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Abstract
Rank regression is a robust modeling tool; it is challenging to implement it for the 
distributed massive data owing to memory constraints. In practice, the massive 
data may be distributed heterogeneously from machine to machine; how to incor-
porate the heterogeneity is also an interesting issue. This paper proposes a distrib-
uted rank regression ( DR2 ), which can be implemented in the master machine by 
solving a weighted least-squares and adaptive when the data are heterogeneous. 
Theoretically, we prove that the resulting estimator is statistically as efficient as the 
global rank regression estimator. Furthermore, based on the adaptive LASSO and a 
newly defined distributed BIC-type tuning parameter selector, we propose a distrib-
uted regularized rank regression ( DR3 ), which can make consistent variable selec-
tion and can also be easily implemented by using the LARS algorithm on the mas-
ter machine. Simulation results and real data analysis are included to validate our 
method.
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1  Introduction

With the rapid development of technology, massive data are often encountered 
in both scientific fields and daily life. Such a large size of data is usually hard to 
be efficiently stored or dealt by one single computer; thus, they are distributed in 
many machines over limited memory, and a computer serves as the master, while 
all the other computers serve as workers. In such setting, due to the limited stor-
age space in primary memory, it fails to deliver efficient estimator by standard 
algorithms or statistical packages.

In recent years, many methodologies and algorithms toward massive data anal-
ysis have been proposed. The first strategy is the one-shot (OS) method, which is 
one of the most important algorithms to deal with large-scale datasets. The idea 
of this method is to conduct the estimation on each machine to obtain a local esti-
mate, and the final global estimate computed by the master machine is a simple 
average of the local ones. For example, Zhang et al., 2013 average the M-estima-
tors obtained by node machines; Battey et al., 2018 average debiased estimators; 
and Fan et  al., 2017 define an average for subspaces and compute it via eigen-
decomposition. For more references, one can see (Zhang and Wang, 2007; Lin 
and Xi, 2011; Chen and Xie, 2014; Zhang et al., 2015; Zhu et al., 2019; Chen and 
Zhou, 2019) and the references therein. Because only one round of communica-
tion between machines is required in OS method, the communication costs are 
significantly reduced. The other approach includes iterative algorithms, in which 
multiple iterations are required so that the estimation efficiency can be refined 
to match the global estimator. For example, Wang et al., 2017 and Jordan et al., 
2019 proposed the communication-efficient surrogate likelihood (CSL), Fan 
et al., 2019 also investigated two communication-efficient accurate statistical esti-
mators. In these methods, optimization problems are solved in only one machine 
and other machines just evaluate gradients, thus effectively reducing the commu-
nication cost of processing large datasets. For more details, one can see Zhang 
et al. (2013) and Rosenblatt and Nadler (2016).

It should be noted that the aforementioned massive data statistical methods 
are mainly built on mean regression or likelihood framework. Although these 
approaches all enjoy the oracle property, i.e., they can estimate the unknown 
parameters as accurately as all the data were pooled on a single machine. How-
ever, as we all know, the mean regression and likelihood methods are not robust 
and can be adversely influenced by outliers or heavy-tail distributions. This will 
lead to shortcomings in robustness of such mean regression- or likelihood-based 
massive data analysis methods.

At first glance, natural alternatives seem to be the least absolute deviation 
(LAD) estimator (Wang et  al., 2007) or quantile regression (Koenker and Bas-
sett, 1978), which can be more robust, when the density function f (⋅) deviates 
from the normal or the outliers exist. Also, Chen and Zhou (2019) investigated 
the related massive data analysis methods. However, LAD and quantile regres-
sion all have limitations in terms of efficiency. For example, the efficiency of the 
LAD compared to the maximum likelihood is proportional to the density at the 



437

1 3

Robust distributed estimation and variable selection for…

median. For the Gaussian error case, the distribution of the greatest interest, this 
quantity is only 0.637. And, worse still, the efficiency can be arbitrarily small if 
f(0) is close to zero. To achieve the balance between robustness and efficiency, 
one can further consider the rank regression (abbreviated to R2 ), which is more 
robust than the mean regression or maximum likelihood estimators and more effi-
cient than the LAD or quantile regression estimators. Many authors have used 
the R2 to deal with different kinds of problems; for the recent works, one can see 
Wang and Li (2009), Wang et al. (2009), Shin (2010), Leng (2010), Feng et al. 
(2015) and so on.

However, to the best of our knowledge, when the dataset is massive and dis-
tributed in many machines, how to implement R2 is completely unknown. What is 
more, the existing distributed estimators all assume that the datasets are stored in 
each machine independently and identically, while the distributed datasets may be 
heterogeneous from machine to machine in practice. Thus, incorporating the het-
erogeneity into the estimation procedure appropriately plays an important role in 
improving the efficiency. To solve these issues, we first propose a distributed rank 
regression (abbreviated to DR2 ) estimator for the massive dataset. By regarding 
the local R2 estimators obtained in different machines as an observed dataset and 
minimizing the approximate likelihood function, we transfer global R2 into an 
asymptotically equivalent least-squares problem. Because DR2 uses the distribu-
tion information of the data on each machine sufficiently, it can be adaptive when 
the datasets are stored heterogeneously. Also, the communication cost is reduced, 
since only one round of communication is involved and iteration is free. Theoreti-
cally, we prove that the resulting estimator is statistically as efficient as the global 
R2 estimator. Furthermore, when the adaptive LASSO penalty (Zou 2006) and a 
new defined distributed BIC-type tuning parameter selector are used, we propose 
a distributed regularized rank regression (abbreviated to DR3 ), which can select 
the relevant variables and estimate the coefficients simultaneously, and the solu-
tion path can also be easily obtained by using the LARS algorithm with minimal 
computation cost on the master machine. The new DR2 and DR3 have superiori-
ties in robustness and efficiency by inheriting the advantage of the R2.

The rest of this paper is organized as follows: Section  2 introduces the new 
method and asymptotical properties. Simulation results and real data analysis are 
reported in Sect. 3. Concluding remarks are discussed in Sect. 4. All the technical 
proofs and figures of simulation results are provided in the supplementary file.

2 � Rank regression for massive datasets

2.1 � A brief review on robust rank regression

Let Y ∈ ℝ be a response variable, and X = (X1,… ,Xp)
T ∈ ℝp be a p-dimensional 

covariate vector, 
{
Xi, Yi

}N

i=1
 be N random samples. We consider the following lin-

ear regression model
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where � = (�1,… , �p)
T is unknown parameter with true value �0 = (�0,1,… , �0,p)

T , 
�i is independent and identically distributed random error.

The rank regression estimates the unknown parameter � via the following optimi-
zation problem

where Yij = Yi − Yj and Xij = Xi − Xj . In fact, (1) can be regarded as a LAD regres-
sion by taking Yij and Xij as the observations. Under some regularity conditions, �̂R2

 
admits the following asymptotic rule

where � = ∫ f 2(t)dt , � = E(XXT ) and f (⋅) is the density function of �i . The  
constant �2 indicates the height of the density of Y1 − Y2 at the origin. The  
asymptotic relative efficiency of �̂

R2

 to mean regression estimator �̂
MR is 

e(�̂
R2

, �̂
MR

) = 12var(𝜖)(∫ f 2(t)dt)2 ; Theorem  6.1 of Lehmann (1983) showed that 

infFS
e(�̂

R2

, �̂
MR

) = 0.864 where FS denotes cumulative distribution functions with 
finite Fisher information. Note that the maximum likelihood estimator �̂ML is asymp-
totically N(0, I−1

f
�
−1) , where If = ∫ (f �(t))2∕f (t)dt is the Fisher information. Simi-

larly, we can also calculate the asymptotic relative efficiency of �̂R2

 to LAD or quan-
tile regression. Generally speaking, �̂R2

 is almost as efficient as mean regression or 
maximum likelihood estimators for normal errors but can be more robust for other 
errors; it is asymptotically much more efficient than LAD or quantile regression for 
many distributions of interest. For more introduction about its advantages of robust-
ness and estimation efficiency, one can see Leng (2010). Actually, rank-based statis-
tical procedures have played a fundamental role in nonparametric analysis of linear 
models due to its high efficiency and robustness, and we refer to the review paper of 
McKean (2004) for many useful references.

2.2 � Distributed rank regression

When the sample size N is too large to store the whole data in one machine, we con-
sider the distributed setting, where the samples 

{
Xi, Yi

}N

i=1
 are stored on K machines 

connected to a central processor, {Yki,Xki = (Xki1,… ,Xkip)
T}

nk
i=1

 denotes the data in 
the k-th machine, k = 1,… ,K , and N =

∑K

k=1
nk . However, in the distributed set-

ting, there are several issues. First, the above rank regression cannot be implemented 
directly, because it is infeasible to solve the related optimization problem (1) in one 
machine based on the full data. Even if the data are stored on one machine, the opti-
mization problem (1) involves N(N − 1) pairwise differences, when N is large, it is 

Yi = X
T
i
� + �i,

(1)�̂
R2

= argmin�∈ℝp

{
1

N(N − 1)

∑

1⩽i,j⩽N

|Yij − X
T
ij
�|
}

,

(2)
√
N(�̂

R2

− �0) →d N
�
0,

1

12𝜔2
�
−1
�
,
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also challenging and time-consuming. Second, the existing distributed methods all 
assume that the datasets in each machine are independent and identically distributed, 
but data can be collected from various sources in practice, so the heterogeneity from 
machine to machine cannot be avoided. How to incorporate the heterogeneity also is 
an interesting issue.

Motivated by the above issue, we will propose a distributed rank regression, which 
allows the datasets in different machines are heterogeneous but follow the same 
regression relationship. Now, let us introduce the main idea and construction pro-
cedure of the new method. Based on the local dataset {Yki,Xki = (Xki1,… ,Xkip)

T}
nk
i=1

 

stored in the k-th machine, we can obtain local R2 estimator �̂R2

k
 via

where Ykij = Yki − Ykj , Xkij = Xki − Xkj . Note that �̂R2

k
 enjoys the following asymp-

totic distribution

where �k = E(XkiX
T
ki
) includes the covariates distribution information of the k-th 

machine. Obviously, �̂R2

k
, k = 1,… ,K are independent mutually, and thus, we can 

approximately treat {�̂R2

1
,… , �̂

R2

K
} as an observed dataset coming from multivariate 

normal {N(�0,
1

12n1�
2
�
−1
1
),… ,N(�0,

1

12nK�
2
�
−1
K
)} . This feature leads us to construct 

an approximate likelihood function

which can incorporate �k, k = 1,… ,K sufficiently. Then, the approximate log-like-
lihood function for � is

where C is free of � . Thus, we can obtain the following least square-type loss 
function

However, �k, k = 1,… ,K are unknown, note that 1
nk

∑nk
i=1

XkiX
T
ki
→p �k ; these natu-

rally motivate us to consider the following object function

�̂
R2

k
= argmin�∈ℝp

{
1

nk(nk − 1)

∑

1⩽i,j⩽nk

|Ykij − X
T
kij
�|
}

, k = 1,… ,K,

√
nk(�̂

R

k
− �0) →d N

�
0,

1

12𝜔2
�
−1
k

�
, k = 1,… ,K,

L(�) =

K∏

k=1

(2𝜋)−
p

2

(
1

12nk𝜔
2
|�−1

k
|
)−

1

2

exp
{
−
1

2
(�̂

R2

k
− �)T (12nk𝜔

2
�k)(�̂

R2

k
− �)

}
,

log(L(�)) = C −
1

2

K∑

k=1

(�̂
R2

k
− �)T (12nk𝜔

2
�k)(�̂

R2

k
− �),

K∑

k=1

nk(�̂
R2

k
− �)T�k(�̂

R2

k
− �).



440	 J. Luan et al.

1 3

where Xk = (Xk1,… ,Xknk
)T . By minimizing Q(�) , the resulting estimator can be 

obtained, because it is built upon R2 in the distributed data setting, we term it as 
distributed R2 (abbreviated to DR2 ) estimator, i.e.,

where wk =
nk

N
.

Remark 2.1  Obviously, after obtaining the local estimators �̂R2

k
, k = 1,… ,K and 

X
T
k
Xk

nk
, k = 1,… ,K in different machines, we send them to the master machine; then, 

the resulting estimator �̂
DR2

 can be easily obtained in the master machine. Because 
only one round of communication is required, it is highly efficient in terms of 
communication.

Remark 2.2  A key feature of the new DR2 is that it uses the covariates distribution 
information in the covariance matrixes �k, k = 1,… ,K sufficiently by taking a 
weighted average of local estimators �̂R2

k
 using weight matrixes X

T
k
Xk

nk
, k = 1,… ,K , 

so our method is adaptive when the data are stored heterogeneously across different 
machines and achieve the advantage of estimation efficiency. While the CSL estima-
tor (Jordan et  al., 2019) only used the weight matrix of the master machine, the 
weight matrixes of other machines are completely ignored. These will lead to the 
loss of estimation efficiency when the datasets in different machines are 
heterogeneous.

Remark 2.3  We further interpret the efficiency advantage of the proposed pro-
cedure by comparing it with the “one-shot” method. For a clear illustration, we 
consider the simple univariate linear regression model y = �x + � with data-
sets {yki, xki}ni=1, k = 1,… ,K , and the data have been centralized. Based on the 
local R2 estimator 𝛽R2

k
, k = 1,… ,K , the “one-shot” estimator can be obtained as 

𝛽OS =
1

K

∑K

k=1
𝛽R

2

k
 . Then, the variances of 𝛽OS and 𝛽DR2 can be calculated as

Q(�) =

K∑

k=1

(�̂
R2

k
− �)TXT

k
Xk(�̂

R2

k
− �),

�̂
DR2

= argmin�∈ℝpQ(�)

=

(
K∑

k=1

X
T
k
Xk

)−1( K∑

k=1

X
T
k
Xk�̂

R2

k

)

=

(
K∑

k=1

wk

X
T
k
Xk

nk

)−1( K∑

k=1

wk

X
T
k
Xk

nk
�̂
R2

k

)
,

Var(𝛽OS) =
1

12𝜔2

1

K2

�
K�

k=1

1
∑n

i=1
x2
ki

�
and Var(𝛽DR

2

) =
1

12𝜔2

�
1

∑K

k=1

∑n

i=1
x2
ki

�
.
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Note that 1

K2

�∑K

k=1

1∑n

i=1
x2
ki

�
⩾

�
1

∑K

k=1

∑n

i=1
x2
ki

�
 , the equation holds if and only if 

∑n

i=1
x2
1i
= … =

∑n

i=1
x2
Ki

 . This also confirms the efficiency advantage of our new 
method, especially when the datasets in different machines are heterogeneous.

In order to investigate the asymptotic properties of the estimator �̂DR2

 , we assume 
the following regularity conditions. 

	(A1)	 For k = 1,… ,K , 1
nk

∑nk
i=1

XkiX
T
ki
→p �k , as nk → ∞.

	(A2)	 Parameter space H  is a compact subset of Rp , and the true parameter �0 is an 
inner point of H .

	(A3)	 For k = 1,… ,K , maxi=1,…,nk
‖Xki‖∕

√
nk → 0.

	(A4)	 The density of � has finite Fisher information, that is ∫ (f �(t))2∕f (t)dt < ∞.

Conditions (A1)–(A4) are mild and routinely made in the rank regression modeling 
literature.
Theorem  1  Denote n = N∕K as the average sample size for each machine, 
assume that n∕

√
N → ∞ and all nk diverge in the same order O(n), i.e., 

c1 ⩽ mink nk∕n ⩽ maxk nk∕n ⩽ c2 for some positive constants c1 and c2 . Under con-
ditions (A1)–(A4), we have that

where � =
1

12�2

�∑K

k=1
wk�k

�−1

 , and Ip is a p × p identity matrix.

In this theorem, asymptotic covariance matrix 1

12�2

�∑K

k=1
wk�k

�−1

 includes the 
weighted average of �k, k = 1,… ,K , where weight wk denotes the ratio of local 
sample size of the kth machine to global sample size. Obviously, if the data sets in 
different machines are homogeneous, i.e., �1 = … = �K = � , then 
1

12�2

�∑K

k=1
wk�k

�−1

 becomes to 1

12�2
�
−1 . What is more, if we assume that 

n1 = … = nK = n , i.e., each machine stores a subsample of n observations, which 
also is assumed in Jordan et  al. (2019); then, 1

12�2

�∑K

k=1
wk�k

�−1

 becomes to 
1

12�2

�
1

K

∑K

k=1
�k

�−1

.
From Theorem  1, we know that the estimator �̂DR2

 obtained in the master 
machine has the same asymptotical distribution as the global rank regression esti-
mator obtained based on the full data, or say, the estimator obtained in the mater 
machine works as well as all the data were pooled on a single machine. What is 
more, n∕

√
N → ∞ means that the order of sample size in each machine should be 

larger than 
√
N , or say, the number of machines is smaller than the average local 

sample size n, which can be satisfied in practice.

�
−

1

2

√
N(�̂

DR2

− �0) →d N
�
0, Ip

�
,
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2.3 � Distributed regularized rank regression

In practice, the number of variables is often large, but only few of them may be 
really related to the response; thus, variable selection is critically important. How-
ever, how to conduct variable selection in the massive data setting has not been suf-
ficiently investigated and the existing methods mainly focus on the mean regression 
or likelihood framework (Chen and Xie, 2014; Lee et al., 2015; Battey et al., 2018; 
Wang et al., 2017; Jordan et al., 2019).

Although �̂DR2

 is robust, it does not enjoy the sparse property and cannot be used 
to do variable selection. Note that, based on the formula of �̂DR2

 , we can obtain that

where C =
∑K

k=1
(�̂

R2

k
)Twk

X
T
k
Xk

nk
�̂
R2

k
− (�̂

DR2

)T
∑K

k=1
wk

X
T
k
Xk

nk
�̂
DR2

 is free with � . Then, 
we propose the following adaptive LASSO-penalized loss function

where � and �j, j = 1,… , p are positive tuning parameters. Because it is built upon 
DR2 and penalty function, we refer to it as distributed regularized rank regression 
(abbreviated to DR3 ). To simplify computation, we preselect �j as 
𝜆j =

1

|𝛽DR2
j

|
, j = 1,… , p, ; then, the resulting estimator can be obtained as

Obviously, �̂DR3

𝜆
 can also be obtained in the master machine, because �̂DR2

 and 
∑K

k=1
wk

X
T
k
Xk

nk
 can be calculated in the master machine.

Without loss of generality, let � = (�T
1
, �T

2
)T , where �1 ∈ Rd and �2 ∈ Rp−d . We 

assume that the last p − d components of the true parameter �0 are zeros, that is, 
�0 = (�T

01
, 0T )T , where �01 = (�0,1,… , �0,d)

T contains nonzero components. Further-
more, we define aN = max{�j ∶ j = 1,… , d} and bN = min{�j ∶ j = d + 1,… , p} . 
In fact, aN controls the largest amount of penalty on the true nonzero parameters, 

1

N
Q(�) =

K∑

k=1

(�̂
R2

k
− �)Twk

X
T
k
Xk

nk
(�̂

R2

k
− �)

=

K∑

k=1

�Twk

X
T
k
Xk

nk
� − 2�T

K∑

k=1

wk

X
T
k
Xk

nk
�̂
R2

k
+

K∑

k=1

(�̂
R2

k
)Twk

X
T
k
Xk

nk
�̂
R2

k

=

K∑

k=1

�Twk

X
T
k
Xk

nk
� − 2�T

K∑

k=1

wk

X
T
k
Xk

nk
�̂
DR2

+

K∑

k=1

(�̂
R2

k
)Twk

X
T
k
Xk

nk
�̂
R2

k

= (� − �̂
DR2

)T

[
K∑

k=1

wk

X
T
k
Xk

nk

]
(� − �̂

DR2

) + C,

P𝜆(�) = (� − �̂
DR2

)T

[
K∑

k=1

wk

X
T
k
Xk

nk

]
(� − �̂

DR2

) + 𝜆

p∑

j=1

𝜆j|𝛽j|,

�̂
DR3

𝜆
=
(
𝛽DR

3

𝜆,1
,… , 𝛽DR

3

𝜆,p

)T

= argmin�∈ℝpP𝜆(�).
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which should not be too large; otherwise, it will result in a highly biased estimator. 
In contrast, bN is responsible for producing sparse solutions of irrelevant covariates, 
which should be sufficiently large. The asymptotic properties of �̂DR3

𝜆
 are in the fol-

lowing theorem.

Theorem 2  Assume that 
√
N�aN → 0 and 

√
N�bN → ∞ . Then under the conditions 

in Theorem 1, the estimator �̂
DR3

𝜆
 satisfies 

(a)	 S e l e c t i o n  c o n s i s t e n c y :  P(Â𝜆 = A) → 1 ,  w h e re  A = {1,… , d} , 
Â𝜆 = {j ∶ 𝛽DR

3

𝜆,j
≠ 0};

(b)	 A s y m p t o t i c  n o r m a l i t y :  �
−

1

2

A

√
N(�̂

DR3

𝜆,A
− �01) → N

�
0, Id

�
 ,  w h e re 

�̂
DR3

𝜆,A
= (𝛽DR

3

𝜆,1
,… , 𝛽DR

3

𝜆,d
)T , �A is the submatrix of � whose entries correspond to 

the variables in A , and Id is a d × d identity matrix.

With regarding the algorithm of minimizing P�(�) , this is a standard penalized 
least squares problem, whose solution path can be computed by the fast LARS algo-
rithm at a computational complexity equal to a single least squares fit. Although 
DR3 can select the true relevant variables consistently, its performance depends on 
the appropriate selection of tuning parameter. We propose the following distributed 
BIC-type criteria to select the tuning parameter � , which is defined by

where df� denotes the number of nonzero estimated parameters. In fact, the above 
DBIC is a trade-off between fitting accuracy and model size (i.e., the number of 
nonzero components in the resulting estimator, df� ). Then, the optimal tuning param-
eter is the minimizer of DBIC(�) , i.e., 𝜆̂ = argmin𝜆∈ℝ+=[0,+∞)DBIC(𝜆) . Our simula-
tion studies demonstrate that the distributed BIC-type criterion defined in (3) can 
select the tuning parameter satisfactorily and identify the true model consistently.

Finally, we investigate the theoretical property of the distributed BIC-type cri-
terion. According to the value of Â𝜆 , we partition ℝ+ into three mutually exclu-
sive regions, i.e., ℝ+

−
=
{
𝜆 ∈ ℝ+ ∶ Â𝜆 ⊅ A

}
 , ℝ+

0
=
{
𝜆 ∈ ℝ+ ∶ Â𝜆 = A

}
 , and 

ℝ+
+
=
{
𝜆 ∈ ℝ+ ∶ Â𝜆 ⊃ A and Â𝜆 ≠ A

}
 . In other words, ℝ+

0
 , ℝ+

−
 and ℝ+

+
 are three 

subsets of ℝ+ , in which the true-fitted, under-fitted and over-fitted models can be 
produced.

In order to analyze the efficiency of the distributed BIC-type criterion, we first 
give a reference tuning parameter, �N = log(N)∕N . By the selection of �j and note 
that �̂DR2

 is 
√
N consistent, we know that aN is of Op(1) and bN is of Op(

√
N) → ∞ . 

Thus, 
√
N�NaN → 0 and 

√
N�NbN → ∞ as N → ∞ , i.e., �N satisfies the conditions 

(3)DBIC(𝜆) = (�̂
DR3

𝜆
− �̂

DR2

)T

[
K∑

k=1

wk

X
T
k
Xk

nk

]
(�̂

DR3

𝜆
− �̂

DR2

) +
logN

N
df𝜆,
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about the tuning parameter in Theorem 2. Then, by Theorem 2 and the above discus-
sion, we know P(Â𝜆N

= A) → 1 . This implies that the relevant variables identified 
by �N converge to the true ones as the sample size increases.

Theorem 3  Under the conditions in Theorem 2, we have that

From this theorem, we know that 𝜆̂ ∉ ℝ+
−

⋃
ℝ+

+
 holds asymptotically, because 

�N = log(N)∕N that can lead to consistent variable selection is a better choice. This 
results that the 𝜆̂ must be one of those in ℝ+

0
 asymptotically. Thus. optimal tuning 

parameter selected by this distributed BIC-type criterion can identify the true sub-
model consistently.

3 � Simulation studies and applications to real data

3.1 � Simulation studies

In this subsection, we illustrate the finite sample performance of our new method by 
simulation studies. Experiment 1 shows the estimation accuracy of the DR2 estima-
tor; Experiment 2 demonstrates the variable selection results of the DR3 method.

Experiment 1. In this experiment, we generate datasets from the linear regres-
sion model Yi = X

T
i
� + �i, where � = (1,−1, 2, 1)T . To illustrate the robust prop-

erty of our method, for the random error �i , we considered three distributions, (1) 
the standard normal, (2) the t distribution with 4 degrees of freedom (denoted by 
t4 ), and (4) contaminated normal (abbreviated to CN) with distribution function 
(1 − �)Φ(x) + �Φ(

x

3
) , where Φ(x) is the distribution function of standard normal, 

� ∈ [0, 1] is the contamination proportion and we choose � = 0.1 . For the covariates, 
two different data storage strategies are considered. Specifically,

Case 1 (i.i.d covariates). The covariates in different machines are distributed 
independently and identically, i.e., the covariates Xij, i = 1,… ,N, j = 1,… , p in 
every machine are all sampled from the standard normal distribution N(0, 1);
Case 2 (heterogeneous covariates). In this case, the covariates may follow differ-
ent distribution across each machine. Specifically, in the kth machine, 
Xki, i = 1,… , nk can be sampled from zero mean multivariate normal or multi-
variate t2 distributions with probability 0.6 and 0.4, respectively, and their covari-
ance matrix is a Toeplitz matrix, i.e., �k = (�k,j1j2 ) = (�

|j1−j2|
k

)
p

j1,j2=1
 , and �k is sam-

pled from U[0.3, 0.4].

P

�
inf

𝜆∈ℝ+
−

⋃
ℝ+

+

DBIC(𝜆) > DBIC(𝜆N)

�
→ 1.
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We set the sample size as N = M × 104 and consider M = (1, 2, 10) , respectively, 
and the number of machines is set to K = {(50, 100), (50, 100), (250, 400, 500)} cor-
respondingly. For a clear comparison, the experiment is repeated 100 times. We 
compare the proposed DR2 method with several methods, i.e., (a) the OS estimator 
�̂
OS

=
1

K

∑K

k=1
�̂
R2

k
 (Zhang et  al., 2013), (b) the CSL estimator �̂CSL (Jordan et  al., 

2019), c) the global least squares estimator �̂GLS
= (

∑N

i=1
XiX

T
i
)−1(

∑N

i=1
XiYi) , and 

(d) the global LAD estimator �̂
GLAD

= argmin�∈ℝp{
∑N

i=1
�Yi − X

T
i
��} . To measure 

the estimation efficiency, we calculate the mean square error (MSE) of different esti-
mators based on the 100 replications, i.e., MSE(𝛽j) =

1

100

∑100

t=1
(𝛽j − 𝛽0j)

2 , and then, 
we give the relative estimation efficiency (REE) of our new DR2 estimator �̂DR2

 with 

respect to �̂OS , �̂CSL , �̂GLS and �̂GLAD , respectively, e.g., REEj(OS) =
MSE(𝛽OS

j
)

MSE(𝛽DR
2

j
)
 , 

REEj(CSL) , REEj(GLAD) and REEj(GLS) can be defined similarly, j = 1,… , p.
The simulation results are reported in Figs. 1–6, which are given in the supple-

mentary file. From these simulation results, we have the following findings. First, 
in Case 1, i.e., the datasets are independent and identically distributed, we find that, 
when the random error follows standard normal distribution, all values of REEj(CSL) 
and REEj(GLS) are approximately equal to 1, which means our DR2 estimator is 
asymptotically as efficient as the GLS and CSL estimators, while when errors fol-
low t4 or contaminated normal distributions, our DR2 estimator is more efficient 
than CSL, GLS estimators, because all the values of REEj(CSL) and REEj(GLS) are 
larger than 1, what is more, the REEj(GLAD) is always larger than 1 for every error 

distribution in Case 1, which implies that �̂DR2

 is more efficient than the GLAD esti-
mator. Second, when the datasets are heterogeneous (i.e., Case 2), we can see that 
our new method performs much better than the two competing distributed estima-
tors, OS and CSL, because the values of REEj(OS) and REEj(CSL) are always bigger 
than 1 for every error distribution and (K, M), where the CSL method behaves worst 
in this case, because it only used the covariates distribution information of the mas-
ter machine; the information in other machines is ignored. The comparison results 
between our DR2 method and two competing global estimators (GLS and GLAD) 
in Case 2 are similar to that in Case 1. Also, Table 1 reports the empirical standard 

Table 1   The empirical standard deviations ( ×100 ) of DR2 estimators for N = 1 × 10
4

Error K Case 1 Case 2

�
1

�
2

�
3

�
4

�
1

�
2

�
3

�
4

N(0, 1) 50 0.356 0.375 0.329 0.401 0.375 0.358 0.417 0.392
100 0.412 0.311 0.308 0.337 0.391 0.423 0.361 0.327

CN 50 0.456 0.439 0.511 0.449 0.456 0.491 0.465 0.462
100 0.461 0.466 0.471 0.503 0.437 0.477 0.422 0.433

t
4

50 0.438 0.487 0.479 0.459 0.433 0.511 0.497 0.512
100 0.475 0.505 0.462 0.487 0.419 0.439 0.445 0.476
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deviations of DR2 estimators for N = 1 × 104 , which further confirm the excellent 
performance of the proposed method.

Experiment 2. In this experiment, data sets are generated from model 
Yi =

∑40

j=1
Xij�j + �i , where � = (1,−1, 2, 1, 0,… , 0)T , i.e., the first four variables are 

really relevant and the remaining 36 variables are irrelevant. For the random error 
�i , to illustrate the robustness, we also consider the three error distributions that are 
used in Experiment 1. For the covariates, similar to Experiment 1, we also consider 
two cases.

Case 3 (i.i.d covariates). In every machine, covariates Xij, i = 1,… ,N, j = 1,… , 4 
are all sampled from the standard normal N(0,  1), while 
Xij, i = 1,… ,N, j = 5,… , 40 follow t distribution with 2 degrees of freedom, 
where Xij, j = 1,… , 40 are independent mutually.
Case 4 (heterogeneous covariates). In the kth machine, the covariates 
Xkij, i = 1,… , nk, j = 1,… , p can be sampled from two strategies. In the first 
strategy, Xkij, j = 1,… , 4 follow N(0,  1) and Xkij, j = 5,… , 40 follow t distribu-
tion with 2 degrees of freedom. In the second strategy, Xkij, j = 1,… , 4 follow t 
distribution with 2 degrees of freedom and Xkij, j = 5,… , 40 follow N(0, 1). We 
select the first strategy and the second strategy randomly with probability 0.6 and 
0.4, respectively.

Table 2   Simulation results in 
experiment 2 for N(0, 1) error

(K,M) CF (%) REE (Oracle)

�
1

�
2

�
3

�
4

Case 3 (50,1) 95 0.9673 0.9486 0.9588 1.0113
(100,1) 96 0.9778 1.0017 1.0103 0.9904
(50,2) 93 1.0158 0.9593 0.9160 1.0211
(100,2) 96 0.9894 0.9296 1.0030 0.9865
(250,10) 93 0.9833 0.9972 1.0278 1.0321
(400,10) 94 1.0501 1.0309 0.9924 0.9627
(500,10) 94 0.9833 1.0985 0.9746 0.9812

Case 4 (50,1) 95 0.9912 1.0003 0.9899 0.9883
(100,1) 93 1.0003 0.9989 0.9719 0.9993
(50,2) 94 1.0109 1.0008 0.9867 0.9177
(100,2) 92 0.9453 0.9677 0.9818 0.9376
(250,10) 95 0.9919 0.9898 0.9162 0.9172
(400,10) 94 1.0023 0.9387 0.9558 0.9387
(500,10) 96 0.9177 0.9818 0.9735 0.9198
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To investigate the estimation accuracy of our new DR3 variable selection pro-
cedure, we also calculate the oracle DR2 estimators, which are obtained by the 
DR2 method under the true relevant variables; then, the relative estimation effi-
ciency of the DR3 estimators with respect to the oracle DR2 estimators is reported, 
i.e., REE(Oracle), which is defined as the ratio of MSE of oracle DR2 estimator 
to MSE of DR3 estimator. Furthermore, we also report the percentage of correct 

Table 3   Simulation results in 
experiment 2 for contaminated 
normal error

(K,M) CF (%) REE (Oracle)

�
1

�
2

�
3

�
4

Case 3 (50,1) 91 0.9207 0.9562 0.9619 0.9856
(100,1) 94 1.0002 0.9198 0.9618 0.9337
(50,2) 95 0.9781 1.0217 0.9011 0.9223
(100,2) 93 0.9513 0.9177 0.9201 1.0006
(250,10) 95 0.9198 0.9898 0.9162 0.9411
(400,10) 92 0.9012 0.9535 0.9326 0.9172
(500,10) 93 0.9977 0.9818 0.9755 0.9003

Case 4 (50,1) 94 0.9478 1.0041 1.0172 1.0177
(100,1) 95 0.9717 0.9198 0.9431 0.9158
(50,2) 94 0.9009 1.0021 0.9732 0.9577
(100,2) 94 0.9327 0.9312 0.9656 0.9346
(250,10) 96 0.9198 0.9876 0.9165 0.9403
(400,10) 95 1.0012 1.0005 0.9626 0.9412
(500,10) 96 0.9977 0.9818 0.9755 0.9179

Table 4   Simulation results in 
experiment 2 for t

4
 error

(K,M) CF (%) REE (Oracle)

�
1

�
2

�
3

�
4

Case 3 (50,1) 93 0.9078 0.9405 0.9172 0.9331
(100,1) 94 1.0012 0.9128 0.9325 0.9119
(50,2) 96 0.9192 0.9371 0.9077 0.9173
(100,2) 95 0.8997 0.9005 0.9889 0.9377
(250,10) 92 0.9198 0.9877 0.9163 0.9612
(400,10) 96 1.0009 0.9535 0.9321 0.9375
(500,10) 92 0.9977 0.9818 0.9755 0.9473

Case 4 (50,1) 93 0.9118 0.9077 0.9105 0.9558
(100,1) 94 0.9367 0.9709 0.9558 0.9319
(50,2) 92 0.9789 0.9903 0.9659 0.9883
(100,2) 96 1.0036 1.0135 0.9614 0.9178
(250,10) 95 0.9188 0.9537 0.9166 0.9272
(400,10) 94 0.9712 0.9535 0.9323 1.0075
(500,10) 93 0.9978 0.9188 0.9659 0.9412
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model fitted (CF). Tables 2, 3 and 4 list the simulation results based on 100 repli-
cations. First, we can see that, for all the error distributions under consideration, 
REE(Oracle) ≈ 1 for every case and (K, M), this means that the DR3 estimator can 
estimate the unknown parameters as accurately as the oracle estimator. Second, 
by the values of CF, we can see that the proposed DR3 method with the distrib-
uted BIC-type criterion can select the true relevant variables consistently. All of 
these conforms to the asymptotic results.

3.2 � Applications to real data

In this subsection, we apply the proposed method to the greenhouse gas (GHG) 
observing network data, which are reported by the UCI machine learning reposi-
tory. This dataset consists of 954, 840 observations, and the global rank regres-
sion cannot work at all. Thus, it can be used to demonstrate the proposed method 
for massive data. The response variable is GHG concentrations of synthetic 
observations, and there are 15 predictors. These predictors are GHG concentra-
tions of tracers emitted from 14 distinct spatial regions in California and one 
outside of California (denoted as Reg1–Reg15). Then, we will predict the GHG 
concentrations of synthetic and determine the important regions, which play an 
important role in the GHG concentrations of synthetic.

Table 5   The values of MAPE 
and coefficients estimation 
results for DR2 and DR3 
methods in analysis of the 
greenhouse gas observing 
network data set

K = 400 K = 500

DR
2

DR
3

DR
2

DR
3

Reg1 1.3178 1.5369 1.6382 1.4119
Reg2 0.6722 0.5391 0.5792 0.7033
Reg3 0.8637 1.0117 1.1217 1.0973
Reg4 0.0085 0.0000 0.0026 0.0000
Reg5 0.0534 0.0000 0.0178 0.0000
Reg6 3.9951 3.7782 4.0766 4.1369
Reg7 0.0018 0.0000 0.0011 0.0000
Reg8 0.6452 0.5339 0.7118 0.7091
Reg9 0.5851 0.7732 0.6231 0.5977
Reg10 0.3846 0.2879 0.3742 0.4003
Reg11 0.0846 0.0000 0.0512 0.0000
Reg12 0.6893 0.5017 0.6671 0.5988
Reg13 0.4043 0.3519 0.5138 0.5321
Reg14 1.0765 1.1532 0.9278 1.1763
Reg15 0.6743 0.7739 0.5798 0.5392
MAPE 10.5019 10.3076 10.1749 10.1717
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The whole dataset is divided into training dataset and testing dataset; specifically, 
we use the first 500, 000 observations as training dataset Dtrain , and the rest as the 
testing dataset Dtest . Then, we compute the coefficients using the training dataset 
Dtrain and calculate the mean of the absolute prediction error (MAPE) based on the 
testing dataset Dtest , where MAPE is the mean of {|Ŷi − Yi|, i ∈ Dtest} . The number 
of machines K is taken as {100, 200, 400, 500} , respectively. For different values 
of K, we first apply the DR2 method; then, the DR3 is implemented for variable 
selection.

From the computation results, we find that the proposed methods are insensitive 
to the choice of K. Table 5 summarizes the values of MAPE and coefficients estima-
tion results for K = 400 and K = 500 , respectively, which also confirm this finding. 
We can see that Reg4, Reg5, Reg7, and Reg11 are not selected in the model, which 
means the monitoring for these regions can be reduced to save the cost of human 
and material resources. Besides, stations 1, 3, 6 and 14 have the biggest coefficients, 
so the monitoring of these four regions should be further strengthened.

4 � Concluding remarks

This paper proposes a distributed rank regression for the massive data, which can 
be implemented in the master machine conveniently. Theoretically, the resulting 
estimator is statistically as efficient as the global rank regression estimator. What is 
more, combining with the adaptive LASSO, a distributed regularized rank regres-
sion variable selection method is constructed, which can make consistent variable 
selection and can be easily implemented by using the LARS algorithm.

In the existing literature, variable selection is often discussed in the dimensional set-
tings, i.e., the dimension of covariates is larger than the sample size. It is interesting 
to see how the proposed method can be adapted, when dimension p is much larger 
than nk , for k = 1,… ,K . Furthermore, the asymptotic covariance matrix � involves 
unknown parameter �2 , and how to estimate it in the distributed massive data setting is 
unknown, we will study it in the future.

Supplementary Information  The online version contains supplementary material available at https://​doi.​org/​
10.​1007/​s10463-​021-​00803-5.
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