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S1 Mean squared prediction error for the cross-validation

Compared with the mean squared prediction error for the cross-validation, the
trimmed version is robust to outliers in validation sets and provides a better
selection of tuning parameters. To illustrate this point, we re-run the simu-
lation using the mean squared prediction error for the cross-validation. We
report the results for Example 2(i) in Table S.1. Note that the results with
the trimmed mean squared prediction error are displayed in Table 2 in our
paper. In the light-tailed setting (N(0, 1)), with similar estimation errors, it is
not surprising that the mean squared prediction error for the cross-validation
yields slightly better group/variable selection performance than the trimmed
version, as there are not any outliers in the dataset. However, in the heavy-
tailed settings (t1 and Mix Cauchy), we can clearly see that the robust GMCP
and GMCP-HT using the trimmed mean squared prediction error perform
better in both parameter estimation and group/variable selection. In particu-
lar, the robust GMCP-HT method with the trimmed version is able to largely
reduce the false negative rates in group/variable selection while maintaining
competitive false positive rates.

S2 Proofs

To prove Theorem 1, we need the following Lemma 1.
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MCP GMCP GMCP-HT
Huber Cauchy Huber Cauchy Huber Cauchy

N(0,1)

`2 error 7.23 7.34 1.69 1.67 1.58 1.57
`1 error 30.35 30.85 7.55 7.49 6.81 6.74
MS 24.66 22.58 39.76 38.82 29.24 28.82
GS 16.79 15.44 8.96 8.73 7.7 7.61
FPR 2.77 2.41 4.71 4.52 2.53 2.45
FNR 33.71 35.76 0 0 0 0
GFPR 11.56 10.11 3.15 2.9 1.81 1.71
GFNR 1.33 1 0 0 0 0

t1

`2 error 11.33 11.36 5.15 4.53 4.99 4.44
`1 error 46.55 47.09 22.72 19.32 22.32 19.47
MS 11.33 10.65 37.31 34.87 32.02 31.33
GS 9.16 9.11 7.73 7.14 8.17 8.73
FPR 1.05 0.92 4.38 3.82 3.35 3.17
FNR 63.24 63.59 4.88 3.53 6.71 5.71
GFPR 4.22 4.09 2.34 1.56 2.85 3.36
GFNR 13.5 12.17 7.83 5.5 8.5 7.17

MixCauchy

`2 error 8.65 9.14 2.92 2.73 2.84 2.7
`1 error 36.59 38.91 12.95 11.82 12.4 11.35
MS 19.17 16.15 35.32 34.46 27.69 26.63
GS 13.8 12.56 7.38 7.24 7.21 7.09
FPR 2.06 1.62 3.83 3.69 2.28 2.1
FNR 45.76 51 1 2.24 2 2.88
GFPR 8.44 7.12 1.56 1.51 1.45 1.4
GFNR 2.17 2.17 1.5 3 2.5 3.83

Table S.1 Simulation results under the model with bi-level sparsity in Example 2(i), with
the mean squared prediction error for the cross-validation. The mean `2 error, `1 error, MS,
GS, FPR (%), FNR(%), GFPR (%) and GFNR (%) out of 100 iterations are displayed.

Lemma 1 Suppose Ln in (5) satisfies Assumption 2 and the random errors
and covariates satisfy Assumption 3. For any t ∈ (0, n), we have

‖∇Ln(βββ∗)‖∞ ≤ C0

√
t

n

with probability at least 1− 2p exp(−t).

Proof. The gradient of Ln is

∇Ln(βββ∗) =− 1

n

n∑
i=1

w(xi)xil
′(εiv(xi)).

If Assumption 3(ii) (a) holds, then

E[w(xi)xil
′(εiv(xi))] = E[w(xi)xil

′(εi)]

= E[w(xi)xi]E[l′(εi)]

= 0,

(S2.1)

where the second equality follows from εi |= xi. If Assumption 3(ii) (b) is sat-
isfied instead, we obtain

E[w(xi)xil
′(εiv(xi))] = E[w(xi)xiE[l′(εiv(xi))|xi] = 0. (S2.2)
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Therefore, E[∇Ln(βββ∗)] = 0 under Assumption 3(ii).
Let µj = E[w(xi)xij ], j = 1, 2, . . . , p. Then we have

E|w(xi)xij |m =E|w(xi)xij − µj + µj |m

≤E[2m−1(|w(xi)xij − µj |m + |µj |m)]

≤2m−1[E|w(xi)xij − µj |m + τm]

≤2m−1[m(
√

2)mkm0 Γ (
m

2
) + τm],

(S2.3)

where max1≤j≤p |µj | < τ <∞ and the last inequality follows from Assumption
3(i), by which w(xi)xij is sub-Gaussian hence for m > 0 (Rivasplata (2012))

E|w(xi)xij − µj |m ≤ m(
√

2)mkm0 Γ (
m

2
).

Next we bound the E|w(xi)xij l
′(εiv(xi))|m from the above. By Assumption

2(i) and the bound in (S2.3), we have

E|w(xi)xij l
′(εiv(xi))|m ≤ km1 E|w(xi)xij |m

≤ km1 2m−1[m(
√

2)mkm0 Γ (
m

2
) + τm].

(S2.4)

By taking m = 2 in (S2.4), we obtain

E|w(xi)xij l
′(εiv(xi))|2 ≤ l1, (S2.5)

where l1 = k21(8k20 + 2τ2). For all integer m ≥ 3, by equation (S2.4) we have

E|w(xi)xij l
′(εiv(xi))|m ≤ km1 2m−1[m(

√
2)mkm0 Γ (

m

2
) + τm]

≤ m!

2
km−21 (2τ +

√
2k0)m−2[k21(8k20 + 2τ2)]

=
m!

2
lm−22 l1,

(S2.6)

where l2 = k1(2τ+
√

2k0). By Bernstein inequality (Proposition 2.9 of Massart
(2007)) we have

P (| 1
n

n∑
i=1

w(xi)xij l
′(εiv(xi))−

1

n

n∑
i=1

E[w(xi)xij l
′(εiv(xi))]| ≥

√
2l1t

n
+
l2t

n
) ≤ 2 exp(−t).

Together with equation (S2.1), we have

P (| 1
n

n∑
i=1

w(xi)xij l
′(εiv(xi))| ≥ C0

√
t

n
) ≤ 2 exp(−t)

for t ∈ (0, n], where C0 =
√

2l1 + l2. It then follows from union inequality that

P (‖∇Ln(βββ∗)‖∞ ≥ C0

√
t

n
) ≤ 2p exp (−t).
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�
Proof of Theorem 1

By letting t = (1 + C2) log p in Lemma 1, we have

P (‖∇Ln(βββ∗)‖∞ ≤ C1

√
log p

n
) ≤ 1− 2 exp (−C2 log p)

as desired for n ≥ (1 + C2) log p, where C1 = C0

√
(1 + C2). Next we provide

the proof of Theorem 1 (ii). We first suppose the existence of stationary points
in the local RSC region and will establish this fact at the end of the proof.
Suppose β̂ββ is a stationary point of program (4) such that ‖β̂ββ−βββ∗‖2 ≤ r. Since

β̂ββ is a stationary point and β̂ββ is feasible, we have the inequality

〈∇Ln(β̂ββ)−∇qλ(β̂ββ) + λDz̃zz,βββ∗ − β̂ββ〉 ≥ 0, (S2.7)

where D := diag((
√
d11

T
d1
, · · · ,

√
dJ1

T
dJ

)T ) denotes a p × p diagonal matrix,

z̃zz = (z̃zzT1 , · · · , z̃zz
T
J )T and z̃zzj ∈ ∂‖β̂ββj‖2. Recall

∂‖β̂ββj‖2 =


β̂ββj

‖β̂ββj‖2
if ‖β̂ββj‖2 6= 0,

{zzz : ‖zzz‖2 ≤ 1, zzz ∈ Rdj} if ‖β̂ββj‖2 = 0,

for j = 1, 2, · · · , J . By the convexity of µ
2 ‖βββ‖

2
2 − qλ(βββ), we have

〈∇qλ(β̂ββ),βββ∗ − β̂ββ〉 ≥ qλ(βββ∗)− qλ(β̂ββ)− µ

2
‖β̂ββ − βββ∗‖22. (S2.8)

So together with inequality (S2.7) we obtain

〈∇Ln(β̂ββ) + λDz̃zz,βββ∗ − β̂ββ〉 ≥ qλ(βββ∗)− qλ(β̂ββ)− µ

2
‖β̂ββ − βββ∗‖22.

Since 〈λDz̃zz,βββ∗ − β̂ββ〉 ≤
∑J
j=1

√
djλ‖βββ∗j‖2 −

∑J
j=1

√
djλ‖β̂ββj‖2, this means

〈∇Ln(β̂ββ),βββ∗ − β̂ββ〉 ≥ ρλ(β̂ββ)− ρλ(βββ∗)− µ

2
‖β̂ββ − βββ∗‖22. (S2.9)

Let ν̃νν := β̂ββ − βββ∗. From the RSC inequality (6), we have

〈∇Ln(β̂ββ)−∇Ln(βββ∗), β̂ββ − βββ∗〉 ≥ γ‖ν̃νν‖22 − τ
log p

n
‖ν̃νν‖21. (S2.10)

Combining inequality (S2.10) with inequality (S2.9), we then have

(γ − µ

2
)‖ν̃νν‖22 − τ

log p

n
‖ν̃νν‖21 + (ρλ(β̂ββ)− ρλ(βββ∗)) ≤ 〈∇Ln(βββ∗),βββ∗ − β̂ββ〉. (S2.11)

So by Holder’s inequality, we conclude that

(γ − µ

2
)‖ν̃νν‖22 − τ

log p

n
‖ν̃νν‖21 + (ρλ(β̂ββ)− ρλ(βββ∗)) ≤ ‖∇Ln(βββ∗)‖∞‖ν̃νν‖1. (S2.12)
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Assume λ ≥ 4‖∇Ln(βββ∗)‖∞ and λ ≥ 8τR log p
n , we have

(γ − µ

2
)‖ν̃νν‖22 ≤ (ρλ(βββ∗)− ρλ(β̂ββ)) + (2Rτ

log p

n
+ ‖∇Ln(βββ∗)‖∞)‖ν̃νν‖1

≤ (ρλ(βββ∗)− ρλ(β̂ββ)) +

J∑
j=1

√
dj(2Rτ

log p

n
+ ‖∇Ln(βββ∗)‖∞)‖ν̃ννj‖2

≤ (ρλ(βββ∗)− ρλ(β̂ββ)) +
1

2

J∑
j=1

√
djλ‖ν̃ννj‖2

≤ (ρλ(βββ∗)− ρλ(β̂ββ)) +
1

2
(ρλ(ν̃νν) +

µ

2
‖ν̃νν‖22),

implying that

0 ≤ (γ − 3µ

4
)‖ν̃νν‖22 ≤ ρλ(βββ∗)− ρλ(β̂ββ) +

1

2
ρλ(ν̃νν). (S2.13)

Recall S ⊆ {1, · · · , J} includes all indexes of important groups and |S| = s.
By the assumption 1 for ρ, we have

ρλ(ν̃ννS) = ρλ(βββ∗ − β̂ββS) ≥ ρλ(βββ∗)− ρλ(β̂ββS),

where β̂ββS denotes the zero-padded vector in Rp with zeros on groups in Sc.
Then starting from inequality (S2.13), we have

0 ≤ (γ − 3µ

4
)‖ν̃νν‖22

≤ ρλ(βββ∗)− ρλ(β̂ββ) +
1

2
ρλ(ν̃νν)

= ρλ(βββ∗)− ρλ(β̂ββS)− ρλ(β̂ββSc) +
1

2
ρλ(ν̃νν)

≤ ρλ(ν̃ννS)− ρλ(β̂ββSc) +
1

2
ρλ(ν̃νν)

=
3

2
ρλ(ν̃ννS)− ρλ(ν̃ννSc) +

1

2
ρλ(ν̃ννSc)

=
3

2
ρλ(ν̃ννS)− 1

2
ρλ(ν̃ννSc).

(S2.14)

Let A denote the group index set of the first s groups of ν̃νν with largest `2

norm. Recall da = max1≤j≤J dj , db = min1≤j≤J dj , d =
√

da
db

. By assumption

1(i) and (iv) we have

0 ≤ 3ρλ(ν̃ννS)− ρλ(ν̃ννSc) ≤ 3
∑
j∈S

ρ(‖ν̃ννj‖2,
√
daλ)−

∑
j∈Sc

ρ(‖ν̃ννj‖2,
√
dbλ)

≤ 3
∑
j∈A

ρ(‖ν̃ννj‖2,
√
daλ)−

∑
j∈Ac

ρ(‖ν̃ννj‖2,
√
dbλ).

(S2.15)
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Let c := maxj∈Ac ‖ν̃ννj‖2 and define f(t, λ) := tλ
ρ(t,λ) for t, λ > 0. By assumption

on ρ, for any fixed λ ∈ R+, function t 7→ f(t, λ) is non-decreasing on R+. Thus

∑
j∈A

ρ(‖ν̃ννj‖2,
√
daλ) · f(c,

√
daλ) ≤

∑
j∈A

ρ(‖ν̃ννj‖2,
√
daλ) · f(‖ν̃ννj‖2,

√
daλ)

≤
∑
j∈A

√
daλ‖ν̃ννj‖2.

(S2.16)

Similarly we also obtain

∑
j∈Ac

ρ(‖ν̃ννj‖2,
√
dbλ) · f(c,

√
dbλ) ≥

∑
j∈Ac

ρ(‖ν̃ννj‖2,
√
dbλ) · f(‖ν̃ννj‖2,

√
dbλ)

≥
∑
j∈Ac

√
dbλ‖ν̃ννj‖2.

(S2.17)

Combining inequality (S2.15) with (S2.16) and (S2.17) we have

0 ≤ 3ρλ(ν̃ννS)− ρλ(ν̃ννSc)

≤ 1

f(c,
√
daλ)

(3
∑
j∈A

√
daλ‖ν̃ννj‖2 −

f(c,
√
daλ)

f(c,
√
dbλ)

∑
j∈Ac

√
dbλ‖ν̃ννj‖2)

≤ 3
∑
j∈A

√
daλ‖ν̃ννj‖2 −

f(c,
√
daλ)

f(c,
√
dbλ)

∑
j∈Ac

√
dbλ‖ν̃ννj‖2

=
√
daλ(3

∑
j∈A
‖ν̃ννj‖2 −

ρ(c,
√
dbλ)

ρ(c,
√
daλ)

∑
j∈Ac

‖ν̃ννj‖2)

≤
√
daλ(3

∑
j∈A
‖ν̃ννj‖2 − g(d)−1

∑
j∈Ac

‖ν̃ννj‖2),

(S2.18)

where the third inequality follows from

f(c,
√
daλ) ≥ lim

r→0+
f(r,

√
daλ) = lim

r→0+

(r − 0)
√
daλ

ρ(r,
√
daλ)− ρ(0,

√
daλ)

= 1,

and the last inequality follows from assumption 1(ii). Hence,

3g(d)
∑
j∈A
‖ν̃ννj‖2 ≥

∑
j∈Ac

‖ν̃ννj‖2,
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implying that

‖ν̃νν‖1 ≤
∑
j∈A
‖ν̃ννj‖1 +

∑
j∈Ac

‖ν̃ννj‖1

≤
∑
j∈A

√
da‖ν̃ννj‖2 +

∑
j∈Ac

√
da‖ν̃ννj‖2

≤
√
da(1 + 3g(d))

∑
j∈A
‖ν̃ννj‖2

≤
√
das(1 + 3g(d))‖ν̃νν‖2.

(S2.19)

Combing inequalities (S2.14) and (S2.18) then gives

(γ−3µ

4
)‖ν̃νν‖22 ≤

1

2

√
daλ(3

∑
j∈A
‖ν̃ννj‖2−g(d)−1

∑
j∈Ac

‖ν̃ννj‖2) ≤ 3

2

√
daλ

∑
j∈A
‖ν̃ννj‖2 ≤

3

2

√
dasλ‖ν̃νν‖2,

from which we conclude that

‖ν̃νν‖2 ≤
6
√
daλ
√
s

4γ − 3µ
(S2.20)

as wanted. Combining the `2-bound with inequality (S2.19) yields the `1 bound

‖ν̃νν‖1 ≤
6(1 + 3g(d))daλs

4γ − 3µ
. (S2.21)

Finally, in order to establish the existence of local stationary points, we simply
define β̂ββ ∈ Rp such that

β̂ββ ∈ argmin
‖βββ−βββ∗‖2≤r,‖βββ‖1<R

{Ln(βββ) + ρλ(βββ)} . (S2.22)

Then β̂ββ is a stationary point of program (S2.22). Therefore, we have

‖β̂ββ − βββ∗‖2 ≤ C
√
das log p

n
.

Provided n > Cr−2das log p, the point β̂ββ will lie in the interior of the sphere of
radius r around βββ∗. Hence, β̂ββ is also a stationary point of the original program
(4), guaranteeing the existence of such local stationary points. �

To prove Theorem 2, we need the following result adopted directly from
the Lemma 1 in Loh (2017).

Lemma 2 Suppose Ln satisfies the local RSC condition (4) and n ≥ 2τ
γ k log p.

Then Ln is strongly convex over the region Sr := {βββ ∈ Rp : supp(βββ) ⊆ IS , ‖βββ−
βββ∗‖2 ≤ r}.
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Proof. The proof is similar to the proof of Lemma 1 in Loh (2017). �

Proof of Theorem 2
The proof is an adaptation of the arguments of Theorem 2 in the paper Loh
(2017). We use the following three steps of the primal-dual witness (PDW)
construction:

(i) Optimize the restricted program

β̂ββIS ∈ argmin
βββ∈RIS :‖βββ‖1≤R

Ln(βββ) +
∑
j∈S

ρ(‖βββj‖2,
√
djλ)

 , (S2.23)

and establish that ‖β̂ββIS‖1 < R.

(ii) Recall qλ(βββ) =
∑J
j=1

√
djλ‖βββj‖2 −

∑J
j=1 ρ(‖βββj‖2

√
djλ) defined in Sec-

tion 2. Define ẑzzj ∈ ∂‖β̂ββj‖2 and let ẑzzIS = (ẑzzTj , j ∈ S)T , and choose

ẑzz = (ẑzzTIS , ẑzz
T
IcS

)T to satisfy the zero-subgradient condition

∇Ln(β̂ββ)−∇qλ(β̂ββ) + λDẑzz = 0, (S2.24)

where β̂ββ := (β̂ββIS ,000IcS ) and D = diag((
√
d11

T
d1
, · · · ,

√
dJ1

T
dJ

)T ). Show that

β̂ββIS = β̂ββ
O
IS and establish strict dual feasibility: maxj∈Sc ‖ẑzzj‖2 < 1.

(iii) Verify via second order conditions that β̂ββ is a local minimum of program

(4) and conclude that all stationary points β̂ββ satisfying ‖β̂ββ − βββ∗‖2 ≤ r are

supported on IS and agree with β̂ββ
O

.

Proof of Step (i) : By applying Theorem 1 to the restricted program
(S2.23), we have

‖β̂ββIS − βββ
∗
IS‖1 ≤

6(1 + 3g(d))daλs

4γ − 3µ
,

and thus

‖β̂ββIS‖1 ≤ ‖βββ
∗‖1+‖β̂ββIS−βββ

∗
IS‖1 ≤

R

2
+‖β̂ββIS−βββ

∗
IS‖1 ≤

R

2
+

6(1 + 3g(d))daλs

4γ − 3µ
< R,

under the assumption of the theorem. This complete step (i) of the PDW con-
struction. �

To prove step (ii), we need the following Lemma 3 and 4:

Lemma 3 Under the conditions of Theorem 2, we have the bound

‖β̂ββ
O
IS − βββ

∗
IS‖2 ≤ C5

√
log p

kn

and β̂ββIS = β̂ββ
O
IS with probability at least 1− 2 exp(−C4 log p/k2).
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Proof. Recall β̂ββ
O

= (β̂ββ
O
IS ,0IcS ). By the optimality of the oracle estimator, we

have

Ln(β̂ββ
O

) ≤ Ln(βββ∗). (S2.25)

Consider n ≥ 2τ
γ k log p. By Lemma 2 Ln(βββ) is strongly convex over restricted

region Sr. Hence,

Ln(βββ∗) + 〈∇Ln(βββ∗), β̂ββ
O
− βββ∗〉+

γ

4
‖β̂ββ
O
− βββ∗‖22 ≤ Ln(β̂ββ

O
). (S2.26)

Together with inequality (S2.25) we obtain

γ
4 ‖β̂ββ

O
− βββ∗‖22 ≤ 〈∇Ln(βββ∗),βββ∗ − β̂ββ

O
〉 ≤ ‖∇(Ln(βββ∗))IS‖∞ · ‖β̂ββ

O
− βββ∗‖1

≤
√
k‖∇(Ln(βββ∗))IS‖∞ · ‖β̂ββ

O
− βββ∗‖2,

implying that

‖β̂ββ
O
− βββ∗‖2 ≤

4
√
k

γ
‖∇(Ln(βββ∗))IS‖∞. (S2.27)

By applying Lemma 1 to the restricted program (S2.23), we have

P (‖∇(Ln(βββ∗IS ))‖∞ ≤ C0

√
t

n
) ≥ 1− 2k exp(−t).

Let t = C3 log p/k2. Then we obtain

P (‖∇(Ln(βββ∗IS ))‖∞ ≤ C0

√
C3

√
log p

k2n
) ≥ 1− 2 exp(−C4 log p/k2), (S2.28)

where we require k2 log k = O(log p). Combining inequality (S2.27) and (S2.28),
we obtain

‖β̂ββ
O
− βββ∗‖2 ≤ C5

√
log p

kn
(S2.29)

as desired, where C5 = 4C0

√
C3/γ.

Next we show β̂ββIS = β̂ββ
O
IS . When n > C2

5/r
2 log p/k, we have ‖β̂ββ

O
IS−βββ

∗
IS‖2 <

r and thus β̂ββ
O
IS is an interior point of the oracle program in (8), implying

∇Ln(β̂ββ
O
IS ) = 0. (S2.30)

By assumption we have λ = C6

√
log p
n and βββ∗Gmin ≥ C8

√
da log p
n , where we

choose C8 = C6δ + C5. Together with inequality (S2.29), we have

‖β̂ββ
O
j ‖2 ≥ ‖βββ

∗
j‖2 − ‖β̂ββ

O
j − βββ

∗
j‖2 ≥ βββ

∗G
min − ‖β̂ββ

O
− βββ∗‖2

≥ (C6δ + C5)
√

da log p
n − C5

√
log p
kn

≥
√
daδλ.
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for all j ∈ S. Together with the assumption that ρ is (µ, δ)-amenable, we have

∇qλ(β̂ββ
O
IS ) = λDISIS ẑzz

O
IS , (S2.31)

where ẑzzOIS = ((ẑzzOj )T , j ∈ S)T and ẑzzOj ∈ ∂‖β̂ββ
O
j ‖2. Combining equation (S2.30)

and (S2.31), we obtain

∇Ln(β̂ββ
O
IS )−∇qλ(β̂ββ

O
IS ) + λDISIS ẑzz

O
IS = 0. (S2.32)

Hence β̂ββ
O
IS satisfies the zero-subgradient condition for the restricted program

(S2.23). By step (i) β̂ββIS is an interior point of the program (S2.23), then it
must also satisfy the same zero-subgradient condition. Under the strict con-
vexity in Lemma 4, the solution that satisfies the zero-subgradient condition

is unique. Thus, we obtain β̂ββIS = β̂ββ
O
IS . �

The following lemma guarantees that the program in (S2.23) is strictly
convex:

Lemma 4 Suppose Ln satisfies the local RSC condition (4) and ρ is µ-amenable
with γ > µ. Suppose in addition the sample size satisfies n > 2τ

γ−µk log p, then

the restricted program in (S2.23) is strictly convex.

Proof. This is almost identical to the proof of Lemma 2 in Loh et al. (2017).
We refer the reader to the arguments provided in that paper. �

Proof of step (ii) : We rewrite the zero-subgradient condition (S2.24) as(
∇Ln(β̂ββ)−∇Ln(βββ∗)

)
+
(
∇Ln(βββ∗)−∇qλ(β̂ββ)

)
+ λDẑzz = 0.

Let Q̂ be a p × p matrix Q̂ =
∫ 1

0
∇2Ln

(
βββ∗ + t(β̂ββ − βββ∗)

)
dt. By the zero-

subgradient condition and the fundamental theorem of calculas, we have

Q̂(β̂ββ − βββ∗) +
(
∇Ln(βββ∗)−∇qλ(β̂ββ)

)
+ λDẑzz = 0,

And its block form is[
Q̂ISIS Q̂ISIcS
Q̂IcSIS Q̂IcSIcS

] [
β̂ββIS − βββ

∗
IS

0

]
+

[
∇Ln(βββ∗)IS −∇qλ(β̂ββIS )

∇Ln(βββ∗)IcS −∇qλ(β̂ββIcS )

]
+λ

[
DISIS 0

0 DIcSI
c
S

] [
ẑzzIS
ẑzzIcS

]
= 0.

(S2.33)

The selection property implies ∇qλ(β̂ββIcS ) = 0. Plugging this result into

equation (S2.33) and performing some algebra, we conclude that

DIcSI
c
S
ẑzzIcS =

1

λ

{
Q̂IcSIS (βββ∗IS − β̂ββIS )−∇Ln(βββ∗)IcS

}
. (S2.34)
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Therefore,

maxj∈Sc ‖ẑzzj‖2 ≤ maxj∈Sc

√
dj‖ẑzzj‖∞

= ‖DIcSI
c
S
ẑzzIcS‖∞

= 1
λ‖Q̂IcSIS (β̂ββIS − βββ

∗
IS )−∇Ln(βββ∗)IcS‖∞

≤ 1
λ‖Q̂IcSIS (β̂ββIS − βββ

∗
IS )‖∞ + 1

λ‖∇Ln(βββ∗)IcS‖∞
≤ 1

λ

{
maxj∈IcS ‖e

T
j Q̂IcSIS‖2

}
‖(β̂ββIS − βββ

∗
IS )‖2 + 1

λ‖∇Ln(βββ∗)IcS‖∞,
(S2.35)

where ej is a standard unit vector with jth element being 1. Observe that

[(eTj Q̂IcSIS )m]2 ≤ [ 1n
∑n
i=1 w(xi)xijv(xi)xim

∫ 1

0
l′′((yi − xTi βββ

∗ − t(xiβ̂ββ − xiβββ
∗))v(xi))dt]

2

≤ k22[ 1n
∑n
i=1 w(xi)xij · v(xi)xim]2,

for all j ∈ IcS and m ∈ IS , where the last inequality follows from assumption
2(ii). By conditions of Theorem 2, the variables w(xi)xij and v(xi)xim are both
sub-Gaussian. Using standard concentration results for i.i.d sums of products
of sub-Gaussian variables, we have

P ([(eTj Q̂IcSIS )m]2 ≤ C ′3) ≥ 1− C ′2 exp(−C ′3n).

It then follows from union inequality that

P (max
j∈IcS
‖eTj Q̂IcSIS‖2 ≤

√
C ′3k) ≥ 1−C ′2 exp(−C ′3n+log(k(p−k))) ≥ 1−C ′2 exp(−C

′
3

2
n),

(S2.36)
where n ≥ 2

C′3
log(k(p− k)). By Lemma 3 we obtain

‖β̂ββIS − βββ
∗
IS‖2 ≤ C5

√
log p

kn
. (S2.37)

Furthermore, Theorem 1 gives

‖∇Ln(βββ∗)IcS‖∞ ≤ ‖∇Ln(βββ∗))‖∞ ≤ C1

√
log p

n
. (S2.38)

Combining inequality (S2.35), (S2.36), (S2.37) and (S2.38), we have

max
j∈Sc

‖ẑzzj‖2 ≤
1

λ
C ′6

√
log p

n
,

with probability at least 1−C7 exp(−C4 log p/k2), where C ′6 =
√
C ′3C5 +C1.

In particular, for λ = C6

√
log p
n for some C6 > C ′6, we conclude at last that

the strict dual feasibility condition maxj∈Sc ‖ẑzzj‖2 < 1 holds, completing step
(ii) of the PDW construction.

Step (iii) : Since the proof for this step is almost identical to the proof in
Step (iii) of Theorem 2 in Loh (2017), except for the slightly different nota-
tions. We refer the reader to the arguments provided in that paper. �
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Proof of Theorem 3

By the condition that βββ∗Imin ≥ C5

√
log p
kn + θ, we have

|β̂Oj | ≥ |β∗j | − |β̂Oj − β∗j | ≥ βββ
∗I
min − ‖β̂ββ

O
IS − βββ

∗
IS‖∞

≥ (C5

√
log p
kn + θ)− C5

√
log p
kn

= θ.

(S2.39)

for all j ∈ I0, where the second inequality follows from Lemma 3. For j ∈
IS − I0,

|β̂Oj | ≤ ‖β̂ββ
O
IS − βββ

∗
IS‖∞ ≤ C5

√
log p

kn
< θ, (S2.40)

where the second inequality follows from Lemma 3 and the last inequality

follows from the condition in Theorem 3. Recall β̂ββ
O

= (β̂ββ
O
IS ,0IcS ). By Theorem

2 we have β̂ββ = β̂ββ
O

with probability at least 1−C7 exp(−C4 log p/k2). Together
with (S2.39) and (S2.40), we have

β̂ββ
h
(θ) = β̂ββ · I(|β̂ββ| ≥ θ) = β̂ββ

O
· I(|β̂ββ

O
| ≥ θ) = (β̂ββ

O
I0 ,000Ic0 ),

as desired. It then gives the result

‖β̂ββ
h
(θ)− βββ∗‖2 ≤ ‖β̂ββ

O
IS − βββ

∗
IS‖2 ≤ C5

√
log p

kn
,

where the last inequality follows from Lemma 3. �
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