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1 Figures of simulation results

Figures 1-6 are about here.

2 Technical proofs

Proof of Theorem 1. By direct calculation, we can obtain that
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For the robust local R? estimators BEQ, k=1,---,K, by the Theorem 1 in Leng
(2010), we know that they admit the following asymptotic rule
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Figure 1: Relative estimation efficiency REE;(OS), REE;(CSL), REE;(GLAD)
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Figure 2: Relative estimation efficiency REE;(OS), REE;(CSL), REE;(GLAD)

,4 versus number of machines K and sample size M

under Case 2 with N (0, 1) random error.
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Figure 3: Relative estimation efficiency REE;(OS), REE;(CSL), REE;(GLAD)

and REE;(GLS), j = 1,---

under Case 1 with contaminated normal random error.
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Figure 4: Relative estimation efficiency REE;(OS), REE;(CSL), REE;(GLAD)

,4 versus number of machines K and sample size M

under Case 2 with contaminated normal random error.
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Figure 5: Relative estimation efficiency REE;(OS), REE;(CSL), REE;(GLAD)

and REE;(GLS), j = 1,---

under Case 1 with ¢4 random error.
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Figure 6: Relative estimation efficiency REE;(OS), REE;(CSL), REE;(GLAD)

and REE;(GLS), j =1,---
under Case 2 with ¢4 random error.



where ((e;) = - {QR(ekl) (n + 1)}, R(exi) is the rank statistic of €. Note that

V(S w3 — 5081 - 1)) = Oy(e). B(C(err)) = 0 and
var(((eu)) = nikvar@z%(em-) —(n+1))
n3 Z (2t —(n+1
Alng +1)2 N, i 1,
ny ;(n +1 5)
1

cov(C(exi), Clexj)) = T}%COV(QR(EM) —(n+1),2R(ex;) — (n+1))

:nink—l 2221 (n+1)(2j —(n+1))

i=1 j#i

_ 4(7’Lk+1) / (t—1)2dt

ni(ne —1) Jo 2

— 0, for i # j.

By the condition about K in Theorem 1 and (1), we can get that

VN Zwkxifk(f—ﬁo))
= VN Zwk<X';1X’“—zk><A52—ﬁo>>+W <Zwk2k<z§i§2—ﬁo>)
— VN Zw&( - 2ffi dtnkZX,m ((€xi) + Oy (1k)>)+0p(\/—KN)

1 < K
~ 7w ST i 2 Kol + O

(o (i}m))-

8



T
Further note that Y1  w, = 1, by condition (A1), we have Y& wy XX

Zle w2y = 0,(1). Then we can obtain that
)
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The proof is completed.

Proof of Theorem 2. Consider

Lx(B) = Px(B) — P\(Bo)

K

K
= (B oy [Z e Xk] - B — (B~ 87T [Zwkx’?xk] (B0 — B”)
k=1

N
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Denote u = (uy, -+ ,u,)" = VN(B — By), we may write NLy(3) as
NL\(B (Zw >u+2u (Zw

+ NAZ A 11851 = 1511
j=1

VN (B — BDRQ)})

which is minimized by @, = vV N(BPF — B,). Let
P
= NAY ) [Wo,j +uj/VN| - |50,j|} ,
j=1

and we write Z;(u) = NA\; |:|B07j +u;/VN| — |B0,j|}, then

. {\/N)\/\jujsign(ﬁo,j), it Bo; 7 0,
. u pr—
VNI |u;], if Bo; = 0.
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Now, the conditions in Theorem 2 assure the following
0, it Bo; # 0,
Zij(u) — P(Boj,u;) =<0, if By; =0and u; =0
oo, if By; =0 and u; # 0,
Thus, we have that
K K p
NLA(B) —au” (Z wk2k> u+2u” ((Z wk2k> {VN(B) — BDRQ)}) +Z P (o3, us).
k=1 k=1 j=1

Applying the arguments in Knight (1998), we have

x4 =VNBYE - Bn) = (Z wk2k> { (Z wk2k> N(Bo — 5DR2)}
AA A

-1
1
k=1 AA

The asymptotic normality is established. What is more, if Bf JRB = 0 for some j > d,

the partial derivative of P\(3) can be calculated as

K

T
OP\(B) XTI X, 3
VN 8)\5 |ﬁ poR? = 2 [; L ng ] , (B - B )+ VNI ;sign(5;),

XT Xy, xT

where Zle Wy, . By Theorem 2.1
and the v/N consistency of B , we can get that \/_(BDR3 BDRQ) =V N( /\DRg —
Bo) — VN(BPR — By) = O,(1), consequently, 2 [Zk w2k X’“]T (BPR® — gPR*) —

O,(1). 1If BDRJ # 0, sign(fB;) = —1 or 1, then by the convergence rate about the
tuning parameter \, we know that [v/NA\;sign(53;)| = [V NAby| — oo for j > d.

Thus equation \/_8 B)| = ( can not hold, which implies that P <5DR3 = O) —1
for any j € {d+1,--- ,p}. Therefore, combining with the asymptotic normality in

} is the ]th row of the matrix Zk | W

(b), (a) can be proved. The proof is completed.
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Proof of Theorem 3. Firstly, for A € R, we suppose j* € A and Bfﬁs =0, we

have

RSS(\) = (B —ﬁ“DRZ)T ( 3 kakTXk> (807 - 57
k=1

g

> 5 ( RS _ GDR® >T<A)?R3 _BDR2>

where Ay is the smallest eigenvalue of Zszl wk%. So combining (Al) and

Theorem 1 together yields

3 ADR?\2 p 0
m1n<6 ) )‘mlnBO,j* > 0.

Furthermore, for Ay = log(N)/N, we have

RSS(A\y) = (gm Dm) (ika Xk) (65 - )
<5DR3 5DR2> (IBDR3 BDR2>
o | (B2~ )+ (7 _ﬁo)j + 1),

where \yay is the largest eigenvalue of Z o1 ka . So by (A1), Theorems 1 and
2, we have
RSS()\N) = 0p<1)7

log(N)
N

and furthermore, dfy = o(1), for arbitrary A € R*. This implies

P ( inf DBIC()) > DB]O()\N)) Sl
AeRT
For A € RY, firstly we have
P(dfy — dfyy, > 1) = 1.
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What is more, one can verify
NI[RSS(A) — RSS(An)]
- N ( AERS _ BDR2>T (i kax;;)(k>
X

- (ap - (z wXE ) (307 - o)

ADR3 ADR?
(82 - 57)

k=1
K
> it v (B0 - 57 (D w KK (gpr - o)
AeRZ P} N
K
. ~ DR? XI'x - DR
- N (8f, - 8" (Zwk - ’“) (8L, - 8°%)
k=1
= 0,(1).

This implies that P{N[DBIC(\) — DBIC(\y)] — +00} — 1. So

P ( inf DBIC()) > DBIO(AN)> 1.

=+
AeRY

The proof is completed.
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