 0 . Suppose a prior �, supported on [−1 + � , 1 − �], is assigned 
on �, and �0 is the true value of �, with |𝜌0| < 1 − 𝛾, for some 𝛾 > 0. Let �0, � (⊆ �) 
be the set of indices of the true set of covariates, and a competing model. Assume 
that max

{|�0|, |�|
}
= O(p��), for some 0 ≤ �� ≤ 1. Let �� ∼ N

(
�0,�, gn�

2
�

(
Z�
�
Z�
)−1), 

where ‖�0,�‖L1 = O(p��), and gn = O(1) . If the space of covariates is compact, and 
the set of covariates 

{
xj ∶ j ∈ �

}
 is nonzero, then provided that the lim sup and 

lim inf of E�0

[
logBFn

�,�0
(�)∕n1+2r��

]
 are upper and lower semicontinuous, respec-

tively, (15) holds.

Note that for simplicity we have assumed �2
�
 to be known in the proof of Theorem 6. 

However, as the following corollary shows, this is not necessary.

Corollary 1 Due to Theorem 4, the result of Theorem 6 continues to hold with n1+2r�� 
replaced with n log n if we set �2

�
= �

2
�
 and assign the conjugate inverse-gamma 

prior (13) to �2
�
.

Remark 8 Before proceeding further, it is important to understand the role of �� in 
the results obtained so far. It is evident that �� is related to the effective dimensions 
of M� and Mt

�0
 . When the mean function of the Gaussian process, �� , is linear (or, a 

smooth function of the linear combination of covariates in |�| ), and the regression 
coefficient of the j-th covariate has same prior mean across different models M� 
involving it, then |���0| = O(p��) . This is observed in the linear and Gaussian pro-
cess regression with squared exponential kernel. However, if this simplification is 
not available, and �� is any function satisfying ‖��‖2 = O

�
n���2� , then 

max{|�|, |�0|} = O(p��) , which is observed in the AR(1) illustration. Finally, if the 
dimensions of the competing models do not grow with n, then �� = 0 . Although the 
role of �� varies with the problem’s setup, existence of an �� for which (A1)–(A3) 
hold, is certain. Consequently, strong Bayes factor consistency is achieved at the rate 
n1+2r��.



606 M. Mukhopadhyay, S. Bhattacharya 

1 3

8  Variable selection using Bayes factors under misspecified 
situations

So far we have investigated consistency of the Bayes factor for variable selection 
when the true model M�0

 is present in the space of models being compared. How-
ever, for a large number of covariates such an assumption need not always be real-
istic. Indeed, in practice, for a large number available covariates, it is usually not 
feasible to compare all possible models. As the true subset �0 is unknown, it is not 
unlikely to exclude it from the set of models being considered for comparison. In 
such cases of omissions, it makes sense to select the best subset � from the available 
class of subsets using Bayes factors. Result 3, which may be viewed as an adaptation 
of Theorem 5 for comparing models that are not necessarily correct, establishes the 
usefulness of Bayes factors even in the face of such misspecifications.

First consider a simple case. Let �1, �2 ⊆ � be two competing models of similar 
order, in the sense that either 𝜔�1

,𝜔�2
> 0 , or ��1

= ��2
= 0 . The following result 

holds in this setup.

Result 3 Consider the setup of Sect.  6 with unknown error variance �2
�
 . Let 

there exist ��1
,��2

 , such that ( A1′)–(A3′ ) hold for the models M�1
 and M�2

 , for 
each � ∈ � , where � is compact. Assume that, g(n) = n if ��1

= ��2
= 0 , and 

g(n) = n log n if ��1
,��2

∈ (0, 1] . Also assume the following: 

 (i) log
(
BFn

�,�0
(�)

)
∕g(n) is stochastically equicontinuous,

 (ii) E�0

[
log

(
BFn

�,�0
(�)

)
∕g(n)

]
 is equicontinuous with respect to � as n → ∞ , and

 (iii) The limit of E�0

[
log

(
BFn

�,�0
(�)

)
∕g(n)

]
 exists and is continuous in �.

If �1 and �2 are not equal to �0 , then there exist 𝛿�1 , 𝛿�2 > 0 associated with models 
M�1

 and M�2
 such that

Proof Using similar arguments as in the proof of Theorem 5, under the assumptions 
(i)–(iii), one can show that for any �,

where, due to (iii), ��(�) = ��(�) = ��(�) = limn E�0

[
log

(
BFn

�,�0
(�)

)
∕g(n)

]
 , is con-

tinuous for all � ∈ � , and �̃� ∈ � such that by the mean value theorem for integrals,

lim
n

1

g(n)
log

(
IBFn

�1,�2

)
a.s.
= − (��1 − ��2

).

(24)lim
n

1

g(n)
log

(
IBFn

�,�0

)
a.s.
= − 𝛿�(�̃�),

In = ∫�

exp
(
−g(n)𝛿�(�)

)
𝜋(�)d� = exp

(
−g(n)𝛿�(�̃�)

)

= ∫�

exp
(
−g(n)𝛿�(�)

)
𝜋(�)d� = I

n
.
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Noting that

the proof is completed by taking limits of both sides of (25), applying (24) on the 
two terms on the right hand side, and denoting 𝛿�(�̃�) by �� for all �.  ◻

Remark 9 From Result 3 it follows that M�1
 is the better model than M�2

 if 𝛿�1 < 𝛿�2
 

and M�2
 is to be preferred over M�1

 if 𝛿�1 > 𝛿�2
 . The Bayes factor converges expo-

nentially fast to infinity and zero, respectively, in these cases. Hence, asymptotically 
with respect to the Bayes factor, the best subset � is the one that minimizes ��.

Remark 10 Let ��1
= 0 and 𝜔�2

> 0 . In this case, it is evident that the model M�1
 is 

closer to the true model M�0
 than M�2

 , in the sense that, either |�0��1|∕|�0��2| → 0 , 
or max{|�1|, |�0|}∕max{|�2|, |�0|} → 0 (see Remark  8), i.e., M�2

 has signifi-
cantly large number of different covariates than M�0

 , compared to M�1
 . Taking 

g(n) = n log n , and following the steps of Result 3, one can show that

Thus, the Bayes factor favors M�1
 over M�2

 , and converges to 0 at an exponentially 
fast rate.

9  An overview of our simulation and real data experiments

We consider two sets of simulation experiments. In the first set, we provide direct 
validation of our theoretical results by fixing a true set of covariates and compar-
ing it with specifically chosen incorrect sets of covariates using Bayes factor as 
the sample size is increased. We demonstrate the validity of our results in the 
linear regression, Gaussian process regression, as well as in the AR(1) regression 
context.

In the second simulation scenario, our goal is to identify, using Bayes factors, the 
true set of data-generating covariates among the set of 2p − 1 available subsets of 
covariates, given any value of p and n. To this end, we devise a novel and efficient 
variable-dimensional MCMC algorithm for general-purpose variable selection using 
Bayes factors, in the framework of Transdimensional Transformation-based Markov 
Chain Monte Carlo (TTMCMC) introduced by Das and Bhattacharya (2019).

Not only do we demonstrate the effectiveness of our strategy with simulation 
studies involving linear, Gaussian process and AR(1) regressions, but also very suc-
cessfully apply our procedure to the variable selection problem in a real riboflavin 
data consisting of p = 4088 covariates and n = 71 data points, using both linear and 
Gaussian process regression.

(25)
1

g(n)
log

(
IBFn

�1,�2

)
=

1

g(n)
log

(
IBFn

�1,�0

)
−

1

g(n)
log

(
IBFn

�2,�0

)
,

lim
n

1

g(n)
log

(
IBFn

�2,�1

)
a.s.
= − ��2

.
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9.1  A briefing on our simulation studies for direct theory validation

In this section �2 is assumed to be unknown, and is assigned an inverse-gamma(1, 1) 
prior. The covariates are generated from scaled t(3) distribution, with an AR(1) struc-
tured scale matrix Σ0 , where � varies from 0.1–0.25. The total number of covariates 
p is fixed at 100, where n varies from 150 to 600. Three choices of |�0| are taken, viz. 
|�0| = 10, 40, 70.

As per our result, we expect the Bayes factor of the true model against any other 
model to converge to zero as n → ∞ . We pre-select two competing models which 
are closest to the true model, in appropriate sense. First, a supermodel having 
k additional covariates, is considered. Second, we choose a model which has the 
same cardinality as the true model, and exactly k variables are different from the true 
model. For illustration 1 (linear model) and 3 (AR(1) model) we choose k = 1 , and 
for illustration 2 (GP with squared exponential kernel), we choose k = 5 . We fix the 
true �2 at 1.

We also consider the case for misspecified models in linear regression and GP 
regression framework. In both the cases we consider two supermodels of the true 
model, M�1

 and M�2
 , having k1 and k2 extra covariates, and �1 ⊂ �2 . Clearly, M�1

 is 
closer to the true model than M�2

 . The simulation set up is kept the same as before. 
For linear regression we choose k1 = 1, k2 = 5 , and for GP regression we choose 
k1 = 5, k2 = 15.

Finally, for each pair (p, n) and each example, the data-generation procedure is 
repeated 100 times to reduce randomness, and the mean Bayes factor is reported. 
Very encouraging results are obtained with our strategies in each of the regression 
scenarios considered. For misspecified models, it is clearly observed that Bayes 
factor chooses the better model, i.e., M�1

 , at a growing rate with n. The complete 
details are provided in Section S-1 of the supplement.

9.2  Simulation experiments with Bayes factor oriented TTMCMC

Although a plethora of methods are available for Bayesian variable selection (see, 
for example, O’Hara and Sillanpää 2009 for a review), including variable-dimen-
sional solutions in the linear and generalized linear regression contexts (see, for 
example, Sillanpää and Arjas 1998; Lunn et al. 2006; Sillanpää et al. 2004; Cheva-
lier et al. 2020), implementation of variable selection in the nonparametric Gaussian 
process regression setup, to the best of our knowledge, is nonexistent in the litera-
ture. Therefore, it is imperative to develop new methodologies for practical variable 
selection implementation in this framework.

Note that when the available number of covariates is even reasonably large, eval-
uation of the marginal density of the data, even if available in closed form, is infeasi-
ble to compute for all possible covariate subsets. Thus, direct comparison of all pos-
sible covariate subsets with respect to the marginal density is generally infeasible, 
and hence suitable MCMC approaches are necessary.
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The traditional MCMC approaches are not valid in the model selection scenario. 
Indeed, different competing models may consist of sets of parameters with varying 
cardinalities, which would render the fixed-dimensional MCMC methods invalid. 
In the variable selection setup, at least the regression coefficients of the competing 
models associated with different subsets of covariates, are variable-dimensional.

Thus, variable-dimensional MCMC methods are necessary to handle the Bayes-
ian model selection paradigm. Although reversible jump MCMC (RJMCMC) 
(Green 1995) is a valid model-jumping MCMC method, its effectiveness with 
respect to practical implementation is often very doubtful, with poor mixing proper-
ties being the integral part. Thus, considerably more innovative and effective vari-
able-dimensional MCMC procedures are necessary to meet the challenges of com-
plex variable-dimensional problems, such as model selection, among many others.

As such, we shall offer a generic and effective variable-dimensional, Bayes factor 
oriented solution to any variable selection problem. We employ the novel TTMCMC 
methodology of Das and Bhattacharya (2019) for general variable-dimensional 
problems, which is a generalization of the fixed-dimensional Transformation-based 
Markov Chain Monte Carlo (TMCMC) of Dutta and Bhattacharya (2014). The most 
important feature of TMCMC is facilitation of updating all the variables in question 
simultaneously using appropriate deterministic transformations of even a singleton 
random variable. This general strategy leads to remarkable improvement of accept-
ance rates and mixing properties, even in high dimensions. These key features are 
inherited by TTMCMC in the transdimensional context.

Here we devise a novel TTMCMC algorithm for generic variable selection prob-
lems using mixtures of additive and multiplicative transformations of singleton 
variables, further supplemented with another deterministic transformation step to 
enhance mixing. The algorithm is available as Algorithm S-2.1 in Section S-2 of 
the supplement. An important aspect of the algorithm is to propose a new covariate 
in the “birth move” by Bayes Information Criterion (BIC), given a set of existing 
covariates.

The method of computation of Bayes factors using TTMCMC samples is detailed 
in Section S-3 of the supplement. In Section S-4 of the supplement we provide the 
proof of its convergence.

The proposed TTMCMC strategy leads to quite effective variable selection, while 
exhibiting good mixing properties. We demonstrate this with simulation experi-
ments in linear regression, Gaussian process regression and time series regression 
setups (see Section S-5 of the supplement).

9.3  Overview of our real data experiment

For real data application of our Bayes factor oriented variable selection procedure, 
we consider a dataset on riboflavin (vitamin B2 ) production rate, where the response 
variable is the log-transformed riboflavin production rate and the covariates are the 
logarithms of 4088 gene expression levels. There are only n = 71 data points in the 
data (thus, a bona fide real example of the “large p, small n” setup). This data, made 
publicly available by Bühlmann et al. (2014), has been analyzed by various research 
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groups using traditional classical methods in the linear regression framework. We 
model this data as linear regression, as well as Gaussian process regression, using 
our Bayes factor-based covariate selection, and obtain very interesting and insightful 
results as compared to the existing results (see Section S-6 of SM).

10  Summary, conclusion and future direction

This work is an effort to establish an asymptotic theory of variable selection using 
Bayes factor in a general Gaussian process framework that encompasses linear, non-
linear, parametric, nonparametric, independent, as well as dependent setups involv-
ing a set of covariates, the size of which is allowed to increase even at much faster 
rates than the sample size. The setup also includes the special case where the avail-
able number of covariates is considered fixed. That even in such a general setup 
it has been possible to establish almost sure exponential convergence of the Bayes 
factor in favour of the correct subset of covariates, seems to be quite encourag-
ing. The illustrations in the case of linear regression, Gaussian process model with 
squared exponential covariance function, and a first-order autoregressive model with 
time-varying covariates, vindicate the wide applicability of our asymptotic theory. 
Besides, it has been possible to adapt our main results on Bayes factor consistency 
to misspecified cases, where the true set of covariates is not included in the subsets 
of covariates to be compared using Bayes factor. As already explained, misspecifica-
tion has high likelihood in practice, and from this perspective, the result on almost 
sure exponential convergence even for misspecifications, seems to be a pleasant one. 
Recalling the predominance of linear or additive model-based Bayes factor asymp-
totics, and “in probability” convergence of the Bayes factor, our efforts in this work 
attempt to provide a significant advancement.

Furthermore, we have conducted ample simulation experiments to supplement 
our theoretical investigations. Indeed, not only have we provided direct validation 
of our theoretical results; with an eye to variable selection in practical problems, we 
have devised a generic Bayes factor oriented TTMCMC algorithm for such purpose, 
demonstrating its efficacy in detecting the true set of covariates from among a very 
large pool (size 2p − 1 ) of available subsets of covariates, in linear, Gaussian process 
and AR(1) regression setups. Our TTMCMC strategy also yielded very interesting 
(and perhaps quite important) variable selection results in the case of a real ribofla-
vin dataset consisting of 4088 covariates and 71 samples, exemplifying an authentic 
“large p, small n” real-life scenario.

It is easy to discern that our results and the methods of our proofs can be general-
ized without substantial modifications to situations where parts of the models are 
also necessary to select from among a set of possibilities, besides the best set of 
covariates. For example, in our linear regression example, choice might be neces-
sary between linear and some specified nonlinear regression functions which also 
encapsulate the covariates in appropriate forms. In our Gaussian process example 
with squared exponential covariance function, the form of the covariance function 
may itself be questionable, and needs to be chosen from a set of plausible covariance 
forms, associated with various stationary and non-stationary Gaussian processes. In 
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the first-order autoregressive model example, the order of the autoregression may 
itself need to be selected. Our primary calculations confirm that our Bayes factor 
asymptotics admit extension to simultaneous selection of these model parts and the 
covariates, with additional mild assumptions. These findings, with details, will be 
communicated elsewhere.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10463- 021- 00810-6.
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