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Abstract
The proportional hazards model proposed by D. R. Cox in a high-dimensional and 
sparse setting is discussed. The regression parameter is estimated by the Dantzig 
selector, which will be proved to have the variable selection consistency. This fact 
enables us to reduce the dimension of the parameter and to construct asymptotically 
normal estimators for the regression parameter and the cumulative baseline hazard 
function.

Keywords Proportional hazards model · Dantzig selector · Variable selection · The 
Breslow estimator

1 Introduction

The proportional hazards model, which was proposed by Cox (1972), is one of the 
most commonly used models for survival analysis. In a fixed-dimensional setting, 
i.e., the case where the number of covariates p is fixed, Andersen and Gill (1982) 
proved that the maximum partial likelihood estimator for the regression param-
eter has the consistency and the asymptotic normality. Besides, they discussed the 
asymptotic property of the Breslow estimator for the cumulative baseline hazard 
function.

Recently, many researchers are interested in a high-dimensional and sparse set-
ting for a regression parameter, that is, the case where p = pn → ∞ as n → ∞ 
and the number q of nonzero components in the true value is relatively small. In 
this setting, several kinds of estimation methods have been proposed for various 
regression-type models. Particularly, the penalized methods such as Lasso [(Tib-
shirani, 1997; Huang et al., 2013; Bradic et al., 2011) among others] have been 
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well studied. In particular, Huang et al. (2013) derived oracle inequalities of the 
Lasso estimator for the proportional hazards model, which means the Lasso esti-
mator satisfies the consistency even in a high-dimensional setting. Bradic et  al. 
(2011) considered the general penalized estimators including Lasso, SCAD and 
others and proved that the estimators satisfy the consistency and the asymptotic 
normality. On the other hand, the Dantzig selector, which was proposed by Can-
dés and Tao (2007) for the linear regression model, is also applied to the propor-
tional hazards model by Antoniadis et al. (2010), who dealt with the l2 consistency 
of the estimator. Fujimori and Nishiyama (2017) extended the consistency results 
of the Dantzig selector for the model to the lq consistency for every q ∈ [1,∞] by 
a method similar to that of Huang et al. (2013). However, the asymptotic normali-
ties of the Dantzig selector for high-dimensional regression parameter and the 
Breslow estimator have not yet been studied up to our knowledge.

We establish the asymptotic normalities of estimators in a high-dimensional 
and sparse setting based on the consistency results from Fujimori and Nishiyama 
(2017). To discuss this problem, we need to consider the dimension reduction 
of the regression parameter, which is nearly equivalent to consider the variable 
selection for a high-dimensional and sparse regression parameter of the propor-
tional hazards model. The variable selection methods for the proportional haz-
ards model in high-dimensional and sparse settings are also discussed by some 
researchers. For example, Honda and Härdle (2013) studied the group SCAD-
type and adaptive group Lasso estimators for time-varying coefficients in the 
proportional hazards model and proved that these estimators achieve the variable 
selection. The variable selection consistency, in particular, the sign consistency 
of the Dantzig selector for the regression models, is proved under some technical 
conditions called the irrepresentable condition, which is derived from KKT con-
dition of the optimization problem, see, e.g., Fan et al. (2016). Since the propor-
tional hazards model is a nonlinear model, KKT condition for the Dantzig selec-
tor is too complicated, which implies that the irrepresentable condition becomes 
also complicated. In this paper, we prove the variable selection consistency by 
constructing the estimator for the support index set, i.e., the index set of the 
nonzero components of the regression parameter without conditions such as the 
irrepresentable condition. Next, we construct a new maximum partial likelihood 
estimator by using the variable selection consistency result and show that this 
estimator has the asymptotic normality. In addition, we will construct the asymp-
totically normal estimator for cumulative baseline hazard function by Breslow-
type estimator. Moreover, we observe whether our selection criterion works well 
for simple models numerically and compare the estimators to the classical maxi-
mum partial likelihood estimator.

The novelties of this paper are as follows. First, the consistency of the Dantzig 
selector for the proportional hazards model is proved under the condition that the 
number of nonzero components of regression parameter allows to diverge, which 
is the extension of the results from Antoniadis et al. (2010), Fujimori and Nishiy-
ama (2017). Second, the variable selection consistency of the Dantzig selector for 
Cox’s proportional hazards model is proved without some conditions such as the 
irrepresentable condition. Third, the asymptotically normal estimator for regression 
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parameter is constructed by the dimension reduction via the Dantzig selector. 
Finally, we provide an intuitive method to choose tuning parameter by an iterated 
algorithm.

The rest of the paper is organized as follows. The model setup, some regularity 
conditions and matrix conditions to deal with a high-dimensional and sparse setting 
are introduced in Sect. 2. In Sect. 3, we prove the asymptotic properties of the esti-
mators for the regression parameter, that is, the variable selection consistency of the 
Dantzig selector. The asymptotic normality of the maximum partial likelihood esti-
mator and the Breslow estimator after dimension reduction is established in Sect. 4. 
In Sect. 5, we introduce the intuitive method to choose the tuning parameter which 
is used to construct the Dantzig selector. We present an algorithm to compute the 
Dantzig selector for the proportional hazards model, which is essentially introduced 
by Antoniadis et al. (2010) and some simulation studies for simple models to verify 
the variable selection consistency of the Dantzig selector in Sect.  6. This section 
also includes the real data application to the gene expression data. Some comments 
about the differences between Lasso and the Dantzig selector for the proportional 
hazards model are given in Sect. 7. The proofs for theorems are given in Sect. 8.

Throughout this paper, we denote by ‖ ⋅ ‖q the lq norm of vector for every 
q ∈ [1,∞] , i.e., for v = (v1, v2,… , vp)

⊤ ∈ ℝ
p , we define:

In addition, for a m × n matrix A, where m, n ∈ ℕ , we define ‖A‖∞ by

where Aij denotes the (i, j)-component of the matrix A. For a vector v ∈ ℝ
p , and an 

index set T ⊂ {1, 2,… , p} , we denote the |T|-dimensional sub-vector of v restricted 
by the index set T by vT , where |T| is the number of elements of the set T. Similarly, 
for a p × p matrix A and index sets T , T � ⊂ {1, 2,… , p} , we define the |T| × |T �| sub-
matrix AT ,T ′ by

2  Preliminaries

Let Ti be a survival time and Ci a censoring time of i-th individual for every 
i = 1, 2,… , n , which are positive real-valued random variables on a probabil-
ity space (Ω,F,P) . Assume that each i-th individual has an ℝp-valued covariate 
process {Zi(t)}t∈[0,1] , and that the survival time Ti is conditionally independent 
of the censoring time Ci given Zi(t) . Moreover, we assume that Ti ’s never occur 

‖v‖q =
�

p�
j=1

�vj�q
� 1

q

, q < ∞;

‖v‖∞ = sup
1≤j≤p

�vj�.

‖A‖∞ ∶= sup
1≤i≤m

sup
1≤j≤n

�Aij�,

AT ,T � ∶= (Aij)i∈T ,j∈T � .
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simultaneously. For every n ∈ ℕ and t ∈ [0, 1] , we observe {(Xi,Di, Zi(t))}
n
i=1

 , 
where Xi ∶= Ti ∧ Ci and Di ∶= 1{Ti≤Ci}

 . We define the counting process 
{Ni(t)}t∈[0,1] and {Yi(t)}t∈[0,1] for every i = 1, 2,… , n as follows:

Let {Ft}t∈[0,1] be the filtration defined as follows:

Suppose that {Zi(t)}t∈[0,1] , i = 1, 2,… , n are predictable and bounded processes. In 
Cox’s proportional hazards model, it is assumed that each {Ni(t)}t∈[0,1] for every 
i = 1, 2,… , n has the following intensity:

where �0 ∈ L1[0, 1] is the unknown deterministic baseline hazard function and 
�0 ∈ ℝ

p is the unknown regression parameter. We have that the following process 
{Mi(t)}t∈[0,1] for every i = 1, 2,… , n is a square integrable martingale:

Note that predictable variation process of {Mi(t)}t∈[0,1] is given by:

and

Hereafter, we write Λ0 for the cumulative baseline hazard function, i.e.,

The aim of this paper is to estimate the regression parameter �0 and the cumulative 
baseline hazard Λ0 in a high-dimensional and sparse setting for �0 , i.e., p = pn → ∞ 
as n → ∞ and |Tn

0
| =∶ qn which is allowed to tend to infinity as n → ∞ , where 

Tn
0
∶= {j;�

j

0
≠ 0} is the support index set of the true value. To estimate �0 , we use 

Cox’s log-partial likelihood which is given by;

where

Ni(t) ∶= 1{t≥Xi,Di=1}
, Yi(t) ∶= 1{Xi≥t}, t ∈ [0, 1].

Ft ∶= �{Ni(u), Yi(u), Zi(u); 0 ≤ u ≤ t, i = 1, 2,… , n}.

𝜆i(t) ∶= Yi(t)𝜆0(t) exp(𝛽
⊤
0
Zi(t)), t ∈ [0, 1],

Mi(t) ∶= Ni(t) − ∫
t

0

�i(s)ds, t ∈ [0, 1].

⟨Mi,Mi⟩(t) = ∫
t

0

�i(s)ds, t ∈ [0, 1]

⟨Mi,Mj⟩(t) = 0, i ≠ j, t ∈ [0, 1].

Λ0(t) ∶= ∫
t

0

�0(s)ds, t ∈ [0, 1].

Cn(𝛽) ∶=

n∑
i=1

∫
1

0

{𝛽⊤Zi(t) − log S(0)
n
(𝛽, t)}dNi(t),
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Put ln(�) = Cn(�)∕n . We write Un(�) for the gradient of ln(�) and Jn(�) for the Hes-
sian of −ln(�) , i.e.,

and

where

and

Note that Un(�0) is a terminal value of the following square integrable martingale:

We assume the following conditions.

Assumption 1 (i)  The covariate processes {Zi(t)}t∈[0,1] , i = 1, 2,… , n , are uni-
formly bounded, i.e., there exists global constant K1 > 0 such 
that 

(ii)  The baseline hazard function �0 is integrable, i.e., 

(iii)  For every n ∈ ℕ , there exist deterministic ℝ-valued function 
s(0)
n
(�, t) , ℝpn-valued function s(1)

n
(�, t) and ℝpn×pn-valued func-

tion s(2)
n
(�, t) which satisfy the following conditions: 

S(0)
n
(𝛽, t) ∶=

n∑
i=1

Yi(t) exp(𝛽
⊤Zi(t)).

Un(�) =
1

n

n∑
i=1

∫
1

0

{
Zi(t) −

S(1)
n

S
(0)
n

(�, t)

}
dNi(t)

Jn(𝛽) =
1

n

n�
i=1

∫
1

0

⎧
⎪⎨⎪⎩

S(2)
n

S
(0)
n

(𝛽, t) −

�
S(1)
n

S
(0)
n

�⊗2

(𝛽, t)

⎫
⎪⎬⎪⎭
dNi(t),

S(1)
n
(𝛽, t) ∶=

n∑
i=1

Zi(t)Yi(t) exp(𝛽
⊤Zi(t))

S(2)
n
(𝛽, t) ∶=

n∑
i=1

Zi(t)
⊗2Yi(t) exp(𝛽

⊤Zi(t)).

Un(�0, t) ∶=
1

n

n∑
i=1

∫
t

0

{
Zi(s) −

S(1)
n

S
(0)
n

(�, s)

}
dMi(s).

sup
t∈[0,1]

sup
i

‖Zi(t)‖∞ < K1 a.s.

∫
1

0

𝜆0(t)dt < ∞.
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 as n → ∞.

(iv)  The functions s(l)
n
(�, t) , l = 0, 1, 2 , satisfy the following 

conditions: 

(v)  For every � , the following pn × pn matrix In(�) is nonnegative 
definite: 

Recalling that Tn
0
= {j;�

j

0
≠ 0} is the support index set of the true value �0 , we 

introduce the following factor for the matrix In(�0).

Definition 2 Define the following factors for the matrix Jn(�0).
Compatibility factor

l∞-cone invertibility factor:

where the set CTn
0
⊂ ℝ

pn is defined as follows:

Note that h(Tn
0
)c and hTn

0
 are the pn − qn− and qn-dimensional sub-vector of h ∈ ℝ

pn 
constructed by extracting h corresponding to the indices in the index set (Tn

0
)c and 

Tn
0
, respectively, as we mentioned in Introduction. This factor is a modification of lq 

cone invertibility factor:

sup
�

sup
t∈[0,1]

‖‖‖‖
1

n
S(l)
n
(�, t) − s(l)

n
(�, t)

‖‖‖‖∞ →
p 0, l = 0, 1, 2

lim sup
n→∞

sup
𝛽

sup
t∈[0,1]

‖s(l)
n
(𝛽, t)‖∞ < ∞, l = 0, 1, 2,

lim inf
n→∞

inf
𝛽

inf
t∈[0,1]

s(0)
n
(𝛽, t) > 0.

In(𝛽) ∶= ∫
1

0

⎡
⎢⎢⎣
s(2)
n

s
(0)
n

(𝛽, t) −

�
s(1)
n

s
(0)
n

�⊗2

(𝛽, t)

⎤
⎥⎥⎦
s(0)
n
(𝛽0, t)𝜆0(t)dt.

𝜅(Tn
0
;Jn(𝛽0)) = inf

0≠h∈CTn
0

q
1

2

n (h
⊤Jn(𝛽0)h)

1

2

‖hTn
0
‖1 .

F∞(T
n
0
;Jn(𝛽0)) ∶= inf

0≠h∈CTn
0

h⊤Jn(𝛽0)h

‖hTn
0
‖1‖h‖∞ ,

CTn
0
∶= {h ∈ ℝ

pn ;‖h(Tn
0
)c‖1 ≤ ‖hTn

0
‖1}.

Fq(T
n
0
;M) ∶= inf

0≠h∈CTn
0

q
1∕q
n h⊤Mh

‖hTn
0
‖1‖h‖q , q ≥ 1,



521

1 3

The variable selection by the Dantzig selector

for a matrix M, which is given by Huang et al. (2013). The matrix factors can be 
seen in many papers which deal with high-dimensional and sparse setting. See, e.g., 
Bickel et al. (2009), van de Geer and Bühlmann (2009), Huang et al. (2013) among 
others for the details.

To verify the l∞ consistency of the Dantzig selector defined in the next section, 
we assume the following condition for Jn(�0) as well as Huang et al. (2013) among 
other studies.

Assumption 3 For every 𝜖 > 0 , there exist 𝛿 > 0 and n0 ∈ ℕ such that for all n ≥ n0,

and

3  The estimator for the regression parameter

3.1  The Dantzig selector for the proportional hazards model

Now, we define the estimator for the regression parameter �0 by the Dantzig selector 
for the proportional hazards model given by:

where � is a tuning parameter. This type of estimator was proposed by Antoniadis 
et al. (2010) and was further discussed by Fujimori and Nishiyama (2017).

Hereafter, we assume that the dimension pn and the sparsity qn of the parameter 
satisfy the following conditions.

Assumption 4 It holds that

Moreover, the tuning parameter �n and the sparsity qn satisfy that

where c > 0 is a positive constant and that

Antoniadis et al. (2010), Fujimori and Nishiyama (2017) assume that the sparsity 
qn is independent of n and finite. In contrast, we consider the case where qn allows 
to diverge and prove the consistency and the variable selection consistency of the 

P
(
𝜅(Tn

0
, Jn(𝛽0)) > 𝛿

) ≥ 1 − 𝜖

P
(
F∞(T

n
0
, Jn(𝛽0)) > 𝛿

) ≥ 1 − 𝜖.

(1)𝛽n ∶= arg min
𝛽∈Bn

‖𝛽‖1, Bn ∶= {𝛽 ∈ ℝ
pn ;‖Un(𝛽)‖∞ ≤ 𝛾},

(2)log pn = O(na), a ∈
(
0,

1

2

)
.

(3)�n = c
log pn

n�
, � ∈

(
a,

1

2

)
,

qn�n = o(1), n → ∞.
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Dantzig selector. The next lemma implies the consistency of the Dantzig selector. 
Since it can be proved as well as Lemmas 4.1 in Fujimori and Nishiyama (2017) or 
corresponding results from Bradic et al. (2011) by using the concentration inequality 
established by van de Geer (1995) and the maximal inequality provided in van der 
Vaart and Wellner (1996), the proof is omitted.

Lemma 5 Under Assumptions 1 and 4, it holds that

The following theorem states the l1 and l∞ consistency of the estimator 𝛽n . It can 
be proved as well as the corresponding result in Huang et al. (2013).

Theorem 6 Under Assumptions 1, 3 and 4, it holds that

where K3 and K4 are some constants.

3.2  The variable selection consistency of the Dantzig selector

The aim of this subsection is to show that 𝛽n selects nonzero components of �0 cor-
rectly. To do this, we define the following estimator for the support index set Tn

0
 of 

the true value �0:

The estimator similar to T̂n can be seen in Fujimori (2019) which considers a linear 
model of diffusion processes in a high-dimensional and sparse setting. The follow-
ing theorem states that 𝛽n has a variable selection consistency.

Theorem 7 Suppose that

where 0 < 𝜁 < 𝛼 − a with � and a appeared in (2) and (3). Under Assumptions1, 3 
and 4, it holds that

lim
n→∞

P
�‖Un(�0)‖∞ ≥ �n

�
= 0.

(4)lim
n→∞

P

�
‖𝛽n − 𝛽0‖1 ≥ K3qn𝛾n

𝜅2(Tn
0
;Jn(𝛽0))

�
= 0

(5)lim
n→∞

P

�
‖𝛽n − 𝛽0‖∞ ≥ K4𝛾n

F∞(T
n
0
;Jn(𝛽0))

�
= 0,

(6)T̂n ∶= {j;|𝛽 j
n
| > 𝛾n}.

(7)lim inf
n→∞

inf
j∈Tn

0

|𝛽 j
0
|n𝜁 > 0,
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Remark 8 If there exists a constant c > 0 such that 𝛽 j
0
> c, j ∈ Tn

0
 or the sparsity qn 

is finite, the condition (7) is valid.

4  After the variable selection

4.1  The maximum likelihood estimator after the selection

Hereafter, we assume that the sparsity satisfies that

for some positive constant S which is independent of n. In this case, we write the 
index set Tn

0
= T0 , since it does not depend on n. Using the set T̂n , we construct a 

new estimator 𝛽(2)
n

 by the solution to the next equation:

We prove the asymptotic normality of 𝛽(2)
n

 . In this subsection, we impose the follow-
ing assumption.

Assumption 9 

 (i) For every 𝜖 > 0 , it holds that 

 where 

 (ii) The following S × S matrix I  is positive definite: 

 where 

lim
n→∞

P(T̂n = Tn
0
) = 1.

qn = S

(8)Un(𝛽)T̂n = 0, 𝛽T̂c
n
= 0.

n�
i=1

∫
1

0

���𝜉nT0,i
���
2

2
1{‖𝜉nT0,i‖2}>𝜖}Yi(t) exp(𝛽

⊤
0
Zi(t))𝜆0(t)dt →

p 0,

�nT0,i ∶=
1√
n

⎧⎪⎨⎪⎩
ZiT0 (t) −

S
(1)

nT0

S
(0)
n

(�0T0 , t)

⎫⎪⎬⎪⎭
.

I ∶= ∫
1

0

[
s(2)

s(0)
(𝛽0T0 , s) −

(
s(1)

s(0)

)⊗2

(𝛽0T0 , s)

]
𝜆0(s)s

(0)(𝛽0T0 , s)ds,
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 and 

The condition (i) is the Lindeberg condition imposed to derive the asymptotic 
normality, and the condition (ii) is agree with the condition in Fleming and Har-
rington (1991) when p is fixed. Note that I  is a sub-matrix of In(�0) . We can 
prove that In(�0) approximates the Hessian matrix in the following sense.

Lemma 10 Under Assumption 1, it holds that

for every random sequence {�∗
n
}n∈ℕ which satisfies that

as n → ∞.

Since we can prove Lemma 10 as well as Lemma 4.2 in Fujimori and Nishiy-
ama (2017), the proof of this lemma is omitted in this paper.

Noticing the result in Lemma 10, we have that the new estimator 𝛽(2)
n

 is well 
defined.

Lemma 11 Under Assumptions 1 and 9, the solution to Eq. (8) exists with probabil-
ity tending to 1 as n → ∞ , i.e., the estimator 𝛽(2)

n
 is well defined.

The following theorem states that this estimator 𝛽(2)
n

 satisfies l1 consistency.

Theorem 12 Under Assumptions 1 and 3, it holds that

as n → ∞.

Now, we can prove the asymptotic normality in the following sense by a simi-
lar way to that in Andersen and Gill (1982).

Theorem 13 Under Assumptions 1 and 3, it holds that

s(0)(�0T0 , t) ∶= s(0)
n
(�0T0 , t),

s(1)(�0T0 , t) ∶= s
(1)

nT0
(�0T0 , t)

s(2)(�0T0 , t) ∶= s
(2)

nT0,T0
(�0T0 , t).

‖Jn(�∗n ) − In(�0)‖∞ = op(1)

‖�∗
n
− �0‖1 →p 0

‖𝛽(2)
n

− 𝛽0‖1 →p 0

√
n(𝛽

(2)

nT̂n
− 𝛽0T0)1{T̂n=T0} →

d N(0, I−1).
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Remark 14 We may prove the consistency and asymptotic normality of 𝛽(2)
n

 for the 
case when the sparsity qn → ∞ as n → ∞ by the similar way to those in Bradic et al. 
(2011) under some suitable conditions. In such cases, the asymptotic normality is 
written in the following form:

for every l2 unit vector bn ∈ ℝ
qn.

4.2  The estimator for the cumulative baseline hazard function

We define the estimator for Λ0(t) by the following Breslow-type estimator:

where 𝛽(2)
n

 is defined by Eq. (8). We discuss the asymptotic property of Λ̂ in this sec-
tion. For every t ∈ [0, 1] , we have that

where

and

The third term (III) is asymptotically negligible because it follows from Assumption 
1 that

Moreover, we have that (II) is equal to the following process {Wn(t)}t∈[0,1]:

√
nb⊤

n
I

1

2 (𝛽
(2)

nT̂n
− 𝛽0T0)1{T̂n=T0} →

d N(0, 1), n → ∞,

(9)Λ̂(t) ∶= ∫
t

0

dN̄(s)∑n

i=1
Yi(s) exp(𝛽

(2)T
n Zi(s))

, t ∈ [0, 1],

√
n{Λ̂(t) − Λ0(t)} = (I) + (II) + (III),

(I) =
√
n∫

t

0

�
1

S
(0)
n (𝛽

(2)
n , s)

−
1

S
(0)
n (𝛽0, s)

�
dN̄(s),

(II) =
√
n

�
∫

t

0

dN̄(s)

S
(0)
n (𝛽0, s)

− ∫
t

0

𝜆0(s)1{
∑n

i=1
Yi(s)>0}

�

(III) =
√
n

�
∫

t

0

𝜆0(s)1{
∑n

i=1
Yi(s)>0}

− Λ0(t)

�
.

lim
n→∞

P

��
∫

t

0

𝜆0(s)1{
∑n

i=1
Yi(s)>0}

ds − Λ0(t)

�
= 0

�
= 1.

Wn(t) =
√
n∫

t

0

dM̄(s)

S
(0)
n (𝛽0, s)

,
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which is a square integrable martingale. Using the Taylor expansion, we have that

where

and �∗
n
 lies between 𝛽(2)

n
 and �0 . Since it holds that ‖�∗

n
− �0‖1 = op(1) by Theo-

rem 12, we can see that

by a similar way to the proof of Lemma 10. Therefore, we obtain the following 
theorem, which is proved by using Slutsky’s theorem and a similar way to that in 
Andersen and Gill (1982).

Theorem 15 Under Assumptions 1 and 3, it holds that 
√
n(𝛽

(2)

nT̂n
− 𝛽0T0)1{T̂n=T0} and 

the process equal in the point t to

is asymptotically independent. The latter process is asymptotically distributed as a 
Gaussian martingale with the variance function

5  Some discussion on the tuning parameter

In this section, we present some comments of the tuning parameter because our theo-
retical results strongly depend on the choice of the tuning parameter. Recall that the 
Dantzig selector 𝛽n is defined by the following form

where �n ≥ 0 is a tuning parameter and Un(⋅) is the score function. In this paper, we 
assume that the tuning parameter �n satisfies the following condition:

(I) = Hn(𝛽
∗
n
, t)⊤(𝛽(2)

n
− 𝛽0),

Hn(𝛽
∗
n
, t) ∶= −∫

t

0

S(1)
n

{S
(0)
n }2

(𝛽∗
n
, s)dN̄(s)

(10)sup
t∈[0,1]

‖‖‖‖‖
Hn(�

∗
n
, t) + ∫

t

0

s(1)
n

s
(0)
n

(�0, s)�0(s)ds
‖‖‖‖‖∞

= op(1)

�√
n{Λ̂(t) − Λ0(t)} +

√
n∫

t

0

(𝛽
(2)

nT̂n
− 𝛽0T0)

⊤ s
(1)

s(0)
(𝛽0T0 , s)𝜆0(s)ds

�
1{T̂n=T0}

∫
t

0

�0(s)

s(0)(�0T0 , s)
ds.

𝛽n ∶= arg min
𝛽∈Bn

‖𝛽‖1, Bn = {𝛽 ∈ ℝ
pn ∶ ‖Un(𝛽)‖∞ ≤ 𝛾n},

𝛾n = c�̃�n,
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where c ≥ 0 is a constant not depending on n and �̃�n = log pn∕n
𝛼 , 𝛼 ∈ (a, 1∕2) . To 

ensure the l∞ consistency and the variable selection consistency for finite sample, c 
has to satisfy that

where T0 is the support index set of the true value �0 . The problem is how to choose 
c which satisfies (11). Note that

and that

as n → ∞ under our setting. When we choose the small tuning parameter satisfying 
the inequality (11), we may have that at least T0 ⊂ T̂ i

n
 , which means a conservative 

variable selection. We thus propose an intuitive method to choose ci by the following 
recursive algorithm as well as Fujimori (2019): 

 Step 1. Let c[1] > 0 be a fixed constant.
 Step 2. Calculate the Dantzig selector for j ≥ 1 by using c[j] ; 

 Step 3. Put 

 Step 4. Repeat Steps 2 and 3 until we have that 

 where 𝜖 > 0 is an arbitrary small constant.
The prefixed constant c[1] has to be chosen large enough to ensure that

For each j ≥ 1 , we may observe that c[j] is close to a random variable C, where

(11)‖Un(𝛽0)‖∞
�̃�n

≤ c ≤ infj∈T0 �𝛽 j0�
�̃�n

,

‖Un(𝛽0)‖∞
�̃�n

= Op(1)

infj∈Ti
0
|𝛽 j

0
|

�̃�n
→ ∞

�̂�[j] ∶= arg min
𝛽∈B[j]

n

‖𝛽‖1, B[j]
n
∶= {𝛽 ∈ ℝ

pn ∶ ‖Un(𝛽)‖∞ ≤ c[j]�̃�n}.

c[j+1] =
‖Un(𝛽

[j])‖∞
�̃�n

, j ≥ 1.

|c[j+1] − c[j]| ≤ �,

‖Un(𝛽0)‖∞
�̃�n

≤ c[1],

C ∶=
‖Un(𝛽0)‖∞

�̃�n
,
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with probability tending to 1 as n → ∞ since it holds that ‖𝛽[j] − 𝛽0‖1 →p 0 . In addi-
tion, for each sufficiently large n ∈ ℕ , we can also verify that the sequence {c[j]}j∈ℕ 
is non-increasing for j and bounded below by 0. Therefore, there exists a limit c0 ≥ 0 
of {c[j]}j∈ℕ which is close to C with probability tending to 1. Note that if the random 
variable C is close to 0, then it may hold that c[j] → 0 as j → ∞ , which means that 
the Dantzig selector is nearly or exactly equals to the classical Z-estimator, which is 
a solution to the following estimating equation:

Remark 16 This method may work well when the sample size n is sufficiently large 
so that the rate �̃�n is sufficiently small. However, for a finite sample scenario, the rate 
�̃�n may be still large. To deal with such a case, we first put some initial value 
�[1] = (�

[1]

1
,… , �[1]

p
) ∈ ℝ

p . For example, we put �[1]
j

∼ U([a, b]), j = 1,… , p are 
mutually independent for some a, b ∈ ℝ . Then, we can define the initial value of �n 
by

By using � [1]
n

 , we can calculate the Dantzig selector 𝛽[1]
n

 and we can update the tuning 
parameter by

Repeating these steps until it converges, we can determine the tuning parameter.

For the Dantzig selector for the linear regression models,

where In is the n × n identity matrix, Candés and Tao (2007) suggested that 
the tuning parameter can be chosen via the Monte Carlo simulations, i.e., it 
is determined by the sample mean of ‖X⊤Z‖∞ over the several realizations of 
Z ∼ N(0, In) . This is similar to our method because for the true value �0 , the residual 
Y − X�0 = � ∼ N(0, In) and X⊤(Y − X𝛽) is corresponding to the score function for 
the linear model. This choice by the Monte Carlo simulation may be also applicable 
to the proportional hazards model after the linear approximation as introduced in 
Sect. 6.1, when the approximation works well. Note that we can also apply the cross-
validation to determine the tuning parameter. See, e.g., Antoniadis et al. (2010) for 
the detail.

Un(�) = 0.

� [1]
n

= ‖Un(�
[1])‖∞.

𝛾 [2]
n

= ‖Un(𝛽
[1]
n
)‖∞.

Y = X� + �, � ∼ N(0, In),
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6  Numerical studies

6.1  The algorithm for the Dantzig selector

In this subsection, we briefly introduce the algorithm to compute the Dantzig selector 
for Cox’s proportional hazards model, which is given by Antoniadis et al. (2010).

For every k = 0, 1,… , we calculate the gradient vector Un(𝛽
[k]) and the Hessian 

matrix Jn(𝛽[k]) , where k means the k-th iteration. Then, calculate the square root X(k) of 
Jn(𝛽

[k]) as follows:

Using the generalized inverse X−
(k)

 of X(k) , we define

We compute X∗
(k)

 by normalizing X(k) such that each column has l2 norm one and 
define the modified version Y∗ of Y. Then, we apply the algorithm to compute the 
Dantzig selector for linear regression model provided by Candés and Tao (2007) for 
the response vector Y∗ , the design matrix X∗

(k)
 and the tuning parameter � . Note that 

the linear approximation and the normalizing step requires the rescaling for the tun-
ing parameter � given by Sect. 5. Note moreover that although this algorithm works 
well numerically, there is no theoretical proof that the obtained estimator converges 
to the solution 𝛽n defined by (1).

6.2  Simulation studies

In this subsection, we verify the finite sample performance of the Dantzig selector. 
We omit the asymptotic normalities of the estimators obtained after variable selec-
tion since these are the consequences of the variable selection consistency of the 
Dantzig selector and the asymptotic normalities of the maximum partial likelihood 
estimator (MPLE) and the Breslow estimator. We consider the following deigns for 
the simulation studies. For all cases, the covariates Z1,… , Zn are i.i.d. uniform ran-
dom vectors on [−2, 2] whose components are mutually independent, survival time 
Ti ’s are i.i.d. exponentially distributed and censoring time Ci ’s are also i.i.d. expo-
nentially distributed independently of Ti’s. The data are generated to have about 5% 
censoring. The tuning parameter �n is determined by the algorithm in Sect. 5 with 
initial value

where each component of �[1] is independently generated from the uniform distribu-
tion on [−1, 1] . We put the true value as follows:

Jn(𝛽
[k]) = X(k)X(k).

Y = X−
(k)
(Jn(𝛽

[k])𝛽[k] − Un(𝛽
[k])).

� [1]
n

= ‖Un(�
[1])‖∞,

𝛽0 = (2, 2, 2,−2,−2, 0,… , 0)⊤ ∈ ℝ
p.



530 K. Fujimori 

1 3

Let us consider the following two cases for the sample size n and the dimension p of 
covariates: 

 Case 1. 

 Case 2. 
We have that

and

for Cases 1 and 2, respectively. Then, the rate of convergence of the Dantzig selector 
for Case 2 should be faster than that for Case 1.

We apply the Dantzig selector and the Lasso, which are calculated by the algo-
rithm described in Sect. 6.1 and the R-package “glmnet” (see Friedman et al. 2010 
and Simon et al. 2011), respectively, to these data for 500 replications. The tuning 
parameter for the Lasso is determined by the cross-validation.

We calculate the estimator of the support index set which is proposed in Theo-
rem 7 for the Dantzig selector. On the other hand, we use the estimator for the Lasso 
given by

where 𝛽L is the Lasso estimator. To evaluate the performance of the variable selec-
tion, we calculate F− , which is the proportion of T0 ⊄ T̂  and F+ , which is the pro-
portion of T̂ ⊄ T0 for T̂ = T̂n and T̂ = T̂L

n
 , respectively, via 500 replications. If the 

estimators select the variables correctly, both F− and F+ are close to zero. Tables 1 

(n, p) = (30, 50), (50, 100), (80, 300).

(n, p) = (50, 50), (100, 100), (150, 300).

log(log p)

log n
≒ 0.4 ⟺ log p = O(n0.4)

log(log p)

log n
≒ 0.35 ⟺ log p = O(n0.35)

T̂L
n
= {j ∶ 𝛽L

j
≠ 0},

Table 1  Variable selection 
results for Case 1

(n, p) = (30, 50) (n, p) = (50, 100) (n, p) = (80, 300)

DS (%) Lasso (%) DS (%) Lasso (%) DS (%) Lasso (%)

F− 93.4 44.0 78.4 0.2 60.4 0
F+ 53.4 76.0 51.6 99.8 45.5 100

Table 2  Variable selection 
results for Case 2

(n, p) = (50, 50) (n, p) = (100, 100) (n, p) = (150, 300)

DS (%) Lasso (%) DS (%) Lasso (%) DS (%) Lasso (%)

F− 60.2 0 31.6 0 17 0
F+ 45.2 78.6 22.8 100 8.8 100
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and 2 show F− and F+ of the Dantzig selector (DS) and the Lasso for each case. We 
can observe that both F− and F+ for the Dantzig selector tend to be small as n tends 
to be large and the rate of the decay for Case 2 is faster than Case 1. The Dantzig 
selector is better than the Lasso in the sense of F+ . On the other hand, in terms of 
F− , the Lasso is better than the Dantzig selector. Since the estimator T̂n of the sup-
port index set by the Dantzig selector removes the coefficients such that the absolute 
values are smaller than the threshold level, T̂n tends to be smaller than T̂L

n
 , which 

implies this selection result. In summary, we can observe that the Dantzig selector 
enables us to construct a sparser estimator.

Tables 3 and 4 show the average of mean absolute errors (MAEs) of the Dantzig 
selector, the Lasso estimator and the second estimator 𝛽(2)

n
 defined by Eq.  (8), via 

500 replications, respectively. In the sense of MAE, the Dantzig selector and the 
Lasso perform similarly. On the other hand, the second estimator 𝛽(2)

n
 seems to be 

better when n is large since the Dantzig selector reduces more variables than the 
Lasso.

6.3  Real data analysis

In this subsection, we apply the variable selection method via the Dantzig selec-
tor for the gene expression data. CuratedOvarianData from Bioconductor in R 
(Ganzfried et  al., 2013) provides gene expression data for curated ovarian can-
cer. We use one of their studies “GSE13876eset” which provides survival infor-
mation (Ti,Ci), i = 1,… , n and normalized gene expression data Zi, i = 1,… , n . 
We use the gene expression data as the covariates and apply the Dantzig selec-
tor and the Lasso for the proportional hazards model. The sample size is 157, 
and the dimension of covariates is 16788. To apply the Dantzig selector and 
the Lasso, the dimension is too large. Therefore, some screening method is 
required. To overcome this issue, we apply the univariate screening as follows. 
For each j = 1,… , p , we fit the univariate proportional hazards model by using 
(Ti,Ci, Z

j

i
), i = 1,… , n . Then, we consider the test whose null hypothesis is that 

the regression parameter � j is zero and evaluate the p value. Taking the variables 

Table 3  Mean absolute errors for Case 1

(n, p) = (30, 50) (n, p) = (50, 100) (n, p) = (80, 300)

DS Lasso 𝛽(2)
n

DS Lasso 𝛽(2)
n

DS Lasso 𝛽(2)
n

MAE 0.173 0.182 0.166 0.079 0.063 0.069 0.024 0.019 0.018

Table 4  Mean absolute errors for Case 2

(n, p) = (50, 50) (n, p) = (100, 100) (n, p) = (150, 300)

DS Lasso 𝛽(2)
n

DS Lasso 𝛽(2)
n

DS Lasso 𝛽(2)
n

MAE 0.138 0.145 0.111 0.039 0.032 0.024 0.023 0.016 0.0097
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whose p-values are less than 0.05, we obtain 826-dimensional covariates. Apply-
ing the Dantzig selector and the Lasso for these 826 covariates and survival infor-
mation, we can select 3 and 20 variables, respectively. Therefore, we observe that 
the Dantzig selector and our selection method enable us to construct model with 
fewer variables for this data. Moreover, for the proportional hazards model con-
structed by the selected variables via the Dantzig selector, the classical methods 
such as maximum partial likelihood estimation and the Breslow estimator can be 
applied, which enables us to ordinal residual analysis such as fit test by the Sch-
oenfeld residual and the Cox–Snell plot. Figure  1 shows the plot of Cox–Snell 
residual and the estimated cumulative baseline hazard function for the model con-
structed via the Dantzig selector. We can see that the proportional hazards model 
is well fitted to the data. Moreover, we apply the goodness of fit test by using 
Schoenfeld residual whose null hypothesis is that the data follow the proportional 
hazards model. Then, the p-value is calculated as 0.57, which implies that the 
null hypothesis cannot be rejected. Therefore, we can conclude that our method 
enables the constructive model selection for this data.

7  Concluding remarks

In summary, we have been able to construct the asymptotically normal estimator 
for the proportional hazards model in high-dimensional settings if the sparsity of 
the regression parameter is fixed. This results are based on the selection result 
Theorem 7 which is obtained from the l∞ consistency.

It is well known that the Lasso and the Dantzig selector exhibit similar behav-
iors for linear regression models. We can see the same phenomena in the propor-
tional hazards model in the sense of lq consistency for every q ∈ [1,∞] since the 
error bounds for the Dantzig selector in Antoniadis et  al. (2010), Fujimori and 
Nishiyama (2017) are similar to those for Lasso in Huang et al. (2013). On the 
other hand, the differences between two procedures may occur in the sense of the 
variable selection consistency. According to Fan et al. (2016), the variable selec-
tion consistency, in particular, sign consistencies for estimators, is equivalent to 
the irrepresentable conditions, which are obtained from KKT conditions of the 

Fig. 1  Plot of Cox–Snell residual
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optimization problems. Since the KKT conditions of the Lasso-type optimization 
problems are relatively simple, we can prove the sign consistency of the Lasso 
estimator for the proportional hazards model by using the irrepresentable condi-
tion (see, e.g., Yu 2010). However, the KKT conditions of the Dantzig selector 
become quite complicated. Although it is possible to derive the sign consistency 
of the Dantzig selector from the irrepresentable condition for a linear model, it 
may be difficult to construct the selection results of the Dantzig selector for non-
linear models such as the proportional hazards model by the similar way to that 
for the Lasso. In contrast, we have proved that l∞ consistency implies the vari-
able selection consistency in this paper. This type of theoretical results for vari-
ous regression models may be proved for the Lasso-type estimators because the 
consistency results are nearly equivalent to that for the Dantzig selector.

8  Proofs of main theorems

Proof of Theorem 6 To prove (4), it suffices to show that

for some positive constant K3 under the condition that

which is satisfied with probability tending to one by Lemma 5. Put h̃ = 𝛽n − 𝛽0 and 
h = h̃∕‖h̃‖1 , which is proved that h ∈ CTn

0
 . Noticing that −Cn(�0 + xh) is a convex 

function with respect to x ≥ 0 and it follows from the definition of the estimator that 
‖Un(𝛽n)‖∞ ≤ 𝛾n , we have that

Using the inequality from Huang et al. (2013), we have that

for every x satisfying the inequality (12) and K∗ defined by

which is bounded almost surely under Assumption 1. This inequality, the fact that 
h ∈ CTn

0
 and the definition of the factor �(Tn

0
;Jn(�0)) imply that

‖𝛽n − 𝛽0‖1 ≤ K3qn𝛾n

𝜅(Tn
0
;Jn(𝛽0))

‖Un(�0)‖∞ ≤ �n,

(12)
h⊤[Un(𝛽0) − Un(𝛽0 + xh)] ≤h⊤[Un(𝛽0) − Un(𝛽n)]

≤2𝛾n‖h‖1 = 2𝛾n, x ∈ [0, ‖h̃‖1].

(13)xh⊤[Un(𝛽0) − Un(𝛽0 + xh)] ≥ x2 exp(−K∗x)h⊤Jn(𝛽0)h

K∗ ∶= sup
s∈[0,1]

sup
1≤i,i�≤n

sup
1≤j≤pn

|Zj

i
(s) − Z

�j

i
(s)|,
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Under Assumption 3, it holds for sufficiently large n, every x satisfying (12) that

where the last inequality is implied from the fact that

and that ‖h‖1 = 1 . Note that the set of all x satisfying (12) is closed interval [0, x̃] , 
where x̃ is some positive constant. We thus have that

where �n is a solution to the smaller equation �ne−�n = K∗�n . We observe that when 
�n is smaller than 1/e, the smaller solution of the equation �ne−�n = �n is less than 1. 
Noticing that �n →p 0 as n → ∞ , we see that 𝜂n < 1 with probability tending to one 
as n → ∞ . Therefore, we obtain that

for sufficiently large n and some positive constant K3 . To prove (5), it follows from 
the definition of F∞(T

n
0
;Jn(�0)) that

Therefore, we obtain that for x = ‖h̃‖1

for sufficiently large n and some positive constant K4 , which ends the proof.   ◻

xe−K
∗x𝜅2(Tn

0
;Jn(𝛽0))‖hTn

0
‖2
1

≤ xe−K
∗xh⊤Jn(𝛽0)h

≤ 2𝛾n.

xe−K
∗x ≤ 2qn�n

�2(Tn
0
;Jn(�0))‖hTn

0
‖2
1

≤ 4qn�n

�2(Tn
0
;Jn(�0))

=∶ �n

‖hTn
0
‖1 ≤ ‖h‖1 ≤ 2‖hTn

0
‖1, h ∈ CTn

0

K∗x̃ ≤ K∗𝜏ne
K∗x = 𝜂n,

‖h̃‖1 ≤ x̃ ≤ K3qn𝛾n

𝜅2(Tn
0
;Jn(𝛽0))

xe−K
∗x ≤ 2�n

F∞(T
n
0
;Jn(�0))‖hTn

0
‖1‖h‖∞

≤ 4�n

F∞(T
n
0
;Jn(�0))‖h‖1‖h‖∞

≤ 4�n

F∞(T0;Jn(�0))‖h‖∞ .

‖h̃‖∞ = x‖h‖∞ ≤ 4e𝜂n𝛾n

F∞(T0;Jn(𝛽0))‖h‖∞
≤ K4𝛾n

F∞(T0;Jn(𝛽0))‖h‖∞ .
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Proof of Theorem 7 We have that

by the l∞ bound from Theorem 6. Therefore, it is sufficient to show that the next 
inequality

implies that

For every j ∈ Tn
0
 , it follows from the triangle inequality that

Noticing that infj∈Tn
0
|� j

0
|n� is bounded from below by some positive constant c in 

our assumption, we find that

for sufficiently large n where c > 0 is a constant. Noticing that the right-hand side of 
this inequality is larger than �n for sufficiently large n, we obtain that Tn

0
⊂ T̂n . On the 

other hand, for every j ∈ (Tn
0
)c , we have that

since it holds that � j
0
= 0 . From this fact, we can see that j ∈ T̂c

n
 which implies that 

T̂n ⊂ Tn
0
 . We thus obtain the conclusion.   ◻

Proof of Theorem 12 We have that

It follows from Lemma 3.1 of Andersen and Gill (1982) that the first term of right-
hand side is op(1) since the sparsity S is assumed to be fixed. Moreover, we have that

by the definition of 𝛽(2)
n

 . Noting that 1{T̂n=T0} →
p 1 , we obtain the conclusion by using 

Slutsky’s theorem.   ◻

Since Theorems 13 and 15 can be proved by similar ways to the corresponding 
results of Andersen and Gill (1982), the proofs of them are described in Appendix.

lim
n→∞

P
�‖𝛽n − 𝛽0‖∞ > 𝛾n

�
= 0

‖𝛽n − 𝛽0‖∞ ≤ 𝛾n

T̂n = Tn
0
.

�𝛽 j
0
� − �𝛽 j

n
� ≤ �𝛽 j

n
− 𝛽

j

0
� ≤ ‖𝛽n − 𝛽0‖∞ ≤ 𝛾n.

|𝛽 j
n
| ≥ |𝛽 j

0
| − 𝛾n >

c

n𝜁
− 𝛾n,

|𝛽 j
n
− 𝛽

j

0
| = |𝛽 j

n
| ≤ 𝛾n

‖𝛽(2)
n

− 𝛽0‖1 = ‖𝛽(2)
nT0

− 𝛽0T0‖1 + ‖𝛽(2)
nTc

0

‖1.

‖𝛽(2)
nTc

0

‖11{T̂n=T0} = 0
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Appendix

Proof of Lemma 11 Under the condition that 𝛽(2)
nT̂c

n

= 0 , we use Taylor expansion to 
deduce that

Therefore, under Assumption 9, it follows from Lemma 10 that

Since I  is assumed to be non-singular and P(T̂n = T0) → 1 as n → ∞ by Theorem 7, 
we obtain the conclusion.   ◻

Proof of Theorem 13 It follows from the Taylor expansion that

where �∗
n
 is the point between 𝛽(2)

n
 and �0 . Then, the assertion is obtained by using 

Slutsky’s theorem and the corresponding result from Andersen and Gill (1982).   ◻

Proof of Theorem 15 We have that

We can use the fact (10) to deduce that

where

Then, the conclusion is obtained by using Slutsky’s theorem and the corresponding 
result from Andersen and Gill (1982).   ◻
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