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Abstract
In general, the solution to a regression problem is the minimizer of a given loss crite-
rion and depends on the specified loss function. The nonparametric isotonic regres-
sion problem is special, in that optimal solutions can be found by solely specifying a 
functional. These solutions will then be minimizers under all loss functions simulta-
neously as long as the loss functions have the requested functional as the Bayes act. 
For the functional, the only requirement is that it can be defined via an identifica-
tion function, with examples including the expectation, quantile, and expectile func-
tionals. Generalizing classical results, we characterize the optimal solutions to the 
isotonic regression problem for identifiable functionals by rigorously treating these 
functionals as set-valued. The results hold in the case of totally or partially ordered 
explanatory variables. For total orders, we show that any solution resulting from the 
pool-adjacent-violators algorithm is optimal.
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1  Introduction

Suppose that we have pairs of observations (z1, y1),… , (zn, yn) where we assume that 
yi , i = 1,… , n are real-valued. The aim of isotonic regression is to fit an increas-
ing function ĝ ∶ {z1,… , zn} → ℝ to these observations. The covariates z1,… , zn 
can take values in any set as long as it is equipped with a partial order which we 
denote by ⪯ . Then, a function g ∶ {z1,… , zn} → ℝ is increasing if zi ⪯ zj implies 
that g(zi) ≤ g(zj).

As it is common in regression analysis, we aim to find an estimate ĝ that mini-
mizes the expected loss for some loss function L ∶ ℝ ×ℝ → [0,∞) . If the function 
ĝ is interpreted as an estimator of the conditional expectation of a random variable 
Y given Z, then a natural choice for L is the squared error loss L(x, y) = (x − y)2 . 
For i ≤ j , let �i∶j denote the expectation with respect to the empirical distribution of 
(zi, yi),… , (zj, yj) . Assuming that z1 < z2 < ⋯ < zn , the minimizer of the quadratic 
loss criterion

over all increasing functions g is given by

see Barlow et al. (1972, eq. (1.9)–(1.13)). The solution ĝ can be computed efficiently 
using the so-called pool-adjacent-violators (PAV) algorithm. These results were 
developed in the 1950s by several parties independently; see Ayer et al. (1955); Bar-
tholomew (1959a, 1959b); Brunk (1955); van Eeden (1958); Miles (1959).

It turns out that the solution given at (2) is also the unique minimizer of the Breg-
man loss criterion

where the squared error loss in (1) has been replaced by a Bregman loss function 
L = L� (Barlow et al. 1972, Theorem 1.10). That is,

where � is a convex function with subgradient �′ . Savage (1971) found that the 
Bregman class comprises all loss functions L where the expectation functional mini-
mizes the expected loss, i.e.,

where Y is a random variable with distribution P. Due to this property, any loss 
function in the Bregman class is also referred to as a consistent loss function for the 
expectation functional (Gneiting 2011).

In summary, the increasing regression function at (2) is simultaneously optimal 
with respect to all consistent loss functions for the expectation. This robustness 
with respect to the choice of loss function means that the solution to the regression 

(1)�1∶n(g(Z) − Y)2

(2)ĝ
(
z
�

)
= min

j≥� max
i≤j �i∶jY = max

i≤� min
j≥i �i∶jY , � = 1,… , n,

(3)�1∶nL(g(Z), Y),

L�(x, y) = �(y) − �(x) − ��(x)(y − x),

�PY = argminx�PL(x, Y),
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problem is determined by the choice of the expectation as the target functional. We 
will see that the same holds for other functionals. As such, in nonparametric iso-
tonic regression we can replace the task of choosing a loss function with the task of 
choosing a suitable target functional.

This remarkable result is particularly beneficial in scenarios where a single rel-
evant loss function cannot easily be identified. For example, institutions such as cen-
tral banks or weather services provide analyses and forecasts that drive individual 
decision making in a heterogeneous group of users. In these circumstances, deter-
mining a unifying loss function is hardly trivial. However, publishing results for the 
expectation and for various quantile levels is certainly feasible.

The simultaneous-optimality result for nonparametric isotonic regression is in 
stark contrast to the optimality behavior of parametric models for increasing regres-
sion functions. Suppose that {g� ∶ � ∈ �} , 𝛩 ⊆ ℝd is a parametric model of increas-
ing functions g� . Then, the optimal parameters with respect to the Bregman-loss 
criterion (3) generally vary (substantially) depending on the chosen loss function 
(Patton 2020). Consistency of the loss function merely ensures that the true parame-
ter value of a correctly specified model minimizes the Bregman-loss criterion on the 
population level. Interestingly, simultaneous optimality with respect to all consistent 
loss functions generally also breaks down if one weakens the isotonicity constraint 
of the regression function to a unimodality constraint; see Sect. 3.

In this paper, we generalize the result of Barlow et al. (1972, Theorem 1.10) in 
several directions. First, instead of the expectation functional, we consider general 
functionals T that are given by an identification function V(x, y) as defined in Defini-
tion 1. Second, in the case of set-valued functionals, we give a complete characteri-
zation of all possible solutions. Third, we demonstrate that modified min-max and 
max-min solutions as in (2) continue to hold for general partial orders on the covari-
ates and act as lower and upper bounds to any solution.

An identification function is an increasing function that weighs negative values 
in the case of underestimation against positive values in the case of overestimation, 
with an optimal expected value of zero. The corresponding functional T then maps 
to the optimizing value of the argument (or to the set of optimizing values). If there 
is always a unique optimizing value, we say that the functional is of singleton type, 
and otherwise it is of interval type. Prime examples of functionals that are of single-
ton type include the expectation functional, expectiles (Newey and Powell 1987), 
or ratios of expectations. The solution for these functionals is unique, so that our 
results offer no new insight to those by Robertson and Wright (1980) apart from a 
different method of proof. Functionals that are of interval type include the important 
case of quantiles, including the median, which have also been treated in Robertson 
and Wright (1973, 1980), but not in the interpretation as set-valued functionals. Pre-
defining a global scheme for reducing the median interval to a single point (e.g., 
some convex combination of lower and upper functional value) inevitably restricts 
the possible solutions to the isotonic regression problem.

In contrast to previous work, we treat all functionals as set-valued. In Sect.  4, 
we give explicit solutions for the lower and upper bound of the isotonic regression 
problem in the context of partial orders. The method of proof for these results is 
fundamentally different from the approach of Barlow et al. (1972, Theorem 1.10) or 



492	 A. I. Jordan et al.

1 3

Robertson and Wright (1980), and in contrast to the latter comes with an immediate 
construction principle for loss functions. Our method relies on the mixture or Cho-
quet representations of consistent loss functions, introduced by Ehm et al. (2016) for 
the quantile and expectile functionals. Given the identification function V(x, y) for 
the functional T, a one-parameter family of elementary loss functions that are con-
sistent for the functional T can be readily defined,

where � ∈ ℝ . If T is a quantile, an expectile, or a ratio of expectations, then

comprises all consistent loss functions for T subject to standard conditions, and if 
V(x, y) = x − y is the identification function of the expectation, then the class S  
is the class of Bregman loss functions; see Ehm et al. (2016); Gneiting (2011). In 
fact, optimality of an isotonic solution with respect to the criterion (3) for L = S� for 
some � ∈ ℝ corresponds to finding a solution with optimal superlevel set {g ≥ �} . 
Considering an isotonicity constraint as a constraint on admissible superlevel sets of 
the regression function relates to the work of Polonik (1998) in the context of den-
sity estimation.

For any functional T and corresponding consistent loss function L from the 
class S  , Theorem 1 states that the optimal isotonic solution to the criterion (3) is 
bounded below by a min-max formula and bounded above by a max-min formula as 
in (2) with the expectation replaced by the lower and upper functional values under 
T, respectively. In Proposition 5, we show that the min-max or max-min solution 
is simultaneously optimal with respect to all elementary loss functions for T, and 
hence with respect to the entire class S  . Propositions 6–8 characterize the optimal 
solutions by refinement of other optimal solutions. Our method of proof also leads 
to a transparent proof of the validity of the PAV algorithm in Sect. 4.2.

The left panel of Fig. 1 illustrates the pointwise bounds given in Theorem 1 for 
the median functional in a constructed data example with totally ordered covariates. 
The right panel illustrates the full range of optimal solutions as given by Proposi-
tions 5–8. These propositions identify all optimal superlevel sets and thereby also 
the regions where an optimal solution is necessarily constant (shown in darkgrey), 
interspersed with regions where the only constraint is that isotonicity has to be satis-
fied (lightgrey). As examples we show one optimal solution that linearly interpolates 
the midpoints of the bounds from Theorem 1 (red), and another solution that mini-
mizes the average slope subject to continuity (blue). Note that the latter solution has 
5 constant pieces, which is impossible for a fixed convex combination of the bounds 
from Theorem 1.

The results in Robertson and Wright (1980) hold for a large class of functionals 
and for partial orders on the covariates. However, the generality of their results is 
limited by treating potentially set-valued functionals as maps to single values. The 
solutions that arise from Proposition 5 in combination with Corollary 3 should be 
recoverable in the framework of Robertson and Wright (1980), which is in general 

S�(x, y) = (1{� ≤ x} − 1{� ≤ y})V(�, y),

(4)S =

{
∫
ℝ

S�(x, y) dH(�) ∶ H is a nonnegative measure on ℝ

}
,
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not the case for the solutions by Propositions 7–8. Also, the minimal and maximal 
solutions of Proposition 5 have not formally been identified as actual bounds, as they 
are in Theorem 1. To the best of our knowledge, the literature following Robertson 
and Wright (1980) is void of further results that characterize the solutions to the 
isotonic regression problem, or any investigations into the effect of the choice of loss 
function among options sharing the same Bayes act.

Recently and independently of our work, Mösching and Dümbgen (2020) derived 
a similar result of min-max and max-min formulas as lower and upper bounds for 
optimal isotonic solutions in the context of set-valued minimizers of convex and 
coercive loss functions. In contrast to their work, we do not require loss functions 
to be convex and coercive. Instead we focus on their consistency for a specific func-
tional. Brümmer and Du Preez (2013) rediscover the result of Barlow et al. (1972) 
that the PAV algorithm leads to a simultaneously optimal solution for all proper 
scoring rules in the context of binary events – a special class of loss functions that 
are consistent for the expectation functional.

A comprehensive overview on isotonic regression is given in the monograph 
Groeneboom and Jongbloed (2014). Also, Guntuboyina and Sen (2018) review 
risk bounds, asymptotic theory, and algorithms in common nonparametric shape-
restricted regression problems in the context of least squares optimization. Among 
the most recent developments on algorithms for isotonic regression with partially 
ordered covariates, Kyng et al. (2015) and Stout (2015) provide fast algorithms for 
isotone regression under different loss functions using the representation of a partial 
order as a directed acyclic graph. Recent advances on asymptotic theory for isotonic 
regression include Han et al. (2019), giving rates for least squares isotonic regres-
sion on the unit cube of arbitrary dimension, and Bellec (2018), considering iso-
tonic, unimodal, and convex regression in the context of total orders. Another recent 
interest is the regularization of isotonic regression on multiple variables with Luss 
and Rosset (2017) proposing a method via range restriction on the solution to the 
regression problem.

z

y

z

y

Fig. 1   Solutions in isotonic median regression. The left panel shows the pointwise bounds from Theo-
rem 1. The right panel illustrates the full range of optimal solutions, which are necessarily constant in 
some regions (darkgrey) and can be chosen freely inbetween (lightgrey), subject to satisfying isotonic-
ity. Two examples of optimal solutions are shown. One is based on Corollary 3 and interpolates linearly 
between the midpoints of the pointwise bounds (red), and one is based on Proposition 8 and minimizes 
the average slope (blue)
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The paper provides a first fully rigorous treatment of isotonic regression for set-
valued identifiable functionals including the important special case of quantiles. We 
treat total orders as well as partial orders. In both cases, a complete characterization 
of all solutions to the isotonic regression problem has been lacking in the literature. 
Theorem 1 identifies bounds on the solutions. Propositions 7–8 only bear relevance 
when the functional is of interval type, but they identify the conditions that lead to 
those optimal solutions which cannot occur when functionals only map to single real 
values.

2 � Functionals and consistent loss functions

We start with the definition of a functional via an identification function.

Definition 1  A function V ∶ ℝ ×ℝ → ℝ is called an identification function if V(⋅, y) 
is increasing and left-continuous for all y ∈ ℝ . Then, for any finite and nonnegative 
measure P on ℝ such that V(x, ⋅) is quasi-integrable for all x ∈ ℝ , we define the func-
tional T induced by an identification function V as

where the lower and upper bounds are given by

using the notation V(x,P) = ∫ ∞

−∞
V(x, y) dP(y).

Defining functionals for any finite and nonnegative measure, as opposed to 
merely probability distributions, is a minor detail that simplifies notation when join-
ing and intersecting data subsets. Except in the case of the null measure, any finite 
and nonnegative measure can be replaced with a corresponding probability distribu-
tion, without any change to the functional values.

Note that T−
P

 can take the value −∞ , and T+
P

 can take the value +∞ . In the sub-
sequent results, we repeatedly refer to the smallest or largest element of a finite set 
where one of the elements could be ±∞ . We still write min and max of the set but 
this quantity could be ±∞.

Definition 2  A functional T is called a functional of singleton type if T(P) is a sin-
gleton whenever P is not the null measure. Otherwise, T is called a functional of 
interval type.

Table 1 summarizes common functionals and their respective identification func-
tions, and Example 1 explains two options in more detail.

Example 1  Let �, � ∈ (0, 1) , and let P denote a probability distribution. 

T(P) =
[
T−
P
, T+

P

]
⊆ [−∞,+∞] = ℝ̄,

T−
P
= sup {x ∶ V(x,P) < 0} and T+

P
= inf {x ∶ V(x,P) > 0},



495

1 3

Characterizing the optimal isotonic solutions

(a)	 Consider the identif ication function V(x, y) = 1{x > y} − 𝛼  ,  then 
V(x,P) = P(Y < x) − 𝛼 , and the interval of all �-quantiles of P, 

 is potentially of positive length.
(b)	 If  P  has a f ini te f irst  moment,  the identif ication function 

V(x, y) = 2|1{x > y} − 𝜏|(x − y) leads to 

 which is strictly increasing and continuous in its first argument. Hence, there 
exists a unique solution in x for the equation V(x,P) = 0 , and we call that solu-
tion the �-expectile e�(P) . In particular, for � = 1

2
 we obtain V(x, y) = x − y and 

thus T(P) = {�P(Y)}.

In the later proofs, we use three implications of Definition 1 repeatedly to estab-
lish order relationships between the variable in the first argument of V and the func-
tional of an empirical distribution. To facilitate reference, we note these statements 
explicitly.

Corollary 1  Let V be an identification function inducing the functional T, and P be a 
finite and nonnegative measure on ℝ . Then,

Lemma 1 shows that a version of the Cauchy mean value property holds for any 
functional that we consider in this paper. The same can be shown for the original 

T(P) =
[
sup {x ∶ P(Y < x) < 𝛼}, inf {x ∶ P(Y < x) > 𝛼}

]
,

V(x,P) = 2(1 − �)∫
x

−∞

(x − y) dP(y) + 2� ∫
∞

x

(x − y) dP(y),

V(𝜂,P) = 0 ⟹ 𝜂 ∈ T(P),

V(𝜂,P) > 0 ⟹ 𝜂 > sup T(P) = T+
P
,

V(𝜂,P) < 0 ⟹ 𝜂 ≤ inf T(P) = T−
P
.

Table 1   Selection of functionals and their respective identification functions. The parameters satisfy 
�, � ∈ (0, 1) , p > 1 and 𝛿 > 0 , and u ∶ I → ℝ and w ∶ I → (0,∞) are measurable functions on an interval 
I ⊆ ℝ . The functionals “ �p minimizer” and “Huber minimizer” map to the intervals of values minimizing 
the �p loss and the Huber loss (Huber 1964), respectively

Functional Identification function Type

Median V(x, y) = 1{x > y} − 1∕2 interval
Mean V(x, y) = x − y singleton
2nd Moment V(x, y) = x − y2 singleton
�-Quantile V(x, y) = 1{x > y} − 𝛼 interval
�-Expectile V(x, y) = 2|1{x > y} − 𝜏|(x − y) singleton
Ratio �P(u(Y))∕�P(w(Y)) V(x, y) = xw(y) − u(y) singleton
�p minimizer V(x, y) = sign(x − y)|x − y|p−1 singleton
Huber minimizer V(x, y) = sign(x − y)min(|x − y|, �) interval
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version used to define functionals in Robertson and Wright (1980). It is unclear 
whether a functional that satisfies the Cauchy mean value property needs to be 
identifiable.

Lemma 1  Let P, Q be finite and nonnegative measures on ℝ . Then,

Proof  The statement follows from Definition 1. The second inequality is trivial. For 
the first inequality, and x < min{T−

P
, T+

Q
} , we have V(x,P) < 0 and V(x,Q) ≤ 0 , 

hence V(x,P + Q) < 0 . A similar argument applies to the third inequality. 	�  ◻

The definition of a functional in terms of an identification function comes with 
a straightforward construction principle for large classes of loss functions. In a nut-
shell, a continuous oriented identification function defines a functional via its unique 
root in the first argument, a first-order condition. By integration, corresponding loss 
functions inherit the consistency for the functional, i.e., the minimum expected loss 
is attained by any member in T(P). The loss functions defined in Proposition 1 are 
the most basic, in the sense that they are a result of integration with respect to the 
Dirac measure at a given threshold � ∈ ℝ . A similar result has also been discussed 
in Dawid (2016) and Ziegel (2016).

Proposition 1  Let V be an identification function, T be the induced functional, and 
� ∈ ℝ . Then the elementary loss function S𝜂 ∶ ℝ̄ ×ℝ → ℝ given by

is consistent for T relative to the class P of probability distributions such that V(�, ⋅) 
is quasi-integrable. That is,

for all P ∈ P , all t ∈ T(P) and all x ∈ ℝ̄.

Proof  Let

If V(�,P) = 0 then d(�) = 0 . If V(𝜂,P) < 0 it follows from Corollary  1 that � ≤ t 
and therefore d(�) ≤ 0 . Similary, if V(𝜂,P) > 0 it follows that 𝜂 > t and therefore 
d(�) ≤ 0 . 	�  ◻

As an immediate consequence of the consistency of elementary loss functions for 
the functional T, we have that all loss functions in the class S  defined at (4) are also 
consistent for the functional T. This result exemplifies an important line of reasoning 
used multiple times in this paper: A property of S� that holds for all � ∈ ℝ translates 
to the class S .

min
{
T−
P
, T+

Q

} ≤ T−
P+Q

≤ T+
P+Q

≤ max
{
T−
P
, T+

Q

}
.

S�(x, y) = (1{� ≤ x} − 1{� ≤ y})V(�, y)

�PS�(t, Y) ≤ �PS�(x, Y)

d(�) = �PS�(t, Y) − �PS�(x, Y) = (1{� ≤ t} − 1{� ≤ x})V(�,P).
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Examples of members of the class S  for the expectation functional, i.e., 
V(x, y) = x − y , are given in Table 2. While these examples are differentiable convex 
losses and therefore already covered in the literature (Luss and Rosset 2014), the 
analysis in this paper also holds for the absolute loss, a nondifferentiable convex loss 
that is recovered when choosing V(x, y) = 1{x > y} − 1∕2 and dH(�) = d2� . And 
even the elementary loss functions themselves bear relevance to fundamental deci-
sion problems in practice (Ehm et al. 2016). For the expectation functional, the ele-
mentary losses are nondifferentiable and convex, but describe the scenario of invest-
ing a fixed sum � for an unknown future profit or loss. For quantiles, the losses are 
not even convex, but describe the scenario of a bet on whether or not the outcome y 
will exceed the threshold � , with a fixed payoff ratio. Similar betting interpretations 
of elementary loss functions in the context of isotonic regression are an interesting 
open question.

While loss functions with properties such as convexity or differentiability are 
often necessary in optimization problems for estimation, consumers of predictions 
regularly face decision problems with simpler loss structures. The results in this 
paper show that a distinction of preferences for technical implementation and fore-
cast consumption is unnecessary in nonparametric isotonic regression.

3 � Simultaneous optimality

Consider a distribution P for a random vector (Z, Y) ∈ Z ×ℝ . We aim to minimize 
the criterion

over a family of regression functions g ∶ Z → ℝ , and call a solution ĝ simultane-
ously optimal since it minimizes the expected score with respect to all scoring func-
tions in the class S  at (4), simultaneously. Condition (5) is equivalent to minimizing 
�P1{� ≤ g(Z)}V(�, Y) for all � ∈ ℝ . The results in this paper rely on this reformu-
lation and the implication that regression functions are characterized by superlevel 
sets of the form {z ∈ Z ∶ ĝ(z) ≥ 𝜂} , � ∈ ℝ . The structure of the set of admissible 
superlevel sets is crucial for the existence of a simultaneously optimal regression 
function.

(5)𝔼PS�(g(Z), Y) for all � ∈ ℝ,

Table 2   Commonly used loss functions that are consistent for the mean functional. For an interval 
I ⊆ ℝ , a Bregman loss is induced by a convex function � ∶ I → ℝ with subgradient �′ . See Patton (2011, 
2020) for the QLIKE loss and the exponential Bregman loss, respectively

Name Mixing measure Loss function Domain
H((�1, �2]) = L(x, y) =

Bregman loss ��(�2) − ��(�1) �(y) − �(x) − ��(x)(y − x) I
Squared error �2 − �1 (x − y)2 ℝ

Exponential Bregman exp(�2) − exp(�1) exp(y) − exp(x) − exp(x)(y − x) ℝ

QLIKE loss −1∕�2 + 1∕�1 y∕x − log (y∕x) − 1 (0,∞)
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In fact, it is a rare property in regression methods, that the solution does 
not depend on the loss function when considering a large class such as S  . As 
recently demonstrated, the optimal parameters with respect to the Bregman-loss 
criterion (3) of a parametric model {g� ∶ � ∈ �} , 𝛩 ⊆ ℝd of increasing functions 
g� generally vary depending on the chosen loss function (Patton 2020). Before 
proving the simultaneous-optimality result for nonparametric isotonic regression 
in Sect. 4, we highlight the fragility of simultaneous optimality by demonstrating 
that it fails to hold for only slightly adapted shape constraints.

Unimodality is a shape constraint closely related to isotonicity. Given a pre-
determined mode, unimodality is even equivalent to isotonicity, when order rela-
tionships are defined suitably. For example, a total order on a finite set becomes a 
partial order consisting of two separate total orders merging in the predetermined 
mode, when reframing unimodality as isotonicity. Then, the problem becomes 
one of reconciling two isotonicity constraints. However, we will now see that 
simultaneous optimality under the unimodality constraint is in general unattain-
able when the location of the mode is not predetermined.

Example 2  Suppose that we have observations (z1, y1),… , (z4, y4) with z1 < ⋯ < z4 
and (y1,… , y4) = (9, 9, 0, 10) , and let P denote the corresponding empirical distri-
bution. We choose the expectation functional as the regression target, and for each 
potential mode mi = zi , i = 1,… , 4 , we aim to find a function ĝi ∶ {z1,… , z4} → ℝ 
that is optimal for any consistent loss function for the expectation functional. To this 
end, we reframe unimodality given a predetermined mode as isotonicity. The exist-
ence and the uniqueness of an optimal isotonic solution for a functional of singleton 
type is shown in Sect. 4.

Using the PAV algorithm, the functions ĝ1 and ĝ4 are easy to find, as the order on 
the zi is reversed or remains unchanged, respectively, when reframing the unimodal-
ity constraint as isotonicity. We refer to Sect. 4.2 and extant literature for a descrip-
tion of the algorithm. To find ĝ3 , we consider the partial order given by the totally 
ordered subsets z1 < z2 < z3 and z3 > z4 , and argue with superlevel sets of the form 
{z ∶ ĝ3(z) ≥ 𝜂} , � ∈ ℝ . Since z4 corresponds to the largest response in the data set, 
y4 , and z3 needs to be in every nonempty superlevel set, we have ĝ3(z3) = ĝ3(z4) . 
Therefore, z4 also lies in any nonempty superlevel set of ĝ3 , and in satisfying the 
isotonic relationship on z1 < z2 < z3 , we find that the only nonempty superlevel set 
must be {z1,… , z4} , corresponding to levels � ≤ 1

4

∑4

i=1
yi = 7 . Similarly, in order 

to find ĝ2 as the isotonic solution subject to z1 < z2 and z2 > z3 > z4 , we again have 
ĝ2(z3) = ĝ2(z4) since y4 is the largest response. As 1

2

∑4

i=3
yi < y2 = y1 , isotonicity is 

established, and the only nonempty superlevel sets are {z1, z2} and {z1,… , z4} , cor-
responding to levels � ∈ (5, 9] and � ≤ 5 , respectively. Coincidentally, ĝ2 = ĝ1.

The left panel of Fig. 2 shows the regression functions, and the right panel shows 
the expected score at (5) as a function of � ∈ ℝ . None of the three potential solu-
tions minimizes the expected score for all � , and therefore, a simultaneously optimal 
solution does not exist in this example. This visual method of comparing forecasts is 
called a Murphy diagram (Ehm et al. 2016).
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In unimodal regression, a simultaneously optimal solution may but need not exist. 
This agrees with our findings in Sect.  4 because the set of admissible superlevel 
sets under a unimodality shape constraint is not closed under union and intersection. 
Indeed, in Example 2 the sets {z1} and {z4} are admissible superlevel sets, while the 
union {z1, z4} is not admissible because it implies bimodality.

4 � Results on isotonic regression

We solve the isotonic regression problem considering a distribution P for a random 
vector (Z, Y) ∈ Z ×ℝ , where Z  is a finite partially ordered set. The distribution P 
may, but need not, be an empirical distribution with finite support. Analogously to 
(5), we aim to minimize the criterion

over all increasing functions g ∶ Z → ℝ̄ . We call any minimizer of (6) a solution to 
the isotonic regression problem.

Reformulation of condition (6) as minimizing �P1{� ≤ g(Z)}V(�, Y) for all 
� ∈ ℝ reveals that we can specify a solution to the isotonic regression problem by 
finding a path through minimizing upper sets {z ∈ Z ∶ ĝ(z) ≥ 𝜂} . These upper sets 
are denoted by x ∈ X ⊆ P(Z) , where P denotes the power set. The set X  consists 
of all admissible superlevel sets for an increasing function g imposed by the partial 
order on Z  . A set x ∈ X  is characterized by the property that if z ∈ x and z ⪯ z� , 
then z� ∈ x . This implies that X  is a finite lattice, that is, it is closed under union 
and intersection and contains Z  and the empty set. We will see, that as � increases, � 
follows one of the totally ordered paths through the lattice. In Fig. 3, the direction of 
movement as � increases is illustrated by arrows. In the special case of a total order, 
z1 < ⋯ < zn , there is only one possible path along upper sets of the form {zi,… , zn} , 
i = 1,… , n , ending up at the empty set.

(6)𝔼PS�(g(Z), Y) for all � ∈ ℝ,

ĝ1 = ĝ2

ĝ3

ĝ4

z1 z2 z3 z4

y3

y1 = y2

y4

Threshold η

M
ea

n 
el

em
en

ta
ry

 lo
ss

ĝ1 ĝ3 ĝ4

y3 y1 = y2 y4

0
1

2
3

4

Fig. 2   Unimodal Regression and Murphy Diagram. For a data example with observations 
(z1, 9), (z2, 9), (z3, 0), (z4, 10) , the left panel shows the regression functions ĝ1,… , ĝ4 corresponding to 
modes z1,… , z4 . The black dots display the observations. The right panel shows the mean elementary 
losses of the regression functions against the parameter � ∈ ℝ . No single function exhibits the smallest 
mean elementary loss for all values of � , simultaneously
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The path is given by a function � ∶ ℝ → X  , that maps � to an upper set x of Z  
that minimizes

where Px(A) = P((x ×ℝ) ∩ A) for any A ∈ P(Z)⊗B(ℝ) , where B(ℝ) denotes the 
Borel �-algebra on ℝ . In this notation, sx is only defined for x ∈ X  , whereas vx and 
Px are defined for any x ∈ P(Z) . As in Definition 1 and Proposition 1, we assume 
that V(�,Px) exists for all � ∈ ℝ and x ∈ P(Z) . For the bounds of the conditional 
functional, we write T−

x
= T−

Px
= inf T(Px) and T+

x
= T+

Px
= sup T(Px) . Finally, let 

X(�) denote the set of superlevel sets x ∈ X  minimizing sx(�) at (7). Since P(Z) is 
finite, such a minimizer always exists.

For a total order, upper sets {zi,… , zn} can be parameterized by the index of the 
smallest element, with the index n + 1 for the empty set. Then we can redefine the 
object of minimization in (7) as

This index search needs to be conducted for every � ∈ ℝ separately. In Fig. 4, we 
give an example for 6 data points. The example illustrates how the values ĝ(z

�
) , 

� = 1,… , 6 , can be determined from the epigraph of the function � ↦ min �(�) . The 
function � maps � to the smallest index of the elements in �(�) . In a nutshell, for a 
total order, we find the generalized inverse to an optimal solution.

The following proposition formalizes that statement in the general context, 
assuming the existence of a decreasing function � ∶ ℝ → X  in the sense that for 
𝜂′ > 𝜂 it holds that 𝜉(𝜂�) ⊆ 𝜉(𝜂) , while satisfying �(�) ∈ X(�) for all � ∈ ℝ . Before 
showing the existence of such a function � in Lemma 3, we elucidate the one-to-one 
correspondence to the solutions ĝ of the isotonic regression problem at (6).

(7)sx(�) = vx(�) = V(�,Px) = ∫x×ℝ

V(�, y)P(dz, dy),

si(�) =

n∑
�=i

V(�, y
�
).

Fig. 3   Moving through the 
lattice X . The display shows 
possible paths through X  
based on the partial order on 
Z = {z1, z2, z3, z4} given by 
z1 ≺ z2 and z1 ≺ z3 ≺ z4 . The 
arrows indicate the direction of 
moving through the lattice X  as 
� increases

∅

{z4} {z2}

{z3, z4} {z2, z4}

{z2, z3, z4}

{z1, z2, z3, z4}
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Proposition 2  Let � ∶ ℝ → X  be a decreasing, left-continuous function such that 
�(�) ∈ X(�) , where left-continuity means that if �n ↑ � and z ∈ �(�n) , then z ∈ �(�) . 
Then, the function ĝ ∶ Z → ℝ given by

is the unique function that satisfies

among all increasing functions g ∶ Z → ℝ.

Proof  The left-continuity and monotonicity of � ∶ ℝ → X  implies the equality of 
infimum and maximum in equation (8). The monotonicity of ĝ follows from the 
monotonicity of � and the fact that � takes values being superlevel sets of the partial 
order on Z  . Let �� ∈ ℝ . Then,

Therefore, {z ∶ ĝ(z) ≥ 𝜂�} ⊆ {z ∶ z ∈ 𝜉(𝜂�)} ⊆ {z ∶ ĝ(z) ≥ 𝜂�} where the first inclu-
sion follows by (i) and the second by (ii). Uniqueness follows because any hypo-
thetical alternative ḡ with ḡ(z�) ≠ ĝ(z�) for some z� ∈ Z  leads to the contradiction 
𝜉(𝜂) = {z ∶ ḡ(z) ≥ 𝜂} ≠ {z ∶ ĝ(z) ≥ 𝜂} = 𝜉(𝜂) for all � between ḡ(z�) and ĝ(z�) . 	�  ◻

As a first result, we characterize minimizers of sx(�) at (7) for a given � ∈ ℝ . The 
following proposition states necessary and sufficient conditions for the inclusion of 
an upper set x in the set of minimizing superlevel sets X(�) . This is the first step 
towards establishing a link between the level � and the value of the functional T on 
the corresponding level set, and more elementary, it is also the first step in proving 
the existence of a decreasing function � as specified in Proposition 2.

(8)inf{𝜂 ∶ z ∉ 𝜉(𝜂)} = ĝ(z) = max{𝜂 ∶ z ∈ 𝜉(𝜂)}

{z ∶ g(z) ≥ �} = �(�) for all � ∈ ℝ,

(i) ĝ(z) ≥ 𝜂� ⟹ 𝜉(ĝ(z)) ⊆ 𝜉(𝜂�) ⟹ z ∈ 𝜉(𝜂�).

(ii) For any z ∈ 𝜉(𝜂�) ∶ ĝ(z) = max{𝜂 ∶ z ∈ 𝜉(𝜂)} ≥ 𝜂�.

z1 z2 = z3 z4 = z5 z6
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y4

y3
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η

Fig. 4   Graph of ĝ. For a sample of 6 data points with a totally ordered covariate set Z  , the values of ĝ(z) 
for z = z1,… , z6 are shown in red. The epigraph of the function � ↦ min �(�) = z�(�) is shown in grey, 
where T is chosen as the median functional to find �(�) , and �  maps � to the smallest index of the ele-
ments in �(�) . Note that the displayed epigraph is for a function with its argument on the y-axis
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Proposition 3  Let � ∈ ℝ . Subject to x, x� ∈ X  , the inclusion x ∈ X(�) holds if and 
only if

Let x ∈ X(�) , x� ∈ X  . If vx⧵x� (�) = vx�⧵x(�) , then x� ∈ X(�).

Proof  Note that sx(�) ≤ sx� (�) for all x′ ⊊ x and all x′ ⊋ x holds if and only if 
vx⧵x� (�) ≤ 0 for all x′ ⊊ x and vx�⧵x(�) ≥ 0 for all x′ ⊋ x . For the first part of the 
result, note that x ∈ X(�) implies sx(�) ≤ sx� (�) for all x′ ⊊ x and all x′ ⊋ x . Con-
versely, let x ∈ X  be such that the latter condition is satisfied. Then, sx(�) ≤ sx�∩x(�) 
and sx(�) ≤ sx�∪x(�) for all x� ∈ X  . By substracting vx⧵x� (�) on both sides of the latter 
inequality, we have sx∩x� (�) ≤ sx� (�) for all x� ∈ X  , and hence x ∈ X(�) . The second 
part of the result is immediate after adding sx∩x� (�) to both sides of vx⧵x� (�) = vx�⧵x(�) , 
that is, sx(�) = sx� (�) . 	�  ◻

The following corollary is of particular importance in the context of total 
orders, where all admissible superlevel sets are pairwise nested.

Corollary 2  Let � ∈ ℝ and x ∈ X(�) , x� ∈ X  . If x′ ⊊ x and vx⧵x� (�) = 0 , then 
x� ∈ X(�) . Analogously, if x′ ⊋ x and vx�⧵x(�) = 0 , then x� ∈ X(�).

The next result establishes links between two or more sets of minimizing 
superlevel sets, that is, between X(�) and X(��) when � ≠ �′ . Afterwards, Lemma 3 
shows the existence of a decreasing function � as specified in Proposition 2.

Lemma 2 

(a)	 Let �, �� ∈ ℝ , 𝜂 < 𝜂′ , and x ∈ X(�) , x� ∈ X(��) . Then, vx�⧵x(���) = 0 for all 
��� ∈ [�, ��].

(b)	 Let � ∈ ℝ and x�, x�� ∈ X(�) , x ∈ X  . If x ∈
⋃

�∈ℝ X(�) and x′ ⊇ x ⊇ x′′ , then 
x ∈ X(�).

(c)	 Let �, �� ∈ ℝ , 𝜂 < 𝜂′ , and x ∈ X(�) , x� ∈ X(��) . Then, x ∪ x� ∈ X(�) and 
x ∩ x� ∈ X(��).

Proof 

(a)	 We have (x ∪ x�) ⧵ x = x� ⧵ x = x� ⧵ (x ∩ x�) . The statement is trivial if x� ⧵ x = � . 
Otherwise, vx�⧵x(�) ≥ 0 ≥ vx�⧵x(�

�) by Proposition 3, where the statement follows 
from the monotonicity of the identification function in its first argument.

(b)	 The statement is trivial if x = x� , x = x�� , or x ∉ X(��) for all �′ ≠ � . Therefore, 
assume x ∈ X(��) , �′ ≠ � . If 𝜂 < 𝜂′ , then vx⧵x�� (�) = 0 by part (a). If 𝜂′ < 𝜂 , then 
vx�⧵x(�) = 0 by part (a). In either case, x ∈ X(�) by Corollary 2.

vx⧵x� (𝜂) ≤ 0 for all x� ⊊ x,

vx�⧵x(𝜂) ≥ 0 for all x� ⊋ x.
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(c)	 We have sx(�) ≤ sx∪x� (�) and sx� (��) ≤ sx∩x� (�
�) , and vx�⧵x(���) = 0 for all 

��� ∈ [�, ��] by part (a). That means, sx(�) = sx∪x� (�) and sx� (��) = sx∩x� (�
�).

	�  ◻

Lemma 3 

(a)	 There exists a decreasing function � ∶ ℚ → X  such that �(q) ∈ X(q) for all 
q ∈ ℚ.

(b)	 Let �n ↑ � and xn ∈ X(�n) , xn ⊇ xn+1 . Then, x =
⋂

n∈ℕ xn ∈ X(�).

Proof 

(a)	 Let {qn} = ℚ be an enumeration of the rationals. We define �(qn) inductively. 
Pick x1 ∈ X(q1) and set �(q1) = x1 . For n ≥ 2 , define 

 if {i ∶ qi > qn} ≠ � and {i ∶ qi < qn} ≠ � . If {i ∶ qi > qn} = � , we set x−
n
= � , 

and if {i ∶ qi < qn} = � , we set x+
n
= Z  . We choose any xn ∈ X(qn) and set 

�(qn) = (xn ∪ x−
n
) ∩ x+

n
 . At each step n, �(qn) ∈ X(qn) follows by  2 (a), and 

𝜉(qn) ⊆ x+
n
 . Furthermore, we show by induction that x−

n
⊆ 𝜉(qn) for all n. 

For n = 2 , this is easily verified. Suppose the claim holds for n − 1 ≥ 2 . If 
qn > qn−1 , then x−

n
= x−

n−1
 and x+

n
= x+

n−1
∩ �(qn−1) = �(qn−1) , hence 

 If qn < qn−1 , then x−
n
= x−

n−1
∪ �(qn−1) = �(qn−1) and x+

n
= x+

n−1
 , hence 

 In summary, for k < n , if qk < qn , then 𝜉(qn) ⊆ x+
n
⊆ 𝜉(qk) , and if qk > qn , 

𝜉(qk) ⊆ x−
n
⊆ 𝜉(qn) showing that � is decreasing.

(b)	 We have sxn (�n) ≤ sx� (�n) for all x� ∈ X  . Furthermore, the definitions of x 
and V imply 1{z ∈ xn}V(�n, y) → 1{z ∈ x}V(�, y) pointwise, and we have 
1{z ∈ xn}V(�n, y) ≤ supn∈ℕ |V(�n, y)| . By the dominated convergence theorem, 
sxn (�n) → sx(�) and sx� (�n) → sx� (�).

	�  ◻

Part (b) of Lemma  3 describes a possible completion step for part (a) that 
also modifies � to be left-continuous. In a nutshell, any decreasing �� ∶ ℚ → X  
that satisfies ��(��) ∈ X(��) for all �� ∈ ℚ admits a left-continuous version on ℝ , 
𝜉 ∶ 𝜂 ↦

⋂
𝜂�<𝜂 𝜉

�(𝜂�) ∈ X(𝜂) , where the intersection is over all �� ∈ ℚ , 𝜂′ < 𝜂.

x−
n
=

⋃
i ∈ {1,… , n − 1}

qi > qn

𝜉(qi), x+
n
=

⋂
i ∈ {1,… , n − 1}

qi < qn

𝜉(qi),

x−
n
= x−

n−1
⊆
(
xn ∪ x−

n−1

)
∩ 𝜉

(
qn−1

)
= 𝜉

(
qn
)
.

x−
n
= 𝜉(qn−1) ⊆ (xn ∪ 𝜉(qn−1)) ∩ x+

n−1
= 𝜉(qn).
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In order to prove the existence of a function � (and thus ĝ ) that solves the isotonic 
regression problem, we need that X  is closed under union and intersection. This 
property is essential for Lemma 3.

We could also start with a set X  of subsets of {z1,… , zn} that are interpreted as 
the admissible superlevel sets of the function g that is to be fitted. If X  is closed 
under union and intersection, then X  induces a partial order on {z1,… , zn} by Birk-
hoff’s Representation Theorem; see for example Gurney and Griffin (2011). Conse-
quently, the optimal function ĝ always exists and is increasing.

Starting with X  , one could formulate constraints other than isotonicity on g as 
long as they can be formulated in terms of restrictions on admissible superlevel sets. 
Examples are unimodality with a fixed mode or quasi-convexity with a fixed mini-
mal point. Generally, there is no solution that is simultaneously optimal with respect 
to all elementary loss functions; see Sect. 3 for an example in the case of a unimo-
dality constraint without a fixed mode.

4.1 � Characterization of optimal solutions

The following proposition is essential to provide min-max and max-min bounds on 
solutions to the isotonic regression problem. We relate the threshold � ∈ ℝ to the 
bounds of the functional T on subsets of the data. As a reminder, we write 
T−
x
= T−

Px
= inf T(Px) and T+

x
= T+

Px
= sup T(Px).

Proposition 4  Let � ∈ ℝ , x ∈ X(�) . Then, subject to x� ∈ X ,

Proof  For all x′ ⊋ x , we have vx�⧵x(�) ≥ 0 . For all x′ ⊊ x , we have vx⧵x� (�) ≤ 0 . If 
x� ∉ X(�) , then both inequalities are strict. Corollary 1 implies the result. 	�  ◻

Figure 5 illustrates the statement in Proposition 4 for a total order in the context of 
the expectation functional, which is a functional of singleton type. We now state and 
show one of our main results which is that ĝ coincides with or is bounded by a min-
max and max-min solution.

Theorem 1  Let z ∈ Z  and let ĝ be a solution to the isotonic regression problem. 
Then, subject to x, x� ∈ X ,

Proof  Applying the first set of bounds from Proposition 4 to the formula for ĝ at (8), 
we obtain

max
x�⊋x

T−
x�⧵x

≤ 𝜂 ≤ min
x�⊊x

T+
x⧵x�

,

max
x�⊋x,x�∉X(𝜂)

T+
x�⧵x

< 𝜂 ≤ min
x�⊊x,x�∉X(𝜂)

T−
x⧵x�

.

min
x�∶z∉x�

max
x⊋x�

T−
x⧵x�

≤ ĝ(z) ≤ max
x∶z∈x

min
x�⊊x

T+
x⧵x�

.

inf
𝜂∶z∉𝜉(𝜂)

max
x⊋𝜉(𝜂)

T−
x⧵𝜉(𝜂)

≤ ĝ(z) ≤ max
𝜂∶z∈𝜉(𝜂)

min
x�⊊𝜉(𝜂)

T+
𝜉(𝜂)⧵x�

.
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The lower bound is bounded from below by minx�∶z∉x� maxx⊋x� T
−
x⧵x�

 , and the upper 
bound is bounded from above by maxx∶z∈x minx�⊊x T

+
x⧵x�

 . 	�  ◻

The previous statement is closely related to the coinciding max-min and min-max 
solutions at (2) for the expectation functional and a total order isotonicity constraint. 
For an analogous statement of uniqueness, as referred to in Example 2, we need the fol-
lowing lemma on a modified max-min inequality in the context of partial orders.

Lemma 4  Suppose that T is of singleton type. Let z ∈ Z  be such that 
P({z} ×ℝ) > 0 . Then, subject to x, x� ∈ X ,

Proof  Let x�� ∈ X  such that z ∉ x�� , then

where the last inequality holds because x ∪ x�� ∈ X  and if z ∈ x then x ∪ x�� ⊋ x�� . 	
� ◻

In general, a similar statement on coinciding max-min and min-max solutions 
always holds, where the choice of � determines whether ĝ attains the minimal or maxi-
mal elements of the functional. It is possible to define minimal and maximal solutions. 
Recall that we defined X(�) as the set of superlevel sets x ∈ X  minimizing sx(�) at (7). 
Let

max
x∶z∈x

min
x�⊊x

T+
x⧵x�

≤ min
x�∶z∉x�

max
x⊋x�

T−
x⧵x�

.

max
x∶z∈x

min
x�⊊x

T+
x⧵x�

= max
x∶z∈x

min
x� ⊊ x

P((x ⧵ x�) ×ℝ) > 0

T+
x⧵x�

= max
x∶z∈x

min
x� ⊊ x

P((x ⧵ x�) ×ℝ) > 0

T−
x⧵x�

≤ max
x∶z∈x

T−
x⧵(x∩x��)

= max
x∶z∈x

T−
(x∪x��)⧵x��

≤ max
x∶x⊋x��

T−
x⧵x��

,

�

�

�
�

�

� �

�

�

η

1 3 4 6 8

y

z

Fig. 5   Minimizing indices are separators. For a sample of 9 data points, the graph illustrates the func-
tional value (expectation) on relevant subsets of the data for a given � and the minimizing index i = 3 . 
The expectation value (vertical location of a brown line) is above or below � when the corresponding 
subsample extends (horizontal extension of a brown line) to the right or left of the minimizing index, 
respectively
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denote the sets of minimal and maximal elements of X(�) , respectively.

Proposition 5  Let z ∈ Z  be such that P({z} ×ℝ) > 0 , and let � ∶ ℝ → X  be 
decreasing and left-continuous. 

(a)	 If �(�) ∈ X+(�) for all � ∈ ℝ , then, subject to x, x� ∈ X  , 

(b)	 If �(�) ∈ X−(�) for all � ∈ ℝ , then, subject to x, x� ∈ X  , 

Proof  The proof follows using Lemma 4 and applying the same steps as in the proof 
of Theorem 1 to the second set of bounds in Proposition 4. 	�  ◻

Let us denote the solution in part (a) of Proposition 5 by g+ and the one in part 
(b) by g− . Clearly, it always holds that g− ≤ g+ . It is a natural question whether 
any increasing function g that satisfies g− ≤ g ≤ g+ is also a minimizer of the 
criterion (6). It turns out that the answer is negative; see Mösching and Dümb-
gen (2020, Remark 2.2, Example 2.4). Combining Propositions 5 to 8 and Corol-
lary 3, gives a complete characterizations of all possible solutions to the isotonic 
regression problem for partial orders. For the following results, it is not required 
that g− , g+ are the solutions from Proposition  5. Unless specified, they do not 
even need to satisfy g− ≤ g+ everywhere. We define �− ∶ � ↦ {z ∶ g−(z) ≥ �} and 
�+ analogously.

Proposition 6  Let g− and g+ be two solutions to the isotonic regression problem such 
that g− ≤ g+ . Let ĝ be isotonic, g− ≤ ĝ ≤ g+ , and suppose that all superlevel sets of 
ĝ lie in 

⋃
�∈ℝ X(�) . Then, ĝ is a solution to the isotonic regression problem.

Proof  For � ∈ ℝ define 𝜉(𝜂) = {z ∶ ĝ(z) ≥ 𝜂} . The functions �, �−, �+ are decreas-
ing, that is 𝜉(𝜂) ⊇ 𝜉(𝜂�) for � ≤ �′ , and left-continuous. For �− , �+ it holds that �−(�) , 
�+(�) ∈ X(�) . Since, for all z ∈ Z  , it holds that

we obtain 𝜉−(𝜂) ⊆ 𝜉(𝜂) ⊆ 𝜉+(𝜂) for all � ∈ ℝ . Lemma 2 (b) implies the result. 	�  ◻

The following corollary is an immediate consequence of Lemma 2 (c).

X−(𝜂) = {x ∈ X(𝜂) ∶ ∄ x� ∈ X(𝜂) such that x� ⊊ x},

X+(𝜂) = {x ∈ X(𝜂) ∶ ∄ x� ∈ X(𝜂) such that x� ⊋ x}

ĝ(z) = min
x�∶z∉x�

max
x⊋x�

T+
x⧵x�

= max
x∶z∈x

min
x�⊊x

T+
x⧵x�

.

ĝ(z) = min
x�∶z∉x�

max
x⊋x�

T−
x⧵x�

= max
x∶z∈x

min
x�⊊x

T−
x⧵x�

.

g−(z) = max {� ∶ z ∈ �−(�)} ≤ g(z) = max {� ∶ z ∈ �(�)}

≤ g+(z) = max
{
� ∶ z ∈ �+(�)

}
,
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Corollary 3  Let g− and g+ be two solutions to the isotonic regression problem. Then, 
the distributive lattice generated by �− and �+ is a subset of 

⋃
�∈ℝ X(�).

Having two solutions g− and g+ allows us to find all solutions to the isotonic regres-
sion problem with superlevel sets that lie in the lattice generated by �− and �+ . Exam-
ples include solutions that transition from g− to g+ at a particular threshold �,

or pointwise convex combinations of solutions with � ∈ (0, 1),

In order to refine the lattice of minimizing upper sets from Corollary 3 with the pur-
pose to characterize all solutions, we pose the question whether simple separation 
rules exist for the set difference of consecutive lattice elements. These sets necessar-
ily take the form of the intersection of a level set of g− and a level set of g+ , that is, 
sets of the form {z ∶ g−(z) = �− and g+(z) = �+} . These rules do exist as we show in 
Propositions 7 and 8. First, we introduce the notion of a separation.

Definition 3  A separation of a set Z ∈ P(Z) is a collection of sets Z1,… , Zn ⊆ Z 
that are pairwise separated and satisfy Z =

⋃n

i=1
Zi . Two sets Zi and Zj are separated 

if for all z� ∈ Zi and z�� ∈ Zj , neither z� ⪯ z�� nor z�� ⪯ z�.

Proposition 7  Let g− and g+ be two solutions to the isotonic regression problem, and 
let �−, �+ ∈ ℝ , 𝜂− < 𝜂+ , be such that Z = {z ∶ g−(z) = �− and g+(z) = �+} is non-
empty. Furthermore, let Z1,… , Zn be a separation of Z, and let x� = �−(�−) ∩ �+(�+) 
and x�� = x� ⧵ Z . Then, x�� ∪ Zk ∈ X(�) for all � ∈ (�−, �+] , k = 1,… , n.

Proof  Without loss of generality, we show the claim for k = 1 . By Lemma  2 (c), 
we have x� ∈ X(�+) and x�� = �−(�− + �1) ∪ �+(�+ + �2) ∈ X(�− + �1) for some 
𝜖1, 𝜖2 > 0 . More precisely, we have x�, x�� ∈ X(�) for all � ∈ (�−, �+] by Lemma  2 
(b), since 𝜉−(𝜂) ⊆ x�� ⊆ x� ⊆ 𝜉+(𝜂) , � ∈ (�−, �+].

Let x1 = x�� ∪ Z1 and x2 = x� ⧵ Z1 both of which are upper sets in X  . Then 
Z1 = x1 ⧵ x

�� but also Z1 = x� ⧵ x2 . Therefore, vZ1(�) ≥ 0 ≥ vZ1 (�) for all � ∈ (�−, �+] 
by Proposition 3. Then the statement follows from Corollary 2. 	�  ◻

Proposition 7 allows us to find additional solutions to the isotonic regression prob-
lem with superlevel sets where separation elements have been added to known mini-
mizing superlevel sets. Using the variables defined in Proposition 7, one example of a 
new solution is

ĝ(z) =

{
g+(z), z ∈ 𝜉+(𝜂),
g−(z), otherwise,

ĝ(z) = 𝛼g−(z) + (1 − 𝛼)g+(z).
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where � ∈ (�−, �+] . Iterative application of Proposition  7 recovers all minimizing 
superlevel sets that can be obtained from the solutions in Proposition 5 via Corol-
lary 3 and the information on the partially ordered set Z .

Proposition  8 allows us to recover the remaining minimizing superlevel sets 
when the distribution P of the random vector (Z, Y) is fully known. Again, P may 
be the empirical distribution for a series of covariate-response pairs. In fact, this 
proposition is a generalization of Proposition 7 that determines whether a level 
set intersection of g− and g+ can be split further by calculating values of the lower 
bound of the functional T.

Proposition 8  Let g− and g+ be two solutions to the isotonic regression problem, and 
let �−, �+ ∈ ℝ , 𝜂− < 𝜂+ , be such that Z = {z ∶ g−(z) = �− and g+(z) = �+} is non-
empty. Furthermore, let x� = �−(�−) ∩ �+(�+) and x�� = x� ⧵ Z . For x ∈ X  , 
x′ ⊋ x ⊋ x′′ , we have T−

x�⧵x
≤ �− if and only if x ∈ X(�) for all � ∈ (�−, �+].

Proof  We have x�, x�� ∈ X(�) for all � ∈ (�−, �+] as in the proof of Proposition  7. 
Then, vx�⧵k(�+) ≤ 0 for all k ∈ X  , k ⊊ x′ , by Proposition 3, and hence T+

x�⧵k
≥ �+ by 

Corollary 1. Analogously, vk⧵x�� (�) ≥ 0 for all k ∈ X  , k ⊋ x′′ , � ∈ (�−, �+] , leading 
to T−

k⧵x��
≤ �−.

For the first part of the statement, let x ∈ X  , x′ ⊋ x ⊋ x′′ , be such that T−
x�⧵x

≤ �− . 
We show that x ∈ X(�) for all � ∈ (�−, �+] using Proposition  3. We have 
T+
x�⧵k

≤ max{T−
x�⧵x

, T+
x⧵k

} for all k ⊊ x by Lemma 1. Since T−
x�⧵x

≤ �− by assumption 
and as just shown T+

x�⧵k
≥ �+ , we obtain T+

x⧵k
≥ �+ . By Corollary 1, vx⧵k(�) ≤ 0 for all 

k ⊊ x , � ≤ �+ , that is, the first inequality in Proposition 3 holds for all � ∈ (�−, �+] . 
Similarly, T−

k⧵x��
≥ min{T−

k⧵x
, T+

x⧵x��
} for all k ⊋ x . Since T−

k⧵x��
≤ �− and T+

x⧵x��
≥ �+ , we 

obtain T−
k⧵x

≤ �− . Therefore, vk⧵x(�) ≥ 0 , for all 𝜂 > 𝜂− , k ⊋ x , that is, the second ine-
quality in Proposition 3 holds for all � ∈ (�−, �+].

To prove the converse, note that x ∈ X(�) for all � ∈ (�−, �+] implies that 
vk⧵x(�) ≥ 0 for all � ∈ (�−, �+] , k ⊋ x . Hence, in particular, vx�⧵x(�) ≥ 0 and T−

x�⧵x
≤ � 

for all � ∈ (�−, �+] , and, therefore T−
x�⧵x

≤ �− . 	�  ◻

4.2 � Pool‑adjacent‑violators algorithm

This section discusses the PAV algorithm as adapted to the context of set-valued 
functionals and shows the optimality of its solution using the methods introduced 
in this paper. The algorithm solves the isotonic regression problem for a total 
order, taking observations (z1, y1),… , (zn, yn) , z1 < ⋯ < zn . In general, the PAV 

ĝ(z) =

⎧
⎪⎨⎪⎩

𝜂, z ∈ Z1,

g+(z), z ∈ x��,

g−(z), otherwise,
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algorithm only applies to totally ordered covariates but we comment on exten-
sions to partial orders at the end of this section. 

We describe a lazy version of the PAV algorithm for set-valued functionals in 
Algorithm 1. It is lazy in the sense that it only creates a partition QPAV of {z1,… , zn} 
without returning the isotonic solution, and it stops as soon as an increasing function 
g ∶ {z1,… , zn} → ℝ exists that is constant on each element of the current partition 
Q and satisfies

that is, when no further pooling is necessary. The solution gPAV that satisfies the 
previous requirements is unique for functionals of singleton type, essentially given 
by (9) for the partition QPAV . When choosing a solution for functionals that are of 
interval type, additional steps are required that ensure monotonicity because neither 
upper nor lower bounds of the functional intervals are necessarily nondecreasing on 
QPAV . For the sake of brevity, we assume that a valid solution gPAV has been chosen.

To show the optimality of the solution of the PAV algorithm, the first and most 
apparent property that we observe is that for all z ∈ {z1,… , zn} , Q1,Q2 ∈ QPAV , 
minQ1 ≤ z ≤ maxQ2 , we have

since otherwise either gPAV is not increasing or the condition (9) is violated. Defini-
tion 1 and its Corollary 1 allow for an immediate proof of an additional property of 
QPAV.

Proposition 9  Let Q be a partition of {z1,… , zn} found by the PAV algorithm, 
Q ∈ Q , and z ∈ Q . Then,

where Q|≥z and Q|≤z denote the restrictions to the elements q ∈ Q satisfying q ≥ z 
and q ≤ z , respectively.

(9)g(z) ∈ T(PQ) for allQ ∈ Q and z ∈ Q,

(10)T−
Q1

≤ gPAV(z) ≤ T+
Q2
,

T−
Q|≥z ≤ T−

Q
≤ T+

Q
≤ T+

Q|≤z ,
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Proof  The second inequality is trivial. For the first inequality, suppose the contrary: 
There exist � ∈ ℝ , z ∈ Q such that T−

Q
< 𝜂 < T−

Q|≥z . This implies that Q ≠ Q|≥z and 
vQ(𝜂) ≥ 0 > vQ|≥z(𝜂) , hence vQ|<z(𝜂) > 0 . Therefore, T+

Q|<z < 𝜂 < T−
Q|≥z , which means 

that Q can be seen as the result of an invalid pooling of Q|<z and Q|≥z . A similar 
argument applies to the third inequality. 	�  ◻

To show the connection between a valid solution by the PAV algorithm and the 
score optimizing solution ĝ in Sect. 4, we define

which are necessarily sets of the form {zi,… , zn} . Plugging �PAV into the definition 
of ĝ recovers gPAV,

In order to show that gPAV solves the isotonic regression problem, it remains to be 
shown that �PAV(�) ∈ X(�) for all � ∈ ℝ.

Proposition 10  Let � ∈ ℝ , then �PAV(�) ∈ X(�).

Proof  Let � ∈ ℝ and x = �PAV(�) . For all Q ∈ QPAV , we have T−
Q⧵x

< 𝜂 ≤ T+
Q∩x

 by 
statement (10) and defining equality (11). Recall that T−

�
 and T+

�
 are −∞ and ∞ , 

respectively. We now use that T−
P1+P2

≤ max{T−
P1
, T−

P2
} and T+

P1+P2
≥ min{T+

P1
, T+

P2
} 

for nonnegative measures P1 and P2 on ℝ , which is an immediate consequence of 
Definition 1. Together with Proposition 9, and subject to x′ denoting an upper set of 
the form {zi,… zn} , we have T−

x�⧵x
≤ maxQ∈QPAV

T−
Q⧵x

 for all x′ ⊋ x , and 
T+
x⧵x�

≤ minQ∈QPAV
T+
Q∩x

 for all x′ ⊊ x . Therefore, vx�⧵x(�) ≥ 0 for all x′ ⊋ x , and 
vx⧵x� (�) ≤ 0 for all x′ ⊊ x , and the statement follows from Proposition 3. 	�  ◻

As a side note, we point out that �PAV corresponds to coarsest partition that 
allows the solution gPAV . Any elements of the partition QPAV from Algorithm 1 on 
which gPAV takes the same value have been pooled.

Finally, there is the question of a PAV algorithm for general partial orders, 
where the computational performance is a major problem because no simple rule 
is known that describes the order in which to resolve violations. In contrast, for 
a total order we can resolve any violation at a given iteration of the algorithm. 
However, the most common implementations perform a single pass from front 
to back, or back to front as in Algorithm 1. The direction becomes relevant once 
considering a partial order that can be represented as a directed tree. As demon-
strated by Thompson (1962) and Pardalos and Xue (1999) violations should be 
resolved starting from the leaves and at each branching the most severe violation 
should be resolved first. All orders used in Example 2 and for Fig. 3 can be rep-
resented as directed trees. For general partial orders, the most recent version of a 

(11)�PAV(�) =
{
z ∶ � ≤ gPAV(z)

}
,

ĝ(z) = max
{
𝜂 ∶ z ∈ 𝜉PAV(𝜂)

}

= max
{
𝜂 ∶ 𝜂 ≤ gPAV(z)

}
= gPAV(z).
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PAV algorithm seems to have been proposed by Sysoev et al. (2011), a segmen-
tation-based approach reconciling a set of local approximate solutions to yield a 
highly accurate solution that is not guaranteed to be exact.

4.3 � Partitioning the covariate set

In Sect.  4.2, we discussed how the PAV algorithm creates a partition of Z  , and 
that it leads to a solution ĝ of the isotonic regression problem in the context of total 
orders. In this section, we show how a solution to the isotonic regression problem 
leads to a corresponding partition Q of Z  , such that the solution satisfies

and the solution is constant on every element of the partition. Let T be a functional 
of singleton type, and ĝ be a solution to the isotonic regression problem. Subject to 
x, x�, k, k� ∈ X  , the combination of Theorem 1 and Lemma 4 yields

for all z ∈ Z  with P({z} ×ℝ) > 0 . We call (x, x�) a max-min pair for z if z ∈ x , 
x′ ⊊ x , and ĝ(z) = T+

x⧵x�
 , and we call (k�, k) a min-max pair for z if z ∉ k� , k ⊋ k′ , and 

ĝ(z) = T−
k⧵k�

 . For a pair x, x� ∈ X  such that T−
x⧵x�

= T+
x⧵x�

 , we also use the notation 
T±
x⧵x�

 . Note that for a functional T of singleton type, we have T(Px⧵x� ) = {T±
x⧵x�

} if 
P((x ⧵ x�) ×ℝ) > 0 . The following lemma provides the necessary tools to construct 
the partition Q.

Lemma 5  Let T be a functional of singleton type, and ĝ be a solution to the iso-
tonic regression problem. Furthermore, let z ∈ Z  such that P({z} ×ℝ) > 0 , and let 
(x1, x

�
1
), (x2, x

�
2
) be max-min pairs for z, and (k�

1
, k1), (k

�
2
, k2) be min-max pairs for z. 

Then the following statements hold: 

(a)	 We have that ĝ(z) = T±
x1⧵k

�
1

= T±
(x1∪x2)⧵k

�
1

= T±
x1⧵(k

�
1
∩k�

2
)
.

(b)	 If x, k� ∈ X  such that z ∈ x , z ∉ k� , and ĝ(z) = T±
x⧵k�

 , then (x, x ∩ k�) is a max-min 
pair for z, and (k�, k� ∪ x) is a min-max pair for z.

(c)	 If z̃ ∈ x1 ⧵ k
�
1
 , then (x1, x�1) is a max-min pair for z̃ , and (k�

1
, k1) is a min-max pair 

for z̃.

Proof  We repeatedly use the inequalities ĝ(z) = T+
x1⧵x

�
1

= minx�∈X T+
x1⧵x

� ≤ T+
x1⧵k

� and 
ĝ(z) = T−

k1⧵k
�
1

= maxk∈X T−
k⧵k�

1

≥ T−
x⧵k�

1

 for all x, k� ∈ X  , where the second equality 
holds because T+

P
= ∞ and T−

P
= −∞ for null measures P. Furthermore, by 

ĝ(z) ∈ T(PQ), for all Q ∈ Q, z ∈ Q,

ĝ(z) = max
x∶z∈x

min
x�⊊x

T+
x⧵x�

= min
k�∶z∉k�

max
k⊋k�

T−
k⧵k�
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assumption, T(Px⧵k� ) is a singleton if P((x ⧵ k�) ×ℝ) > 0 , and therefore, T(Px⧵k� ) is a 
singleton if z ∈ x and z ∉ k� . 

(a)	 Clearly, z ∈ x1 , z ∈ x2 , z ∉ k�
1
 , and z ∉ k�

2
 . Hence, ĝ(z) ≤ T±

x1⧵k
�
1

≤ ĝ(z) implies the 
first statement. Furthermore, ĝ(z) ≤ T+

x2⧵(x1∪k
�
1
)
= T+

(x2⧵x1)⧵k
�
1

 , and hence 
ĝ(z) = min{T−

x1⧵k
�
1

, T+
(x2⧵x1)⧵k

�
1

} ≤ T±
(x1∪x2)⧵k

�
1

≤ ĝ(z) confirms the second statement 
u s i n g  L e m m a   1 .  S i m i l a r ly,  fo r  t h e  t h i r d  s t a t e m e n t , 
ĝ(z) ≤ T±

x1⧵(k
�
1
∩k�

2
)
≤ max{T+

x1⧵k
�
1

, T−
(x1∩k

�
1
)⧵k�

2

} = ĝ(z).
(b)	 T h e  s t a t e m e n t  f o l l o w s  i m m e d i a t e l y  f r o m  T−

x⧵k�
= T+

x⧵k�
 , 

(x ∪ k�) ⧵ k� = x ⧵ k� = x ⧵ (x ∩ k�) , and the definition of max-min and min-max 
pairs.

(c)	 Let (xz̃, x�z̃) be a max-min pair for z̃ and (k�
z̃
, kz̃) be a min-max pair for z̃ . Then the 

statement follows from ĝ(z) ≤ T±
x1⧵k

�
z̃

≤ ĝ(z̃) ≤ T±
xz̃⧵k

�
1

≤ ĝ(z).

	�  ◻

Proposition 11  Let T be a functional of singleton type. Then there exists a partition 
Q of Z  such that ĝ is constant on every element of the partition almost everywhere 
and ĝ(z) ∈ T(PQ) for all Q ∈ Q , z ∈ Q such that P({z} ×ℝ) > 0.

Proof  Let x̄z denote the union of the first components of all max-min pairs for z ∈ Z  , 
and let k̄′

z
 denote the intersection of the first components of all min-max pairs for 

z ∈ Z  . By Lemma 5 (a), we have ĝ(z) = T±

x̄z⧵k̄
�
z

 . We now show that the collection Q of 
sets Qz = x̄z ⧵ k̄

�
z
 is a partition of Z  . First, we have 

⋃
z∈Z Qz = Z  , since z ∈ x̄z and 

z ∉ k̄�
z
 for all z ∈ Z  . Second, by Lemma 5 (b), we have that (x̄z, x̄z ∩ k̄�

z
) is a max-min 

pair for z and (k̄�
z
, k̄�

z
∪ x̄z) is a min-max pair for z. Then, by Lemma 5 (c), we have 

x̄z ⊂ x̄z̃ and k̄′
z
⊃ k̄′

z̃
 for all z̃ ∈ Qz , i.e., Qz ⊂ Qz̃ and in particular z ∈ Qz̃ . Swapping the 

roles of z and z̃ gives Qz̃ ⊂ Qz . Therefore, Qz = Qz̃ for all z ∈ Z, z̃ ∈ Qz . 	�  ◻

When T is a functional of interval type, we therefore obtain a partition for every 
fixed convex combination of its lower bound T− and its upper bound T+.

Acknowledgements  We would like to thank two reviewers, Tilmann Gneiting, Alexandre Mösching and 
Lutz Dümbgen for inspiring discussions and valuable comments. Alexander I. Jordan acknowledges the 
support of the Klaus Tschira Foundation. Anja Mühlemann and Johanna F. Ziegel gratefully acknowledge 
financial support from the Swiss National Science Foundation.

References

Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., Silverman, E. (1955). An empirical distribution function 
for sampling with incomplete information. Annals of Mathematical Statistics, 26, 641–647.

Barlow, R. E., Bartholomew, D. J., Bremner, J. M., Brunk, H. D. (1972). Statistical inference under order 
restrictions. London: Wiley.

Bartholomew, D. J. (1959a). A test of homogeneity for ordered alternatives. Biometrika, 46, 36–48.
Bartholomew, D. J. (1959b). A test of homogeneity for ordered alternatives. II. Biometrika, 46, 328–335.
Bellec, P. C. (2018). Sharp oracle inequalities for least squares estimators in shape restricted regression. The 

Annals of Statistics, 46, 745–780.



513

1 3

Characterizing the optimal isotonic solutions

Brümmer, N., Du Preez, J. (2013). The PAV algorithm optimizes binary proper scoring rules. arXiv:​1304.​
2331.

Brunk, H. D. (1955). Maximum likelihood estimates of monotone parameters. Annals of Mathematical Sta-
tistics, 26, 607–616.

Dawid, A. P. (2016). Contribution to the discussion of Of quantiles and expectiles: Consistent scoring func-
tions, Choquet representations and forecast rankings by Ehm, W., Gneiting, T., Jordan, A. and Krüger, 
F. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 78, 505–562.

Ehm, W., Gneiting, T., Jordan, A., Krüger, F. (2016). Of quantiles and expectiles: Consistent scoring func-
tions, Choquet representations and forecast rankings. Journal of the Royal Statistical Society. Series B. 
Statistical Methodology, 78, 505–562.

Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American Statistical Association, 
106, 746–762.

Groeneboom, P., Jongbloed, G. (2014). Nonparametric estimation under shape constraints. New York: Cam-
bridge University Press.

Guntuboyina, A., Sen, B. (2018). Nonparametric shape-restricted regression. Statistical Science, 33, 
568–594.

Gurney, A. J. T., Griffin, T. G. (2011). Pathfinding through congruences. Relational and Algebraic Methods 
in Computer Science (Vol. 6663, pp. 180–195). Heidelberg: Springer.

Han, Q., Wang, T., Chatterjee, S., Samworth, R. J. (2019). Isotonic regression in general dimensions. The 
Annals of Statistics, 47, 2440–2471.

Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73–101.
Kyng, R., Rao, A., Sachdeva, S. (2015). Fast, provable algorithms for isotonic regression in all Lp-norms. 

Advances in Neural Information Processing Systems 28 (pp. 2719–2727). Red Hook: Curran Associates 
Inc.

Luss, R., Rosset, S. (2014). Generalized isotonic regression. Journal of Computational and Graphical Statis-
tics, 23, 192–210.

Luss, R., Rosset, S. (2017). Bounded isotonic regression. Electronic Journal of Statistics, 11, 4488–4514.
Miles, R. E. (1959). The complete amalgamation into blocks, by weighted means, of a finite set of real num-

bers. Biometrika, 46, 317–327.
Mösching, A., Dümbgen, L. (2020). Monotone least squares and isotonic quantiles. Electronic Journal of 

Statistics, 14, 24–49.
Newey, W. K., Powell, J. L. (1987). Asymmetric least squares estimation and testing. Econometrica, 55, 

819–847.
Pardalos, P. M., Xue, G. (1999). Algorithms for a class of isotonic regression problems. Algorithmica, 23, 

211–222.
Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies. Journal of Economet-

rics, 160, 246–256.
Patton, A. J. (2020). Comparing possibly misspecified forecasts. Journal of Business & Economic Statistics, 

38, 796–809.
Polonik, W. (1998). The silhouette, concentration functions and ML-density estimation under order restric-

tions. The Annals of Statistics, 26, 1857–1877.
Robertson, T., Wright, F. T. (1973). Multiple isotonic median regression. The Annals of Statistics, 1, 

422–432.
Robertson, T., Wright, F. T. (1980). Algorithms in order restricted statistical inference and the Cauchy mean 

value property. The Annals of Statistics, 8, 645–651.
Savage, L. J. (1971). Elicitation of personal probabilities and expectations. Journal of the American Statisti-

cal Association, 66, 783–801.
Stout, Q. F. (2015). Isotonic regression for multiple independent variables. Algorithmica, 71, 450–470.
Sysoev, O., Burdakov, O., Grimvall, A. (2011). A segmentation-based algorithm for large-scale partially 

ordered monotonic regression. Computational Statistics & Data Analysis, 55, 2463–2476.
Thompson, W. A., Jr. (1962). The problem of negative estimates of variance components. Annals of Math-

ematical Statistics, 33, 273–289.
van Eeden, C. (1958). Testing and estimating ordered parameters of probability distributions. Amsterdam: 

Mathematical Centre.

http://arxiv.org/abs/1304.2331
http://arxiv.org/abs/1304.2331


514	 A. I. Jordan et al.

1 3

Ziegel, J. F. (2016). Contribution to the discussion of Of quantiles and expectiles: Consistent scoring func-
tions, Choquet representations and forecast rankings by Ehm, W., Gneiting, T., Jordan, A. and Krüger, 
F. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 78, 505–562.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Characterizing the optimal solutions to the isotonic regression problem for identifiable functionals
	Abstract
	1 Introduction
	2 Functionals and consistent loss functions
	3 Simultaneous optimality
	4 Results on isotonic regression
	4.1 Characterization of optimal solutions
	4.2 Pool-adjacent-violators algorithm
	4.3 Partitioning the covariate set

	Acknowledgements 
	References




