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S1 Mean squared prediction error for the cross-validation

Compared with the mean squared prediction error for the cross-validation, the
trimmed version is robust to outliers in validation sets and provides a better
selection of tuning parameters. To illustrate this point, we re-run the simu-
lation using the mean squared prediction error for the cross-validation. We
report the results for Example 2(i) in Table S.1. Note that the results with
the trimmed mean squared prediction error are displayed in Table 2 in our
paper. In the light-tailed setting (N (0, 1)), with similar estimation errors, it is
not surprising that the mean squared prediction error for the cross-validation
yields slightly better group/variable selection performance than the trimmed
version, as there are not any outliers in the dataset. However, in the heavy-
tailed settings (t; and Mix Cauchy), we can clearly see that the robust GMCP
and GMCP-HT using the trimmed mean squared prediction error perform
better in both parameter estimation and group/variable selection. In particu-
lar, the robust GMCP-HT method with the trimmed version is able to largely
reduce the false negative rates in group/variable selection while maintaining
competitive false positive rates.

S2 Proofs

To prove Theorem 1, we need the following Lemma 1.
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MCP GMCP GMCP-HT
Huber  Cauchy Huber  Cauchy Huber  Cauchy
{y error | 7.23 7.34 1.69 1.67 1.58 1.57
¢y error | 30.35 30.85 7.55 7.49 6.81 6.74
MS 24.66 22.58 39.76 38.82 29.24 28.82
N(0,1) GS 16.79 15.44 8.96 8.73 7.7 7.61
’ FPR 2.77 2.41 4.71 4.52 2.53 2.45
FNR 33.71 35.76 0 0 0 0
GFPR 11.56 10.11 3.15 2.9 1.81 1.71
GFNR 1.33 1 0 0 0 0
lo error | 11.33 11.36 5.15 4.53 4.99 4.44
{1 error | 46.55 47.09 22.72 19.32 22.32 19.47
MS 11.33 10.65 37.31 34.87 32.02 31.33
£ GS 9.16 9.11 7.73 7.14 8.17 8.73
FPR 1.05 0.92 4.38 3.82 3.35 3.17
FNR 63.24 63.59 4.88 3.53 6.71 5.71
GFPR 4.22 4.09 2.34 1.56 2.85 3.36
GFNR 13.5 12.17 7.83 5.5 8.5 717
lo error | 8.65 9.14 2.92 2.73 2.84 2.7
{1 error | 36.59 38.91 12.95 11.82 12.4 11.35
MS 19.17 16.15 35.32 34.46 27.69 26.63
MixCauchy GS 13.8 12.56 7.38 7.24 7.21 7.09
FPR 2.06 1.62 3.83 3.69 2.28 2.1
FNR 45.76 51 1 2.24 2 2.88
GFPR 8.44 7.12 1.56 1.51 1.45 1.4
GFNR 2.17 2.17 1.5 3 2.5 3.83

Table S.1 Simulation results under the model with bi-level sparsity in Example 2(i), with
the mean squared prediction error for the cross-validation. The mean ¢2 error, ¢; error, MS,
GS, FPR (%), FNR(%), GFPR (%) and GFNR (%) out of 100 iterations are displayed.

Lemma 1 Suppose L,, in (5) satisfies Assumption 2 and the random errors
and covariates satisfy Assumption 3. For any t € (0,n), we have

IVLA(B)oo < C"\/Z

with probability at least 1 — 2p exp(—t).
Proof. The gradient of L, is

n

VLo (B) = — % 3wl (e0(x))-

If Assumption 3(ii) (a) holds, then
Elw(x;)x;l'(e;v(x;))] = Elw(x;)xil' (€;)]
=0,

where the second equality follows from ¢; Il x;. If Assumption 3(ii) (b) is sat-
isfied instead, we obtain

Elw(x;)x;l'(e;v(x;))] = Elw(x;)x; B[’ (€;0(x;))|x;] = 0. (52.2)
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Therefore, E[VL,(8")] = 0 under Assumption 3(ii).
Let p; = Elw(x;)xij], 5 =1,2,...,p. Then we have

Elw(x;)zi|" =Elw(xi)xi; — pj + py|™
<ER™ M (lw(xi)xij; — ps™ + |is]™)]

<2 By — " + 7] (523
<" m(VR)"RE T () + 7,

where max;<j<p |1t;] < 7 < 0o and the last inequality follows from Assumption
3(i), by which w(x;)z;; is sub-Gaussian hence for m > 0 (Rivasplata (2012))

Blw(x)ai; — ™ < m(vV2)"k§'T(5).

Next we bound the E|w(x;)z;;I' (e;v(x;))|™ from the above. By Assumption
2(i) and the bound in (S2.3), we have

Elw(x;)wil (e;v(x))[™ < kP Elw ()i ™

S2.4
< k;"2m*1[m(ﬁ)mkg"bp(%) + 7). (52.4)

By taking m = 2 in (S2.4), we obtain
E|U}(Xi)$ijl/(€ﬂ)(xi))‘2 S ll, (825)

where I; = k#(8k% + 272). For all integer m > 3, by equation (52.4) we have
Elw(x;)zil (ev(x)[™ < kian*l[m(\/i)mkﬁnF(%) +7"]

|
< T pm=2(97 4 V2hko)" 2 [k2(8KZ + 272)]  (S2.6)

where Iy = k1 (27 ++/2ko). By Bernstein inequality (Proposition 2.9 of Massart
(2007)) we have

1

,i wle )il (ev(x:) _sz wix)aigl (esv(x)]| >

2l1 lgt

=) < 2exp(-1).

3

Together with equation (52.1), we have

PUL S wee ee)] = oy ) < 2051

i=1

for t € (0,n], where Cy = /21 + lo. It then follows from union inequality that

P(IVL.(B )||oo>Co\/?)<2pexp( t).
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(Il
Proof of Theorem 1
By letting ¢t = (1 + C5) logp in Lemma 1, we have

PU LA e < CiyfB2) < 1~ 20xp (Ca o)

as desired for n > (1 + C3) logp, where Cy = Cy+/(1 + C2). Next we provide
the proof of Theorem 1 (ii). We first suppose the existence of stationary points
in the local RSC region and will establish this fact at the end of the proof.
Suppose B is a stationary point of program (4) such that ||ﬂ B*||2 < r. Since
B is a stationary point and B is feasible, we have the inequality

(VL,(B) = Var(B) + ADz,8" — B) > 0, (52.7)
where D := diag((v/d11] ,--- ,v/ds1])") denotes a p x p diagonal matrix,
z= (2], ,25)7 and z; € 9||B,]|2. Recall

o LG it 18,112 # 0.
81,12 = { 18,12 j

{z:zla <1,z €RB} if ;]2 =0,

for j=1,2,---,J. By the convexity of %Hﬂ”% — qx(B), we have

(Var(B),B" = B) > ax(B*) — ax(B) — *Hﬂ B°I5. (52.8)

So together with inequality (S2.7) we obtain
(VL.(B)+ADZ,B" —B) = x(B") — ax(B) — £ 18— 8"
Since (ADZ,8" — B) < 3-7_; /A AlIB}ll2 — S27_, \/d;Al|B;]|2, this means
(VLL(B).B" ~B) = pa(B) — pr(B) - 5B~ B3 (52.9)

Let # := 8 — B*. From the RSC inequality (6), we have

(VLA(B) ~ VLLB). B~ B7) = A3 — 752 . (52.10)

Combining inequality (S2.10) with inequality (S2.9), we then have

(v - %)Ilﬂllg - Tloflpllﬂllf + (pa(B) — pr(B)) < (VLL(B), 8" — B). (S2.11)

So by Holder’s inequality, we conclude that

B3 B 4 (a(B) — pr(8) < IV LB (52.12)
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Assume A > 4[|VL,(8") |l and A > STRIO%, we have

(= )11 < (02(8°) — 2(B)) + (2R7 L 1 VL, (8") )]

n

lo

gp \ _
- HIVLa (Bl ) [75]]2

< (pA(B%) — pa(B)) + > V(2R

J
< (A8~ (B)) + 5 3 VIl

j=1
< * po 1 ~ B2
< (A(B") ~ 1A(B) + 5 (o (3) + 2 1513),
implying that
3“ ~ 112 * p 1 ~
0< (0= IVBIZ < a8~ paB) + gpa@). (s213)
Recall S C {1,---,J} includes all indexes of important groups and |S| = s.

By the assumption 1 for p, we have
pA(s) = pA(B" = Bs) > pa(B”) — pa(Bs),

where ,B g denotes the zero-padded vector in RP with zeros on groups in S°.
Then starting from inequality (S2.13), we have

BT
0< (v =)l

< (B) ~ pa(B) + L (9)

= pr(B%) — pr(Bs) — pa(Bse) + %Px(ﬁ)
(52.14)

< pals) — pa(Bse) + %m(’})

= —pa(Ds) — pa(Dse) + %P/\(DSC)

N 1

pA(Ps) — §PA(1756)~

NN W

Let A denote the group index set of the first s groups of ¥ with largest o
norm. Recall d, = maxi<j<sd;, dy = mini<j<yd;, d = ”?TZ' By assumption

1(i) and (iv) we have

0 < 3pa(Bs) = pA(@se) <3 p([F5ll2, Vdad) = D p(I75ll2, V/doN)

JeES jJjeSe
<35 (172 VAN = 37 o720 /D N).
JEA JEAC

(S2.15)
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Let ¢ := max e ac |[#||2 and define f(¢, \) := p(t 5y for £, A > 0. By assumption
on p, for any fixed A € RT, function ¢ — f(t, \) is non-decreasing on R™. Thus

> o751z VdaX) - £l /daX) <D pl175]12: V/daA) - F(15]l2, V/da M)

JEA JEA
<N VATl
JEA

(S2.16)

Similarly we also obtain

ST pUlFglla. V/aA) - e, VdpA) = D p(lF]l2. /AN - F([155]]2. /A A)

JjEAC JjEAC
> VB2
JEA®
(52.17)
Combining inequality (S2.15) with (S2.16) and (S2.17) we have
0< 3PA(173) = pA(Vse)
fle
(3D VdaAllwj]l VapA|[7;]2)
/e, W 0y Z S f 0y ; ’
fle,Vda)
<3)  Vd s - Z VapA|7; 2
=~ N &~ (S2.18)
= VdAB Y 752 — Z 1751l2)
jeA jeAe
< VdABY 752 —g(d)fl Z 175ll2)
JEA jEAC

where the third inequality follows from

(r = 0)v/daX _
(c.Vdo)) 2 lim f(r,\/d,A) = lim, N — pO. V)

and the last inequality follows from assumption 1(ii). Hence,

(@)Y 175l = Y 7],

JEA JEAC
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implying that

@l <D 1zilh + > 1750

jeA jEAe

<Y VBl + Y Va7

JEA jeAe (52.19)

< Vdo(143g(d) Y |75l

JEA
das(1 +3g(d))|[7]2.

Combing inequalities (S2.14) and (S2.18) then gives

(-2t

_ 3 _ 3 _
=PIz < \fk B IZilla—g(d)™ D 175ll2) < 5\/@>\Z 1Z5llz < 5 v/ dasAlZ]|2,

JEA JEAC JEA

from which we conclude that

7]z <

6v/da\/5
— (S2.20)

—3u

as wanted. Combining the ¢2-bound with inequality (52.19) yields the ¢; bound

< 6(1+ 3g(d))da)\s-

7 S2.21
ol < 2 (52.21)

Finally, in order to establish the existence of local stationary points, we simply
define B € RP such that

B e argmin {L,(B) +pr(B)} . (52.22)
1B=B*ll2<m|IBllL<R

Then B is a stationary point of program (S2.22). Therefore, we have

P 1
1B~ B[l < €y 22082,

Provided n > Cr~2d,slog p, the point ,B will lie in the interior of the sphere of
radius r around B8*. Hence, B is also a stationary point of the original program
(4), guaranteeing the existence of such local stationary points. O

To prove Theorem 2, we need the following result adopted directly from
the Lemma 1 in Loh (2017).

Lemma 2 Suppose L,, satisfies the local RSC condition (4) andn > 2%klogp.
Then L,, is strongly convex over the region S, := {B € RP : supp(B) C Is,||B—

Bll2 <r}.
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Proof. The proof is similar to the proof of Lemma 1 in Loh (2017). (I

Proof of Theorem 2
The proof is an adaptation of the arguments of Theorem 2 in the paper Loh
(2017). We use the following three steps of the primal-dual witness (PDW)
construction:

(i) Optimize the restricted program

Bro € argmin  §L(B)+ ) p(llByll2: /AN ¢ (52.23)

BERs:||Bl1<R jes

and establish that HBIS i < R.
(ii) Recall gx(B) = Y°7_; /A AB,ll2 — S7_; p(IIB;ll24/d;A) defined in Sec-
tion 2. Define 2; € 9||B,ll2 and let 27, = (2?,]’ € S)T, and choose

z= (é?s,ég)T to satisfy the zero-subgradient condition

VLo (B) — Var(B) + ADz = 0, (S2.24)

where 8 := (Blsaofé) and D = diag((v/d11] ,--- ,v/d;13)"). Show that

. o
B1, = Bi, and establish strict dual feasibility: max;ege [|2;]2 < 1.
(iii) Verify via second order conditions that B is a local minimum of program
(4) and conclude that all stationary points 8 satisfying || — 8%||2 < r are
~O
supported on Ig and agree with 8 .
Proof of Step (i) : By applying Theorem 1 to the restricted program
(S2.23), we have
(1+3g(d))daAs

X~ N 6
||,BIS_5IS||1§ 47—314

and thus

R 6(1+3g(d))dads _

A * A * R P *
1B15lly < 187+ 1181 =Brsll < 5 +Br =Bl = 5+ pr— R,

under the assumption of the theorem. This complete step (i) of the PDW con-
struction. (]

To prove step (ii), we need the following Lemma 3 and 4:

Lemma 3 Under the conditions of Theorem 2, we have the bound

e N log p
181y — Bigll2 < Cs o

- Ne)
and B, = B, with probability at least 1 — 2 exp(—Cylog p/k?).
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~0 NG)
Proof. Recall B = (B;,,0 I§)~ By the optimality of the oracle estimator, we
have o
Ln(B) < Ln(B7). (52.25)
Consider n > Q,Yiklog p. By Lemma 2 L, (8) is strongly convex over restricted
region S,. Hence,

Lo(B) + (VLL(B), B —B) + %IIBO B2 < £a(B0). (S2.26)

Together with inequality (S2.25) we obtain

1IB” ~ B°1 < (VL.(B).8° ~ B < IV(Lu(B )i oe - 1B Bl
< VEIV(£n(B) il - 187 = B2

implying that

Wk .
By applying Lemma 1 to the restricted program (S2.23), we have

1B - 8712 <

PV (L0 (B} < co\/; > 1— 2k exp(—1).

Let t = C3logp/k?. Then we obtain

* 1
P(IV(£a(Bi )l < Cov/Cay| 75) = 1 = 2exp(~Culogp/k?),  (S2.28)

where we require k% log k = O(log p). Combining inequality (52.27) and (S2.28),
we obtain

N . logp
— < — 2.2
B =B ll2<Cs o (S2.29)

as desired, where Cs = 4Cy+/C3/7.
5 Ne; Ne)
Next we show B;, = ;.. When n > CZ /r?log p/k, we have ||B;, —B7. ]2 <

~O
r and thus B;, is an interior point of the oracle program in (8), implying

VL, (BL.) = 0. (52.30)

By assumption we have \ = Cm/lo% and B15 > ng/%, where we

choose Cg = Cgd 4+ C5. Together with inequality (S2.29), we have

NG NG G N
185 ll2 > 11Bll2 = [1B; = Bjll2 > Buin — 1B = B"ll2

> (Cg0 + C5) 4/ deloae _ Oy Jlomp
> Vd oM.
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for all j € S. Together with the assumption that p is (u, )-amenable, we have
NG o
Var(Brs) = ADrgrs2 g, (S2.31)

~O
where é?s = ((éf)T,j € S)T and 2? € 9[|B; |l2. Combining equation (S2.30)
and (S2.31), we obtain

~O ~O .
VL. (B1.) — Var(Br,) + AD 11527, = 0. (S2.32)

~O
Hence B 1, satisfies the zero-subgradient condition for the restricted program
(S2.23). By step (i) :BIS is an interior point of the program (S2.23), then it
must also satisfy the same zero-subgradient condition. Under the strict con-
vexity in Lemma 4, the solution that satisfies the zero-subgradient condition

. . s e,
is unique. Thus, we obtain 8;, = 8. a

The following lemma guarantees that the program in (S52.23) is strictly
convex:

Lemma 4 Suppose L,, satisfies the local RSC condition (4) and p is p-amenable

with v > p. Suppose in addition the sample size satisfies n > WQ_THk log p, then

the restricted program in (S2.23) is strictly convez.

Proof. This is almost identical to the proof of Lemma 2 in Loh et al. (2017).
We refer the reader to the arguments provided in that paper. O

Proof of step (ii) : We rewrite the zero-subgradient condition (S2.24) as
(VEa(B) ~ VLL(B")) + (VLL(B) ~ Var(B)) + ADz = 0.

Let Q be a p x p matrix Q = fol V2L, (ﬁ* —&—t(B—ﬁ"‘)) dt. By the zero-
subgradient condition and the fundamental theorem of calculas, we have

QB—B") + (VLa(B) ~ Var(B)) + Dz = 0,
And its block form is
QISIS stfg {BIS —ﬂ?s]_i_ VL (B )15 — Var(Bry)
VACn ,B Ig

(8) ¢

DIsIs 0 215 _
¢ — Vaa(Bre) —M[ ] [ ] -0

0 Drgrg] [2rg
(S2.33)
The selection property implies VqA(B Ig) = 0. Plugging this result into
equation (S2.33) and performing some algebra, we conclude that

Qrers Qrerg 0

Digrszrs = % {Qrz1:(B7. = Br) = VLB )1z } (S2.34)
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Therefore,

maxjese [|2; 2 < max;jese \/dj]|2; [l
= ||1DIA515215A o . .
= 1 Qugro By, — B7.) — VLu(B )rg
31Qrezs (Brg = Bi)llos + 3 1VLA(B ) gl
4 {maxjers €T Qrrslle b I1Brs — Bi,)ll2 + 2IVL0 (B 1z ooy
(S2.35)
where e; is a standard unit vector with jth element being 1. Observe that

[(e?QIEIS)m} Doy W)X V(%) Xim f01 " ((yi — xTB* — t(xiB — x:87))v(x;))dt]?
[% S w(xg)Xig - 0(Xi)Xim)

IAIA

2§[%
< k3

for all j € I§ and m € Ig, where the last inequality follows from assumption
2(ii). By conditions of Theorem 2, the variables w(x;)x;; and v(X;)X;m are both
sub-Gaussian. Using standard concentration results for i.i.d sums of products
of sub-Gaussian variables, we have

P([(ef Qugrs)m]® < C5) 2 1 = Cyexp(~Cyn).

It then follows from union inequality that

!

Plmax e Qrer. 12 < VOGR) > 1-Chexp(~Chrtlog(k(p—F))) > 1-Chexp(~ ),
Jeds

(52.36)
where n > C% log(k(p — k)). By Lemma 3 we obtain
> " logp

1Brs = Bisll2 < Cs kgn . (S2.37)

Furthermore, Theorem 1 gives

VL8l < VLB < Oy B2 (29

Combining inequality (S2.35), (S2.36), (S2.37) and (S2.38), we have

. 1 logp
o < ZOhy | =22
ggasg\\zglla_A 6\ =

with probability at least 1 — C7 exp(—Cylog p/k?), where C§ = /C5C5 + Ci.

In particular, for A = CG\/IO% for some Cg > Cf, we conclude at last that

the strict dual feasibility condition max;cge
(ii) of the PDW construction.

Step (iii) : Since the proof for this step is almost identical to the proof in
Step (iii) of Theorem 2 in Loh (2017), except for the slightly different nota-
tions. We refer the reader to the arguments provided in that paper. O

Z;ll2 < 1 holds, completing step
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Proof of Theorem 3
By the condition that 8L > Cs1/82 4+ 0, we have

min kn

« A 7 ~O
181 > 1851 = 187 = 851 > Biin — I1B15 — Bislloo

> (Cs /IC;C% +6)—Cs /kl)c% (S2.39)

for all j € Iy, where the second inequality follows from Lemma 3. For j €

Is — Iy,
5 20 % lo
1891 < 185, — Bl < sy E2 <. (5240

where the second inequality follows from Lemma 3 and the last inequality
~O ~O
follows from the condition in Theorem 3. Recall 8 = (B,,0;¢). By Theorem

AN
2 we have B = 8 with probability at least 1 —Cy exp(—Cylog p/k?). Together
with (S2.39) and (52.40), we have

NG

B'0)=B-1(81>0)=B" 108" > 0) = (B, 0sc),

as desired. It then gives the result

A h . ~O N logp
18" 6) - 87112 < 1B, ~ Bi.lz < Cay[ 257,

where the last inequality follows from Lemma 3. O
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