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Abstract
In this paper, we propose new semiparametric procedures for inference on linear 
functionals in the context of two semicontinuous populations. The distribution of 
each semicontinuous population is characterized by a mixture of a discrete point 
mass at zero and a continuous skewed positive component. To utilize the informa-
tion from both populations, we model the positive components of the two mixture 
distributions via a semiparametric density ratio model. Under this model setup, we 
construct the maximum empirical likelihood estimators of the linear functionals. 
The asymptotic normality of the proposed estimators is established and is used to 
construct confidence regions and perform hypothesis tests for these functionals. We 
show that the proposed estimators are more efficient than the fully nonparametric 
ones. Simulation studies demonstrate the advantages of our method over existing 
methods. Two real-data examples are provided for illustration.

Keywords  Empirical likelihood · Density ratio model · Linear functional · Zero-
excessive data

1  Introduction

Suppose that two independent samples are generated by the following mixture 
models:
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where �i ∈ (0, 1) , ni is the sample size for the ith sample, I(⋅) is an indicator func-
tion, and the Gi(⋅) ’s are the cumulative distribution functions (CDFs) of the posi-
tive observations in the ith sample. We are interested in estimating linear functionals 
(Fernholz 1983, p. 6) of F0(x) and F1(x) , defined as

for some given function �(x).
Many statistical applications naturally produce semicontinuous data with a mix-

ture of excessive zero values and skewed positive outcomes. Examples include med-
ical costs in public health research (Zhou and Tu 2000) and, in biological science, 
seasonal activity patterns for field mice (Koopmans 1981). More examples can be 
found in Wang et al. (2017) and in a special issue of the Biometrical Journal (Böhn-
ing and Alfò 2016) and the references therein. The functionals �0 and �1 include 
the usual summary quantities like the centered and uncentered moments, and are 
widely used. For example, in public health research the mean ratio of two popula-
tions is a desirable summary quantity that characterizes the differences in medical 
costs between two groups (Zhou and Tu 2000). In business and economic studies, 
the moments and the generalized entropy class of inequality measures are important 
(Dufour et al. 2019).

Most existing procedures for inference on �0 and �1 are either fully parametric 
or fully nonparametric. The parametric procedures are developed under a paramet-
ric model assumption, for example, a log-normal assumption, on Gi , i = 0, 1 . Under 
this assumption, Tu and Zhou (1999) and Zhou and Tu (1999) developed a Wald-
type test and a likelihood ratio test for the equality of two population means. Under 
the same assumption, Zhou and Tu (2000) proposed a maximum likelihood method 
and a two-stage bootstrap method to construct the confidence intervals (CIs) for the 
mean ratio; Chen and Zhou (2006) developed a set of approaches for constructing 
CIs for the mean ratio based on the generalized pivot and likelihood ratio statistic. 
The fully nonparametric methods usually first estimate F0(x) and F1(x) by the cor-
responding empirical CDFs, which are then used to construct the estimators for �0 
and �1 . The asymptotic results for this type of estimator have been well studied in 
the literature; see Serfling (1980) for more details. The nonparametric Wald-type 
method (Brunner et al. 1997; Pauly et al. 2015; Dufour et al. 2019) and the empirical 
likelihood (EL) method (Kang et al. 2010; Wu and Yan 2012; Satter and Zhao 2021) 
were also used to construct CIs and perform hypothesis testing for �0 and �1.

In general, the methods based on the parametric assumption on the Gi ’s are quite 
efficient. However, in many applications, this assumption, e.g., the log-normal assump-
tion for Gi , may be violated. The corresponding parametric inference results may not 
be robust to model misspecification on the Gi ’s (Nixon and Thompson 2004). The fully 
nonparametric methods are generally quite robust to the model assumption on the Gi’s. 
In the two-sample setting, the two populations may share certain characteristics. For 
example, the strengths of lumber produced in Canada in different years may follow 

(1)Xi1,… ,Xini
∼ Fi(x) = 𝜈iI(x ≥ 0) + (1 − 𝜈i)I(x > 0)Gi(x), for i = 0, 1,

(2)�0 = ∫
∞

0

�(x)dF0(x) and �1 = ∫
∞

0

�(x)dF1(x)
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similar distributions (Chen and Liu 2013; Cai et al. 2017; Cai and Chen 2018). There is 
also a relationship between the distributions of biomarkers for the diagnosis of Duch-
enne muscular dystrophy in case and control groups (Yuan et al. 2021). The fully non-
parametric methods, however, ignore such information.

In this paper, we propose new semiparametric procedures for estimating �0 and �1 
based on the semiparametric density ratio model (DRM; Anderson 1979; Qin 2017), 
which utilize the information from both populations effectively. Let dGi(x) be the prob-
ability density function of Gi(x) , i = 0, 1 . The DRM links the two CDFs G0(x) and 
G1(x) in mixture model (1) via

for a prespecified, nontrivial, basis function �(x) of dimension d and unknown 
parameters � and � . In the DRM (3), the baseline distribution G0(x) is not speci-
fied. Hence, the DRM is a semiparametric model and avoids distributional assump-
tions on G0(x) and G1(x) . It is also quite flexible and has many important statistical 
models as special cases. For example, when q(x) = log(x) , the DRM includes the 
log-normal distribution of the same variance with respect to the log-scale, as well as 
the gamma distribution with the same scale parameters (Kay and Little 1987). Jiang 
and Tu (2012) observed that the DRM is actually broader than Cox proportional 
hazard models. It is also closely related to the well-studied logistic regression (Qin 
and Zhang 1997). Inference under the DRM can be converted to that under logistic 
regression (Wang et al. 2017).

The DRM has been proved to be a useful tool for inference when there is an excess 
of zeros in the data. Wang et  al. (2017, 2018) developed the EL ratio (ELR) statis-
tics for testing the homogeneity of distributions and the equality of population means, 
respectively. In the same setup, Lu et al. (2020) considered a test for the equality of 
the zero proportions and the equality of the means of two positive components jointly. 
Their simulation results showed that the proposed tests have great power advantages 
over existing nonparametric tests. To the best of our knowledge, semiparametric infer-
ence procedures such as point estimation and confidence regions for �0 and �1 have 
not been explored under the mixture model (1) and the DRM (3). This paper aims to fill 
this gap.

Under the mixture model (1) and the DRM (3), we consider a class of general func-
tionals � of dimension p, defined as

where � = (𝜈0, 𝜈1)
⊤ , � = (𝛼, �⊤)⊤ , and �(x;�,�) =

(
u1(x;�,�),… , up(x;�,�)

)⊤ is a 
given (p × 1)-dimensional function. The parameters of interest are defined through 
�(�) , where �(⋅) ∶ p → q is a smooth function of � . Note that � covers �0 and �1 , 
defined in (2), as special cases under �(0) = � , with

(3)dG1(x) = exp{𝛼 + �⊤�(x)}dG0(x)

(4)� = ∫
∞

0

�(x;�,�)dG0(x),

(5)�(X;�,�) =

(
�0(X;�,�)

�1(X;�,�)

)
=

(
(1 − 𝜈0)�(x)

(1 − 𝜈1)�(x) exp{𝛼 + �⊤�(x)}

)
.
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The parameters � and �(�) together cover many important summary quantities; see 
Sect. 2.4 for examples. Following Owen (2001), we construct the maximum EL esti-
mator (MELE) of � . We also establish the asymptotic normality of the MELE of � . 
These results enable us to construct confidence regions for � and �(�) and perform 
hypothesis testing on � and �(�) . We apply the results for general � to �0 and �1 , 
and then show that the asymptotic variances of the MELEs of �0 and �1 are smaller 
than or equal to those of nonparametric estimators of �0 and �1.

The rest of this paper is organized as follows. In Sect. 2, we study the asymptotic 
properties of the MELE of (�,�) as well as the MELE of � . We further provide exam-
ples for � and �(�) which cover several important summary quantities. Simulation 
results are presented in Sect. 3, and two real-data applications are given in Sect. 4. We 
conclude the paper with some discussion in Sect. 5. All the technical details are pro-
vided in the supplementary material.

2 � Main results

Let ni0 and ni1 be the (random) numbers of zero observations and positive observations, 
respectively, in each sample i = 0, 1 . Clearly, ni = ni0 + ni1 , for i = 0, 1 . Without loss of 
generality, we assume that the first ni1 observations in group i, Xi1,… ,Xini1

 , are posi-
tive, and the remaining ni0 observations are 0. Let n be the total (fixed) sample size, i.e., 
n = n0 + n1.

2.1 � Point estimation of Ã  and �(Ã)

We first discuss the maximum EL procedure for estimating the unknown parameters 
and functions in models (1) and (3).

With the two samples of observations from model (1), the full likelihood function is

Following the EL principle (Owen 2001), we model the baseline distribution G0(x) 
as

where pij = dG0(Xij) for i = 0, 1 and j = 1,… , ni1 . With (6) and under the DRM (3), 
the full likelihood function can be rewritten as

where the pij ’s satisfy the constraints

Ln =

1∏
i=0

{
�
ni0
i

(
1 − �i

)ni1 ni1∏
j=1

dGi

(
Xij

)}
.

(6)G0(x) =

1∑
i=0

ni1∑
j=1

pijI(Xij ≤ x),

Ln =

1∏
i=0

𝜈
ni0
i

(
1 − 𝜈i

)ni1
⋅

{
1∏
i=0

ni1∏
j=1

pij

}
⋅

[
n11∏
j=1

exp
{
𝛼 + �⊤�(X1j)

}]
,
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These constraints ensure that G0(x) and G1(x) are CDFs.
Let P = {pij} . The MELE of (�,�,P) is then defined as

subject to the constraints in (7). We write the logarithm of the EL function Ln as

where

Here �0(�) is the binomial log-likelihood function corresponding to the number 
of zero observations, and �̃1(�,P) represents the empirical log-likelihood function 
associated with the positive observations.

Following Wang et al. (2017), we have �̂ = argmax� �0(�) and

By the method of Lagrange multipliers, �̂ can be obtained by maximizing the fol-
lowing dual empirical log-likelihood function (Cai et al. 2017):

where 𝜌̂ = n11{n01 + n11}
−1 . That is, �̂ = argmax� �1(�) . Note that 𝜌̂ is a random 

variable in our setup. This is fundamentally different from the case where there is 
no excess of zeros in the data (Qin and Zhang 1997), and it creates theoretical chal-
lenges for our asymptotic development in the next section.

Once �̂ is obtained, the MELEs of the p̂ij ’s are (Wang et al. 2017)

and the MELEs of G0(x) and G1(x) are

(7)pij > 0,

1∑
i=0

ni1∑
j=1

pij = 1, and

1∑
i=0

ni1∑
j=1

pij exp
{
𝛼 + �⊤�(Xij)

}
= 1.

(�̂, �̂, P̂) = argmax
�,�,P

Ln

�̃(�,�,G0) = �0(�) + �̃1(�,P),

�0(�) =

1∑
i=0

log
{
𝜈
ni0
i

(
1 − 𝜈i

)ni1} and �̃1(�,P) =

n11∑
j=1

{
𝛼 + �⊤�(X1j)

}
+

1∑
i=0

ni1∑
j=1

log pij.

(�̂, P̂) = argmax
�,P{

�̃1(�,P) ∶ pij > 0,

1∑
i=0

ni1∑
j=1

pij = 1,

1∑
i=0

ni1∑
j=1

pij exp
{
𝛼 + �⊤�(Xij)

}
= 1

}
.

�1(�) = −

1∑
i=0

ni1∑
j=1

log
{
1 + 𝜌̂[exp{𝛼 + �⊤�(Xij)} − 1]

}
+

n11∑
j=1

{𝛼 + �⊤�(X1j)},

p̂ij = {n01 + n11}
−1
{
1 + 𝜌̂[exp{𝛼̂ + �̂

⊤
�(Xij)} − 1]

}−1

,
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By the definition of � in (4), � is a function of (�,�) and G0 . Replacing them with 
(�̂, �̂) and Ĝ0 , the MELE of � is

and the estimator of �(�) is �(�̂).
When �(x;�,�) takes the specific form of (5), we obtain the MELEs of �0 and 

�1 , defined in (2), as

2.2 � Asymptotic properties

In this section, we first study the asymptotic properties of �̂ = (�̂⊤, 𝜌̂, �̂
⊤
)⊤ and then 

apply these results to establish the asymptotic properties of �̂ and �(�̂) . Without 
loss of generality, we assume that �(0) = � throughout the paper; this assumption is 
satisfied by all the examples considered in Sect. 2.4.

For ease of presentation, we introduce some notation. We use �∗ and �∗ to denote 
the true values of � and � , respectively. Let �(x) = (1, �(x)⊤)⊤ and

where E0(⋅) represents the expectation operator with respect to G0 and X refers to a 
random variable from G0 . Note that although �(⋅) , h(⋅) , and h1(⋅) also depend on �∗ 
and/or �∗ , we drop these redundant parameters for notational simplicity.

The asymptotic results in this section are developed under the following regular-
ity conditions: 

C1:	The true value �∗
i
 satisfies 0 < 𝜈∗

i
< 1 for i = 0, 1.

Ĝ0(x) =

1∑
i=0

ni1∑
j=1

p̂ijI(Xij ≤ x) and

Ĝ1(x) =

1∑
i=0

ni1∑
j=1

p̂ij exp{𝛼̂ + �̂
⊤
�(Xij)}I(Xij ≤ x).

�̂ =

1∑
i=0

ni1∑
j=1

p̂ij�(Xij;�̂, �̂),

(8)

�̂0 =

1∑
i=0

ni1∑
j=1

p̂ij(1 − 𝜈̂0)�(Xij) and

�̂1 =

1∑
i=0

ni1∑
j=1

p̂ij(1 − 𝜈̂1)�(Xij) exp{𝛼̂ + �̂
⊤
�(x)}.

w = n0∕n, Δ
∗ = w(1 − 𝜈∗

0
) + (1 − w)(1 − 𝜈∗

1
), 𝜌∗ =

(1 − w)(1 − 𝜈∗
1
)

Δ∗
,

𝜔(x) = exp{�∗⊤�(x)}, h(x) = 1 + 𝜌∗{𝜔(x) − 1}, h1(x) = 𝜌∗𝜔(x)∕h(x),

�� = diag

{
w

𝜈∗
0
(1 − 𝜈∗

0
)
,

1 − w

𝜈∗
1
(1 − 𝜈∗

1
)

}
, �� = Δ∗(1 − 𝜌∗)E0

{
h1(X)�(X)�(X)⊤

}
,
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C2:	As the total sample size n goes to infinity, n0∕n = w for some constant w ∈ (0, 1).

C3:	The components of �(x) are continuous and stochastically linearly independent.
C4:	∫ ∞

0
exp{�⊤�(x)}dG0(x) < ∞ for all � in a neighborhood of the true value �∗.

Condition C1 ensures that the binomial likelihood �0(�) has regular properties. Con-
dition C2 means that both n0 and n1 go to the infinity at the same rate. Conditions 
C1 and C2 imply that �� is positive definite. Condition C3 ensures that no linear 
combinations of any components of �(x) can be 0 with probability 1 under G0 . Con-
dition C4 guarantees the existence of finite moments of �(X) in a neighborhood of �∗ 
under both G0(x) and G1(x) . Conditions C3 and C4 together imply that �� is positive 
definite.

The following theorem establishes the asymptotic normality of �̂.

Theorem  1  Let �∗ = (�∗⊤, 𝜌∗,�∗⊤)⊤ . Assume that Conditions C1–C4 are satisfied. 
As n → ∞,

where d
→

 denotes “convergence in distribution” and

with � =
(
(1 − �∗

0
)−1,−(1 − �∗

1
)−1

)
 and e = (1, �⊤

d×1
)⊤.

Qin and Zhang (1997) considered the asymptotic normality of 
√
n(�̂ − �∗) when 

there is no excess of zeros in the data. Theorem 1 generalizes their results to the case 
where the data contain excessive zeros. Furthermore, it establishes the joint limit-
ing distribution of 

√
n(�̂ − �∗) , 

√
n(�̂ − �∗) , and 

√
n(𝜌̂ − 𝜌∗) , where the latter two 

are induced by the semicontinuous data structure. This joint limiting distribution 
plays an important role in deriving the asymptotic normality of �̂ in the following 
theorem.

Theorem 2  Let �∗ be the true value of � . Under the conditions of Theorem 1, as 
n → ∞ , 

(a)	
√
n(�̂ − �∗)

d
→ N(�,�), where

with

n1∕2(�̂ − �∗)
d
→ N(�,�),

� =

⎛⎜⎜⎝

�−1
�

𝜌∗(1 − 𝜌∗)�−1
�
�⊤ �

𝜌∗(1 − 𝜌∗)��−1
�

(Δ∗)−1𝜌∗(1 − 𝜌∗){𝜌∗𝜈∗
0
+ (1 − 𝜌∗)𝜈∗

1
} �

� � �−1
�

−
ee⊤

Δ∗𝜌∗(1−𝜌∗)

⎞⎟⎟⎠

� =
1

Δ∗
E0

{
�(X;�∗,�∗)�(X;�∗,�∗)⊤

h(X)

}
−

�∗�∗⊤

Δ∗

+M1�
−1
�
M

⊤

1
−

M2M
⊤

2

Δ∗𝜌∗(1 − 𝜌∗)
+M3�

−1
�
M

⊤

3
,
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(b)	 for some smooth function �(⋅) ∶ p → q , 
√
n{�(�̂) − �(�∗)}

d
→ N

�
0,��

�
, where 

Li et al. (2018) derived a similar result in their Theorem 2.1 for �̂ when there 
is no excess of zeros in the data and p = 1 . Theorem 2 covers the case with exces-
sive zeros. The two results complement each other to cover both cases.

We now apply the results for �̂ in Theorem 2 to �̂0 and �̂1 in (8), and then 
compare them with the fully nonparametric estimators �̃0 and �̃1:

For i = 0, 1 , let

Then, 
√
n
�
�̃⊤

0
− �⊤

0
, �̃⊤

1
− �⊤

1

�⊤ has the asymptotic variance–covariance matrix

In comparison with the asymptotic variance of the MELEs �̂0 and �̂1 given in (8), 
we have the following results.

Corollary 1  Under the conditions of Theorem 1, as n → ∞,

where

with

M1 = E0

{
𝜕�(X;�∗,�∗)

𝜕�

}
,

M2 = E0

[{
𝜕�(X;�∗,�∗)∕𝜕�

}
e
]
− 𝜌∗�∗,

M3 = E0

{
𝜕�(X;�∗,�∗)∕𝜕� − h1(X)�(X;�

∗,�∗)�(X)⊤
}
;

�� =

{
𝜕�(�∗)

𝜕�

}
�

{
𝜕�(�∗)

𝜕�

}⊤

.

�̃0 =
1

n0

n0∑
j=1

�(X0j) and �̃1 =
1

n1

n1∑
j=1

�(X1j).

�i = ∫
∞

0

�(x){�(x)}⊤dFi(x) − ∫
∞

0

�(x)dFi(x)∫
∞

0

{�(x)}⊤dFi(x).

�non =

(
w−1�0 �

� (1 − w)−1�1

)
.

√
n

�
�̂0 − �0

�̂1 − �1

�
d
→ N(�,�sem),

�sem = �non − Δ∗(1 − 𝜌∗)E0

{
h1(X)

(
w−1�(X)

−(1 − w)−1�(X)

)(
w−1�(X)

−(1 − w)−1�(X)

)⊤
}

,

�(X) = �(X) − Δ∗(1 − 𝜌∗)E0

{
h1(X)�(X)�(X)⊤

}
�−1

�
�(X).
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Corollary 1 implies that �non − �sem is positive semidefinite. Hence, the proposed 
MELEs of �0 and �1 are more efficient than the corresponding nonparametric ones. 
The simulation studies in Sect. 3 confirm this property.

2.3 � Confidence regions and hypothesis tests for Ã  and �(Ã)

The two variance–covariance matrices � and �� may depend on �∗ and G0 . Replac-
ing them by �̂ and Ĝ0 , we get the corresponding estimators �̂ and �̂� . With the 
results of Theorem 1, it can easily be shown that both �̂ and �̂� are consistent; the 
details are omitted.

Theorem  3  Under the conditions of Theorem  1, as n → ∞ , �̂
p
→ � and �̂�

p
→ �� , 

where p→ denotes “convergence in probability.”

Theorems 2 and 3 together imply that, as n → ∞,

converge in distribution to �2
p
 and �2

q
 , respectively. Hence, both of them are asymp-

totically pivotal and can be used to construct Wald-type confidence regions for � 
and �(�) and perform hypothesis tests on � and �(�) . For illustration, we consider 
the case where the dimension q of �(⋅) is 1, which is perhaps the most common 
situation in applications. Let � = �(�) . Next, we explain how to apply the results to 
construct a 100(1 − �)% CI for � and perform the hypothesis test for H0 ∶ � = 0 . For 
general � and �(�) , similar procedures are available.

Let 𝜙̂ = �(�̂) and 𝜎̂2
𝜙
= �̂� . Then, a 100(1 − �)% CI for � is

where �2
1,�

 and z�∕2 denote the ( 1 − � ) quantile of the �2
1
 distribution and the 

( 1 − �∕2 ) quantile of the N(0, 1) distribution, respectively. When testing H0 ∶ � = 0 , 
we reject the null hypothesis if

for the given significance level �.

2.4 � Examples of Ã  and �(Ã)

In this section, we provide some examples to demonstrate that � and �(�) cover 
many important summary quantities. The proposed methods and the general results 
in Sections 2.1–2.3 can readily be applied to these quantities.

n(�̂ − �∗)⊤�̂
−1
(�̂ − �∗) and n{�(�̂) − �(�∗)}⊤�̂

−1

�
{�(�̂) − �(�∗)}

(9)I𝜙 =
�
𝜙 ∶ n(𝜙̂ − 𝜙)2∕𝜎̂2

𝜙
≤ 𝜒2

1,𝛾

�
=
�
𝜙̂ − z𝛾∕2𝜎̂𝜙∕

√
n, 𝜙̂ + z𝛾∕2𝜎𝜙∕

√
n
�
,

(10)n𝜙̂2∕𝜎̂2
𝜙
> 𝜒2

1,𝛾
or equivalently �√n𝜙̂∕𝜎̂𝜙� > z𝛾∕2,
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Example 1  (Uncentered moments) Let �(k)

i
= ∫ ∞

0
xkdFi(x) be the kth (uncentered) 

moments of Fi(x) , i = 0, 1 . When k = 1 , we write �i = �
(1)

i
 . Clearly, if

then � = (𝜇
(k)

0
,𝜇

(k)

1
)⊤.

Example 2  (Mean ratio) Let � = �1∕�0 denote the mean ratio of two populations. 
Setting k = 1 in (11), we obtain � = (𝜇0,𝜇1)

⊤ . Further, let g(x1, x2) = x2∕x1 , then we 
get � = g(�) . We can directly construct a CI for � using the result given in (9).

An alternative way is to consider g(x1, x2) = log(x2) − log(x1) ; then g(�) = log � . 
We can use the form of (9) to first construct a CI for log � and then transform it to a 
CI for � . Our simulation indicates that this approach leads to a CI with better cover-
age accuracy.

Example 3  (Centered moments) Let C(k)

i
= ∫ ∞

0
(x − �i)

kdFi(x) be the kth centered 
moments of Fi(x) , i = 0, 1 . When k = 2 , we write �2

i
= C

(2)

i
 . As demonstrated in 

Serfling (1980), centered moments C(k)

i
 can be written as functions of �(1)

i
,… ,�

(k)

i
 . 

For illustration, we concentrate on k = 2 and consider the variances of the two popu-
lations, �2

0
 and �2

1
 . Let

Then, � = (𝜇0,𝜇
(2)

0
,𝜇1,𝜇

(2)

1
)⊤ . Define �(⋅) as

We have �(�) = (𝜎2
0
, 𝜎2

1
)⊤ . The results of Theorem 2 can be used to obtain the joint 

limiting distribution of 
√
n(𝜎̂2

0
− 𝜎2

0
, 𝜎̂2

1
− 𝜎2

1
)⊤ , where 𝜎̂2

0
 and 𝜎̂2

1
 are the MELEs of 

�2
0
 and �2

1
 , respectively. If we choose

then �(�) = �2
1
− �2

0
 , and the procedure described in (10) can be used to test 

H0 ∶ �2
0
= �2

1
.

Example 4  (Coefficient of variation) Let CVi = �i∕�i be the coefficient of variation 
of the ith population, i = 0, 1 . If we choose

then �(�) = (CV0,CV1)
⊤ . If we choose �(x1, x2, x3, x4) =

√
x4∕x3 −

√
x2∕x1 , 

then �(�) = CV1 − CV0 , and the procedure described in (10) can be used to test 
H0 ∶ CV0 = CV1.

Example 5  (Generalized entropy class of inequality measures) Let

(11)u1(x;�,�) = (1 − 𝜈0)x
k and u2(x;�,�) = (1 − 𝜈1)x

k exp{𝛼 + �⊤�(x)},

�(x;�,�) =
(
(1 − 𝜈0)x, (1 − 𝜈0)x

2, (1 − 𝜈1)x exp{𝛼 + �⊤�(x)}, (1 − 𝜈1)x
2 exp{𝛼 + �⊤�(x)}

)⊤

.

�(x1, x2, x3, x4) = (x2 − x2
1
, x4 − x2

3
)⊤.

�(x1, x2, x3, x4) = (x4 − x2
3
) − (x2 − x2

1
),

�(x1, x2, x3, x4) = (
√
x2∕x1,

√
x4∕x3)

⊤,
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be the generalized entropy class of inequality measures of the ith population, i = 0, 1 . 
Note that the GE(�)

i
 are not well defined for the population with excessive zeros when 

� = 0 . In our setup, (GE(𝜉)

0
,GE

(𝜉)

1
)⊤ can also be written as �(�) with certain �(⋅) and 

�(⋅) functions provided � ≠ 0 . For illustration, we consider � = 1 . Let

and

Then �(�) = (GE
(1)

0
,GE

(1)

1
)⊤ . Similarly to Examples  3 and  4, we can choose an 

appropriate �(⋅) function to construct a testing procedure for H0 ∶ GE
(1)

0
= GE

(1)

1
.

3 � Simulation study

In this section, we conduct simulations to compare the finite-sample performance of 
the proposed estimators and CIs with existing methods. We consider three param-
eters, the mean ratio � , discussed in Example 2, and the population variances �2

0
 and 

�2
1
 , discussed in Example 3, for the performance comparison of the point estimators. 

For comparison of the CIs, we mainly focus on the mean ratio �.

3.1 � Simulation setup

In our simulations, the random observations are generated from the mixture model 
(1), with Gi being the log-normal distribution. We use the log-normal distribution 
because it has positive support and is highly skewed to the right. These properties 
allow us to check that the proposed method is applicable to skewed data, which 
often occur in reality. We use LN(a, b) to denote the log-normal distribution, where 
a and b are, respectively, the mean and variance in the log scale. Table 1 gives the 
parameter settings for the simulation studies.

For all the models listed in Table 1, the DRM (3) is satisfied with q(x) = log x . 
For each model, we consider four combinations of sample sizes (n0, n1) : (50, 50), 
(100, 100), (50, 150), and (150, 50). The number of replications is 10,000 for each 
configuration of the parameter settings.

GE
(�)

i
=

⎧
⎪⎪⎨⎪⎪⎩

1

�2−�

�
∫ ∞

0

�
x

�i

��

dFi(x) − 1

�
, if � ≠ 0, 1,

− ∫ ∞

0
log

�
x

�i

�
dFi(x), if � = 0,

∫ ∞

0

x

�i

log
�

x

�i

�
dFi(x), if � = 1

�(x;�,�) =
(
(1 − 𝜈0)x, (1 − 𝜈0)x log(x), (1 − 𝜈1)x exp{𝛼 + �⊤�(x)},

(1 − 𝜈1)x log(x) exp{𝛼 + �⊤�(x)}
)⊤

�(x1, x2, x3, x4) = (x2∕x1 − log x1, x4∕x3 − log x3)
⊤.
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3.2 � Comparison of point estimators

We first study the finite-sample performance of the point estimators. Under model 
(1) and the DRM (3), our estimators for � , �2

0
 , and �2

1
 are

and

with

We compare 𝛿 , 𝜎̂2
0
 , and 𝜎̂2

1
 with the fully nonparametric estimators

for i = 0, 1.
Table  2 presents the bias and mean square error (MSE) of these estimators. 

It shows that the biases of 𝛿 and 𝛿 are consistently quite negligible, and 𝛿 usu-
ally has a smaller bias. Moreover, 𝛿 outperforms 𝛿 in terms of the MSE; this is 
expected since 𝛿 uses more information to estimate the population means �0 and 
�1 . The biases of (𝜎̂2

0
, 𝜎̂2

1
) and (𝜎̃2

0
, 𝜎̃2

1
) are quite small, and the MSEs of (𝜎̂2

0
, 𝜎̂2

1
) are 

significantly smaller than those of (𝜎̃2
0
, 𝜎̃2

1
) . In some settings, e.g., Model 8 with 

𝛿 =
𝜇̂1

𝜇̂0

, 𝜎̂2
0
= (1 − 𝜈̂0)

1∑
i=0

ni1∑
j=1

p̂ijX
2
ij
− 𝜇̂2

0
,

𝜎̂2
1
= (1 − 𝜈̂1)

1∑
i=0

ni1∑
j=1

p̂ij exp
{
𝛼̂ + 𝜷

⊤
�(Xij)

}
X2
ij
− 𝜇̂2

1
,

𝜇̂0 = (1 − 𝜈̂0)

1∑
i=0

ni1∑
j=1

p̂ijXij and 𝜇̂1 = (1 − 𝜈̂1)

1∑
i=0

ni1∑
j=1

p̂ij exp
{
𝛼̂ + �̂

⊤
�(Xij)

}
Xij.

𝛿 =
𝜇̃1

𝜇̃0

, 𝜎̃2
i
=

1

ni − 1

ni∑
j=1

(Xij − 𝜇̃i)
2 with 𝜇̃i =

1

ni

ni∑
j=1

Xij,

Table 1   Parameter settings for simulation studies: G0 = LN(a0, b0) and G1 = LN(a1, b1)

Model (�0, �1) (a0, a1) (b0, b1) (�0,�1) (�2

0
, �2

1
) �

1 (0.30, 0.30) (0.00, 0.00) (1.00, 1.00) (1.15, 1.15) (3.84, 3.84) 1.00
2 (0.70, 0.70) (0.00, 0.00) (1.00, 1.00) (0.49, 0.49) (1.97, 1.97) 1.00
3 (0.30, 0.50) (0.33, 0.66) (1.00, 1.00) (1.61, 1.59) (7.43, 11.29) 0.99
4 (0.50, 0.70) (0.37, 0.89) (1.00, 1.00) (1.19, 1.20) (6.32, 11.69) 1.01
5 (0.50, 0.30) (0.00, 0.00) (1.00, 1.00) (0.82, 1.15) (3.02, 3.84) 1.40
6 (0.70, 0.50) (0.00, 0.00) (1.00, 1.00) (0.49, 0.82) (1.97, 3.02) 1.67
7 (0.60, 0.40) (0.00, 0.00) (1.00, 1.00) (0.66, 0.99) (2.52, 3.45) 1.50
8 (0.30, 0.30) (0.00, 0.50) (1.00, 1.00) (1.15, 1.90) (3.84, 10.44) 1.65
9 (0.70, 0.70) (0.00, 0.75) (1.00, 1.00) (0.49, 1.05) (1.97, 8.84) 2.12
10 (0.40, 0.60) (0.00, 1.00) (1.00, 1.00) (0.99, 1.79) (3.45, 18.63) 1.81
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sample sizes (n0, n1) = (100, 100) , the MSE of 𝜎̂2
0
 is less than 20% of the MSE of 

𝜎̃2
0
.

3.3 � Comparison of confidence intervals

We now examine the finite-sample behavior of the following 95% CIs of the mean 
ratio �:

•	 I1 : Wald-type CI based on log 𝛿 using the quantile of N(0, 1);
•	 I1B : bootstrap Wald-type CI based on log 𝛿 using the quantile from the nonpara-

metric bootstrap method;
•	 I2 : ELR-based CI using the quantile of the �2

1
 distribution (Wu and Yan 2012);

•	 I2B : bootstrap ELR-based CI using the quantile from the nonparametric boot-
strap method (Wu and Yan 2012);

•	 I3 : ELR-based CI under the DRM (3) using the quantile of the �2
1
 distribution 

(Wang et al. 2018);
•	 I4 : proposed Wald-type CI based on 𝛿;
•	 I4L : proposed Wald-type CI based on log 𝛿.

We note that the normal and �2
1
 distributions may not provide good approximations 

to log 𝛿 in I1 and the ELR statistic in I2 , respectively, especially when n is not large 
enough. This may be because of the specific features of the two-sample semicon-
tinuous data from model (1): excessive zeros and severe positive/negative skewness 
of the positive observations. Hence, we employ the nonparametric bootstrap method 
(Efron and Tibshirani 1993; Shao and Tu 1995) to approximate the quantiles of the 
target asymptotic distributions, which leads to I1B and I2B . The number of bootstrap 
samples is set to 999.

We construct the first four CIs without the DRM (3) and the remaining three CIs 
with the DRM. We evaluate the performance of a CI in terms of the coverage prob-
ability (CP) and average length (AL), which are calculated as follows:

Here [�(h)
L
, �

(h)

U
] denotes a CI for � calculated from the hth model. Table 3 summa-

rizes the simulation results.
From Table  3, we observe that the bootstrap Wald-type CI I1B and bootstrap 

ELR-based CI I2B have much better coverage accuracy than I1 and I2 , respectively. 
Comparing I1B and I2B , we see that I1B has slightly more accurate CPs in most 
cases, but I2B has shorter ALs in most cases. The behavior of I3 and I4L is compara-
ble and satisfactory in terms of both CP and AL in every case, while I4 gives shorter 
ALs and has lower coverage rates compared with I3 and I4L , especially for small 
sample sizes.

CP(%) = 100 ×

∑10000

h=1
I(𝛿

(h)

L
< 𝛿 < 𝛿

(h)

U
)

10000
, AL =

∑10000

h=1

�
𝛿
(h)

U
− 𝛿

(h)

L

�

10000
.
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In general, the CIs for the DRM are better than those without the DRM. In con-
clusion, I3 and I4L give the best results in terms of CP and AL. However, I4L has 
lower computational complexity and uses shorter computation time than I3 , and 
thus it may be preferred.

Remark 1  We would like to provide some comments on the choice of �(x) in the 
DRM (3). To apply the proposed method, the basis function �(x) is required to be 
prespecified. We have conducted an additional small simulation to examine the 
impact of the basis function misspecification on our inference results. The additional 
simulation results and discussion can be found in the supplementary material. In 
application, the basis function �(x) is always unknown. Prior belief and informa-
tion could be useful for choosing an appropriate �(x) before employing the proposed 
method. For example, if one observes that underlying populations have the features 
of lognormal distributions, the DRM with �(x) = log(x) or �(x) = (log(x), log2(x))⊤ 
could be used instead of a fully parametric model to achieve robustness of infer-
ences. The choice of �(x) can be further checked by the goodness-of-fit test pro-
posed by Qin and Zhang (1997). Nonparametric methods may be preferable when 
no prior belief or information is available.

4 � Real‑data analysis

In this section, we illustrate the performance of our method by analyzing two real 
datasets. We estimate the mean ratio � and the population variances �2

0
, �2

1
 , and we 

construct the CIs for �.
The first dataset (Koopmans 1981) is from a biological study of the seasonal 

activity patterns of a species of field mice. The measurements are the average dis-
tances (in meters) traveled between captures by those mice at least twice in a given 
month. Table 4 summarizes this dataset.

Table  4 shows that there are many zero measurements, especially in Autumn 
and Winter. Wang et al. (2018) conducted hypothesis tests to determine if the mean 
traveled distance differs among the four seasons; they found no significant difference 
between Spring and Summer. Hence, we combine the Spring and Summer meas-
urements into one sample and refer to this as sample 0. Similarly, we combine the 
Autumn and Winter measurements into sample 1.

Table 4   Summary of mice 
dataset

Season Sample size Proportion 
(number) of 
zeros

Spring 17 0.176 (3)
Summer 27 0.111 (3)
Autumn 27 0.370 (10)
Winter 34 0.294 (10)
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To analyze the dataset with our method, we need to choose an appropriate 
�(x) in the DRM (3). To balance model fitting and model complexity, we choose 
�(x) = log(x) . For this choice, the goodness-of-fit test proposed by Qin and Zhang 
(1997) gives a p-value of 0.64 for the mice data. This may indicate that �(x) = log(x) 
is suitable for this dataset.

We apply all the methods explored in our simulation study. Our estimate 
𝛿 = 0.487 , and the fully nonparametric estimate 𝛿 = 0.483 . Our semiparametric esti-
mates of the two-sample variances are 𝜎̂2

0
= 869.583 for sample 0 and 𝜎̂2

1
= 268.774 

for sample 1; the fully nonparametric estimates are 𝜎̃2
0
= 932.966 for sample 0 and 

𝜎̃2
1
= 239.961 for sample 1. Given the simulation results in Table 2, our point esti-

mates are expected to be more accurate.
The 95% CIs for � are presented in Table 5: I4 is the shortest and I1B the longest. 

The lower and upper bounds of I4 tend to be smaller than those of the other CIs. The 
results for I2B , I3 , and I4L are similar. The CIs do not include 1, which indicates a 
significant mean difference between the two samples.

The second dataset (Neuhauser 2011) is from a study of the methylation of DNA, 
which is a common method for gene regulation. The methylation patterns of tumor 
cells can be compared to those of normal cells; there are also differences between 
different types of cancer. DNA methylation can serve as a biomarker in cancer diag-
nosis. The dataset consists of two samples of methylation measurements: small-cell 
lung cancer (sample 0) and non-small-cell lung cancer (sample 1). When methyla-
tion is undetectable or only partially present, the result of the measurement is neg-
ative, which is treated as a zero value. Fully present methylation gives a positive 
value. Sample 0 contains 41 measurements, of which 25 are zero. Sample 1 contains 
46 measurements, of which 16 are zero.

Satter and Zhao (2021) argued that this dataset is highly skewed. This may sug-
gest that it can be fitted by the DRM with �(x) = log(x) . The goodness-of-fit test of 
Qin and Zhang (1997) gives a p-value of 0.133. Therefore, there is no strong evi-
dence for rejecting the DRM with �(x) = log(x).

We apply all the methods explored in our simulation study. Our estimate 
𝛿 = 2.906 , and the fully nonparametric estimate 𝛿 = 3.679 . For the two-sam-
ple variances, our semiparametric estimates are 𝜎̂2

0
= 388.562 for sample 0 and 

𝜎̂2
1
= 1028.079 for sample 1; the fully nonparametric estimates are 𝜎̃2

0
= 406.796 for 

sample 0 and 𝜎̃2
1
= 1017.072 for sample 1. There are differences between our esti-

mates and the fully nonparametric estimates, especially for � . We trust our estimates 
because our simulations have demonstrated the performance of our estimators.

Table 6 presents the 95% CIs for � . According to the simulation results in Table 3, 
I1B , I2B , I3 , and I4L have better coverage accuracy. The CIs I1B and I2B contain 1, 

Table 5   95% confidence 
intervals for � (mice data)

I1 I1B I2 I2B I3 I4 I4L

Lower bound 0.319 0.314 0.318 0.322 0.325 0.295 0.328
Upper bound 0.729 0.741 0.726 0.716 0.721 0.679 0.722
Length 0.410 0.427 0.408 0.393 0.396 0.383 0.393



470	 M. Yuan et al.

1 3

whereas I3 and I4L do not. This indicates that I3 and I4L provide more evidence than 
I1B and I2B for rejecting H0 ∶ � = 1 . We note that I4L is slightly shorter than I3.

5 � Concluding remarks

We have proposed new statistical procedures for semiparametric inference on the general 
functional � defined in (4) and their functions �(�) with two samples of semicontinu-
ous observations. The functional � includes the linear functionals �0 and �1 as spe-
cial cases. Under the semiparametric DRM (3), we have constructed the MELE of � 
and established the asymptotic normality of the MELE of � . The MELEs of �0 and �1 
were shown to be more efficient than the fully nonparametric alternatives both theoreti-
cally and via simulation. We have applied the asymptotic results to construct confidence 
regions and perform hypothesis tests for � and �(�) . We note that our methods and the 
general results can be applied to many important summary quantities, such as the uncen-
tered and centered moments, the mean ratio, the coefficient of variation, and the general-
ized entropy class of inequality measures. As an illustration, we have considered the con-
struction of CIs for the mean ratio of two such populations. Simulation results showed 
that the proposed Wald-type CIs have performance similar to that of the ELR-based CI 
under the DRM, and the computational cost is lower. We have implemented our methods 
in R; the code is available upon request.

It would be interesting to extend the current framework to general expectation 
functionals and their functions, e.g., the receiver operating characteristic (ROC) 
curve, the area under the ROC curve, and the Gini index. The associated theoretical 
development may be challenging.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10463-​021-​00804-4.
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Table 6   95% confidence intervals for � (methylation data)

I1 I1B I2 I2B I3 I4 I4L

Lower bound 1.056 0.650 1.158 0.568 1.278 0.362 1.211
Upper bound 12.814 20.838 12.306 27.631 7.527 5.451 6.975
Length 11.758 20.189 11.148 27.063 6.249 5.089 5.764
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