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Supplementary material for “Semiparametric inference on general
functionals of two semicontinuous populations”

Meng Yuan · Chunlin Wang · Boxi Lin · Pengfei Li

This document supplements the paper entitled “Semiparametric inference on general functionals of
two semicontinuous populations.” It contains the proofs of Theorem 1, Theorem 2, and Corollary
1, and additional simulation results. Section S1 introduces some notation and preparation. Section
S2 presents some useful lemmas. The proofs of Theorem 1, Theorem 2, and Corollary 1 are given
in Sections S3, S4, and S5, respectively. Section S6 contains an additional simulation study on the
impact of misspecification of the basis function in the density ratio model.

S1 Some preparation

Recall that

Xi1, · · · , Xini
∼ Fi(x) = νiI(x ≥ 0) + (1− νi)I(x > 0)Gi(x), for i = 0, 1, (S1.1)

where νi ∈ (0, 1), ni is the sample size for sample i, I(·) is an indicator function, and the Gi(·)’s
are the cumulative distribution functions (CDFs) of the positive observations in sample i. We link
G0(x) and G1(x) via a density ratio model (DRM):

dG1(x) = exp{α+ β>q(x)}dG0(x), (S1.2)

where q(x) is a prespecified, nontrivial, d-dimensional basis function.
We are interested in estimating linear functionals of F0(x) and F1(x), defined as

ψ0 =

∫ ∞
0

a(x)dF0(x) and ψ1 =

∫ ∞
0

a(x)dF1(x) (S1.3)

for some given function a(x). To do that, we consider a class of general functionals ψ of length p,
defined as

ψ =

∫ ∞
0

u(x;ν,θ)dG0(x), (S1.4)

Meng Yuan
Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo,
Ontario, Canada N2L 3G1

Chunlin Wang
Department of Statistics, School of Economics, Wang Yanan Institute for Studies in Economics, MOE Key Lab of
Econometrics and Fujian Key Lab of Statistics, Xiamen University, 422 Siming South Road, Xiamen, Fujian, China
361005
Corresponding author. E-mail: wangc@xmu.edu.cn

Boxi Lin
Dalla Lana School of Public Health, University of Toronto, Toronto, 155 College Street, Ontario, Canada M5T 3M7

Pengfei Li
Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West, Waterloo,
Ontario, Canada N2L 3G1



2 M. Yuan et al.

where ν = (ν0, ν1)>, θ = (α,β>)>, and u(x;ν,θ) = (u1(x;ν,θ), . . . , up(x;ν,θ))
>

is a given (p×1)-
dimensional function. Note that ψ covers ψ0 and ψ1, defined in (S1.3), as special cases. To see this,
let

u(X;ν,θ) =

(
u0(X;ν,θ)
u1(X;ν,θ)

)
=

(
(1− ν0)a(x)

(1− ν1)a(x) exp{α+ β>q(x)}

)
. (S1.5)

Next we argue that ψ =
(
ψ>0 ,ψ

>
1

)>
under the assumption that a(0) = 0.

From model (S1.1), we have Fi(x) = νiI(x ≥ 0) + (1 − νi)I(x > 0)Gi(x) for i = 0, 1. This,
together with (S1.3), imply that, for i = 0, 1,

ψi =

∫ ∞
0

a(x)d{νiI(x ≥ 0) + (1− νi)I(x > 0)Gi(x)}

= νia(0) + (1− νi)
∫ ∞
0

a(x)dGi(x)

= (1− νi)
∫ ∞
0

a(x)dGi(x),

where the last step uses the assumption that a(0) = 0. Under the density ratio model in (S1.2), we
further have

ψ0 =

∫ ∞
0

(1− ν0)a(x)dG0(x) and ψ1 =

∫ ∞
0

(1− ν1)a(x) exp{α+ β>q(x)}dG0(x).

Hence

ψ0 =

∫ ∞
0

u0(X;ν,θ)dG0(x) and ψ1 =

∫ ∞
0

u1(X;ν,θ)dG0(x),

as claimed.
Recall that we let ni0 and ni1 be the (random) numbers of zero observations and positive obser-

vations, respectively, in each sample i = 0, 1. Clearly, ni = ni0 + ni1, for i = 0, 1. Without loss of
generality, we assume that the first ni1 observations in group i, Xi1, · · · , Xini1

, are positive, and the
remaining ni0 observations are 0. Let n be the total (fixed) sample size, i.e., n = n0 + n1.

The maximum empirical likelihood estimators (MELEs) of ν and θ respectively maximize `0 (ν)
and `1(θ), where

`0 (ν) =

1∑
i=0

log {νni0
i (1− νi)ni1}

and

`1(θ) = −
1∑
i=0

ni1∑
j=1

log
{

1 + ρ̂[exp{α+ β>q(Xij)} − 1]
}

+

n11∑
j=1

{α+ β>q(X1j)}

with ρ̂ = n11/(n01 + n11) being a random variable. That is,

ν̂ = arg max
ν

`0 (ν) and θ̂ = arg max
θ

`1(θ). (S1.6)

Note that
1∑
i=0

ni1∑
j=1

1

n01 + n11

1

1 + ρ̂[exp{α̂+ β̂
>
q(Xij)} − 1]

= 1, (S1.7)

which ensures that the MELE of G0(x) is a CDF.
For convenience of presentation, we recall and introduce some notation. We use ν∗ and θ∗ to

denote the true values of ν and θ, respectively. Let Q(x) = (1, q(x)>)> and

w = n0/n, ∆
∗ = w(1− ν∗0 ) + (1− w)(1− ν∗1 ), ρ∗ =

(1−w)(1−ν∗1 )
∆∗ ,

ω(x;θ) = exp{θ>Q(x)}, ω(x) = ω(x;θ∗),

h(x) = 1 + ρ∗{ω(x)− 1}, h1(x) = ρ∗ω(x)/h(x), h0(x) = (1− ρ∗)/h(x).
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Note that ω(·), h(·), h0(·), and h1(·) depend on θ∗ and/or ρ∗ and h0(x) + h1(x) = 1. Henceforth,
we use

∑
ij to denote summation over the full range of data.

Further, define η̂ = (ν̂>, ρ̂, θ̂
>

)> and η∗ = (ν∗>, ρ∗,θ∗>)>. To derive the asymptotic properties,
we define an expanded function:

H(ν, ρ,θ) = n00 log(ν0) + n01 log(1− ν0) + n10 log(ν1) + n11 log(1− ν1)

−
1∑
i=0

ni1∑
j=1

log
{

1 + ρ[exp{θ>Q(Xij)} − 1]
}

+

n11∑
j=1

{β>q(X1j)}. (S1.8)

By (S1.6), we get

∂H(ν̂, ρ̂, θ̂)

∂ν
= 0 and

∂H(ν̂, ρ̂, θ̂)

∂θ
= 0. (S1.9)

From (S1.7), we can verify that

∂H(ν̂, ρ̂, θ̂)

∂ρ
= 0. (S1.10)

Then (S1.9) and (S1.10) together imply that η̂ satisfies

∂H(η̂)

∂η
= 0, (S1.11)

which serves as the starting point of our proof for η̂.
Next, we apply the first-order Taylor expansion to ∂H(η̂)/∂η to find an approximation for η̂. In

this process, the first and second derivatives of H(ν, ρ,θ) play important roles. Their detailed forms
are given below.

S1.1 First derivatives of H(ν, ρ,θ)

After some calculation, we find the first derivatives of H(ν,θ, ρ) as follows:

∂H(ν, ρ,θ)

∂ν
=

(
∂H(ν, ρ,θ)

∂ν0
,
∂H(ν, ρ,θ)

∂ν1

)>
=

(
n00
ν0
− n01

1− ν0
,
n10
ν1
− n11

1− ν1

)>
,

∂H(ν, ρ,θ)

∂ρ
= −

∑
ij

ω(Xij ;θ)− 1

1 + ρ{ω(Xij ;θ)− 1}
I(Xij > 0),

∂H(ν, ρ,θ)

∂θ
=

n1∑
j=1

Q(X1j)I(X1j > 0)−
∑
ij

ρω(Xij ;θ)

1 + ρ{ω(Xij ;θ)− 1}
Q(Xij)I(Xij > 0).

We evaluate the above derivatives at η∗ and define

Sn =
∂H(η∗)

∂η
=


∂H(η∗)
∂ν

∂H(η∗)
∂ρ

∂H(η∗)
∂θ

 =

Sn,νSn,ρ
Sn,θ

 , (S1.12)

where the corresponding entries are

Sn,ν =

(
n00
ν∗0
− n01

1− ν∗0
,
n10
ν∗1
− n11

1− ν∗1

)>
,

Sn,ρ = −
∑
ij

ω(Xij)− 1

h(Xij)
I(Xij > 0),

Sn,θ =

n1∑
j=1

Q(X1j)I(X1j > 0)−
∑
ij

h1(Xij)Q(Xij)I(Xij > 0).
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S1.2 Second derivatives of H(ν, ρ,θ)

We next calculate the second derivatives of H(ν, ρ,θ) and evaluate them at η∗. This leads to

∂2H(η∗)

∂η∂η>
=


∂2H(η∗)
∂ν∂ν>

∂2H(η∗)
∂ν∂ρ

∂2H(η∗)
∂ν∂θ>

∂2H(η∗)
∂ρ∂ν>

∂2H(η∗)
∂ρ2

∂2H(η∗)
∂ρ∂θ>

∂2H(η∗)
∂θ∂ν>

∂2H(η∗)
∂θ∂ρ

∂2H(η∗)
∂θ∂θ>

 , (S1.13)

where

∂2H(η∗)

∂ν∂ν>
= diag

{
−n00
ν∗20
− n01

(1− ν∗0 )2
,−n10

ν∗21
− n11

(1− ν∗1 )2

}
,

∂2H(η∗)

∂ρ2
= −

∑
ij

−{ω(Xij)− 1}2

h(Xij)2
I(Xij > 0),

∂2H(η∗)

∂ν∂ρ
=

{
∂2H(η∗)

∂ρ∂ν>

}>
= 0,

∂2H(η∗)

∂θ∂ρ
=

{
∂2H(η∗)

∂ρ∂θ>

}>
= −

∑
ij

ω(Xij)

h(Xij)2
Q(Xij)I(Xij > 0),

∂2H(η∗)

∂θ∂θ>
= −

∑
ij

h0(Xij)h1(Xij){Q(Xij)Q(Xij)
>}I(Xij > 0),

∂2H(η∗)

∂ν∂θ>
=

{
∂2H(η∗)

∂θ∂ν>

}>
= 0.

S2 Some useful lemmas

In the proof of Theorem 1, we need the expectation of ∂2H(η∗)/(∂η∂η>) and the asymptotic
property of Sn. The following lemma is used to ease the calculation burden in our main proofs.

Lemma 1 Suppose that f is an arbitrary vector-valued function. Let E0(·) represent the expectation
with respect to G0 and X refer to a random variable from G0. Then

E

∑
ij

f(Xij)I(Xij > 0)

 = n∆∗E0{h(X)f(X)}.

Proof Note that

E

∑
ij

f(Xij)I(Xij > 0)

 =

1∑
i=0

niE{f(Xi1)I(Xi1 > 0)}

= n0(1− ν∗0 )E0{f(X)}+ n1(1− ν∗1 )E0{ω(X)f(X)},

where we use the DRM (S1.2) in the last step. Using the facts that w = n0/n and 1 − w = n1/n,
we further have

E

∑
ij

f(Xij)I(Xij > 0)

 = nw(1− ν∗0 )E0{f(X)}+ n(1− w)(1− ν∗1 )E0{ω(X)f(X)}.

Recall the definitions of ∆∗ and ρ∗. We then have

E

∑
ij

f(Xij)I(Xij > 0)

 = n∆∗E0{(1− ρ∗)f(X)}+ n∆∗E0[ρ∗ω(X)f(X)]
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= n∆∗E0{h(X)f(X)}.

This completes the proof. ut

With the help of Lemma 1, we calculate the expectation of ∂2H(η∗)/(∂η∂η>).

Lemma 2 With the form of ∂2H(η∗)/(∂η∂η>) given in (S1.13), we have

− 1

n
E

{
∂2H(η∗)

∂η∂η>

}
= A =

Aν 0 0
0 −Aρ Aρ,θ

0 Aθ,ρ Aθ

 ,

where

Aν = diag

{
w

ν∗0 (1− ν∗0 )
,

1− w
ν∗1 (1− ν∗1 )

}
, Aθ = ∆∗(1− ρ∗)E0

[
h1(X)Q(X)Q>(X)

]
,

Aρ = ∆∗E0

{
{ω(X)− 1}2

h(X)

}
= {ρ∗(1− ρ∗)}−1

[
∆∗ − {ρ∗(1− ρ∗)}−1e>Aθe

]
,

Aθ,ρ = A>ρ,θ = ∆∗E0

{
ω(X)

h(X)
Q(X)

}
= {ρ∗(1− ρ∗)}−1Aθe

with e = (1,0>d×1)>.

Proof Note that n00 ∼ Bin(n0, ν0) and n10 ∼ Bin(n1, ν1), where “Bin” denotes the binomial distri-
bution. Since w = n0/n and 1− w = n1/n, we can easily show that

− 1

n
E

{
∂2H(η∗)

∂ν∂ν>

}
= Aν .

Next, we apply Lemma 1 to find the remaining entries of E
{
∂2H(η∗)/(∂η∂η>)

}
. We use

E

{
∂2H(η∗)

∂θ∂θ>

}
as an illustration. For the other entries, the idea is similar and we omit the details.

Note that

− 1

n
E

{
∂2H(η∗)

∂θ∂θ>

}
=

1

n
E

∑
ij

h0(Xij)h1(Xij)Q(Xij)Q(Xij)
>I(Xij > 0)


= ∆∗E0

{
h(X)h0(X)h1(X)Q(X)Q(X)>

}
= ∆∗(1− ρ∗)E0

{
h1(X)Q(X)Q(X)>

}
,

where we have used Lemma 1 in the second step and the fact that h(x)h0(x) = 1− ρ∗ in the third
step. This completes the proof. ut

We now study the asymptotic properties of Sn defined in (S1.12). Recall thatW =
(
(1− ν∗0 )−1,−(1− ν∗1 )−1

)
and define S = w−1 + (1− w)−1.

Lemma 3 With the form of Sn in (S1.12), as n→∞

n−1/2Sn
d→ N(0,B),

where

B =

Aν 0 0
0 Aρ 0
0 0 Aθ

+

 0 −ρ∗(1− ρ∗)AρW> W>e>Aθ
−ρ∗(1− ρ∗)AρW −S{ρ∗(1− ρ∗)}2A2

ρ Sρ
∗(1− ρ∗)Aρe>Aθ

AθeW Sρ∗(1− ρ∗)AρAθe −SAθe(Aθe)>

 .
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Proof Using the results in Lemma 1, it is easy to show that E(Sn) = 0; we omit the details.

Next, we verify that Var(Sn) = B. For convenience, we write B as

B =

B11 B12 B13

B21 B22 B23

B31 B32 B33

 .

We concentrate on deriving B13; the other entries can be similarly obtained and we omit the details.

Note that Sn,ν and Sn,θ can be rewritten as

Sn,ν0 =
n00
ν∗0
− n01

1− ν∗0
= − n01

ν∗0 (1− ν∗0 )
= − 1

ν∗0 (1− ν∗0 )

n0∑
j=1

I(X0j > 0),

Sn,ν1 =
n10
ν∗1
− n11

1− ν∗1
= − n11

ν∗1 (1− ν∗1 )
= − 1

ν∗1 (1− ν∗1 )

n1∑
j=1

I(X1j > 0),

Sn,θ =

n1∑
j=1

Q(X1j)I(X1j > 0)−
∑
ij

h1(Xij)Q(Xij)I(Xij > 0)

=

n1∑
j=1

h0(X1j)Q(X1j)I(X1j > 0)−
n0∑
j=1

h1(X0j)Q(X0j)I(X0j > 0).

Then we have

1

n
Cov(Sn,ν0 ,S

>
n,θ) =

1

nν∗0 (1− ν∗0 )
Cov


n0∑
j=1

I(X0j > 0),

n0∑
j=1

h1(X0j)Q(X0j)
>I(X0j > 0)


=

n0
nν∗0 (1− ν∗0 )

[
(1− ν∗0 )E0

{
h1(X)Q(X)>

}
− (1− ν∗0 )2E0

{
h1(X)Q(X)>

}]
= wE0

{
h1(X)Q(X)>

}
= (1− ν∗0 )−1(Aθe)>.

Similarly,

1

n
Cov(Sn,ν1 ,S

>
n,θ) =

−1

nν∗1 (1− ν∗1 )
Cov


n1∑
j=1

I(X1j > 0),

n1∑
j=1

h0(X1j)Q(X1j)
>I(X1j > 0)


=

−n1
nν∗1 (1− ν∗1 )

[
(1− ν∗1 )E0

{
h0(X)ω(X)Q(X)>

}
− (1− ν∗1 )2E0

{
h0(X)ω(X)Q(X)>

}]
= −(1− w)E0

{
ω(X)h0(X)Q(X)>

}
= −(1− w) · 1− ρ∗

ρ∗
E0

{
h1(X)Q(X)>

}
= −(1− ν∗1 )−1(Aθe)>.

Recall that W =
(
(1− ν∗0 )−1,−(1− ν∗1 )−1

)
. Then B13 = W>e>Aθ.

Note that Sn in (S1.12) is a sum of independent random vectors. Therefore, by the classical
central limit theorem, we have as n→∞

n−1/2Sn
d→ N(0,B),

which completes the proof. ut
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S3 Proof of Theorem 1

With the preparation in Sections 1 and 2, we now move to the proof of Theorem 1.
Recall that η̂ satisfies

∂H(η̂)

∂η
= 0.

Applying the first-order Taylor expansion to ∂H(η̂)/∂η, and using (S1.12) and Lemma 2, we have

0 =
∂H(η∗)

∂η
+

(
∂2H(η∗)

∂η∂η>

)
(η̂ − η∗) + op(n

1/2)

= Sn − nA(η̂ − η∗) + op(n
1/2).

Conditions C1–C4 in the main paper ensure that the matrix A is positive definite. Hence, we obtain
an approximation for η̂ − η∗ as

η̂ − η∗ =

 ν̂ − ν∗ρ̂− ρ∗
θ̂ − θ∗

 =
1

n
A−1Sn + op(n

−1/2). (S3.14)

This together with the asymptotic property of Sn in Lemma 3 and Slutsky’s theorem gives

n1/2(η̂ − η∗) d→ N(0,A−1BA−1),

as n→∞.
To find the explicit form of A−1BA−1, we first identify the structure of A−1. We write(

−Aρ Aρ,θ

Aθ,ρ Aθ

)−1
=

(
A11 A12

A21 A22

)
.

Using the formula for the inverse of a 2× 2 block matrix, we have

A11 = {−Aρ − (Aρ,θ)A−1θ (Aθ,ρ)}−1

=
[
{ρ∗(1− ρ∗)}−2e>Aθe−∆∗{ρ∗(1− ρ∗)}−1 − {ρ∗(1− ρ∗)}−2e>Aθe

]−1
= −ρ

∗(1− ρ∗)
∆

,

A12 = (A21)> = −A11(Aρ,θ)A−1θ =
e>

∆∗
,

A22 = A−1θ +A−1θ (Aθ,ρ)A
11(Aρ,θ)A−1θ = A−1θ −

ee>

∆∗ρ∗(1− ρ∗)
.

Hence, A−1 is given by

A−1 =

A
−1
ν 0 0

0 −ρ
∗(1−ρ∗)
∆∗

e>

∆∗

0 e
∆∗ A−1θ −

ee>

∆∗ρ∗(1−ρ∗)

 . (S3.15)

With the form of A−1 in (S3.15) and the form of B in Lemma 3, after some tedious algebra, we
find that

Λ = A−1BA−1 =

 A−1ν ρ∗(1− ρ∗)A−1ν W
> 0

ρ∗(1− ρ∗)WA−1ν ρ∗(1− ρ∗){ 1
∆∗ − Sρ

∗(1− ρ∗)} 0

0 0 A−1θ −
ee>

∆∗ρ∗(1−ρ∗)

 .

Recall that S = w−1 + (1− w)−1. Some algebra leads to

1

∆∗
− Sρ∗(1− ρ∗) =

1

∆∗
{ρ∗ν∗0 + (1− ρ∗)ν∗1}.

This completes the proof of Theorem 1. ut
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S4 Proof of Theorem 2

Recall that we are interested in a class of general parameter vectors ψ of length p defined as

ψ =

∫ ∞
0

u(x;ν,θ)dG0(x),

where u(x;ν,θ) = (u1(x;ν,θ), . . . , up(x;ν,θ))
>

is a given (p×1)-dimensional function. The MELE
of ψ is given by

ψ̂ =

1∑
i=0

ni1∑
j=1

p̂iju(Xij ; ν̂, θ̂)

=
1

n01 + n11

1∑
i=0

ni1∑
j=1

u(Xij ; ν̂, θ̂)

1 + ρ̂[exp{α̂+ β̂
>
q(Xij)} − 1]

=
1

nw(1− ν̂0) + n(1− w)(1− ν̂1)

∑
ij

u(Xij ; ν̂, θ̂)

1 + ρ̂[exp{α̂+ β̂
>
q(Xij)} − 1]

I(Xij > 0).

Note that ψ̂ is a function of η̂, so we write ψ̂ as ψ̂(η̂). From Theorem 1, we have η̂ = η∗ +

Op(n
−1/2). Applying the first-order Taylor expansion to ψ̂(η̂), we get

ψ̂ = ψ̂(η∗) +

(
∂ψ̂(η∗)

∂η

)
(η̂ − η∗) + op(n

−1/2).

For convenience, we write u(x) = u(x;ν∗,θ∗). Note that

∂ψ̂(η∗)

∂η
=

(
∂ψ̂(η∗)

∂ν
,
∂ψ̂(η∗)

∂ρ
,
∂ψ̂(η∗)

∂θ

)
where

∂ψ̂(η∗)

∂ν
=

1

n∆∗2

∑
ij

{
∂u(Xij ;ν

∗,θ∗)/∂ν

h(Xij)
∆∗ + (w, 1− w)⊗ u(Xij)

h(Xij)

}
I(Xij > 0),

∂ψ̂(η∗)

∂ρ
= − 1

n∆∗

∑
ij

u(Xij){ω(Xij)− 1}
h(Xij)2

I(Xij > 0),

∂ψ̂(η∗)

∂θ
=

1

n∆∗

∑
ij

{∂u(Xij ;ν
∗,θ∗)/∂θ} · h(Xij)− u(Xij)ρ

∗ω(Xij)Q(X)>

h(Xij)2
I(Xij > 0),

where ⊗ indicates the Kronecker product. By the law of large numbers and Lemma 1, we have

∂ψ̂(η∗)

∂η

p→ C

as n→∞, where C = (Cν ,Cρ,Cθ) with

Cν = E0

{
∂u(X;ν∗,θ∗)

∂ν

}
+ (w, 1− w)⊗ ψ

∗

∆∗
,

Cρ = −E0

{
u(X){ω(X)− 1}

h(X)

}
=
ρ∗ψ∗ − E0 {h1(X)u(X)}

ρ∗(1− ρ∗)
,

Cθ = E0

[
{∂u(X;ν∗,θ∗)/∂θ} · h(X)− u(X)ρ∗ω(X)Q(X)>

h(X)

]
= E0

{
∂u(X;ν∗,θ∗)

∂θ

}
− E0

{
h1(X)u(X)Q(X)>

}
.
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For convenience, we let

E0u = E0{h0(X)u(X)} and E1u = E0{h1(X)u(X)}.

Then E0u + E1u = ψ∗ and

Cρ =
ρ∗ψ∗ −E1u

ρ∗(1− ρ∗)
.

Recall from (S3.14) that η̂ − η∗ = n−1A−1Sn + op(n
−1/2). Therefore, as n→∞, n1/2(ψ̂ −ψ∗)

has the same limiting distribution as

n1/2
[{
ψ̂(η∗)−ψ∗

}
+CA−1Sn/n

]
. (S4.16)

It can easily be verified that (S4.16) has expectation zero. We will now decompose its asymptotic
variance into three parts.

Note that the first term of (S4.16) involves

ψ̂(η∗) =
1

n∆∗

∑
ij

u(Xij)

h(Xij)
I(Xij > 0).

Then the variance of the first term in (S4.16) is

Γ 1 =
1

∆∗
E0

{
u(X)u(X)>

h(X)

}
− 1

w
E0{h0(X)u(X)}E0{h0(X)u(X)>}

− 1

1− w
E0{h1(X)u(X)}E0{h1(X)u(X)>}

=
1

∆∗
E0

{
u(X)u(X)>

h(X)

}
− 1

w
E0uE

>
0u −

1

1− w
E1uE

>
1u, (S4.17)

where in the first step we have used the results in Lemma 1, and in the second step we have used
the definitions of E0u and E1u.

Next, we derive the variance of the second term in (S4.16):

Γ 2 = nVar(CA−1Sn/n) = CΛC>.

Together with the form of Λ in Theorem 1, we have

Γ 2 = CνA
−1
ν C

>
ν + ρ∗(1− ρ∗)CνA−1ν W

>C>ρ + ρ∗(1− ρ∗)CρWA−1ν C
>
ν

+(∆∗)−1ρ∗(1− ρ∗){ρ∗ν∗0 + (1− ρ∗)ν∗1}CρC
>
ρ +Cθ

{
A−1θ −

ee>

∆∗ρ∗(1− ρ∗)

}
C>θ .

Note that

WA−1ν W
> =

ρ∗ν∗0 + (1− ρ∗)ν∗1
∆∗ρ∗(1− ρ∗)

.

Then

Γ 2 = {Cν + ρ∗(1− ρ∗)CρW }A−1ν {Cν + ρ∗(1− ρ∗)CρW }>

− 1

∆∗ρ∗(1− ρ∗)
(Cθe)(Cθe)> +CθA

−1
θ C

>
θ . (S4.18)

Lastly, we derive the covariance of the two terms in (S4.16). That is,

Γ 3 = nCov[ψ(η∗), n−1{CA−1Sn}>] = Cov{ψ(η∗),S>n }A
−1C>.

For convenience, we write Cov{ψ(η∗),S>n } = (Dν ,Dρ,Dθ).
We first look at

Cov{ψ(η∗),Sn,ν1}
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= Cov

 1

n∆∗

∑
ij

u(Xij)

h(Xij)
I(Xij > 0),

−n11
ν∗1 (1− ν∗1 )


=

−1

n∆∗ν∗1 (1− ν∗1 )
Cov


n1∑
j=1

u(X1j)

h(X1j)
I(X1j > 0),

n1∑
j=1

I(X1j > 0)


=

−n1
n∆∗ν∗1 (1− ν∗1 )

[
(1− ν∗1 )E0

{
u(X)ω(X)

h(X)

}
− (1− ν∗1 )2E0

{
u(X)ω(X)

h(X)

}]
=
−(1− w)

∆∗
E0

{
u(X)ω(X)

h(X)

}
= −(1− ν∗1 )−1E1u.

Similarly, we find

Cov{ψ(η∗),Sn,ν0} = −(1− ν∗0 )−1E0u.

Hence,

Dν =
(
−(1− ν∗0 )−1E0u,−(1− ν∗1 )−1E1u

)
.

We can find Dρ and Dθ in a similar manner. For Dρ,

Dρ = Cov{ψ(η∗), Sn,ρ}

= − 1

n∆∗
Cov

∑
ij

u(Xij)

h(Xij)
I(Xij > 0),

∑
ij

ω(Xij)− 1

h(Xij)
I(Xij > 0)


= Cρ +

∆∗

w
E0{h0(X)u(X)}E0[h0(X){ω(X)− 1}]

+
∆∗

(1− w)
E0{h1(X)u(X)}E0[h1(X){ω(X)− 1}]

= Cρ −∆∗mE0[h1(X){ω(X)− 1}],

where m = ψ∗/w − SE0{h1(X)u(X)} = ψ∗/w −E1u/{w(1− w)}.
For Dθ,

Dθ = Cov{ψ(η∗),S>n,θ}

=
1

n∆∗
Cov

∑
ij

u(Xij)

h(Xij)
I(Xij > 0),

n1∑
j=1

Q(X1j)
>I(X1j > 0)−

∑
ij

h1(Xij)Q(Xij)
>I(Xij > 0)


=

1

n∆∗
Cov

∑
ij

u(Xij)

h(Xij)
I(Xij > 0),

n1∑
j=1

h0(X1j)Q(X1j)
>I(X1j > 0)


− 1

n∆∗
Cov

∑
ij

u(Xij)

h(Xij)
I(Xij > 0),

n0∑
j=1

h1(X0j)Q(X0j)
>I(X0j > 0)


= (1− ρ∗)∆∗mE0{h1(X)Q(X)>}
= m(Aθe)>.

With the form of (Dν ,Dρ,Dθ) and the form of A−1 in (S3.15), Γ 3 is given as

Γ 3 = (Dν ,Dρ,Dθ)A−1C>

= DνA
−1
ν C

>
ν −

ρ∗(1− ρ∗)
∆∗

DρC
>
ρ +Dρ

e>

∆∗
C>θ +Dθ

e

∆∗
C>ρ +Dθ

{
A−1θ −

ee>

∆∗ρ∗(1− ρ∗)

}
C>θ
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= DνA
−1
ν C

>
ν +DθA

−1
θ C

>
θ +

1

∆∗
{Dθe− ρ∗(1− ρ∗)Dρ}C>ρ +

{
Dρ

∆∗
− Dθe

∆∗ρ∗(1− ρ∗)

}
e>C>θ .

With the forms of Dρ and Dθ, we have

DθA
−1
θ = me> and

1

∆∗
{Dθe− ρ∗(1− ρ∗)Dρ} = ρ∗(1− ρ∗)m− ρ∗(1− ρ∗)Cρ/∆

∗.

Hence,

Γ 3 = DνA
−1
ν C

>
ν +me>C>θ +

(
m− Cρ

∆∗

){
ρ∗(1− ρ∗)C>ρ − e>C

>
θ

}
= DνA

−1
ν C

>
ν +

(
m− Cρ

∆∗

)
ρ∗(1− ρ∗)C>ρ +

1

∆∗
Cρe

>C>θ . (S4.19)

Substituting Γ 2 into (S4.18) and Γ 3 into (S4.19) and using the facts that Cθ =M3,

Cν + ρ∗(1− ρ∗)CρW +Dν =M1, (S4.20)

and

− (Cθe)(Cθe)>

∆∗ρ∗(1− ρ∗)
+

1

∆∗
Cρe

>C>θ +
1

∆∗
CθeC

>
ρ −

Cρ

∆∗
ρ∗(1− ρ∗)C>ρ = − M2M>2

∆∗ρ∗(1− ρ∗)
,

we have

Γ 2 + Γ 3 + Γ>3 = (M1 −Dν)A−1ν (M1 −Dν)> − M2M>2
∆∗ρ∗(1− ρ∗)

+M3A
−1
θ M

>
3

+DνA
−1
ν C

>
ν +CνA

−1
ν D

>
ν + ρ∗(1− ρ∗)(mC>ρ +Cρm

>)− Cρ

∆∗
ρ∗(1− ρ∗)C>ρ

=M1A
−1
ν M>1 −

M2M>2
∆∗ρ∗(1− ρ∗)

+M3A
−1
θ M

>
3

+DνA
−1
ν (Cν −M1)> + (Cν −M1)A−1ν D

>
ν +DνA

−1
ν D

>
ν

+ρ∗(1− ρ∗)(mC>ρ +Cρm
>)− Cρ

∆∗
ρ∗(1− ρ∗)C>ρ . (S4.21)

Next we further simplify the form of Γ 2 + Γ 3 + Γ>3 . Note that with (S4.20), we have

DνA
−1
ν (Cν −M1)> +DνA

−1
ν D

>
ν + ρ∗(1− ρ∗)mC>ρ −

Cρ

∆∗
ρ∗(1− ρ∗)C>ρ

= −ρ∗(1− ρ∗)DνA
−1
ν W

>C>ρ + ρ∗(1− ρ∗)mC>ρ −
Cρ

∆∗
ρ∗(1− ρ∗)C>ρ

= ρ∗(1− ρ∗)
(
−DνA

−1
ν W

> +m− Cρ

∆∗

)
C>ρ .

With the forms of Dν , A−1ν , and W , we have

DνA
−1
ν W

> = − ν0
∆∗(1− ρ∗)

ψ∗ +
ρ∗ν0 + (1− ρ∗)ν1
∆∗ρ∗(1− ρ∗)

E1u

= − ν0
∆∗(1− ρ∗)

ψ∗ +

{
1

∆∗ρ∗(1− ρ∗)
− S

}
E1u

=
1− ν0

∆∗(1− ρ∗)
ψ∗ − SE1u −

1

∆∗ρ∗(1− ρ∗)
{ρ∗ψ∗ −E1u}

= m− Cρ

∆∗
.

Hence,

DνA
−1
ν (Cν −M1)> +DνA

−1
ν D

>
ν + ρ∗(1− ρ∗)mC>ρ −

Cρ

∆∗
ρ∗(1− ρ∗)C>ρ = 0
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and Γ 2 + Γ 3 + Γ>3 in (S4.21) becomes

Γ 2 + Γ 3 + Γ>3 =M1A
−1
ν M>1 −

M2M>2
∆∗ρ∗(1− ρ∗)

+M3A
−1
θ M

>
3

+(Cν −M1)A−1ν D
>
ν + ρ∗(1− ρ∗)Cρm

>. (S4.22)

With Γ 1 in (S4.17) and Γ 2 + Γ 3 + Γ>3 in (S4.22), to show that Γ = Γ 1 + Γ 2 + Γ 3 + Γ>3 , we
need to argue that

−ψ
∗ψ∗>

∆∗
= (Cν −M1)A−1ν D

>
ν + ρ∗(1− ρ∗)Cρm

> − 1

w
E0uE

>
0u −

1

1− w
E1uE

>
1u. (S4.23)

Note that

Cν =M1 + (w, 1− w)⊗ ψ
∗

∆∗
.

Then

(Cν −M1)A−1ν D
>
ν = − ν0

∆∗
ψE>0u −

ν1
∆∗
ψE>1u = −ψ

( ν0
∆∗

E>0u +
ν1
∆∗

E1u

)>
. (S4.24)

Recall that

ρ∗(1− ρ∗)Cρ = ρ∗ψ∗ −E1u = ρ∗E0u − (1− ρ∗)E1u

and

m = ψ∗/w −E1u/{w(1− w)} = E0u/w −E1u/(1− w).

Then

ρ∗(1− ρ∗)Cρm
> − 1

w
E0uE

>
0u −

1

1− w
E1uE

>
1u

= {ρ∗E0u − (1− ρ∗)E1u} {E0u/w −E1u/(1− w)}> − 1

w
E0uE

>
0u −

1

1− w
E1uE

>
1u

= −1− ρ∗

w
E0uE

>
0u −

1− ρ∗

w
E1uE

>
0u −

ρ∗

1− w
E0uE

>
1u −

ρ∗

1− w
E1uE

>
1u

= −(E0u + E1u)

(
1− ρ∗

w
E0u +

ρ∗

1− w
E1u

)>
= −ψ∗

(
1− ν0
∆∗

E0u +
1− ν1
∆∗

E1u

)>
. (S4.25)

Since E0u + E1u = ψ, combining (S4.24) and (S4.25) gives

(Cν −M1)A−1ν D
>
ν + ρ∗(1− ρ∗)Cρm

> − 1

w
E0uE

>
0u −

1

1− w
E1uE

>
1u = − 1

∆
ψψ∗>,

which verifies (S4.23). Hence,

Γ = Γ 1 + Γ 2 + Γ 3 + Γ>3 .

Applying Slutsky’s theorem and the central limit theorem to (S4.16), we get as n→∞

n1/2
(
ψ̂ −ψ∗

)
d→ N (0,Γ ) .

This completes the proof of Theorem 2. ut
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S5 Proof of Corollary 1

Note that for ψ =
(
ψ>0 ,ψ

>
1

)>
, u(x;ν,θ) can be written as

u(X;ν,θ) =

(
(1− ν0)a(x)

(1− ν1)a(x)ω(x;θ)

)
. (S5.26)

We substitute this u(x;ν,θ) into Γ in Theorem 2 and obtain Γ sem.
Note that

E0

{
u(X;ν∗,θ∗)

∂ν

}
=

− ψ0

1−ν∗0
0

0 − ψ1

1−ν∗1


and

E0

{
∂u(X;ν∗,θ∗)

∂θ

}
=

(
0

(1− ν∗1 )E0{a(X)ω(X)Q(X)>}

)
.

Then we have M1 = diag {−ψ0/(1− ν∗0 ),−ψ1/(1− ν∗1 )} and

M2 =

(
−ρ∗ψ0

(1− ρ∗)ψ1

)
, M3 =

(
−w−1∆∗(1− ρ∗)E0{h1(X)a(X)Q(X)>}

(1− w)−1∆∗(1− ρ∗)E0{h1(X)a(X)Q(X)>}

)
.

Substituting M1, M2, and M3 into Γ and simplifying, we find that Γ sem is

Γ sem =
1

∆∗
E0

{
u(X)u(X)>

h(X)

}
−

 ψ0ψ
>
0

w 0

0
ψ1ψ

>
1

1−w

+

(
1
w2 − 1

w(1−w)

− 1
w(1−w)

1
(1−w)2

)
⊗D1,

where
D1 = {∆∗(1− ρ∗)}2E0{h1(X)a(X)Q(X)>}A−1θ E0{h1(X)Q(X)a(X)>}.

Substituting (S5.26) into the first term of Γ sem, we find that

1

∆∗
E0

{
u(X)u(X)>

h(X)

}
=

(
w−1(V0 +ψ0ψ

>
0 ) 0

0 (1− w)−1(V1 +ψ1ψ
>
1 )

)
−

(
1
w2 − 1

w(1−w)

− 1
w(1−w)

1
(1−w)2

)
⊗D0,

where
D0 = ∆∗(1− ρ∗)E0{h1(X)a(X)a(X)>}.

Hence,

Γ sem = Γ non −

(
1
w2 − 1

w(1−w)

− 1
w(1−w)

1
(1−w)2

)
⊗ (D0 −D1).

Recall that
d(X) = a(X)−∆∗(1− ρ∗)E0

{
h1(X)a(X)Q(X)>

}
A−1θ Q(X)

and
Aθ = ∆∗(1− ρ∗)E0

[
h1(X)Q(X)Q>(X)

]
.

It can be verified that

E0

{
h1(X)d(X)d(X)>

}
=

1

∆∗(1− ρ∗)
(D0 −D1).

Therefore,

Γ sem = Γ non −∆∗(1− ρ∗)E0

{
h1(X)

(
w−1d(X)

−(1− w)−1d(X)

)(
w−1d(X)

−(1− w)−1d(X)

)>}
,

as claimed in Corollary 1. This completes the proof. ut
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S6 Additional simulation study

In our setup, the basis function q(x) in the DRM (S1.2) needs to be prespecified. In this section,
we provide an additional small simulation to study the impact of misspecification of q(x) on the
performance of our proposed estimators and confidence intervals (CIs). Table S1 gives the parameter
settings for the simulation study.

Table S1 Parameter settings for simulation studies: G0 = LN (a0, b0) and G1 = LN (a1, b1).

(ν0, ν1) (a0, a1) (b0, b1) correctly-specified q(x) δ σ2
0 σ2

1
(0.3,0.5) (0.33,0.66) (1,1) log x 0.99 7.43 11.29

(1,1.25) (x, log x) 1.13 7.43 19.54

(0.3,0.3) (0,0.5) (1,1) log x 1.65 3.84 10.44
(1,1.25) (x, log x) 1.87 3.84 18.53

For all the models listed in Table S1, we use q(x) = log x to fit the DRM. Hence, this q(x) is
misspecified for the settings with (b0, b1) = (1, 1.25). For each model, we still consider four com-
binations of the sample sizes (n0, n1): (50, 50), (100, 100), (50, 150), and (150, 50). The number of
replications is 10,000 for each configuration of the parameter settings. For the methods calibrated
by the bootstrap method, 999 bootstrap samples are drawn from the original sample.

We consider all estimators, as discussed in Section 3.2 of the main paper, of the mean ratio δ
and the population variances σ2

0 and σ2
1 . Tables S2 and S3 present the biases and mean square errors

(MSEs) of these estimators. When the DRM is fitted by the misspecified basis function q(x), the
biases of the proposed estimators slightly increase but are still acceptable. The MSEs of the proposed
estimators remain comparable to the fully nonparametric estimators. Moreover, the estimators δ̂ and
σ̂2
1 always give smaller MSEs than those of the fully nonparametric estimators δ̃ and σ̃2

1 , respectively.

Table S2 Bias and mean square error of point estimates for δ, σ2
0 , and σ2

1 with (ν0, ν1) = (0.3, 0.5) and (a0, a1) =
(0.33, 0.66).

δ̃ δ̂ σ̃2
0 σ̂2

0 σ̃2
1 σ̂2

1
(b0, b1) (n0, n1) Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
(1, 1) (50, 50) 0.06 0.17 0.03 0.11 -0.05 104.16 -0.03 54.97 0.19 426.17 -0.15 292.11

(50, 150) 0.06 0.10 0.03 0.07 -0.05 118.37 0.19 36.01 0.11 120.63 -0.08 100.58
(150, 50) 0.01 0.11 0.02 0.08 0.02 42.75 -0.12 23.86 -0.26 193.29 -0.16 135.72
(100, 100) 0.03 0.08 0.02 0.05 -0.06 57.48 -0.10 21.76 -0.09 147.69 -0.21 108.06

(1, 1.25) (50, 50) 0.06 0.26 -0.07 0.15 -0.02 101.56 2.51 157.28 -0.29 1,834.17 -3.25 1,183.53
(50, 150) 0.07 0.15 -0.08 0.09 -0.02 101.56 4.58 208.71 0.34 1,168.17 -1.35 965.79
(150, 50) 0.02 0.17 -0.10 0.11 -0.05 41.34 1.21 45.03 -0.87 1,112.45 -5.04 477.88
(100, 100) 0.04 0.12 -0.09 0.08 -0.17 43.43 2.83 148.65 0.46 2,271.41 -2.74 1,588.47

Table S3 Bias and mean square error of point estimates for δ, σ2
0 , and σ2

1 with (ν0, ν1) = (0.3, 0.3) and (a0, a1) =
(0, 0.5).

δ̃ δ̂ σ̃2
0 σ̂2

0 σ̃2
1 σ̂2

1
(b0, b1) (n0, n1) Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE
(1, 1) (50, 50) 0.10 0.37 0.06 0.27 0.02 33.28 0.04 9.29 -0.14 190.88 -0.41 160.50

(50, 150) 0.09 0.24 0.05 0.17 -0.01 27.55 0.15 6.82 0.11 106.76 -0.03 97.86
(150, 50) 0.03 0.22 0.02 0.15 -0.05 8.84 -0.05 4.72 -0.12 173.09 -0.35 109.84
(100, 100) 0.04 0.17 0.03 0.12 0.02 18.88 0.00 3.54 -0.12 211.21 -0.22 196.79

(1, 1.25) (50, 50) 0.11 0.55 -0.12 0.34 -0.01 27.13 1.73 32.99 -0.38 1,158.33 -2.36 920.49
(50, 150) 0.11 0.35 -0.13 0.22 -0.01 27.13 2.59 35.37 0.29 1,117.63 -0.64 1,046.12
(150, 50) 0.04 0.35 -0.15 0.23 -0.03 11.04 0.99 11.46 -0.69 779.72 -3.85 489.75
(100, 100) 0.06 0.26 -0.15 0.18 -0.09 11.60 1.83 31.71 0.46 2,209.98 -1.51 1,915.74
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We also examine the behavior of the 95% CIs of the mean ratio δ, as discussed in Section 3.3
of the main paper. The coverage probabilities (CPs) and average lengths (ALs) of CIs are included
in Tables S4 and S5, respectively. The CIs I1B and I2B have similar and best performance among
all the considered CIs in terms of the CP. The CIs I4 always have the lowest CPs and the shortest
ALs. The CIs I3 and I4L have similar CPs as the CIs I1 and I2 but slightly shorter ALs.

Table S4 Coverage probability (%) and average length of 95% CIs for δwith (ν0, ν1) = (0.3, 0.5) and (a0, a1) =
(0.33, 0.66).

I1 I1B I2 I2B I3 I4 I4L
(b0, b1) (n0, n1) CP AL CP AL CP AL CP AL CP AL CP AL CP AL
(1,1) (50, 50) 92.3 1.55 94.5 1.92 91.5 1.52 94.1 1.84 94.3 1.36 92.8 1.25 94.8 1.34

(50, 150) 92.6 1.17 94.3 1.36 93.0 1.15 94.7 1.30 94.8 1.04 93.5 0.97 95.0 1.01
(150, 50) 92.5 1.27 94.2 1.66 91.3 1.25 93.7 1.56 94.8 1.11 93.3 1.06 95.2 1.11
(100, 100) 94.2 1.06 95.4 1.19 92.7 1.06 93.9 1.18 94.8 0.92 94.2 0.88 95.2 0.91

(1, 1.25) (50, 50) 91.82 1.91 94.12 2.94 90.92 1.86 93.59 2.50 91.44 1.49 85.40 1.36 91.67 1.47
(50, 150) 92.94 1.41 94.62 1.66 92.11 1.40 94.20 1.62 91.76 1.14 85.52 1.06 91.17 1.11
(150, 50) 91.15 1.60 93.41 3.69 90.11 1.56 92.88 2.24 90.03 1.19 84.73 1.12 90.87 1.18
(100, 100) 93.33 1.31 94.81 2.11 92.71 1.32 94.56 1.61 90.59 1.00 84.77 0.95 90.52 0.98

Table S5 Coverage probability (%) and average length of 95% CIs for δ with (ν0, ν1) = (0.3, 0.3) and (a0, a1) =
(0, 0.5).

I1 I1B I2 I2B I3 I4 I4L
(b0, b1) (n0, n1) CP AL CP AL CP AL CP AL CP AL CP AL CP AL
(1,1) (50, 50) 92.6 2.23 94.5 2.66 91.4 2.24 93.8 2.65 94.0 1.98 92.6 1.85 94.0 1.95

(50, 150) 92.6 1.79 94.2 2.07 91.5 1.77 93.5 2.00 94.8 1.61 93.8 1.53 94.5 1.58
(150, 50) 92.7 1.77 94.5 2.68 92.2 1.78 94.2 2.14 94.4 1.54 92.9 1.47 94.6 1.52
(100, 100) 93.5 1.56 95.0 1.75 92.8 1.56 94.4 1.72 94.3 1.37 93.5 1.30 94.5 1.34

(1, 1.25) (50, 50) 92.14 2.76 94.25 3.74 91.33 2.72 93.85 3.44 90.83 2.23 84.83 2.05 90.62 2.18
(50, 150) 92.66 2.14 94.41 2.51 91.67 2.13 93.80 2.45 92.03 1.80 86.37 1.69 91.32 1.76
(150, 50) 92.07 2.24 93.82 4.84 91.29 2.23 93.50 2.98 88.56 1.71 82.98 1.61 88.67 1.68
(100, 100) 93.56 1.92 95.00 2.44 92.95 1.94 94.52 2.27 89.73 1.53 84.21 1.44 89.22 1.49

In conclusion, the misspecification of q(x) may increase the biases of the proposed estimators
under the DRM, however, the MSEs of the proposed estimators still remain comparable with the
MSEs of the nonparametric counterparts. For the CIs, the problem of low CPs seems to arise under
the DRM with misspecified basis function, and using the log transformation and the empirical-
likelihood-ratio based method may relatively alleviate the problem. On the other hand, it seems
that the ALs of the proposed CIs under the DRM are always shorter than the ALs of the fully
nonparametric alternatives.
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