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Abstract
In high-dimensional data analysis, bi-level sparsity is often assumed when covari-
ates function group-wisely and sparsity can appear either at the group level or within 
certain groups. In such cases, an ideal model should be able to encourage the bi-
level variable selection consistently. Bi-level variable selection has become even 
more challenging when data have heavy-tailed distribution or outliers exist in ran-
dom errors and covariates. In this paper, we study a framework of high-dimensional 
M-estimation for bi-level variable selection. This framework encourages bi-level 
sparsity through a computationally efficient two-stage procedure. In theory, we pro-
vide sufficient conditions under which our two-stage penalized M-estimator pos-
sesses simultaneous local estimation consistency and the bi-level variable selection 
consistency if certain non-convex penalty functions are used at the group level. Both 
our simulation studies and real data analysis demonstrate satisfactory finite sample 
performance of the proposed estimators under different irregular settings.
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1  Introduction

Covariates often function group-wisely in many applications. For example, in gene 
expression analysis, genes from the same biological pathways may exhibit similar 
activities. In high-dimensional linear regression, penalized least squares approaches 
with penalties incorporating grouping structures have become very popular in 
recent decades. Yuan and Lin (2006) proposed the group Lasso, as a natural exten-
sion of the Lasso (Tibshirani, 1996), to select variables at the group level by apply-
ing the Lasso penalty on the �2 -norm of coefficients associated with each group 
of variables in penalized least squares regression (LS-GLasso). To address the bias 
and inconsistency of the group Lasso estimator in high-dimensional settings, sev-
eral methods have been investigated, including the adaptive group Lasso (Wei & 
Huang, 2010), the �2-norm MCP (Huang et  al., 2012), the �2-norm SCAD (Guo 
et al., 2015), among others. However, the above approaches encourage only “all-in” 
or “all-out” variable selection at the group level. To further encourage the sparsity 
within certain groups, extensive methods have been proposed to perform bi-level 
variable selection. See, for example, the group Bridge (Huang et  al., 2009), the 
sparse group Lasso (Friedman et al., 2010; Simon et al., 2013), the concave �1-norm 
group penalty (Jiang & Huang, 2014), the composite MCP (Breheny & Huang, 
2009), the group exponential lasso (Breheny, 2015), among others. See Huang et al. 
(2012) for a complete review.

When the data dimensionality grows much faster than the sample size, irregu-
lar settings often appear, such as the response and a large number of variables are 
contaminated or heavy-tailed. It has been shown that the LS-GLasso is estimation 
consistent when the random errors are sub-Gaussian (Wei & Huang, 2010). How-
ever, the quadratic loss in LS-GLasso is non-robust to outliers and the estimator is 
no longer consistent if the random errors wildly deviate from sub-Gaussian distribu-
tion. In addition, the required restricted eigenvalue condition on the design matrix 
may not hold if the predictors are non-Gaussian.

To tackle the problem of heavy-tailed random errors in high-dimensional settings, 
a few robust penalized approaches have been recently studied. Lilly (2015) proposed 
the penalized least absolute deviation (LAD) estimator with the group Lasso penalty 
to relieve the model’s sensitivity due to the existence of outliers in random errors. 
This method was also extended to the weighted LAD group Lasso when some pre-
dictors are contaminated or heavy-tailed. Wang and Tian (2016) investigated a gen-
eral penalized M-estimators framework using convex loss functions and concave �2- 
norm penalties for the partially linear model with grouped covariates. However, 
those robust methods can only select variables at the group level and thus do not 
perform bi-level variable selection. In the example of gene expression study, while 
the data may be heavy-tailed or contaminated due to the complex data generation 
procedures, we may be still interested in selecting important genes as well as impor-
tant groups.

Additionally, the above robust methods require the loss function to be convex. 
It is well known that the convex loss functions such as Huber loss and LAD loss 
do not downweight the very large residuals due to their convexity. Shevlyakov 
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et al. (2008) showed that re-descending M-estimators with non-convex loss func-
tion possess certain optimal robustness properties. In fact, there still lacks a sys-
tematic study of high-dimensional M-estimators that perform robust bi-level vari-
able selection, allowing both loss and group penalty functions to be non-convex.

In this paper, we consider high-dimensional linear regression with grouped 
covariates, in irregular settings that the data (random errors and/or covariates) may 
be contaminated or heavy-tailed. In particular, we propose a novel high-dimen-
sional bi-level variable selection method through a two-stage penalized M-estimator 
framework: penalized M-estimation with a concave �2-norm penalty achieving the 
consistent group selection at the first stage and a post-hard-thresholding operator 
to achieve the within-group sparsity at the second stage. Our perspective at the first 
stage is different from Wang and Tian (2016) since we allow the loss function to be 
non-convex and thus it is more general. In addition, our proposed two-stage frame-
work is able to separate the group selection and the individual variable selection 
efficiently, since the post-hard-thresholding operator at the second stage nearly poses 
no additional computational burden. More importantly, our framework includes a 
wide range of M-estimators with strong robustness if a redescending loss function is 
adopted. Furthermore, we extend our framework to a more general setting by relax-
ing the sub-Gaussian assumption enforced on covariates.

Theoretically, we investigate the statistical properties of our proposed two-stage 
framework with weak assumptions on both random errors and covariates. We first 
show that with certain mild conditions on the loss function, a penalized M-estimator 
at the first stage has the local estimation consistency at the minimax rate enjoyed 
by the LS-GLasso. We further establish that with an appropriate group concave �2- 
norm penalty, the estimator from our first stage has a group-level oracle property. 
We then show that these nice statistical properties can be carried over directly to the 
post-hard-thresholding estimators at the second stage and thus we establish its bi-
level variable selection consistency. The theoretical results allow the dimensionality 
of data to grow with the sample size at an almost exponential rate.

Computationally, we propose to implement an efficient algorithm through a two-
step optimization procedure. We compare the performance of estimators generated 
from different types of loss functions (e.g., the Huber loss and Cauchy loss) com-
bined with a concave penalty (e.g., MCP penalty). Our numerical results demonstrate 
satisfactory finite sample performances of the proposed estimators under different 
settings. Additionally, it also suggests that a well-behaved two-stage M-estimator 
can be usually obtained by considering a re-descending loss (e.g., Cauchy loss) with 
a concave penalty, when the data are heavy-tailed or strongly contaminated.

The remainder of our paper is organized as follows. In Sect. 2, we introduce a 
basic setup for our two-stage penalized M-estimator framework. In Sect. 3, we pre-
sent the statistical properties of our proposed bi-level M-estimators under some suf-
ficient conditions. We discuss the implementation of the two-stage M-estimators in 
Sect. 4. In Sect. 5, we conduct some simulation studies to demonstrate the perfor-
mance of the proposed estimators under different settings. We also apply the pro-
posed estimators for NCI-60 data analysis and illustrate all results in Sect. 6. Sec-
tion 7 concludes and summarizes the paper. All technical proofs are relegated to S2 
in Supplement.
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2 � The two‑stage M‑estimator framework

Let us consider a high-dimensional data with p covariates from J non-overlapping 
groups. A linear regression model can be written as:

where �i s are independent and identically distributed (i.i.d) random errors, �ij s are 
i.i.d dj-dimensional covariate vectors corresponding to the jth group and ���∗

j
 is the dj- 

dimensional true regression coefficient vector of the jth group. Then, p =
∑J

j=1
dj . 

Let �i = (�T
i1
,… , �T

iJ
)T and ���∗ = (���∗T

1
,… ,���∗T

J
)T . We assume the independence 

between covariates �i and random errors �i for the sake of simplicity. We also assume 
the group sparsity condition of the model: There exists S ⊆ {1,… , J} such that 
���∗
j
= � for all j ∉ S . Note that we allow the within-group sparsity on some ���∗

j
≠ � 

and thus there exists bi-level sparsity on the coefficient vector ���∗.
Some More Notations We use bold symbols to denote matrices or vectors. Let 

�m be the mth element of ��� ∈ ℝ
p . For any A ⊆ {1, 2,… , p} , we denote 

���A = (�m, m ∈ A)T a coefficient sub-vector with indexes in A. Define 
da ∶= max1≤j≤J dj , db ∶= min1≤j≤J dj , d ∶=

√
da

db
 . Let Ij ⊆ {1, 2,… , p} denote the 

index set of coefficients in group j. Then, IS ∶=
⋃

j∈S Ij includes all indexes of 
coefficients in those important groups. Let I0 = {m ∶ �∗

m
≠ 0, 1 ≤ m ≤ p} and thus 

I0 ⊆ IS . Define ���∗G
min

∶= minj∈S ‖���∗j ‖2 as the minimum group strength on ���∗ , where 
‖ ⋅ ‖2 is the �2 norm. Define ���∗I

min
∶= minm∈I0 |�∗m| as the minimum individual sig-

nal strength on ���∗ . Let s = |S| and k = |IS| be the number of important groups and 
number of variables among all important groups, respectively. We denote 
u+ = max(u, 0) for any u ∈ ℝ.

Our Proposed M-estimator Framework for Bi-level Variable Selection To per-
form an efficient bi-level variable selection with robustness for the existence of 
possible data contamination or heavy-tailed distribution between �i and �i , we 
propose the following two-stage penalized M-estimator framework:

•	 Group Penalization (GP) Stage. First, we perform penalized M-estimation 
with a group concave penalty achieving the between-group sparsity: 

•	 Hard-thresholding (HT) Stage. Then, we apply a post-hard-thresholding oper-
ator on 𝛽̂𝛽𝛽 : 

 where “ ⋅ ” and “ ≥ ” in (2) are elementary-wise.

(1)yi =

J∑
j=1

�
T
ij
���∗
j
+ �i, i = 1,… , n,

𝛽̂𝛽𝛽 ∈ argmin
𝛽𝛽𝛽∈ℝp,‖𝛽𝛽𝛽‖1≤R

�
Ln(𝛽𝛽𝛽) +

J�
j=1

𝜌(‖𝛽𝛽𝛽 j‖2,
�

dj𝜆)

�
.

(2)𝛽̂𝛽𝛽
h
(𝜃) = 𝛽̂𝛽𝛽 ⋅ I(|𝛽̂𝛽𝛽| ≥ 𝜃)
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Here, Ln is an empirical loss function that may produce a robust solution and � is a 
penalty function, which encourages the group sparsity in the solution. Note that � and � 
are tuning parameters controlling the between-group and within-group sparsity, respec-
tively. We include the side condition ‖���‖1 ≤ R for R ≥ ‖���∗‖1 in the Group Penalization 
Stage in order to guarantee the existence of local/global optima, for the case where the 
loss or regularizer may be non-convex. In real applications, R can be a sufficiently large 
number.

Let l ∶ ℝ ↦ ℝ denote a residual function, or a loss function, defined on each 
observation pair ( �i, yi ). Then, the above Group Penalization Stage becomes

With a well chosen l, the penalized M-estimator from (3) can be robust to heavy-
tailed random error �i . Some typical robust loss functions l include:

•	 Huber loss

•	 Tukey’s biweight loss

•	 Cauchy loss

The derivatives of the above three loss functions are bounded, and thus, they can 
mitigate the effect of larger residuals. In particular, the Tukey’s biweight loss and 
Cauchy loss produce re-descending M-estimators. From the robust regression litera-
ture, we call an M-estimator re-descending if there exists u0 > 0 such that |l�(u)| = 0 
or decrease to 0 smoothly, for all |u| ≥ u0 . In that case, strong robustness is obtained 
by ignoring the large outliers completely. See more discussions in Müller (2004) and 
Shevlyakov et al. (2008).

Whereas the robust loss function in (3) takes into account the contamination or 
heavy-tailed distribution in error �i , a single outlier in �i may still cause the corre-
sponding estimator to perform arbitrarily badly. To downweight large values of �i , 
we extend the Group Penalization Stage in (3) to

(3)𝛽̂𝛽𝛽 ∈ argmin
𝛽𝛽𝛽∈ℝp,‖𝛽𝛽𝛽‖1≤R

�
1

n

n�
i=1

l(yi − �
T
i
𝛽𝛽𝛽) +

J�
j=1

𝜌(‖𝛽𝛽𝛽 j‖2,
�

dj𝜆)

�
.

l(u) =

{
u2

2
if |u| ≤ �,

�|u| − �2

2
if |u| ≥ �.

l(u) =

{
�2

6
(1 − (1 −

u2

�2
)3) if |u| ≤ �,

�2

6
if |u| ≥ �.

l(u) =
�2

2
log

(
1 +

u2

�2

)
.

(4)𝛽̂𝛽𝛽 ∈ argmin
𝛽𝛽𝛽∈ℝp,‖𝛽𝛽𝛽‖1≤R

�
1

n

n�
i=1

w(�i)

v(�i)
l((yi − �

T
i
𝛽𝛽𝛽)v(�i)) +

J�
j=1

𝜌(‖𝛽𝛽𝛽 j‖2,
�

dj𝜆)

�
,
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where w,  v are weight functions such that w, v > 0 . A few options for choosing 
those weight functions can be found in Mallows (1975), Hill (1977), Merrill and 
Schweppe (1971) and Loh (2017).

Since ���∗
j
= � for j ∉ S , we need the Group Penalization Stage to generate sparse 

solutions between groups. In particular, we require the penalty function � in (4) to 
satisfy amendable properties listed in Assumption 1.

Assumption 1  (Penalty Function Assumptions) � ∶ ℝ ×ℝ ↦ ℝ is a scalar function 
that satisfies the following conditions: 

	 (i)	 For any fixed t ∈ ℝ
+ , the function � ↦ �(t, �) is non-decreasing on ℝ+.

	 (ii)	 There exists a scalar function g ∶ ℝ
+
↦ ℝ

+ such that for any r ∈ [1,∞) , 
�(t,r�)

�(t,�)
≤ g(r) for all t, � ∈ ℝ

+.
	 (iii)	 The function t ↦ �(t, �) is symmetric around zero and �(0, �) = 0 , given any 

fixed � ∈ ℝ.
	 (iv)	 The function t ↦ �(t, �) is non-decreasing on ℝ+ , given any fixed � ∈ ℝ.
	 (v)	 The function t ↦ �(t,�)

t
 is non-increasing on ℝ+ , given any fixed � ∈ ℝ.

	 (vi)	 The function t ↦ �(t, �) is differentiable for t ≠ 0 , given any fixed � ∈ ℝ.
	(vii)	 limt→0+

��(t,�)

�t
= � , given any fixed � ∈ ℝ.

	(viii)	 There exists 𝜇 > 0 such that the function t ↦ �(t, �) +
�

2
t2 is convex, given any 

fixed � ∈ ℝ.
	 (ix)	 There exists � ∈ (0,∞) such that ��(t,�)

�t
= 0 for all t ≥ �� , given any fixed 

� ∈ ℝ.

Properties (iii–ix) in Assumption 1 are related to the penalty functions studied 
in Loh (2017) and Loh and Wainwright (2015). Adopting the notation from Loh 
(2017), we consider � to be �-amenable if � satisfies conditions (i)–(viii). If � also 
satisfies condition (ix), we say that � is (�, �)-amenable. In general, if � is �-amena-
ble, q(t, �) ∶= �|t| − �(t, �) is partially differentiable for t ≠ 0. However, properties 
(iii) and (vii) imply that limt→0

�q(t,�)

�t
= 0 . Therefore, we can define �q(t,�)

�t
|t=0 = 0 

and have q(t, �) everywhere differentiable with respect to t. Define the vector version 
q�(���) ∶=

∑J

j=1
q(‖��� j‖2,

√
dj�) accordingly. It is easy to see that there exists 𝜇 > 0 

such that �
2
‖���‖2

2
− q�(���) is convex. This property is important for both computa-

tional implementation and theoretical investigation of the group selection properties.
Some popular choices of amenable penalty functions include Lasso (Tibshirani, 

1996), SCAD (Fan & Li, 2001), and MCP (Zhang, 2010). Below are the expressions 
of Lasso and MCP, which will be considered in our numerical analyses.

•	 The Lasso penalty �(t, �) = �|t| is 0-amenable, but not (0, �)-amenable for any 
𝛿 < ∞.

•	 The MCP penalty takes the form 

where b > 0 is fixed. The MCP penalty is (�, �)-amenable with � =
1

b
 and � = b.

�(t, �) = sign(t)�
∫

|t|

0

(
1 −

z

�b

)
+
dz,
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It has been shown that a folded concave penalty, such as the SCAD or MCP, often 
has better variable selection properties than the convex penalty including the Lasso.

3 � Statistical properties

In this section, we present our theoretical results for the proposed two-stage penal-
ized M-estimator framework. We begin with statistical properties of the estimator 𝛽̂𝛽𝛽 
in program (4) generated from the Group Penalization Stage. On the one hand, we 
show a general non-asymptotic bound of the estimation error and establish the local 
estimation consistency of 𝛽̂𝛽𝛽 at the minimax rate enjoyed by the LS-GLasso, under 
certain mild conditions. On the other hand, we show that the estimator 𝛽̂𝛽𝛽 in fact 
equals the local oracle solution with the correct group support and thus obtain the 
group-level oracle properties. Finally, we show that those nice statistical properties 
of 𝛽̂𝛽𝛽 can be carried over to the hard-thresholding stage and thus we establish the bi-
level variable selection consistency of 𝛽̂𝛽𝛽

h
 . All proofs are given in S2 in Supplement.

As introduced in (4), the loss function in the two-stage penalized M-estimator 
framework takes the following form,

To obtain the estimation consistency, we make the following assumptions on the 
residual function l.

Assumption 2  (Loss Function Assumptions) l ∶ ℝ ↦ ℝ is a scalar function with the 
existence of the first derivative l′ everywhere and the second derivative l′′ almost 
everywhere. In addition, 

	 (i)	 there exists a constant 0 < k1 < ∞ such that |l�(u)| ≤ k1 for all u ∈ ℝ.
	 (ii)	 l′ is Lipschitz such that |l�(x) − l�(y)| ≤ k2|x − y| , for all x, y ∈ ℝ and some 

0 < k2 < ∞.

Note that Assumption 2(i) requires bounded derivative of the loss function, which 
can limit the effect of large residuals and thus achieve certain robustness. Assump-
tion 2(ii) indicates that |l��(u)| < k2 for all u ∈ ℝ where l��(u) exists. The above 
assumptions actually cover a wide range of loss functions, including Huber loss, 
Hampel loss, Tukey’s biweight and Cauchy loss.

We now make some assumptions on both random error � and covariate vector �.

Assumption 3  (Error and Covariate Assumptions) For w(�) and v(�) given in (5), 
the random error � with E[�] = 0 and covariate vector � with E[�] = � satisfy: 

	 (i)	 for any ��� ∈ ℝ
p , w(�)�T��� is sub-Gaussian with parameter at most k2

0
‖���‖2

2
.

	 (ii)	 either (a) v(�) = 1 and E[w(�)�] = � , or (b) E[l�(v(�)�)|�] = 0.

(5)Ln(���) =
1

n

n∑
i=1

w(�i)

v(�i)
l((yi − �

T
i
���)v(�i)).
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Note that Assumption 3(i) and (ii)(a) hold when �T
i
��� is sub-Gaussian for any 

��� ∈ ℝ
p and w(�) = 1 . If covariate � is contaminated or heavy-tailed, Assumption 

3(i) nonetheless holds with some proper choices of w(�) (e.g., w(�)�T��� is bounded 
for any ��� ∈ ℝ ), which potentially relaxes the sub-Gaussian assumption on � . 
Assumption 3(ii)(b) holds when l′ is an odd function and � follows a symmetric 
distribution. Despite the possible mild condition of symmetry, the assumptions 
above are independent of the distribution of � , allowing the additive error � to be 
heavy-tailed or contaminated.

In order to obtain the estimation consistency for 𝛽̂𝛽𝛽 in (4), we also require the 
loss function Ln to satisfy the following local restricted strong convexity (RSC) 
condition. This RSC condition was also investigated in Loh and Wainwright 
(2015) and Loh (2017).

Assumption 4  (RSC condition) There exist � , 𝜏 > 0 and a radius r > 0 such that the 
loss function Ln in (5) satisfies

where ��� j ∈ ℝ
p such that ‖��� j − ���∗‖2 ≤ r for j = 1, 2.

Note that the RSC assumption is only imposed on Ln inside the ball of radius 
r centered at ���∗ . Thus, the loss function used for robust regression can be wildly 
nonconvex, while it is away from the origin. The ball of radius r essentially speci-
fies a local region around ���∗ in which stationary points of program (4) are well 
behaved. We call such a region the RSC region.

We present the estimation consistency result concerning estimator 𝛽̂𝛽𝛽 in 
Theorem 1.

Theorem 1  Suppose the random error and covariates satisfy Assumption 3 and Ln 
in (5) satisfies Assumption 2. Then, we have the following results. 

	 (i)	 It holds with probability at least 1 − 2 exp(−C2 log p) that Ln satisfies 

	 (ii)	 Suppose Ln satisfies the RSC condition in Assumption 4 with ���2 = ���∗ 
and � is �-amenable with 3

4
𝜇 < 𝛾 in Assumption 1. Let 𝛽̂𝛽𝛽 be a local 

estimator in (4) in the RSC region. Then, for n ≥ Cr−2das log p and 
� ≥ max{4‖∇Ln(���

∗)‖∞, 8�R log p

n
} , 𝛽̂𝛽𝛽 exists and satisfies the bounds 

(6)⟨∇Ln(���1) − ∇Ln(���2),���1 − ���2⟩ ≥ �‖���1 − ���2‖22 − �
log p

n
‖���1 − ���2‖21,

(7)‖∇Ln(���
∗)‖∞ ≤ C1

�
log p

n
.

‖𝛽̂𝛽𝛽 − 𝛽𝛽𝛽∗‖2 ≤
6
√
da𝜆

√
s

4𝛾 − 3𝜇
and ‖𝛽̂𝛽𝛽 − 𝛽𝛽𝛽∗‖1 ≤

6(1 + 3g(d))da𝜆s

4𝛾 − 3𝜇
.
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The statistical consistency result of Theorem 1 holds even when the random errors 
are heavy-tailed, and the regressors lack the sub-Gaussian assumption. Theorem 1(ii) 
essentially gives general deterministic bounds of the estimation error, provided that 
the loss function Ln satisfies the RSC condition and the penalty function � is �-ame-
nable. In particular, Theorem  1 shows that with high probability one can choose 

� = O

(√
log p

n

)
 such that ‖𝛽̂𝛽𝛽 − 𝛽𝛽𝛽∗‖2 = Op

��
das log p

n

�
 and 

‖𝛽̂𝛽𝛽 − 𝛽𝛽𝛽∗‖1 = Op

�
g(d)das

�
log p

n

�
 . Hence, if da is finite, the estimator 𝛽̂𝛽𝛽 at the Group 

Penalization Stage is statistically consistent at the minimax rate enjoyed by the LS-
GLasso under the sub-Gaussian assumption.

Remark 1  Recall that 𝛽̃𝛽𝛽 is a stationary point of the optimization in (4) if

for all feasible ��� in a neighbor of 𝛽̃𝛽𝛽 , where ��(���) =
∑J

j=1
�(‖��� j‖2,

√
dj�) . Note that 

stationary points include both the interior local maxima and all local and global 
minima. The proof of Theorem 1 in supplementary file reveals that the estimation 
consistency result also holds for the stationary points in program (4). Hence, Theo-
rem 1 guarantees that all stationary points within the ball of radius r centered at ���∗ 
have local statistical consistency at the minimax rate enjoyed by the LS-GLasso. To 
simplify the notation, 𝛽̂𝛽𝛽 also denotes the stationary points of program (4).

Next, we establish the group-level oracle properties of estimator 𝛽̂𝛽𝛽 in (4). Suppose 
IS is given in advance, we define the group-level local oracle estimator as

Let 𝛽̂𝛽𝛽
O

∶= (𝛽̂𝛽𝛽
O

IS
, �Ic

S
) . The next theorem shows that when the penalty � is (�, �)-ame-

nable and conditions in Theorem 1 are satisfied, the stationary point from (4) within 
the local neighborhood of ���∗ is actually unique and agrees with the group oracle 
estimator in (8).

Theorem 2  Suppose the penalty � is (�, �)-amenable and conditions in Theorem 1 
hold. Suppose in addition that v(�)xj is sub-Gaussian for all j = 1,… , p , ‖���∗‖1 ≤ R

2
 

for some R >
12(1+3g(d))da𝜆s

4𝛾−3𝜇
 and ���∗G

min
≥ C8

√
da log p

n
 . Let 𝛽̂𝛽𝛽 be a stationary point of 

program (4) in the RSC region. Then, for n ≥ C0k log p , k2 log k = O(log p) and 
� = C6

√
log p

n
 , 𝛽̂𝛽𝛽 satisfies supp(𝛽̂𝛽𝛽) ⊆ IS and 𝛽̂𝛽𝛽IS = 𝛽̂𝛽𝛽

O

IS
 with probability at least 

1 − C7 exp(−C4 log p∕k
2).

Theorem 2 guarantees that the Group Penalization Stage in our proposed frame-
work can recover the true group support with high probability, when the condition 
of minimum group signal strength is satisfied. Two most common (�, �)-amenable 
penalties are SCAD and MCP, as introduced in Sect. 2.

⟨∇Ln(𝛽̃𝛽𝛽) + ∇𝜌𝜆(𝛽̃𝛽𝛽),𝛽𝛽𝛽 − 𝛽̃𝛽𝛽⟩ ≥ 0,

(8)𝛽̂𝛽𝛽
O

IS
∶= argmin

𝛽𝛽𝛽∈ℝIS∶‖𝛽𝛽𝛽−𝛽𝛽𝛽∗‖2≤r

�
Ln(𝛽𝛽𝛽)

�
.
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It has been shown that the GP Stage can select important covariates groups 
and provides consistent estimation for parameter ���∗ . We are now ready to estab-
lish statistical properties of 𝛽̂𝛽𝛽

h
 after the HT stage in our proposed framework. We 

reveal in the following theorem that when the condition of minimum individual 
signal strength is satisfied, the estimates of the zero elements and the non-zero 
elements of ���∗ after the GP Stage can then be well separated. Hence, there exist 
some thresholds that are able to filter out those non-important covariates within 
the selected important groups, and thus, the HT stage can perform bi-level vari-
able selection consistently.

Theorem  3  Suppose conditions of Theorem  2 hold and in addition that 
���∗I
min

≥ C5

√
log p

kn
+ � and 𝜃 > C5

√
log p

kn
 . With probability at least 

1 − C7 exp(−C4 log p∕k
2) , the hard-thresholding estimator 𝛽̂𝛽𝛽

h
(𝜃) given in (2) satisfies 

𝛽̂𝛽𝛽
h
= (𝛽̂𝛽𝛽

O

I0
, 000Ic

0
) and ‖𝛽̂𝛽𝛽h − 𝛽𝛽𝛽∗‖2 ≤ C5

�
log p

kn
.

Theorem  3 guarantees that the estimator 𝛽̂𝛽𝛽
h
 in our proposed two-stage frame-

work possesses estimation consistency and bi-level variable selection consistency, 
when conditions of Theorem 2 hold and the condition of minimum individual signal 
strength is satisfied. Note that such signal strength condition is fairly mild and the 
bound can decrease arbitrarily closed to 0 with the growth of sample size n.

4 � Implementation

We discuss the implementation of the proposed two-stage M-estimator framework in 
this section, including finding a stationary point in program (4) for a fixed � and the 
tuning parameters selection for � and �.

Note that the optimization in (4) may not be a convex optimization problem 
since we allow both loss function Ln and � to be non-convex. To obtain the cor-
responding stationary point, we use composite gradient descend algorithm (Nes-
terov, 2013). Recall q�(���) =

∑J

j=1

√
dj�‖��� j‖2 −∑J

j=1
�(‖��� j‖2,

√
dj�) and let 

L̄n(𝛽𝛽𝛽) = Ln(𝛽𝛽𝛽) − q𝜆(𝛽𝛽𝛽) . We can rewrite the program as

Then, the composition gradient iteration is given by

where 𝜂 > 0 is the step size for the update and can be determined by the backtrack-
ing line search method described in Nesterov (2013). A simple calculation shows 
that the iteration in (9) takes the form

𝛽̂𝛽𝛽 ∈ argmin
‖𝛽𝛽𝛽‖1≤R

�
L̄n(𝛽𝛽𝛽) +

J�
j=1

�
dj𝜆‖𝛽𝛽𝛽 j‖2

�
.

(9)𝛽𝛽𝛽 t+1 ∈ argmin
‖𝛽𝛽𝛽‖1≤R

�
1

2
‖𝛽𝛽𝛽 − (𝛽𝛽𝛽 t −

∇L̄n(𝛽𝛽𝛽
t)

𝜂
)‖2

2
+

J�
j=1

𝜆𝜂
�

dj‖𝛽𝛽𝛽 j‖2
�

,
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for j = 1,… , J , where S√dj��
(⋅) is the group soft-thresholding operator defined as

We further adopt the following two-step procedure discussed in Loh (2017) to guar-
antee the convergence to a stationary point of the non-convex optimization problem 
in (4).

Step 1: Run the composite gradient descent using a Huber loss function with con-
vex group Lasso penalty to get an initial estimator.
Step 2: Run the composite gradient descent on program (4) using the initial esti-
mator from Step 1.

As to the tuning parameters selection, the optimal values of tuning parameters � and � 
are chosen from a two-dimensional grid search using the cross-validation. In particu-
lar, the searching grid is formed by partitioning a rectangle uniformly in the scale of 
( �, log(�) ). Motivated by conditions of Theorem 1 and Theorem 3, the range of the 
rectangle can be chosen as C11

√
log p

n
≤ � ≤ C12

√
log p

n
 and C21

√
log p

kn
< 𝜃 ≤ C22 . 

The optimal values are then found by the combination that minimizes the cross-vali-
dated trimmed mean squared prediction error.

Remark 2  When the data are contaminated or heavy-tailed, the conventional mean 
squared prediction error for the cross-validation is not resistant to outliers in valida-
tion sets and may provide a biased selection of tuning parameters. In our simula-
tion studies, we found that a robust measurement of prediction errors for the cross-
validation, such as the trimmed mean squared error, or the error computed using the 
Huber loss or Cauchy loss, is robust to outliers in the validation set and yields better 
results in estimation and group/variable selection. For all numerical studies in this 
paper, we adopt the trimmed mean squared prediction error for the sake of simplic-
ity. As a comparison, we also report some simulation results using the mean squared 
prediction error for the cross-validation in supplementary file.

5 � Simulation studies

In this section, we assess the performance of our two-stage M-estimator framework 
by considering different types of loss functions and penalty functions through vari-
ous models. The data are generated from the following model:

𝛽𝛽𝛽 t+1
j

= S𝜆𝜂
√
dj

��
𝛽𝛽𝛽 t − 𝜂∇L̄n(𝛽𝛽𝛽

t)
�
j

�

S�(zzz) ∶=

�
1 −

�

‖zzz‖2
�

+

zzz.

yi = �
T
i
���∗ + �i, 1 ≤ i ≤ n.
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The covariates vector �i s are generated from a multivariate normal distribution with 
mean � and covariance � independently. For covariance � = (�ij)p×p , we choose

where a = 0.8 or 0.5 and b = 0.8 or 0.5. Let ���∗ = ��� ⋅ |���∗| , where ��� is a p-dimen-
sional vector with the jth element being (−1)j+1.

Example 1  (Group-level Sparsity) The number of observations n = 100 and the 
number of variables p = 500 with J = 100 unequal-size groups. We choose a = 0.8 
and b = 0.5 . The model includes only between-group sparsity with five relevant 
groups, |���∗

1
| = |���∗

2
| = (3,… , 3

⏟⏟⏟
4

)T = �
T

4
, |���∗

3
| = |���∗

4
| = �6, |���∗

5
| = �.�5, ���∗

6
= ⋯ = ���∗

100
= �5.

 We 

generate random error �i from the following three scenarios: (a) N(0, 1), (b) t1 , (c) 
Mix Cauchy ( 70% are from N(0, 1) and 30% are from standard Cauchy).

We consider bi-level penalized M-estimators with different types of loss func-
tions (the �2 loss, Huber loss, Cauchy loss) and two types of penalty functions 
(the Lasso and MCP penalties). In particular, we evaluate the performance of 
non-group estimators, one-stage estimators and two-stage estimators. Without 
causing any confusion, let 𝛽̂𝛽𝛽 be any estimator of ���∗ . Its performances on both 
parameter estimation and group/variable selection were evaluated by the follow-
ing eight measurements: 

(1)	 �2 error, which is defined as ‖𝛽̂𝛽𝛽 − 𝛽𝛽𝛽∗‖2.
(2)	 �1 error, which is defined as ‖𝛽̂𝛽𝛽 − 𝛽𝛽𝛽∗‖1.
(3)	 Model size (MS), the average number of selected covariates.
(4)	 Group size (GS), the average number of selected groups.
(5)	 False positives rate for individual variable selection (FPR), the percent of 

selected covariates which are actually unimportant variables.
(6)	 False negatives rate for individual variable selection (FNR), the percent of non-

selected covariates which are actually important variables.
(7)	 False positives rate for group variable selection (GFPR), the percent of selected 

groups which are actually unimportant groups.
(8)	 False negatives rate for group variable selection (GFNR), the percent of non-

selected groups which are actually important groups.

Note that FPR =
�Î⋂ Ic

0
�

�Ic
0
� × 100% , FNR =

�Îc ⋂ I0�
�I0� × 100% , GFPR =

�Ŝ⋂ Sc�
�Sc� × 100% 

and GFNR =
�Ŝc ⋂ S�

�S� × 100% , where Î = {m ∶ 𝛽m ≠ 0, 1 ≤ m ≤ p} , 
I0 = {m ∶ �∗

m
≠ 0, 1 ≤ m ≤ p} , Ŝ = {j ∶ 𝛽̂𝛽𝛽 j ≠ �, 1 ≤ j ≤ J} and 

S = {j ∶ ���∗
j
≠ �, 1 ≤ j ≤ J}.

�ij =

⎧
⎪⎨⎪⎩

1 if i = j,

(−1)i+ja if i ≠ j and i, j are in the same group,

(−1)i+jab if i ≠ j and i, j are in different groups,
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The model considered in Example 1 contains only the between-group sparsity. 
We also assess the performance of the two-stage M-estimator framework under 
models with bi-level sparsity in the following example.

Example 2  (Bi-level Sparsity) The number of observations n = 100 , and we gener-
ate the random error � following the same three scenarios described in Example 1. 

	 (i)	 The number of variables p = 500 with J = 100 unequal-size groups. We 
choose a = 0.8 and b = 0.5 . The model includes within-group sparsity among 
s ix  re l evan t  g roups ,  |���∗

1
| = (1.5, 2, 0, 2.5)T  ,  |���∗

2
| = (3, 2, 0, 0, 2)T  , 

|���∗
3
| = (1.5, 0, 2.5, 3, 0, 0)T  ,  |���∗

4
| = (2, 1.5, 0,… , 0

⏟⏟⏟
4

)T  ,  |���∗
5
| = (2.5, 0, 0, 0)T  , 

|���∗
6
| = (3, 2.5, 2.5, 2, 1.5)T , ���∗

7
= ⋯ = ���∗

100
= (0,… , 0

⏟⏟⏟
5

)T.

	 (ii)	 Similar to (i) except that we choose a = 0.5 and b = 0.8.
	 (iii)	 The number of variables p = 1000 with J = 100 unequal-size groups. We 

choose a = 0.8 and b = 0.5 . The model includes within-group sparsity in 
a m o n g  f o u r  r e l e v a n t  g r o u p s ,  |���∗

1
| = (3, 2, 0, 0, 0)T  , 

|���∗
2
| = (1.5, 2, 2.5, 2.5, 3, 0,… , 0

⏟⏟⏟
5

)T , |���∗
3
| = (1.5, 0, 2.5, 3, 0, 3, 2, 1.5, 0,… , 0

⏟⏟⏟
7

)T , 

|���∗
4
| = (3, 3, 2.5, 2.5, 2, 2, 1.5, 1.5, 1.5, 1.5)T , ���∗

5
= ⋯ = ���∗

100
= (0,… , 0

⏟⏟⏟
10

)T.

Finally, we design a simulation setting to evaluate the performance of the 
two-stage M-estimator framework when covariates are contaminated or not 
sub-Gaussian.

Example 3  (Contamination on � ) All the settings are similar to Example 2(i), 
except that we let n = 120 and covariates be partially contaminated after the data 
generation. In particular, 20% of the observations in � are replaced by data generated 
from �2(10) first and then recentered to have mean zero.

We ran 100 simulations for each scenario described in Examples 1–3. While fix-
ing v(�) ≡ w(�) ≡ 1 for Examples 1 and 2, we consider the general two-stage M-esti-
mator framework with v(�) ≡ 1 and w(�) = min

�
1,

4

‖�‖∞

�
 in Example 3. As intro-

duced in Sect. 4, we choose two tuning parameters � and � optimally with 10-fold 
cross-validation, with � ranging in ( 0.01

√
log p

n
, 10

√
log p

n
 ) and � ranging in 

( 0.01
√

log p

kn
, 0.5 ). The results from Examples 1 to 3 are reported in Tables 1, 2 and 

3, respectively. Note that we consider the one-stage estimators with the Lasso pen-
alty as the GLasso-type estimators. For the MCP penalty, we call the corresponding 
non-group estimators, one-stage estimators and two-stage estimators the MCP-type, 
GMCP-type and GMCP–HT-type estimators, respectively.  
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We mainly evaluate the performance of one-stage estimators in Example 1 since 
there only exists the between-group sparsity. Table 1 shows that with the same loss 
function, while the GMCP-type estimators perform comparably to the GLasso-type 
estimators in the estimation, the former has better group/variable selection accuracy 
than the latter. This is consistent with the group oracle property stated in Theorem 2. 
As expected, for the estimators with the same penalty, while they behave similarly 
in the light-tailed setting (N(0,  1)), estimators using Huber loss and Cauchy loss 
largely outperform the least squares estimator for the heavy-tailed settings ( t1 and 
Mix Cauchy).

We compare the results of non-group estimators, one-stage estimators and two-
stage estimators for Example 2. Note that here we only consider the MCP pen-
alty since it has been shown to perform better than the Lasso penalty. We also 
omit the results of the least squares estimators since they are not robust to the 

Table 1   Simulation results under the model with only between-group sparsity in Example 1

The mean �2 error, �1 error, MS, GS, FPR (%), FNR(%), GFPR (%) and GFNR (%) out of 100 iterations 
are displayed

Group Lasso Group MCP

LS Huber Cauchy LS Huber Cauchy

N(0,1) �2 error 1.27 1.29 1.39 0.92 0.93 0.95
�1 error 6.3 6.59 6.93 3.75 3.77 3.85
MS 55.9 66.21 66.01 31.43 33.23 33.09
GS 11.18 13.24 13.2 6.29 6.65 6.62
FPR 6.51 8.69 8.73 1.35 1.73 1.7
FNR 0 0.36 1.76 0 0 0
GFPR 6.51 8.69 8.73 1.36 1.74 1.71
GFNR 0 0.4 1.8 0 0 0

t1 �2 error 13.77 2.02 1.82 24.96 2.72 2.46
�1 error 166.82 11.04 9.59 243.53 10.88 10.22
MS 114.89 71.75 70.12 65.64 27.9 29.15
GS 23 14.35 14.03 13.16 5.58 5.83
FPR 19.26 9.94 9.59 9.11 0.61 0.87
FNR 6.32 1.8 1.68 10.6 0 0
GFPR 19.26 9.94 9.59 9.12 0.61 0.87
GFNR 6 1.8 1.6 10 0 0

Mix Cauchy �2 error 12.84 1.42 1.36 16.92 1.46 1.36
�1 error 178.11 7.44 6.92 225.05 5.82 5.48
MS 94.6 72.11 71.25 51.99 27.2 29.45
GS 18.92 14.42 14.26 10.4 5.44 5.89
FPR 14.75 9.94 9.79 5.84 0.46 0.94
FNR 1.8 0.36 1 3.04 0 0
GFPR 14.75 9.94 9.8 5.84 0.46 0.94
GFNR 1.8 0.4 1 3 0 0
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heavy-tailed settings. For Example 2(i), Table 2 shows that the GMCP-type esti-
mators outperform the MCP-type estimators in all measurements, as the former 
incorporates the grouping structure in � . By comparing the results of GMCP-type 
estimators and GMCP–HT-type estimators, we see that the extra hard-threshold-
ing step in the two-stage estimators can effectively improve the estimation and 
group/variable selection performance. In addition, estimators using the Cauchy 
loss further outperform the one with Huber Loss for the heavy-tailed settings, 
showing that the re-descending estimators are more robust to outliers and more 
efficient for irregular settings. We observe similar patterns in the results of Exam-
ple 2(ii)–(iii), and thus, we omit those results in this paper.

In Example 3, we only compare the performance of two-stage estimators 
with their weighted version. Table 3 indicates that the two-stage estimators with 

Table 2   Simulation results under the model with bi-level sparsity in Example 2(i)

The mean �2 error, �1 error, MS, GS, FPR (%), FNR(%), GFPR (%) and GFNR (%) out of 100 iterations 
are displayed

MCP GMCP GMCP–HT

Huber Cauchy Huber Cauchy Huber Cauchy

N(0,1) �2 error 6.98 7.45 1.67 1.66 1.57 1.6
�1 error 29.3 31.52 7.5 7.49 6.79 6.9
MS 28.77 27.56 53.89 53.55 30.49 30.54
GS 18.75 18 10.79 10.71 8.27 8.21
FPR 3.54 3.37 7.64 7.57 2.79 2.8
FNR 31.41 33.53 0 0 0 0
GFPR 13.66 12.8 5.1 5.01 2.41 2.35
GFNR 1.5 0.5 0 0 0 0

t1 �2 error 11.31 11.5 4.37 3.75 4.34 3.68
�1 error 46.5 47.37 19.45 16.68 19.28 16.08
MS 12.61 9.85 52.57 47.53 34.7 31.44
GS 9.99 8.51 10.51 9.5 8.28 7.74
FPR 1.28 0.83 7.37 6.33 3.72 3.03
FNR 62.29 65.53 0.18 0.18 1.59 1.12
GFPR 4.94 3.4 4.83 3.76 2.51 1.9
GFNR 10.83 11.5 0.5 0.5 1.33 0.83

Mix Cauchy �2 error 8.9 8.91 2.47 2.11 2.39 2.03
�1 error 37.94 38.24 11.14 9.42 10.29 8.62
MS 18.87 18.91 47.4 48.94 29.24 29.06
GS 13.84 13.97 9.48 9.79 7.24 7.42
FPR 2.03 2.08 6.29 6.61 2.54 2.5
FNR 46.65 48 0 0 0.06 0
GFPR 8.48 8.59 3.7 4.03 1.32 1.51
GFNR 2.17 1.67 0 0 0 0
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well-chosen w(�) perform better in all cases than the two-stage estimators with 
w(�) = 1 . Again when the errors are heavy-tailed ( t1 and Mix Cauchy), the least 
squares estimator loses its efficiency and the re-descending estimators produced 
by Cauchy loss perform the best for all scenarios.

In summary, our simulation studies show that in the proposed two-stage 
M-estimator framework, (1) the GP Stage can utilize the grouping structure to 
yield satisfactory parameter estimation and group variable selection results for 
irregular settings, if a robust loss function (e.g., Huber loss and Cauchy loss) is 
used; (2) the HT Stage further improve the performance by filtering out the non-
important selected variable from the first stage; and (3) the two-stage M-estima-
tors with re-descending loss functions (e.g., Cauchy loss) and concave folded 

Table 3   Simulation results under the model with 20% contamination on X in Example 3

The mean �2 error, �1 error, MS, GS, FPR (%), FNR(%), GFPR (%) and GFNR (%) out of 100 iterations 
are displayed

GMCP–HT WGMCP–HT

LS Huber Cauchy LS Huber Cauchy

N(0,1) �2 error 7.49 7.52 7.54 6.74 6 4.97
�1 error 43.56 42.78 40.76 35.75 28.81 22.42
MS 71.76 66.93 54.81 60.82 38.22 32.53
GS 17.34 16.26 13.74 14.02 9.38 9.72
FPR 11.64 10.63 8.15 9.28 4.6 3.38
FNR 8.59 8.35 9.06 5.82 5.88 4.76
GFPR 12.72 11.59 8.9 9.04 3.98 4.33
GFNR 10.33 10.5 10.5 8 6 5.83

t1 �2 error 125.26 8.46 8.54 126.92 6.96 6.43
�1 error 2081.98 47.63 46.78 2099.27 33.87 30.84
MS 96.16 61.26 52.46 86.38 37.42 35
GS 22.76 15.2 14.12 19.26 9.07 9.56
FPR 17.39 9.71 7.91 15.35 4.57 4.05
FNR 28.29 15.65 16.12 27.94 9.71 9.18
GFPR 19.76 10.93 9.77 16.06 4.02 4.56
GFNR 30.17 17.83 17.67 30.67 11.83 12.17

Mix Cauchy �2 error 18.52 7.72 7.66 18.48 5.97 5.22
�1 error 211.8 43.23 39.92 210.62 28.68 24.67
MS 75.62 64.31 48.28 63.31 37.8 35.46
GS 18.17 15.69 12.39 13.98 9.41 10.16
FPR 12.69 10.19 6.87 10.02 4.52 4
FNR 15.76 11.18 11.29 12.29 6 4.94
GFPR 14.09 11.16 7.59 9.41 4.09 4.74
GFNR 17.83 13.33 12.33 14.5 7.17 5
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penalties consistently render more satisfactory results when data are heavy-
tailed or strongly contaminated ( t1 and Mix Cauchy).

6 � Real data example

In this section, we use the NCI-60 data, a gene expression dataset collected from 
Affymetrix HG-U133A chip, to illustrate the performance of the proposed two-stage 
penalized M-estimators evaluated in Sect. 5. The NCI-60 data consist of data on 60 
human cancer cell lines and can be downloaded via the Web application CellMiner 
(http://​disco​ver.​nci.​nih.​gov/​cellm​iner/). The study is to predict the protein expression 
on the KRT18 antibody from other gene expression levels. The expression level of 
the protein keratin 18 is known to be persistently expressed in carcinomas (Oshima 
et al., 1996). After removing the missing data, there are n = 59 samples with 21, 944 
genes in the dataset. One can refer Shankavaram et al. (2007) for more details.

We first perform some pre-screenings by keeping only 2000 genes with the larg-
est variations and choosing 500 genes out of which are most correlated with the 
response variable. Then for each gene, we use B-spline with five bases to form a 
group with five variables. Thus, our final dataset has n = 59 samples, p = 2500 vari-
ables and J = 500 groups. Similar to our simulation studies, we apply the non-group 
estimators, one-stage estimators and two-stage estimators to select important genes, 
with tuning parameter � and � chosen from the 10-fold cross-validation with � rang-
ing in ( 0.01

√
log p

n
, 10

√
log p

n
 ) and � ranging in (0.01, 1). We also control the number 

of selected variables to be less than 75% of the sample size, in order to avoid overfit-
ting. We report results from six methods: Huber–MCP, Cauchy–MCP, 
Huber–GMCP, Cauchy–GMCP, Huber–GMCP–HT, Cauchy–GMCP–HT.

The QQ plots of the residuals generated from these six methods are shown in 
Fig.  1. It can be seen that each residual distribution has a longer tail on the left 
side, implying that the data may be contaminated or heavy-tailed. Table 4 displays 
the selected important genes. The numbers of selected genes from these methods 
are 9 (Huber–MCP), 3 (Huber–GMCP), 3 (Huber–GMCP–HT), 9 (Cauchy–MCP), 
2 (Cauchy–GMCP) and 5 (Cauchy–GMCP–HT), respectively. It is not surprising 
that gene KRT8 is selected by all six methods due to its largest correlation with 
the response variable and the long history of being paired with KRT18 in cancer 
studies (Li & Zhou, 2016; Walker et  al., 2007). Notice that gene INHBB is sin-
gled  out by the four methods that incorporate grouping information. This gene 
has been shown to play essential roles in tumorigenesis and migration (Kita et al., 
2017; Wijayarathna & De Kretser, 2016). Table 4 also shows that the Huber–MCP 
and Cauchy–MCP both select the same genes, which indicates that the contami-
nation in the data may not be strong enough to cause different selection results 
between these two loss functions. In addition, it is reasonable to observe that the 
Huber–GMCP and Huber–GMCP–HT also select exactly the same genes, since 
there is no sparsity within each group in the data. It is also worth mentioning that 
the Cauchy–GMCP–HT selects more genes than the Cauchy–GMCP. It means that 

http://discover.nci.nih.gov/cellminer/
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Fig. 1   QQ plots of the residuals from Huber–MCP, Cauchy–MCP, Huber–GMCP, Cauchy–GMCP, 
Huber–GMCP–HT, Cauchy–GMCP–HT

Table 4   Selected genes by Huber–MCP, Cauchy–MCP, Huber–GMCP, Cauchy–GMCP, Huber–GMCP–
HT, Cauchy–GMCP–HT

Huber–MCP KRT8 NRN1 KRT18 GAS7 EPS8L2
GPX3 TRIM29 LAD1 SEMA5A

Huber–GMCP KRT8 INHBB PBX1
Huber–GMCP–HT KRT8 INHBB PBX1
Cauchy–MCP KRT8 NRN1 KRT18 GAS7 EPS8L2

GPX3 TRIM29 LAD1 SEMA5A
Cauchy–GMCP KRT8 INHBB
Cauchy–GMCP–HT KRT8 NR2F2 NOTCH3 INHBB SIRPA
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the chosen � of Cauchy–GMCP–HT is different from that of Cauchy–GMCP, as for 
the former the optimal � and � are found together by the cross-validation. 

For further investigation, we randomly choose six observations as the test set and 
applied those six methods to the rest patients to get the estimation of the coefficients 
and then compute the prediction error on the test set. We repeat the random splitting 
100 times, and the boxplots of the mean squared error of predictions are shown in 
Fig. 2. It can be seen that the Huber–GMCP and Cauchy–GMCP perform better than 
the other methods. This is not surprising since there is only between-group sparsity 
in the dataset. In addition, Fig. 2 also shows that Cauchy-type estimators perform 
similarly to the corresponding Huber-type estimators, which indicates that when 
there exists only moderate contamination in the data, it may be sufficient to consider 
the convex Huber loss in our framework.

7 � Discussion

Bi-level variable selection and parameter estimation are crucial when covariates 
function group-wisely in high dimensional settings. It has become even more chal-
lenging when data are contaminated or heavy-tailed. In this paper, we propose a 
two-stage penalized M-estimator framework for high-dimensional bi-level variable 
selection. This framework consists of two stages: penalized M-estimation with a 
concave �2-norm penalty achieving the consistent group selection at the first stage, 
and a post-hard-thresholding operator to achieve the within-group sparsity at the 
second stage. The proposed framework is very general in that it covers a wide range 
of loss functions and penalty functions, allowing both functions to be non-convex. 
Thus, if the data are strongly contaminated, either in covariates or random error, we 
are still able to perform bi-level variable selection efficiently through the proposed 
framework.

Fig. 2   Boxplot of the mean squared error of predictions
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Theoretically, we establish statistical properties of the proposed two-stage 
penalized M-estimator in ultra high-dimensional settings when p grows with n at 
an almost exponential rate. In particular, for the estimator at the Group Penaliza-
tion Stage, we show its local estimation consistency at the minimax rate enjoyed 
by LS-GLasso and establish the local group selection consistency. For the post-
hard-thresholding estimator at the second stage, we show that it naturally inherits 
all those nice statistical properties from the first stage and further possesses bi-level 
variable selection consistency. These theoretical results require weak assumptions 
on model settings and are applicable even though the random error and covariates 
are heavy-tailed or the dataset is contaminated by outliers.

Our framework is computationally efficient and is able to find a well-behaved 
local stationary point if a consistent initial such as Huber group Lasso is used. Our 
numerical studies show satisfactory finite sample performances of the two-stage 
penalized M-estimator under different irregular settings, which is consistent with 
our theoretical findings. In particular at the first stage, among some of the possible 
choices of loss and penalty functions that fit in the proposed framework, our numeri-
cal studies suggest considering a re-descending loss function, such as Cauchy loss 
or Tukey’s biweight loss, with a group concave folded penalty, such as group MCP 
penalty, when the data are strongly contaminated.

Electronic supplementary material  The online version of this article (https://​doi.​org/​10.​1007/​s10463-​
021-​00809-z) contains supplementary material, which is available to authorized users.
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