Supplementary material for “Robust model selection with covariables missing at random”

Zhongqi Liang1, Qihua Wang2 and Yuting Wei3

School of Statistics and Mathematics, Zhejiang Gongshang University1, Hangzhou 310018, Zhejiang, China
School of Statistics and Mathematics, Zhejiang Gongshang University2, Hangzhou 310018, Zhejiang, China
Academy of Mathematics and Systems Science, Chinese Academy of Sciences3, Beijing 100190, China
Department of Statistics and Finance, University of Science and Technology of China1, Hefei 230026, China

Lemmas

The proofs of Lemma 1–Lemma 2 are completely similar to Lemma S3–Lemma S4 in Wang et al. (2020). For convenience of review, we give the details.

Lemma 1. Provided that Conditions (C2)-(C8) hold, and further assume that $\hat{\alpha}_n - \alpha^* = O_p(n^{-1/2})$, we have

\[
Q_{n1} = n^{-1} \sum_{i=1}^{n} \{ \delta_i \log g_M(Y_i|X_i; Z_i; \theta_M) \}\{ \tilde{q}_{\alpha_n, b_n}(\phi_\pi(Y_i, Z_i; \hat{\alpha}_n)) - \tilde{q}_{\alpha^*, b_n}(\phi_\pi(Y_i, Z_i; \alpha^*)) \}
\]

\[= n^{-1} \sum_{i=1}^{n} \{ \delta_i \log g_M(Y_i|X_i; Z_i; \theta_M) \}\{ \partial q_{\alpha^*}(\phi_\pi(Y_i, Z_i; \alpha^*)) / \partial \alpha \}(\hat{\alpha}_n - \alpha^*) + o_p(n^{-1/2}). \quad (S.1)\]

Proof. For simplicity, we denote $T_i = (Y_i, Z_i)$ and denote

\[
B_n(y, z; \alpha, \alpha^*) = \tilde{q}_{\alpha_n, n}(\phi_\pi(y, z; \alpha)) \tilde{r}_{\alpha_n, n}(\phi_\pi(y, z; \alpha)) - \tilde{q}_{\alpha^*, n}(\phi_\pi(y, z; \alpha^*)) \tilde{r}_{\alpha^*, n}(\phi_\pi(y, z; \alpha^*))
\]

\[
\Gamma_n(y, z; \alpha, \alpha^*) = \tilde{r}_{\alpha_n, n}(\phi_\pi(y, z; \alpha)) - \tilde{r}_{\alpha^*, n}(\phi_\pi(y, z; \alpha^*))
\]

\[
\Gamma_{b_n}(y, z; \alpha, \alpha^*) = \tilde{r}_{\alpha_n, b_n}(\phi_\pi(y, z; \alpha)) - \tilde{r}_{\alpha^*, b_n}(\phi_\pi(y, z; \alpha^*))
\]

and

\[
A_n(y, z; \alpha) = q_{\alpha_n}(\phi_\pi(y, z; \alpha)) \tilde{r}_{\alpha_n}(\phi_\pi(y, z; \alpha)) - q_{\alpha}(\phi_\pi(y, z; \alpha)) r_{\alpha}(\phi_\pi(y, z; \alpha))
\]

\[
\Delta_n(y, z; \alpha) = \tilde{r}_{\alpha_n}(\phi_\pi(y, z; \alpha)) - r_{\alpha}(\phi_\pi(y, z; \alpha))
\]

\[
\Delta_{b_n}(y, z; \alpha) = \tilde{r}_{\alpha_n, b_n}(\phi_\pi(y, z; \alpha)) - r_{\alpha_n, b_n}(\phi_\pi(y, z; \alpha))
\]

Then, according to the similar arguments to lemma 2 of Li et al. (2011) with (C.3), (C.5), (C.6) and (C.7) we have

\[
\sup_{y, z, \alpha} |A_n(y, z; \alpha)| = O_p(h_n^k + \frac{\log n}{\sqrt{nh_n^2}}) = o_p(b_n), \quad (S.2)
\]

1E-mail: 2945155436@qq.com(Zhongqi Liang)

2Corresponding Author: Tel.: +86 15101512088; E-mail: qhwang@amss.ac.cn (Qihua Wang)

3E-mail: ytwei@mail.ustc.edu.cn (Yuting Wei)
To prove (S.1), we show that

\[
\sup_{y, z, \alpha} |\Delta_n(y, z; \alpha)| = O_p(h_n^k + \frac{\log n}{\sqrt{n h_n^*}}) = o_p(b_n). \quad (S.3)
\]

And due to

\[
\sup_{y, z, \alpha} |\Delta_n(y, z; \alpha)| \leq \sup_{y, z, \alpha} |\Delta_n(y, z; \alpha)|,
\]

then if \(n \) is large enough, we have

\[
|\hat{r}_{\alpha, b_n}(\phi_\pi(y, z; \alpha))| \geq |r_{\alpha, b_n}(\phi_\pi(y, z; \alpha))| - o_p(b_n) \geq cb_n. \quad (S.4)
\]

Note that,

\[
n^{-1} \sum_{i=1}^{n} C_i \{ \hat{q}_{\alpha, b_n}(\phi_\pi(Y_i, Z_i; \hat{\alpha}_n)) - \hat{q}_{\alpha, b_n}(\phi_\pi(Y_i, Z_i; \alpha^*)) \}
\]

\[
= n^{-1} \sum_{i=1}^{n} C_i \frac{B_n(T_i; \hat{\alpha}_n, \alpha^*)}{r_{\alpha, b_n}(\phi_\pi(T_i; \alpha^*))} - n^{-1} \sum_{i=1}^{n} C_i \frac{\Delta_n(T_i; \alpha^*) B_n(T_i; \hat{\alpha}_n, \alpha^*)}{r_{\alpha, b_n}(\phi_\pi(T_i; \alpha^*)) r_{\alpha, b_n}(\phi_\pi(T_i; \alpha^*))}
\]

\[
- n^{-1} \sum_{i=1}^{n} C_i \frac{q_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) r_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) \Gamma_n(T_i; \hat{\alpha}_n, \alpha^*)}{r_{\alpha, b_n}(\phi_\pi(T_i; \alpha^*)) r_{\alpha^*, b_n}(\phi_\pi(T_i; \alpha^*))}
\]

\[
+ n^{-1} \sum_{i=1}^{n} C_i \frac{q_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) r_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) \Delta_n(T_i; \alpha^*) \Gamma_n(T_i; \hat{\alpha}_n, \alpha^*)}{r_{\alpha^*, b_n}(\phi_\pi(T_i; \alpha^*)) r_{\alpha^*, b_n}(\phi_\pi(T_i; \alpha^*))}
\]

\[
- n^{-1} \sum_{i=1}^{n} C_i \frac{A_n(T_i; \alpha^*) \Gamma_n^2(T_i; \hat{\alpha}_n, \alpha^*)}{r_{\alpha^*, b_n}(\phi_\pi(T_i; \hat{\alpha}_n)) r_{\alpha^*, b_n}(\phi_\pi(T_i; \alpha^*))}
\]

\[
+ n^{-1} \sum_{i=1}^{n} C_i \frac{A_n(T_i; \alpha^*) \Gamma_n^2(T_i; \hat{\alpha}_n, \alpha^*)}{r_{\alpha, b_n}(\phi_\pi(T_i; \alpha^*)) r_{\alpha^*, b_n}(\phi_\pi(T_i; \alpha^*))}
\]

\[
+ n^{-1} \sum_{i=1}^{n} C_i \frac{q_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) r_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) \Gamma_n^2(T_i; \hat{\alpha}_n, \alpha^*)}{r_{\alpha^*, b_n}(\phi_\pi(T_i; \hat{\alpha}_n)) r_{\alpha, b_n}(\phi_\pi(T_i; \alpha^*))} := \sum_{i=1}^{9} G_{ni}.
\]

To prove (S.1), we show that

\[
G_{n1} + G_{n3}
\]

\[
n^{-1} \sum_{i=1}^{n} \{ \delta_i \log g_M(Y_i, X_i, Z_i; \theta_M) \} \{ \partial q_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) / \partial \alpha \} (\hat{\alpha}_n - \alpha^*) + o_p(n^{-1/2}), \quad (S.5)
\]
and
\[G_{ni} = o_p(n^{-1/2}), \quad i = 2, 4, 5, 6, 7, 8, 9. \] (S.6)

First, we prove (S.5). Denote
\[W_n(T_i, T_j; \alpha) = \frac{C_i}{r_{\alpha^*, \hat{\alpha}_n}(\phi_{\alpha}(T_i; \alpha) - \phi_{\alpha}(T_j; \alpha))} \left\{ K\left(\frac{\phi_{\alpha}(T_i; \alpha) - \phi_{\alpha}(T_j; \alpha)}{h_n} \right) - K\left(\frac{\phi_{\alpha}(T_i; \alpha^*) - \phi_{\alpha}(T_j; \alpha^*)}{h_n} \right) \right\}. \]

Then
\[
G_{n1} = h_n^{-j} n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_n(T_i, T_j; \hat{\alpha}_n)
= h_n^{-j} \left\{ n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_n(T_i, T_j; \hat{\alpha}_n) - n^{-1} \sum_{i=1}^{n} \int W_n(T_i, t; \hat{\alpha}_n) dF_T(t) \right\}
- n^{-1} \sum_{j=1}^{n} \int W_n(t, T_j; \hat{\alpha}_n) dF_T(t) + \int \int W_n(t_1, t_2; \hat{\alpha}_n) dF_T(t_1) dF_T(t_2) \right\} + \left\{ h_n^{-j} \left[n^{-1} \sum_{j=1}^{n} W_n(t, T_j; \hat{\alpha}_n) dF_T(t) - \int \int W_n(t_1, t_2; \hat{\alpha}_n) dF_T(t_1) dF_T(t_2) \right] \right\}
+ \left\{ h_n^{-j} n^{-1} \sum_{i=1}^{n} W_n(T_i, t; \hat{\alpha}_n) dF_T(t) \right\} := G_{n11} + G_{n12} + G_{n13},
\]

where $F_T(\cdot)$ denotes the distribution function of T. According to similar statements as the MAIN COROLLARY in Sherman (1994), we have
\[
E\left[n \sup_{\|\alpha - \alpha^*\| = O(n^{-1/2})} \left| n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n} W_n(T_i, T_j; \hat{\alpha}_n) - n^{-1} \sum_{i=1}^{n} \int W_n(T_i, t; \hat{\alpha}_n) dF_T(t) \right| \right]
- n^{-1} \sum_{j=1}^{n} \int W_n(t, T_j; \hat{\alpha}_n) dF_T(t) + \int \int W_n(t_1, t_2; \hat{\alpha}_n) dF_T(t_1) dF_T(t_2) \right| \right] \leq c(E[\sup_{\|\hat{\alpha}_n - \alpha^*\| = O(n^{-1/2})} W_n(T_1, T_2; \hat{\alpha}_n)^2])^{1/2};
\]

and
\[
E\left[n^{1/2} \sup_{\|\alpha - \alpha^*\| = O(n^{-1/2})} \left| n^{-1} \sum_{j=1}^{n} \int W_n(t, T_j; \hat{\alpha}_n) dF_T(t) \right| \right] - \int \int W_n(t_1, t_2; \hat{\alpha}_n) dF_T(t_1) dF_T(t_2) \right| \right] \leq c(E[\sup_{\|\hat{\alpha}_n - \alpha^*\| = O(n^{-1/2})} W_n(T_1, T_2; \hat{\alpha}_n)^2])^{1/2}.
\]
Further, since $E[\log y_M^2(Y|X,Z;\theta_M)] < \infty$, we have
\[
E[\sup_{\|\alpha - \alpha^*\| = O(n^{-1/2})} W_n(T_1, T_2; \hat{\alpha}_n)^2]
\leq c_n b_n^{-2} \int \sup_{\|\alpha - \alpha^*\| = O(n^{-1/2})} \left[K \left(\frac{\phi_\pi(t_1; \alpha) - \phi_\pi(t_2; \alpha)}{h_n} \right) - K \left(\frac{\phi_\pi(t_1; \alpha^*) - \phi_\pi(t_1; \alpha^*)}{h_n} \right) \right]^2 dt_1 dt_2
\leq c_n b_n^{-2} \int \sup_{\|\alpha - \alpha^*\| = O(n^{-1/2})} \left(\frac{\phi_\pi(t_1; \alpha) - \phi_\pi(t_2; \alpha) - \phi_\pi(t_1; \alpha^*) + \phi_\pi(t_2; \alpha^*)}{h_n} \right)^2 dt_1 dt_2
\leq c_n b_n^{-2} h_n^{-2} \int \sup_{\|\alpha - \alpha^*\| = O(n^{-1/2})} \left(\|l(t_1) + l(t_2)\|^2 \|\alpha - \alpha^*\|^2 \right) \cdot f_T(t_1) f_T(t_2) dt_1 dt_2
\leq \frac{1}{nb_n^2 h_n^2},
\]
where the last third inequality is due to (C.6), and the last second inequality is due to (C.5)/(i). Thus, according to (C.7), we have $G_{n11} = o_p(n^{-1/2})$ and $G_{n12} = o_p(n^{-1/2})$. To G_{n13}, recalling that $f_\alpha(t) = q_\alpha(t) r_\alpha(t)$, we have
\[
\sup_{t, \alpha} \left| h_n^{-1} \int K \left(\frac{\phi_\pi(T_1; \alpha) - t}{h_n} \right) f_\alpha(t) dt - q_\alpha(\phi_\pi(t; \alpha)) r_\alpha(\phi_\pi(t; \alpha)) \right| = O(h_n^k).
\]
Then we can obtain
\[
\left| G_{n13} - n^{-1} \sum_{i=1}^n C_i \left\{ q_\alpha(\phi_\pi(T_i; \hat{\alpha}_n)) r_\alpha(\phi_\pi(T_i; \hat{\alpha}_n)) - q_\alpha^*(\phi_\pi(T_i; \alpha^*)) r_\alpha^*(\phi_\pi(T_i; \alpha^*)) \right\} \right| = O_p(h_n^k/b_n).
\]
Thus we have
\[
G_{n1} = n^{-1} \sum_{i=1}^n C_i \frac{q_\alpha(\phi_\pi(T_i; \hat{\alpha}_n)) r_\alpha(\phi_\pi(T_i; \hat{\alpha}_n)) - q_\alpha^*(\phi_\pi(T_i; \alpha^*)) r_\alpha^*(\phi_\pi(T_i; \alpha^*))}{r_\alpha^*, b_n(\phi_\pi(T_i; \alpha^*))} + o_p(n^{-1/2}).
\]
(S.7)

Similarly, we can obtain that
\[
G_{n3} = -n^{-1} \sum_{i=1}^n C_i \frac{q_\alpha^*(\phi_\pi(T_i; \alpha^*)) \left\{ r_\alpha(\phi_\pi(T_i; \hat{\alpha}_n)) - r_\alpha^*(\phi_\pi(T_i; \alpha^*)) \right\}}{r_\alpha^*, b_n(\phi_\pi(T_i; \alpha^*))} + o_p(n^{-1/2}).
\]
(S.8)
Thus, combining with (S.4), (S.7) and (S.8), we have

\[G_{n1} + G_{n3} = n^{-1} \sum_{i=1}^{n} C_i \{ q_{\alpha_n}(\phi_\pi(T_i; \hat{\alpha}_n)) - q_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) \} r_{\alpha_n}(\phi_\pi(T_i; \hat{\alpha}_n)) + o_p(n^{-1/2}) \]

\[= n^{-1} \sum_{i=1}^{n} C_i \{ q_{\alpha_n}(\phi_\pi(T_i; \hat{\alpha}_n)) - q_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) \} r_{\alpha_n}(\phi_\pi(T_i; \hat{\alpha}_n)) + o_p(n^{-1/2}) \]

\[= n^{-1} \sum_{i=1}^{n} C_i q_{\alpha_n}(\phi_\pi(T_i; \hat{\alpha}_n)) - q_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) + o_p(n^{-1/2}) \]

\[= n^{-1} \sum_{i=1}^{n} C_i \{ q_{\alpha_n}(\phi_\pi(T_i; \alpha^*)) / \partial \alpha \} (\hat{\alpha}_n - \alpha^*) + o_p(n^{-1/2}). \]

In what follows, we prove (S.6). According to (S.2) and (S.3), we have

\[\sup_{t, \alpha} |A_n(t; \alpha)| = O_p(h_n + \log n \sqrt{n h_n}), \quad \sup_{t, \alpha} |\Delta_{bn}(t; \alpha)| = O_p(h_n + \log n \sqrt{n h_n}). \]

(S.9)

And according to (C.5)(ii), we have

\[n^{-1} \sum_{i=1}^{n} |C_i| \cdot q_{\alpha_n}(\phi_\pi(T_i; \hat{\alpha}_n)) r_{\alpha_n}(\phi_\pi(T_i; \hat{\alpha}_n)) - q_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) r_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) \]

\[= O_p(\|\hat{\alpha}_n - \alpha^*\|). \]

(S.10)

Thus, to \(G_{n2} \), by (S.9) and (S.10), we have

\[|G_{n2}| \leq n^{-1} \sum_{i=1}^{n} \frac{|C_i|}{b_n^2} \sup_t |\Delta_{bn}(t; \alpha^*)| \sup_{t, \alpha} |A_n(t; \alpha) - A_n(t; \alpha^*)| \]

\[+ n^{-1} \sum_{i=1}^{n} \frac{|C_i|}{b_n^2} \sup_t |\Delta_{bn}(t, \alpha^*)| \]

\[\times |q_{\alpha_n}(\phi_\pi(T_i; \hat{\alpha}_n)) r_{\alpha_n}(\phi_\pi(T_i; \hat{\alpha}_n)) - q_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) r_{\alpha^*}(\phi_\pi(T_i; \alpha^*))| = o_p(n^{-1/2}). \]

And the \(G_{ni} = o_p(n^{-1/2}) \), for \(i = 4, 5, 6 \) can be proved by similar arguments. And to \(G_{n7} \),
by (S.2), (S.3) and (C.7), we have

\[
|G_{nT}| \leq n^{-1} \sum_{i=1}^{n} \left| \frac{C_i}{b_n^2} \sup_{t, \alpha} |A_{n}(t; \alpha) - A_{n}(t; \alpha^*)| \right|
\]

\[
+ |q_{\hat{a}_n}(\phi_{\pi}(T_i; \hat{\alpha}_n)) r_{\hat{a}_n}(\phi_{\pi}(T_i; \hat{\alpha}_n)) - q_{a}(\phi_{\pi}(T_i; \alpha^*)) r_{a}(\phi_{\pi}(T_i; \alpha^*))| \]

\[
\times \left[\sup_{t, \alpha} |\Delta_{n}(t; \alpha) - \Delta_{n}(t; \alpha^*)| + |r_{\hat{a}_n}(\phi_{\pi}(T_i; \hat{\alpha}_n)) - r_{a}(\phi_{\pi}(T_i; \alpha^*))| \right]
\]

\[
= o_p(n^{-1/2}).
\]

And the \(G_{ni} = o_p(n^{-1/2})\), for \(i = 8, 9\) can be proved by similar statements. Thus, the proof of Lemma 1 is completed.

Lemma 2. Provided that Conditions (C2)-(C8) hold, we have

\[
Q_{n2} = n^{-1} \sum_{i=1}^{n} \left\{ \delta_i \log g_{M}(Y_i|X_i, Z_i; \theta_{M}) \right\} \{ \hat{q}_{a} - b_n(\phi_{\pi}(Y_i, Z_i; \alpha^*)) - q_{a}(\phi_{\pi}(Y_i, Z_i; \alpha^*)) \}
\]

\[
= n^{-1} \sum_{i=1}^{n} \left\{ 1 - \delta_i q_{a}(\phi_{\pi}(Y_i, Z_i; \alpha^*)) \right\} q_{a}(\phi_{\pi}(Y_i, Z_i; \alpha^*)) \delta_i \log g_{M}(Y_i|X_i, Z_i; \theta_{M}) + o_p(n^{-1/2}).
\]

(S.11)

Proof. Using the notations in Lemma 1 and denote

\[
\eta_{n}(t; \alpha^*) = \left(nh_{n} \right)^{-1} \sum_{j=1}^{n} \left(1 - \delta_j q_{a}(\phi_{\pi}(T_j; \alpha^*)) \right) K \left(\frac{\phi_{\pi}(t; \alpha^*) - \phi_{\pi}(T_j; \alpha^*)}{h_{n}} \right),
\]

\[
\xi_{n}(t; \alpha^*) = \left(nh_{n} \right)^{-1} \sum_{j=1}^{n} \left(\delta_j q_{a}(\phi_{\pi}(T_j; \alpha^*)) - \delta_j q_{a}(\phi_{\pi}(t; \alpha^*)) \right) K \left(\frac{\phi_{\pi}(t; \alpha^*) - \phi_{\pi}(T_j; \alpha^*)}{h_{n}} \right).
\]
We first prove that
\[n^{-1} \sum_{i=1}^{n} \left\{ \delta_i \log g_M(Y_i | X_i, Z_i; \theta_M) \right\} \{ \hat{q}_{n, b_n}(\phi_\pi(Y_i, Z_i; \alpha^*)) - q_{n, b_n}(\phi_\pi(Y_i, Z_i; \alpha^*)) \} \]

\[= n^{-1} \sum_{i=1}^{n} \frac{C_i}{r_{n, b_n}(\phi_\pi(T_i; \alpha^*))} + n^{-1} \sum_{i=1}^{n} \frac{\xi_n(T_i; \alpha^*)}{r_{n, b_n}(\phi_\pi(T_i; \alpha^*))} \]

\[+ n^{-1} \sum_{i=1}^{n} C_i q_{n, b_n}(\phi_\pi(T_i; \alpha^*)) \Delta_n(T_i; \alpha^*) - n^{-1} \sum_{i=1}^{n} C_i q_{n, b_n}(\phi_\pi(T_i; \alpha^*)) \Delta_{n}(T_i; \alpha^*) \]

\[- n^{-1} \sum_{i=1}^{n} C_i (\hat{g}_{n, b_n}(\phi_\pi(T_i; \alpha^*)) - r_{n, b_n}(\phi_\pi(T_i; \alpha^*)) \Delta_{n}(T_i; \alpha^*) \]

\[+ n^{-1} \sum_{i=1}^{n} C_i (\hat{g}_{n, b_n}(\phi_\pi(T_i; \alpha^*)) - r_{n, b_n}(\phi_\pi(T_i; \alpha^*)) \Delta_{n}(T_i; \alpha^*) \]

\[:= \sum_{i=1}^{6} Q_{mi}. \]

We first prove \(Q_{m1} \), we show that

\[Q_{m1} \]

\[= n^{-1} \sum_{i=1}^{n} \frac{C_i}{r_{n, b_n}(\phi_\pi(T_i; \alpha^*))} \frac{1}{nh_n} \sum_{j=1}^{n} (1 - \delta_j g_{\alpha^*}(\phi_\pi(T_j; \alpha^*))) K \left(\frac{\phi_\pi(T_i; \alpha^*) - \phi_\pi(T_j; \alpha^*)}{h_n} \right) \]

\[= n^{-1} \sum_{j=1}^{n} \frac{1}{h_n} \int \frac{E[C|\phi_\pi(T; \alpha^*) = t]}{r_{n, b_n}(\phi_\pi(t; \alpha^*))} K \left(\frac{t - \phi_\pi(T_j; \alpha^*)}{h_n} \right) f_\alpha(t) dt \]

\[+ n^{-1} \sum_{j=1}^{n} \frac{1}{h_n} \int \frac{E[C|\phi_\pi(T; \alpha^*) = t]}{r_{n, b_n}(\phi_\pi(t; \alpha^*))} K \left(\frac{t - \phi_\pi(T_j; \alpha^*)}{h_n} \right) f_\alpha(t) dt \]

\[:= Q_{m11} + Q_{m12}, \]

where \(C_i = \delta_i \log g_M(Y_i | X_i, Z_i; \theta_M) \). For \(Q_{m11} \), note that \(f_\alpha(t) = q_{\alpha^*}(t) r_{\alpha^*}(t) \), we have

\[\sup_{t, \alpha} \left| n^{-1} \sum_{j=1}^{n} (1 - \delta_j g_{\alpha^*}(\phi_\pi(T_j; \alpha^*))) h_n^{-1} \int \frac{E[C|\phi_\pi(T; \alpha^*) = t]}{h_n} K \left(\frac{t - \phi_\pi(T_j; \alpha^*)}{h_n} \right) f_\alpha(t) dt \]

\[- n^{-1} \sum_{i=1}^{n} (1 - \delta_j g_{\alpha^*}(\phi_\pi(T_i; \alpha^*))) C_i q_{\alpha^*}(\phi_\pi(t; \alpha^*)) r_{\alpha^*}(\phi_\pi(t; \alpha^*)) \right| = O(h_n^k), \]
where $k > J$. By (S.4), we know that $|r_{\alpha^*,bn}(\phi_\pi(t; \alpha^*))| \geq cb_n$, then, we have

$$Q_{m11} - n^{-1} \sum_{i=1}^{n} \frac{1 - \delta_i q_{\alpha^*}(\phi_\pi(T_i; \alpha^*))}{r_{\alpha^*,bn}(\phi_\pi(T_i; \alpha^*))} C_i q_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) r_{\alpha^*,bn}(\phi_\pi(T_i; \alpha^*)) = O_p(h_n^k/b_n).$$

By standard arguments, we have $Q_{m12} = o_p(n^{-1/2})$. Thus, we have

$$Q_{m1} = n^{-1} \sum_{i=1}^{n} \{1 - \delta_i q_{\alpha^*}(\phi_\pi(T_i; \alpha^*))\} q_{\alpha^*}(\phi_\pi(T_i; \alpha^*)) C_i + o_p(n^{-1/2}).$$

According to the similar technique to $T_{ni}, i = 2, 3, 4, 5, 6$ in Lemma 1 of Wang and Rao (2002a), we can prove that $Q_{m3} + Q_{m4} = o_p(n^{-1/2})$ and $Q_{mi} = o_p(n^{-1/2})$ for $i = 2, 5, 6$. Thus, the proof of Lemma 2 is completed.

References

