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Abstract
We consider Whittle estimation for the parameters of a stationary solution of a con-
tinuous-time linear state space model sampled at low frequencies. In our context, 
the driving process is a Lévy process which allows flexible margins of the under-
lying model. The Lévy process is supposed to have finite second moments. Then, 
the classes of stationary solutions of linear state space models and of multivariate 
CARMA processes coincide. We prove that the Whittle estimator, which is based on 
the periodogram, is strongly consistent and asymptotically normal. A comparison 
with ARMA models shows that in the continuous-time setting the limit covariance 
matrix of the estimator has an additional term for non-Gaussian models. Thereby, 
we investigate the asymptotic normality of the integrated periodogram. Further-
more, for univariate processes we introduce an adjusted version of the Whittle esti-
mator and derive its asymptotic properties. The practical applicability of our estima-
tors is demonstrated through a simulation study.

Keywords  Asymptotic normality · CARMA process · Consistency · Identifiability · 
Periodogram · Quasi-maximum-likelihood estimator · State space model · Whittle 
estimator

1  Introduction

Continuous-time linear state space models are widely used in diverse fields as, e.g., 
in signal processing and control, high-frequency financial econometrics and finan-
cial mathematics. The advantages of continuous-time models are that they allow to 
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model high-frequency data as in finance and in turbulence but as well irregularly 
spaced data, missing observations or situations when estimation and inference at 
various frequencies have to be carried out.

In this paper, we investigate stationary solutions of continuous-time linear state 
space models driven by a Lévy process. A one-sided d-dimensional Lévy process 
(Lt)t≥0 is a stochastic process with stationary and independent increments satisfying 
L0 = 0 almost surely and having continuous in probability sample paths. For matri-
ces A ∈ ℝ

N×N , B ∈ ℝ
N×d , C ∈ ℝ

m×N and a d-dimensional centered Lévy process 
L = (Lt)t≥0 a continuous-time linear state space model (A, B, C, L) is defined by

The processes (Xt)t≥0 and (Yt)t≥0 in the state space representation (1) are called state 
and output process, respectively.

In the case of a finite second moment of the driving Lévy process the classes 
of stationary linear state space models and multivariate continuous-time ARMA 
(MCARMA) models are equivalent (see Schlemm and Stelzer 2012b,  Corollary 
3.4). This means that for every output process (Yt)t≥0 of the state space model (1) 
there exist an autoregressive polynomial P(C)(z) ∶= Imz

p + P1z
p−1 +⋯ + Pp−1z + Pp 

with P1,… ,Pp ∈ ℝ
m×m and a moving average polynomial 

Q(C)(z) ∶= Q0z
q + Q1z

q−1 +…+ Qq−1z + Qq with Q0,… ,Qq ∈ ℝ
m×d such that 

(Yt)t≥0 can be interpreted as solution of the differential equation

where � is the differential operator with respect to t. Since the orders of the autore-
gressive polynomial and the moving average polynomial are p and q, Y is called 
MCARMA(p, q) process. Formally, MCARMA processes were introduced as linear 
state space models with special matrices A, B, C,  see Marquardt and Stelzer (2007). 
Since the parametrization of a general linear state space model (1) is more flexible 
than the parametrization of an MCARMA model (2), it is advantageous to use (1) 
and estimate the parameters within this representation.

The defining differential Eq. (2) of an MCARMA process reminds of the defining 
difference equation of a discrete-time vector ARMA (VARMA) process. A VARMA 
process (Zn)n∈ℕ is the m-dimensional solution of a difference equation of the form

where � is the Backshift-operator �Zn = Zn−1 and (en)n∈ℤ is a d-dimensional white 
noise, see, e.g., the monographs of Brockwell and Davis (1991) and Lütkepohl 
(2005). From Thornton and Chambers (2017), see Brockwell and Lindner (2009) 
for the univariate case, it is well known that a discretely sampled MCARMA process 
admits a VARMA representation with a weak white noise (en)n∈ℤ . The covariance 
matrix of en depends on the parameters of the polynomial P and Q in the MCARMA 
representation, respectively on the parameters of (A, B, C) in the state space model 
(1). For Lévy driven models the white noise of the sampled process is neither a 

(1)
dXt = AXtdt + BdLt,

Yt = CXt, t ≥ 0.

(2)P(C)(�)Yt = Q(C)(�)�Lt, t ≥ 0,

(3)P(D)(�)Zn = Q(D)(�)en, n ∈ ℕ,
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strong white noise nor a martingale difference in general. Since the results concern-
ing the asymptotic behavior of the quasi maximum likelihood estimator and the 
Whittle estimator for VARMA models require the white noise to be a martingale dif-
ference, see Dunsmuir and Hannan (1976), Deistler et al. (1978) and Dahlhaus and 
Pötscher (1989), they are not transferable to non-Gaussian Lévy driven state space 
models.

In the econometric literature there are several papers using the Kalman filter 
approach for maximum likelihood estimation of Gaussian possibly non-stationary 
MCARMA processes as, e.g., Harvey and Stock (1985, 1988, 1989), Zadrozny 
(1988) and Thornton and Chambers (2017). The rigorous mathematical derivation 
of the asymptotic properties of the quasi-maximum likelihood estimator for station-
ary Lévy driven state space and MCARMA models was given recently in Schlemm 
and Stelzer (2012a) and for non-stationary models in Fasen-Hartmann and Scholz 
(2019). In the case of univariate MCARMA processes with d = m = 1 , which are 
called CARMA processes, there exist some further estimation methods. An indirect 
estimation procedure for CARMA models, which is robust against outliers, is the 
topic of Fasen-Hartmann and Kimmig (2020). To the best of our knowledge Fasen 
and Fuchs (2013) present the only frequency domain estimator for high-frequency 
sampled CARMA processes.

In this paper, we investigate a frequency domain estimator, the Whittle estima-
tor, for a low-frequency sampled state space model (1) with stationary observa-
tions Y�,… , Yn� ( 𝛥 > 0 fixed). The Whittle estimator dates back to Whittle (1951, 
1953), Walker (1964) and is very well investigated for different time series models 
in discrete time. If the autocovariance function of Y (�) ∶= (Yk�)k∈ℕ0

 is denoted by 
� (�)(h) = Cov(Y(h+1)�, Y�) and 𝛤 (𝛥)(−h) = 𝛤 (𝛥)(h)⊤ , h ∈ ℕ0 , the spectral density fY (�) 
of Y (�) is defined as the Fourier transform of the autocovariance function

Conversely, using the inverse Fourier transform, yields

The empirical version of the spectral density is the periodogram 
In ∶ [−�,�] → ℝ

m×m defined as

where

(4)fY (�) (�) =
1

2�

∑
h∈ℤ

� (�)(h)e−ih�, � ∈ [−�,�].

(5)� (�)(h) = ∫
�

−�

fY (�) (�)eih�d�, h ∈ ℤ.

(6)In(𝜔) =
1

2𝜋n

(
n∑
j=1

Yj𝛥e
−ij𝜔

)(
n∑

k=1

Yk𝛥e
ik𝜔

)⊤

=
1

2𝜋

n−1∑
h=−n+1

𝛤
(𝛥)

n
(h)e−ih𝜔,

𝛤
(𝛥)

n
(h) ∶=

1

n

n−h∑
k=1

Y(k+h)𝛥Y
⊤
k𝛥

and 𝛤
(𝛥)

n
(−h) ∶= 𝛤

(𝛥)

n
(h)⊤, h = 0,… , n,
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is the empirical autocovariance function. For different frequencies the periodogram 
behaves asymptotically like independent exponentially distributed random variables, 
see Fasen (2013), and is not a consistent estimator for the spectral density. However, 
the periodogram is the basic part of the Whittle estimator.

Let 𝛩 ⊆ ℝ
r be a parameter space and for any � ∈ � let fY (�) (�, �) be the spectral 

density of a stationary equidistant sampled state space process Y (�)(�) . Then, the 
Whittle function Wn is defined by

with �j =
�j

n
 for j = −n + 1,… , n and the Whittle estimator is

In the definition of the Whittle function it is also possible to replace the term 
log(det(fY (�) (�j, �))) by log(detV (�)(�)) where V (�)(�) is the covariance matrix of 
the one-step linear prediction error. Therefore, if the covariance matrix V (�)(�) of 
the linear prediction error does not depend on � , we can neglect the penalty term 
log(detV (�)(�)) completely since it is constant for all � . However, in the case of state 
space models, V (�)(�) depends on � and has to be computed additionally (cf. Propo-
sition 1). Conversely, for VARMA models, V (�)(�) is the covariance matrix of the 
white noise. Hence, the Whittle function for VARMA models with penalty function 
log(detV (�)(�)) in Dunsmuir and Hannan (1976) differs from our Whittle function. 
That paper is also one of the few papers using the Whittle estimator for the estima-
tion of a multivariate model.

Empirical spectral processes indexed by a class of functions are applied to 
derive the asymptotic properties of frequency domain estimators as the Whittle 
estimator. The asymptotic behavior of empirical spectral processes is very well 
investigated but unfortunately the known results cannot be utilized to our setting. 
The empirical spectral process theory usually requires some exponential inequal-
ity and therefore some stronger model assumptions are necessary. For example, 
Mikosch and Norvaiša (1997) investigate empirical spectral processes for linear 
models with i.i.d. (independent and identically distributed) noise having finite 
fourth moments; similarly Dahlhaus and Polonik (2009), Dahlhaus (1988) assume 
some exponential moment condition for the stationary time series model and 
Dahlhaus and Polonik (2006) study Gaussian locally stationary processes. The 
recent paper of Bardet et al. (2008) assumes some weak dependence on the sta-
tionary time series and that the one-step linear prediction error variance, which 
corresponds to the variance of the white noise in the ARMA representation of the 
discrete sampled process, does not depend on the model parameters. However, in 
our case, the parameters of (A, B, C) affect this variance. Whittle estimation for 
continuous-time fractionally integrated CAR processes, where the driving pro-
cess is a fractional Brownian motion, is studied in Tsai and Chan (2005). But 
essential for the proofs in that paper is again that the driving process is Gaussian 
such that the techniques cannot be used for Lévy driven models. Moreover, all of 

Wn(�) =
1

2n

n∑
j=−n+1

[
tr
(
fY (�) (�j, �)

−1In(�j)
)
+ log

(
det

(
fY (�) (�j, �)

))]
,

�̂(�)
n

∶= argmin
�∈�

Wn(�).
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these papers only analyze univariate models, whereas we consider a multivariate 
model.

The paper is structured in the following way. We start by stating the basic facts 
on discrete-time sampled linear state space models in Sect.  2. Then, the main 
results of this paper are presented. In Sect. 3, we derive the consistency and the 
asymptotic normality of the Whittle estimator. Interesting is that for non-Gauss-
ian state space models the limit covariance matrix of the Whittle estimator differs 
from the covariance matrix in the Gaussian case. As a contrast to Whittle estima-
tion for VARMA models, this confirms that for the proofs standard techniques 
cannot be applied as well. An advantage of the Whittle estimator over the quasi-
maximum likelihood estimator of Schlemm and Stelzer (2012a) is that we have 
an analytic representation of the limit covariance matrix which can be used for 
the determination of confidence bands. For the proof of the asymptotic normality 
of the Whittle estimator we show as well the asymptotic normality of the inte-
grated periodogram. This result lays the basis for goodness-of-fit tests for state 
space models which can be written as continuous functionals of the integrated 
periodogram as, e.g., the Grenander and Rosenblatt test or Bartlett’s test for the 
integrated periodogram, Bartlett’s Tp test or the Cramér-von Mises test (cf. Priest-
ley 1981), and is topic of some future research. Furthermore, results of this type 
are typically used for bootstraps in the frequency domain. In Sect. 4, we motivate 
the definition of the adjusted Whittle estimator, which works only for univariate 
state space models with d = m = 1 , and present the consistency and the asymp-
totic normality for this estimator as well. Finally, the applicability of the Whittle 
and the adjusted Whittle estimator is demonstrated through a simulation study in 
Sect. 5 and compared to the quasi maximum likelihood estimator of Schlemm and 
Stelzer (2012a). For the Whittle estimator, the detailed proofs are given in Sect. 6 
and since the proofs for the adjusted Whittle estimator are very similar, they are 
moved to Sect. 7 in the Supplementary Material. Some further simulation studies 
are presented there as well.

Notation  For some matrix A, tr(A) stands for the trace of A, det(A) for its determi-
nant, A⊤ for its transpose and AH for the Hermitian of A. Further, A[i, j] denotes the 
(i, j)-th component of A. We write vec(A) for the vectorization of A and A⊗ B for 
the Kronecker product of A and B where B is any matrix. The N-dimensional identity 
matrix is denoted as IN . For a matrix function g(�) in ℝm×s with � in ℝr the gradi-
ent with respect to the parameter vector � is denoted by ∇�g(�) =

�vec(g(�))

��
∈ ℝ

ms×r 
and ∇�g(�0) is the shorthand for ∇�g(�)|�=�0 . If g ∶ ℝ

r → ℝ , then ∇2
�
g(�) ∈ ℝ

r×r 
denotes the Hessian matrix of g(�). For the real and the imaginary part of a complex 
valued z, we use the notation ℜ(z) and ℑ(z) , respectively. Throughout the article, 
‖ ⋅ ‖ denotes an arbitrary sub-multiplicative matrix norm. Finally, ℭ > 0 is a constant 
which may change from line to line.
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2 � Preliminaries

Let 𝛩 ⊂ ℝ
r be a parameter space, and suppose that for any � ∈ � , A(�) ∈ ℝ

N×N 
has eigenvalues with strictly negative real parts, B(�) ∈ ℝ

N×d , C(�) ∈ ℝ
m×N 

and L(�) ∶= (Lt(�))t∈ℝ is an ℝd-valued Lévy process with existing covari-
ance matrix �L(�) . A two-sided Lévy process can be constructed from two 
independent one-sided Lévy processes (L

(1)
t (�))t≥0 and (L

(2)
t (�))t≥0 through 

Lt(𝜗) = L
(1)
t (𝜗)�{t≥0} − lims↑−t L

(2)
s
(𝜗)�{t<0}. Details on Lévy processes can be 

found in Sato (1999). The stationary solution of the state space model

has the representation

The true parameter of the output process Y of our observations Y�,… , Yn� is denoted 
by �0 and is supposed to be in � . Since we only observe the output process of the 
state space model at discrete time points with distance 𝛥 > 0 , we are interested in 
the probabilistic properties of Y (�)(�) ∶= (Y

(�)

k
(�))k∈ℕ0

∶= (Yk�(�))k∈ℕ0
 as well. The 

discrete-time process Y (�)(�) has the discrete-time state space representation

where

is an i.i.d. sequence with mean zero and covariance matrix

(see Schlemm and Stelzer 2012a, Proposition 3.6). Furthermore, Y (�)(�) has the vec-
tor MA(∞) representation

where �j(�) = C(�)eA(�)�j ∈ ℝ
m×N . Defining �(z, �) ∶=

∑∞

j=0
�j(�)z

j, z ∈ ℂ, an 
application of Brockwell and Davis (1991),  Theorem  11.8.3, gives the spectral 
density

Yt(�) = C(�)Xt(�) and dXt(�) = A(�)Xt(�)dt + B(�)dLt(�), t ≥ 0,

Yt(�) = C(�)Xt(�) and Xt(�) = �
t

−∞

eA(�)(t−s)B(�) dLs(�), t ≥ 0.

Y
(�)

k
(�) = C(�)X

(�)

k
(�) and X

(�)

k
(�) = eA(�)�X

(�)

k−1
(�) + N

(�)

k
(�), k ∈ ℕ0,

(7)N
(�)

k
(�) = ∫

k�

(k−1)�

eA(�)(k�−u)B(�)dLu(�), k ∈ ℕ0,

𝛴
(𝛥)

N
(𝜗) = ∫

𝛥

0

eA(𝜗)uB(𝜗)𝛴L(𝜗)B(𝜗)
⊤eA(𝜗)

⊤udu

Y
(�)

k
(�) =

∞∑
j=0

�j(�)N
(�)

k−j
(�), k ∈ ℕ0,
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of Y (�)(�) . For better readability, we will omit the true parameter �0 whenever pos-
sible and write Y (�)

k
,X

(�)

k
, fY (�) (⋅),… instead of Y (�)

k
(�0),X

(�)

k
(�0), fY (�) (⋅, �0),….

To define the adjusted Whittle estimator and for the proof of the consistency of 
the Whittle estimator we introduce the linear innovations of Y (�)(�).

Definition 1  The linear innovations �(�)(�) ∶= (�
(�)

k
(�))k∈ℕ of Y (�)(�) are defined by

where the closure is taken in the Hilbert space of random vectors with square-inte-
grable components and inner product (X, Y) → �

[
X⊤Y

]
.

Adjusted to our notation, Proposition 2.1 of Schlemm and Stelzer (2012a) 
gives the following representation of the linear innovations of Y (�)(�).

Proposition 1  Suppose that the eigenvalues of A(�) have strictly negative real parts 
and �L(�) is positive definite. Then, the following holds: 

(a)	 The Riccati equation

has a unique positive semidefinite solution �(�)(�).
(b)	 Let

be the Kalman gain matrix. Furthermore, define the polynomial � as

Then, the linear innovations are

Furthermore, the absolute value of any eigenvalue of eA(�)� − K(�)(�)C(�) is 
less than one and Y (�)(�) has the moving average representation

(8)
fY (𝛥) (𝜔, 𝜗) =

1

2𝜋
𝛷(e−i𝜔, 𝜗)𝛴

(𝛥)

N
(𝜗)𝛷(ei𝜔, 𝜗)⊤

=
1

2𝜋
C(𝜗)

(
ei𝜔IN − eA(𝜗)𝛥

)−1
𝛴

(𝛥)

N
(𝜗)

(
e−i𝜔IN − eA(𝜗)

⊤𝛥
)−1

C(𝜗)⊤,

𝜀
(𝛥)

k
(𝜗) = Y

(𝛥)

k
(𝜗) − Prk−1(𝜗)Y

(𝛥)

k
(𝜗), where

Prk(𝜗) = orthogonal projection onto Mk(𝜗) ∶= span{Y (𝛥)
𝜈

(𝜗) ∶ −∞ < 𝜈 ≤ k},

𝛺(𝛥)(𝜗) = eA(𝜗)𝛥𝛺(𝛥)(𝜗)
(
eA(𝜗)𝛥

)⊤
+ 𝛴

(𝛥)

N
(𝜗)

−
(
eA(𝜗)𝛥𝛺(𝛥)(𝜗)C(𝜗)⊤

)(
C(𝜗)𝛺(𝛥)(𝜗)C(𝜗)⊤

)−1(
eA(𝜗)𝛥𝛺(𝛥)(𝜗)C(𝜗)⊤

)⊤

K(𝛥)(𝜗) =
(
eA(𝜗)𝛥𝛺(𝛥)(𝜗)C(𝜗)⊤

)(
C(𝜗)𝛺(𝛥)(𝜗)C(𝜗)⊤

)−1

�(z,�) ∶= � (�)(z,�)

∶=
(
Im − C(�)

(
IN − (eA(�)� − K(�)(�)C(�))z

)−1
K(�)(�)z

)
.

�
(�)

k
(�) = �(�,�)Y

(�)

k
(�), k ∈ ℕ.



240	 V. Fasen‑Hartmann, C. Mayer 

1 3

(c)	 The covariance matrix V (�)(�) of the linear innovations �(�)(�) has the represen-
tation V (𝛥)(𝜗) = C(𝜗)𝛺(𝛥)(𝜗)C(𝜗)⊤. If �(�)(�) is positive definite and C(�) has 
full rank, V (�)(�) is invertible.

Note that tr(V (𝛥)(𝜗)) = minX∈Mk−1(𝜗)
�[(Y

(𝛥)

k
(𝜗) − X)⊤(Y

(𝛥)

k
(𝜗) − X)]. An 

application of Brockwell and Davis (1991),  Theorem  11.8.3, and (9) yield the 
representation

for the spectral density of Y (�)(�).

3 � The Whittle estimator

3.1 � Consistency of the Whittle estimator

Assumption A  For all � ∈ � the following holds: 
	(A1)	 The parameter space � is a compact subset of ℝr.
	(A2)	 L(�) = (Lt(�))t∈ℝ is a centered Lévy process with positive definite covariance 

matrix �L(�).
	(A3)	 The eigenvalues of A(�) have strictly negative real parts.
	(A4)	 The functions � ↦ �L(�), � ↦ A(�), � ↦ B(�) and � ↦ C(�) are continuous. 

In addition, C(�) has full rank.
	(A5)	 The linear state space model (A(�),B(�),C(�), L(�)) is minimal with McMillan 

degree N, i.e., there exist no integer �N < N and matrices Ã ∈ ℝ
�N×�N , �B ∈ ℝ

�N×d 
and C̃ ∈ ℝ

m×Ñ with C(�)(zIN − A(�))−1B(�) = C̃(zI
Ñ
− Ã)−1B̃ for all z ∈ ℝ.

	(A6)	 For any �1, �2 ∈ � with �1 ≠ �2 there exists an � ∈ [−�,�] such that 
fY (�, �1) ≠ fY (�, �2), where fY (�, �) is the spectral density of Y(�).

	(A7)	 The spectrum of A(�) ∈ ℝ
N×N is a subset of 

{
z ∈ ℂ ∶ −

𝜋

𝛥
< ℑ(z) <

𝜋

𝛥

}
.

Remark 1 

(a)	 Note that Assumptions (A2) and (A3) allow us to calculate the linear innova-
tions. Furthermore, the covariance matrix V (�)(�) of the linear innovations is 
non-singular (cf. Lemma 3.14 in Schlemm and Stelzer 2012a).

(9)
Y
(�)

k
(�) = �

(�)

k
(�) + C(�)

∞∑
j=1

(
eA(�)�

)j−1
K(�)(�)�

(�)

k−j
(�)

=∶ �−1(�,�)�
(�)

k
(�).

(10)fY (𝛥) (𝜔, 𝜗) = 𝛱−1(e−i𝜔, 𝜗)
V (𝛥)(𝜗)

2𝜋
𝛱−1(ei𝜔, 𝜗)⊤, 𝜔 ∈ [−𝜋,𝜋],
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(b)	 Theorem 2.3.4 in Hannan and Deistler (1988) shows that (A5) guarantees 
the uniqueness of the state space representation (A(�),B(�),C(�), L(�)) up to 
a change of basis. Hence, (A5) reduces redundancies in the continuous-time 
model. In addition, Schlemm and Stelzer (2012a), Theorem 3.13, proved that 
Assumptions (A2)–(A7) provide �-identifiability of the collection of output pro-
cesses (Y(�), � ∈ �) , i.e., for fixed 𝛥 > 0 and arbitrary �1, �2 ∈ � with �1 ≠ �2 , 
there exists an � ∈ [−�,�] with fY (�) (�, �1) ≠ fY (�) (�, �2). Hence, Assumption 
(A7) is an anti-aliasing condition, i.e., it prevents redundancies due to the sam-
pling process. For more details on overcoming the aliasing effect, we refer to 
Phillips (1973), Hansen and Sergant (1983), Chambers et al. (2018) and Blevins 
(2017).

(c)	 Assumptions (A2) and (A5) imply that �(�)

N
(�) has full rank.

(d)	 Under Assumption A and representation (8) of the spectral density, the inverse 
fY (�) (�, �)−1 of the spectral density exists and the mapping (�,�) ↦ fY (�) (�, �)−1 
is continuous.

We start to prove some auxiliary results which we need for the proof of the con-
sistency of Whittle‘s estimator. The following proposition states that the Whittle 
function Wn converges almost surely uniformly.

Proposition 2  Let Assumptions (A1)–(A4) hold and

Then,

Obviously, it is necessary that �0 is a global minimum of W to guarantee the 
consistency of the Whittle estimator.

Proposition 3  Let Assumptions (A1)–(A4) and (A6) hold. Then, W has a unique 
global minimum in �0.

The proof is based on an alternative representation of W. Namely, the func-
tion W is exactly the limit function of the quasi maximum likelihood estimator of 
Schlemm and Stelzer (2012a).

Lemma 1  Let Assumptions (A1)–(A4) hold and let �(�)
k
(�) = �(�,�)Y

(�)

k
 with 

�(z,�) as given in Proposition 1. Furthermore, define for � ∈ Θ

Then, W(�) = L(�) for � ∈ �.

W(�) ∶=
1

2� ∫
�

−�

tr
(
fY (�) (�, �)−1fY (�) (�)

)
+ log

(
det

(
fY (�) (�, �)

))
d�, � ∈ �.

sup
�∈�

||Wn(�) −W(�)||
n→∞
⟶ 0 ℙ-a.s.

L(𝜗) ∶= �

[
tr
(
𝜉
(𝛥)

1
(𝜗)⊤V (𝛥)(𝜗)−1𝜉

(𝛥)

1
(𝜗)

)]
+ log(det(V (𝛥)(𝜗))) − m log(2𝜋).
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Finally, we are able to state the first main result of this paper, which gives the con-
sistency of the Whittle estimator.

Theorem 1  Let Assumption A hold. Then, as n → ∞,

3.2 � Asymptotic normality of the Whittle estimator

For the asymptotic normality of the Whittle estimator some further assumptions are 
required.

Assumption B    
	(B1)	 The true parameter value �0 is in the interior of �.
	(B2)	 �‖L1‖4 < ∞.

	(B3)	 The functions � ↦ A(�), � ↦ B(�) , � ↦ C(�) and � ↦ �L(�) are three times 
continuously differentiable.

	(B4)	 For any c ∈ ℂ
r , there exists an �∗ ∈ [−�,�] such that ∇�fY (�) (�∗, �0)c ≠ 0m2 .

Remark 2 

(a)	 Due to representation (8) of the spectral density, under Assumption A and (B3) 
the mapping � ↦ fY (�) (�, �) is three times continuously differentiable.

(b)	 Note that for the proof of the asymptotic normality of the quasi maximum like-
lihood estimator, Schlemm and Stelzer applied a covariance inequality which 
requires that the driving process has more than four moments, see Lemma 2.13 
of Schlemm and Stelzer (2012a). In contrast, we only need the existence of the 
fourth moment of the driving process. This is needed, since we apply a central 
limit theorem for the autocovariance function of the white noise.

The proof of the asymptotic normality of the Whittle estimator is based on a Tay-
lor expansion of ∇�Wn around �̂(�)

n
 in �0 , i.e.,

for an appropriate �∗
n
∈ � with ‖�∗

n
− �0‖ ≤ ‖�̂(�)

n
− �0‖ . Since �̂(�)

n
 minimizes Wn 

and converges almost surely to �0 , which is in the interior of � (Assumption (B1)), 
∇�Wn(�̂

(�)
n
) = 0 . Hence, in the case of an invertible matrix ∇2

�
Wn(�

∗
n
) we can rewrite 

(11) and obtain

�̂(�)
n

a.s.
⟶ �0.

(11)
√
n
�
∇𝜗Wn(𝜗0)

�
=
√
n
�
∇𝜗Wn(

�𝜗(𝛥)
n
)
�
−
√
n(�𝜗(𝛥)

n
− 𝜗0)

⊤
�
∇2

𝜗
Wn(𝜗

∗
n
)
�
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Therefore, we receive the asymptotic normality of the Whittle estimator from the 
asymptotic behavior of the individual components in (12).

First, we investigate the asymptotic behavior of the Hessian matrix ∇2
�
Wn(�

∗
n
).

Proposition 4  Let Assumptions (A1)–(A4) and (B3) hold and

Furthermore, let (�∗
n
)n∈ℕ be a sequence in � with �∗

n

a.s.
⟶ �0 as n → ∞ . Then, as 

n → ∞,

Further, we require that for large n the random matrix ∇2
�
Wn(�

∗
n
) is invertible. 

Therefore, we show the positive definiteness of the limit matrix �∇2W.

Lemma 2  Let Assumptions A and (B4) hold. Then, �∇2W is positive definite.

Remark 3  For Gaussian state space processes

is the Fisher information matrix (cf. Schlemm and Stelzer 2012a). Since W(�) = L(�) 
due to Lemma 1, and ∇�fY (�) (�, �) is uniformly bounded by an integrable dominant, 
we get by some straightforward applications of dominated convergence and some 
arguments of the proof of Schlemm and Stelzer (2012a), Lemma 2.17, that

where Ln(�) is the quasi-Gaussian likelihood function. Furthermore, Schlemm and 
Stelzer (2012a), Lemma 2.17, show that if Assumption A holds and if there exists an 
j0 ∈ ℕ such that the ((j0 + 2)m2) × r-matrix

(12)
√
n(�𝜗(𝛥)

n
− 𝜗0)

⊤ = −
√
n
�
∇𝜗Wn(𝜗0)

��
∇2

𝜗
Wn(𝜗

∗
n
)
�−1

.

(13)

𝛴∇2W =
1

2𝜋 ∫
𝜋

−𝜋

∇𝜗fY (𝛥) (−𝜔,𝜗0)
⊤
[
fY (𝛥) (−𝜔)−1 ⊗ fY (𝛥) (𝜔)−1

]
∇𝜗fY (𝛥) (𝜔, 𝜗0)d𝜔.

∇2
�
Wn(�

∗
n
)

a.s.
⟶ �∇2W .

J =

[
2�

[(
�

��i
�
(�)

1
(�0)

)�

V (�)−1

(
�

��j
�
(�)

1
(�0)

)]

+tr

((
�

��i
V (�)(�0)

)
V (�)−1

(
�

��j
V (�)(�0)

)
V (�)−1

)]

i,j=1,…,r

J[i, j] = lim
n→∞

�

[
�

��i

�

��j
Ln(�0)

]
=

�

��i

�

��j
lim
n→∞

�[Ln(�0)]

=
�

��i

�

��j
W(�0) = lim

n→∞
�

[
�

��i

�

��j
Wn(�0)

]
= �∇2W [i, j],

∇

[ [
Ij0+1 ⊗ K(𝛥)(𝜗0)

⊤ ⊗ C(𝜗0)
][(

vec
(
eIN𝛥

))⊤(
vec

(
eA(𝜗0)𝛥

))⊤
⋯

(
vec

(
eA

j(𝜗0)𝛥
))⊤]⊤

vec
(
V (𝛥)(𝜗0)

)
]
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has rank r, then the matrix J is positive definite. Thus, our assumption (B4) can be 
replaced by this condition.

Next, we investigate the asymptotic behavior of the second term in (12). Since 
the components of the score ∇�Wn(�0) can be written as an integrated perio-
dogram, we first derive the asymptotic behavior of the integrated periodogram 
and state the asymptotic normality afterward.

Proposition 5  Let Assumptions (A2)–(A4) and (B2) hold. Suppose � ∶ [−�,�] → 
ℂ

m×m� ∶ [−�,�] → ℂ
m×m is a matrix-valued continuous function with 

�(�) = �(�)H ,� ∈ [−�,�], and Fourier coefficients (�u)u∈ℤ satisfying ∑∞

u=−∞
‖�u‖�u�1∕2 < ∞ . Then, as n → ∞,

where

The asymptotic behavior of the integrated periodogram is interesting for its 
own. It can be modified to derive goodness-of-fit tests for state space models 
which are continuous functionals of the integrated periodogram (cf. Priestley 
1981).

Remark 4  Let the driving Lévy process be a Brownian motion. Since the fourth 
moment of a centered normal distribution is equal to three times its second moment 
and N(�)

1

D
∼ N(0,�

(�)

N
), we get �[N(𝛥)

1
N

(𝛥)⊤

1
⊗ N

(𝛥)

1
N

(𝛥)⊤

1
] = 3𝛴

(𝛥)

N
⊗𝛴

(𝛥)

N
. Therefore, 

the matrix �� in Proposition 5 reduces to

which is for m = 1 equal to �� =
1

�
∫ �

−�
�(�)2fY (�) (�)2d�.

Finally, we obtain the asymptotic behavior of the score function.

Proposition 6  Let Assumptions (A2)–(A4) and (B2)–(B3) hold. Define

1

2
√
n

n�
j=−n+1

tr
�
�(�j)In(�j) − �(�j)fY (�) (�j)

� D

⟶ N(0,��),

𝛴𝜂 =
1

𝜋 ∫
𝜋

−𝜋

tr
(
𝜂(𝜔)fY (𝛥) (𝜔)𝜂(𝜔)fY (𝛥) (𝜔)

)
d𝜔

+
1

16𝜋4 ∫
𝜋

−𝜋

vec
(
𝛷(e−i𝜔)⊤𝜂(𝜔)⊤𝛷(ei𝜔)

)⊤
d𝜔

⋅

(
�

[
N

(𝛥)

1
N

(𝛥)⊤

1
⊗ N

(𝛥)

1
N

(𝛥)⊤

1

]
− 3𝛴

(𝛥)

N
⊗𝛴

(𝛥)

N

)

⋅ ∫
𝜋

−𝜋

vec
(
𝛷(ei𝜔)⊤𝜂(𝜔)𝛷(e−i𝜔)

)
d𝜔.

�� =
1

� ∫
�

−�

tr
(
�(�)fY (�) (�)�(�)fY (�) (�)

)
d�,
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Then, as n → ∞,

Now, we are able to present the main result of this paper, the asymptotic nor-
mality of the Whittle estimator.

Theorem 2  Let Assumptions A and B hold. Furthermore, let �∇W be defined as in 
(14) and �∇2W be defined as in (13). Then, as n → ∞,

where �W has the representation �W = [�∇2W ]
−1�∇W [�∇2W ]

−1.

In contrast to the quasi maximum likelihood estimator of Schlemm and Stelzer 
(2012a), the limit covariance matrix of the Whittle estimator has an analytic rep-
resentation. It can be used for the calculation of confidence bands.

Remark 5  We want to compare our outcome with an analog result for stationary 
discrete-time VARMA(p,q) processes (Zn)n∈ℕ of the form (3) with finite fourth 
moments. In our setting we have the drawback that the autoregressive and the mov-
ing average polynomial influence the covariance matrix �(�)

N
 of (N(�)

k
)k∈ℕ0

 . In the 
setting of stationary VARMA(p,q) processes of Dunsmuir and Hannan (1976) the 
covariance matrix �e of the white noise (en)n∈ℤ is not affected by the AR and MA 
polynomials. It was shown in Dunsmuir and Hannan (1976) that under very general 
assumptions for d = m the resulting limit covariance matrix of the Whittle estimator 
for the VARMA parameters has the representation

which is simpler than our �W . This can be traced back to �VARMA
∇W

= 2 ⋅ �VARMA

∇2W
, 

which is motivated on p. 38. In particular, for a Gaussian VARMA model, �VARMA
W

 
is the inverse of the Fisher information matrix.

(14)

𝛴∇W =
1

𝜋 ∫
𝜋

−𝜋

∇𝜗fY (𝛥) (−𝜔,𝜗0)
⊤
[
fY (𝛥) (−𝜔)−1 ⊗ fY (𝛥) (𝜔)−1

]
∇𝜗fY (𝛥) (𝜔, 𝜗0)d𝜔

+
1

16𝜋4

[
∫

𝜋

−𝜋

[
𝛷(ei𝜔)⊤fY (𝛥) (𝜔)−1 ⊗𝛷(e−i𝜔)⊤fY (𝛥) (−𝜔)−1

]
∇𝜗fY (𝛥) (−𝜔,𝜗0)d𝜔

]⊤

⋅

[
�

[
N

(𝛥)

1
N

(𝛥)⊤

1
⊗ N

(𝛥)

1
N

(𝛥)⊤

1

]
− 3𝛴

(𝛥)

N
⊗𝛴

(𝛥)

N

]

⋅

[
∫

𝜋

−𝜋

[
𝛷(e−i𝜔)⊤fY (𝛥) (−𝜔)−1 ⊗𝛷(ei𝜔)⊤fY (𝛥) (𝜔)−1

]
∇𝜗fY (𝛥) (𝜔, 𝜗0)d𝜔

]
.

√
n
�
∇𝜗Wn(𝜗0)

�⊤ D

⟶ N(0,𝛴∇W ).

√
n
�
�̂(�)
n

− �0

�
D

⟶ N(0,�W ),

𝛴VARMA
W

=

[
1

4𝜋 ∫
𝜋

−𝜋

∇𝜗fZ(−𝜔,𝜗0)
⊤
[
fZ(−𝜔)

−1 ⊗ fZ(𝜔)
−1
]
∇𝜗fZ(𝜔, 𝜗0)d𝜔

]−1

= 2 ⋅ [𝛴VARMA

∇2W
]−1,
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Remark 6 

(a)	 Let the driving Lévy process be a Brownian motion. Due to Remark 4, the matrix 
�∇W reduces to 

and hence, �W = 2 ⋅ [�∇W ]
−1 is the inverse of the Fisher information matrix 

and corresponds to �VARMA
W

 as in the previously mentioned discrete-time 
VARMA setting.

(b)	 Let d = m = N  and C(�) = Im . Then, the state space model is a mul-
tivar iate Ornstein–Uhlenbeck process (MCAR(1) process).  In 
th is  example ,  �∇W = 2 ⋅ [�∇2W ]

−1 ho lds  as  wel l .  Because  of 
�(z, �) =

∑∞

j=0
eA(�)�jzj = (1 − eA(�)�z)−1 = �−1(z, �) , the arguments are very 

similar to the arguments for VARMA models in Remark 5.

4 � The adjusted Whittle estimator

In the following, we solely consider state space models where Y and L are one-
dimensional, i.e., A ∈ ℝ

N×N , B ∈ ℝ
N×1 and C ∈ ℝ

1×N . This includes, in par-
ticular, univariate CARMA processes, see, e.g., Brockwell and Lindner (2009) 
and Brockwell (2014) for the explicit definition and existence criteria. Further, 
we assume that the variance parameter �2

L
 of the driving Lévy process does not 

depend on � and has not to be estimated. In this context, we consider an adjusted 
Whittle estimator which takes into account that we do not have to estimate the 
variance. Such adjusted Whittle estimators are useful for the estimation of heavy 
tailed CARMA models with infinite variance. For example, Mikosch et al. (1995) 
estimate the parameters of ARMA models in discrete time whose noise has a 
symmetric stable distribution. In some future work we will investigate such an 
adjusted Whittle estimator for heavy tailed models as well.

Now, the Whittle function is adapted in a way which makes it independent of 
the variance of the driving Lévy process. Therefore, we use the representation of 
the spectral density in (10). Although the variance �2

L
 goes linearly in �(�)(�) and 

V (�)(�) , both K(�)(�) and �(z,�) do not depend on �2
L
 anymore. The second sum-

mand of the Whittle function Wn is removed and the first term is adjusted so that 
we obtain the adjusted Whittle function

𝛴∇W =
1

𝜋 ∫
𝜋

−𝜋

∇𝜗fY (𝛥) (−𝜔,𝜗0)
⊤
[
fY (𝛥) (−𝜔)−1 ⊗ fY (𝛥) (𝜔)−1

]
∇𝜗fY (𝛥) (𝜔, 𝜗0)d𝜔

= 2 ⋅ [𝛴∇2W ]
−1,

W (A)
n

(�) =
�

n

n∑
j=−n+1

|�(ei�j , �)|2In(�j) =
V (�)(�)

2n

n∑
j=−n+1

fY (�) (�j, �)
−1In(�j).
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The corresponding minimizer

is the adjusted Whittle estimator.

4.1 � Consistency of the adjusted Whittle estimator

Since the estimation procedure is different to that of the previous sections, we have 
to adjust Assumption A.

Assumption Ã  Let Assumptions (A1)–(A5) and (A7) hold. Furthermore, assume
(Ã 6) � For any �1, �2 ∈ � , �1 ≠ �2 , there exists some z ∈ ℂ with |z| = 1 and 

�(z,�1) ≠ �(z,�2).

It is needless to say that conditions as those for the function � → �2
L
 are ful-

filled naturally. In addition to Remark 1, which is still valid, we stress that, under 
Assumption Ã , �−1 as defined in (9) exists for all � ∈ � and that the mapping 
(�, �) → �−1(ei�, �) is continuous.

Theorem 3  Let Assumption Ã hold. Then, as n → ∞,

The proof follows the same steps as the proof for the consistency of the Whittle 
estimator in Theorem 1.

4.2 � Asymptotic normality of the adjusted Whittle estimator

For the asymptotic normality of the adjusted Whittle estimator we have to adapt 
Assumption B.

Assumption B̃  Let Assumptions (B1)–(B3) hold. Furthermore, assume
(B̃ 4)  For any c ∈ ℂ

r there exists an �∗ ∈ [−�,�] such that ∇�|�(ei�
∗

, �0)|−2c ≠ 0.

Remark 7  Under Assumption Ã and Assumption B̃ the mapping � → �(ei�, �) is 
three times continuously differentiable. Similarly to Lemma 2, (B̃4) guarantees the 
invertibility of

�̂(�,A)
n

= argmin
�∈�

W (A)
n

(�)

�̂(�,A)
n

a.s.
⟶ �0.
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Theorem 4  Let Assumption Ã and B̃ hold. Further, let �∇2W (A) be defined as in (15) 
and

Then, as n → ∞,

where �W (A) has the representation �W (A) = [�∇2W (A) ]−1�∇W (A) [�∇2W (A) ]−1.

Remark 8  For the one-dimensional CAR(1) (Ornstein–Uhlenbeck) process, for 
which m = d = N = 1 and C(�) = B(�) = 1 holds, the limit covariance matrix �W (A) 
of  Theorem 4 reduces due to Remark 9 in the Supplementary Material and Theo-
rem 3’’’, Chapter 3, of Hannan (2009) to

Due to Remark 6(b)

and hence, �W (A) ≥ �W . Thus, the adjusted Whittle estimator has a higher vari-
ance than the Whittle estimator. Let 𝜗0 < 0 be the zero of the AR polynomial in 
the CAR(1) model, i.e., A(�0) = �0 . Simple calculations show that �W (A) = e−2�0 − 1 
which is equal to the asymptotic variance of the maximum likelihood estimator of 
Brockwell and Lindner (2019). However, it is not possible to make this conclu-
sion for general CARMA processes. There exist CARMA processes for which the 

(15)𝛴∇2W (A) ∶=
V (𝛥)

2𝜋 ∫
𝜋

−𝜋

∇𝜗 log
(|𝛱(ei𝜔, 𝜗0)|−2

)⊤
∇𝜗 log

(|𝛱(ei𝜔, 𝜗0)|−2
)
d𝜔.

𝛴∇W (A) =
V (𝛥)2

𝜋 ∫
𝜋

−𝜋

∇𝜗 log
(|𝛱(ei𝜔, 𝜗0)|−2

)⊤
∇𝜗 log

(|𝛱(ei𝜔, 𝜗0)|−2
)
d𝜔

+
1

4𝜋2

[
∫

𝜋

−𝜋

∇𝜗|𝛱(ei𝜔, 𝜗0)|2⊤
[
𝛷(ei𝜔)⊗𝛷(e−i𝜔)

]
d𝜔

]

⋅

[
�

[
N

(𝛥)

1
N

(𝛥)⊤

1
⊗ N

(𝛥)

1
N

(𝛥)⊤

1

]
− 3𝛴

(𝛥)

N
⊗𝛴

(𝛥)

N

]

⋅

[
∫

𝜋

−𝜋

∇𝜗|𝛱(ei𝜔, 𝜗0)|2⊤
[
𝛷(e−i𝜔)⊗𝛷(ei𝜔)

]
d𝜔

]⊤
.

√
n
�
�̂(�,A)
n

− �0

�
D

⟶ N(0,�W (A) ),

𝛴W (A) = 4𝜋

[
∫

𝜋

−𝜋

∇𝜗 log
(|𝛱(ei𝜔, 𝜗0)|−2

)⊤
∇𝜗 log

(|𝛱(ei𝜔, 𝜗0)|−2
)
d𝜔

]−1

= 4𝜋

[
∫

𝜋

−𝜋

∇𝜗 log(fY (𝛥) (𝜔, 𝜗0))
⊤∇𝜗 log(fY (𝛥) (𝜔, 𝜗0))d𝜔

−
1

2𝜋

(
∫

𝜋

−𝜋

∇𝜗 log(fY (𝛥) (𝜔, 𝜗0))d𝜔

)⊤(
∫

𝜋

−𝜋

∇𝜗 log(fY (𝛥) (𝜔, 𝜗0))d𝜔

)]−1

.

𝛴W = 2 ⋅ [𝛴∇2W ]
−1 = 4𝜋

[
∫

𝜋

−𝜋

∇𝜗 log(fY (𝛥) (𝜔, 𝜗0))
⊤∇𝜗 log(fY (𝛥) (𝜔, 𝜗0))d𝜔

]−1
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adjusted Whittle estimator has a different asymptotic variance than the maximum 
likelihood estimator of Brockwell and Lindner (2019).

5 � Simulation

In this section, we show the practical applicability of the Whittle and the adjusted 
Whittle estimator. We simulate continuous-time state space models with an Euler-
Maruyama scheme for differential equations with initial value X(0) = Y(0) = 0 and 
step size 0.01. Using � = 1 and the interval [0, 500], we therefore get n1 = 500 dis-
crete observations. Furthermore, we investigate how the results change qualitatively 
when we consider the intervals [0, 2000] and [0, 5000], which imply n2 = 2000 and 
n3 = 5000 observations, respectively. In each sample, we use 500 replicates. We 
investigate the estimation procedure based on two different driving Lévy processes. 
Since the Brownian motion is the most common Lévy process, we examine Whit-
tle‘s estimation based on a Brownian motion. As a second case, we analyze the per-
formance based on a bivariate normal-inverse Gaussian (NIG) Lévy process, which 
is often used in modeling stochastic volatility or stock returns, see Barndorff-Nielsen 
(1997). The resulting increments of this process are characterized by the density

with

Thereby, � ∈ ℝ
2 is a symmetry parameter, �NIG ≥ 0 is a scale parameter and the 

positive definite matrix �NIG models the dependency between the two components 
of the bivariate Lévy process (Lt)t∈ℝ . We set � = −(�NIG�NIG�)∕� to guarantee that 
the resulting Lévy process is centered, see, e.g., Øigård et al. (2005) or Barndorff-
Nielsen (1997) for more details. For better comparability of the Brownian motion 
case and the NIG Lévy process case, we choose the parameters of the NIG Lévy 
process in a way that the resulting covariance matrices of the Lévy processes are the 
same.

The performances of the Whittle and the adjusted Whittle estimator are compared 
with the well known quasi maximum likelihood estimator (QMLE) presented in 
Schlemm and Stelzer (2012a). The assumptions concerning the QMLE of Schlemm 
and Stelzer (2012a) are the same as ours. Therefore, the Echelon canonical form 
given in Schlemm and Stelzer (2012a),  Section  4, is used as parametrization (cf. 
Guidorzi 1975) which is standard for state space and VARMA models (cf. Han-
nan and Deistler 1988). In particular, Assumptions (A1)–(A7) and (B1)–(B3) are 
satisfied.

In the multivariate setting, we consider bivariate MCARMA(2,1) processes of the 
form

f (x,𝜇, 𝛼, 𝛽, 𝛿NIG,𝛥NIG) =
𝛿NIG

2𝜋

(1 + 𝛼g(x))

g(x)3
exp(𝛿NIG𝜅 + 𝛽⊤x − 𝛼g(x)), x ∈ ℝ

2,

g(x) =

�
𝛿2
NIG

+ ⟨x − 𝜇,𝛥NIG(x − 𝜇)⟩, 𝜅2 = 𝛼2 − ⟨𝛽,𝛥NIG𝛽⟩ > 0.
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with

This parametrization is given in Table 1 of Schlemm and Stelzer (2012a) and the 
representations of the corresponding AR polynomial P and MA polynomial Q are 
given in Table 2 of that paper. Furthermore, we get the order (2,1) of the MCARMA 
process from there as well. In our example, the true parameter value is

To generate a NIG Lévy process with the same covariance matrix, we rely on the 
parameters

The estimation results are summarized in Tables 1 and 2 for the Brownian motion 
driven model and the NIG driven model, respectively. The consistency can be 
observed in all simulations, namely the bias and the standard deviations are decreas-
ing for increasing sample size for both the Whittle estimator and the quasi maximum 
likelihood estimator. The performance of the estimators is very similar.

Since we introduced an alternative estimator for the univariate setting, we per-
form an additional simulation study concerning one dimensional CARMA pro-
cesses. In accordance with Assumption Ã , the variance parameter �2

L
 of the Lévy 

process is fixed in this study and has not to be estimated. We consider a CARMA(2, 
1) model where

Since the output process Y(�) of this minimal state space model is of dimension 
one, the order of the AR polynomial p is equal to N = 2 and the order of the MA 
polynomial is q = p − 1 = 1 . This means we have a CARMA(2,1) process. For more 
details on CARMA processes we refer to Brockwell and Lindner (2009) and Brock-
well (2014). In our simulation study the true parameter is

The simulation results for the Brownian motion driven and the NIG driven 
CARMA(2,1) process are given in Tables 3 and 4, respectively. For all sample sizes, 

dXt(�) = A(�)Xt(�)dt + B(�)dLt(�) and Yt(�) = C(�)Xt(�), t ≥ 0,

A(�) =

⎛
⎜⎜⎝

�1 �2 0

0 0 1

�3 �4 �5

⎞
⎟⎟⎠
, B(�) =

⎛
⎜⎜⎝

�1 �2
�6 �7

�3 + �5�6 �6 + �5�7

⎞
⎟⎟⎠
,

C(�) =

�
1 0 0

0 1 0

�
, �L(�) =

�
�8 �9
�9 �10

�
.

�
(1)

0
= (−1,−2, 1,−2,−3, 1, 2, 0.4751,−0.1622, 0.3708).

𝛿
(1)

NIG
= 1, 𝛼(1) = 3, 𝛽(1) = (1, 1)⊤, 𝛥

(1)

NIG
=

(
5∕4 − 1∕2

−1∕2 1

)
.

A(�) =

(
0 1

�1 �2

)
, B(�) =

(
�3

�1 + �2�3

)
and C(�) = (1 0).

�
(2)

0
= (−2,−2,−1).
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the Whittle estimator and the QMLE behave very similar and give excellent esti-
mation results. Whereas for small sample sizes the adjusted Whittle estimator is 
remarkably worse, for increasing sample sizes it performs much better and seems 
to converge. Further simulations for a bivariate MCAR(1) process and an univariate 
CAR(3) process showing a similar pattern as the simulations of this section are pre-
sented in Section 9 in the Supplementary Material.

Table 1   Estimation results 
for a Brownian motion driven 
bivariate MCARMA(2,1) 
process with parameter �(1)

0

Whittle QMLE

�
0

Mean Bias Std. Mean Bias Std.

n
1

= 500

−1 −0.9969 0.0031 0.0325 −1.0012 0.0012 0.0572
−2 −2.0218 0.0218 0.0582 −2.0128 0.0128 0.0689

1 0.9980 0.0020 0.0520 1.0075 0.0075 0.0722
−2 −2.0498 0.0498 0.1060 −1.9797 0.0203 0.0758
−3 −2.9840 0.0160 0.0498 −2.9913 0.0087 0.0907
1 1.0062 0.0062 0.1309 0.8034 0.1966 0.3896
2 1.9983 0.0017 0.0532 2.0036 0.0036 0.0768
0.4751 0.4746 0.0005 0.0407 0.4693 0.0048 0.0691
−0.1622 −0.1629 0.0007 0.0134 −0.1624 0.0002 0.0405
0.3708 0.3706 0.0002 0.0064 0.3712 0.0004 0.0328
n
2

= 2000

−1 −0.9970 0.0030 0.0155 −0.9957 0.0043 0.0260
−2 −2.0062 0.0062 0.0252 −2.0047 0.0047 0.0350

1 0.9909 0.0091 0.0266 1.0038 0.0038 0.0399
−2 −2.0394 0.0394 0.0501 −2.0122 0.0122 0.0481
−3 −2.9857 0.0143 0.0371 −3.0350 0.0350 0.0583

1 1.0775 0.0775 0.1030 0.9572 0.0428 0.2583
2 2.0033 0.0033 0.0205 2.0452 0.0452 0.0463

0.4751 0.4731 0.0020 0.0092 0.4719 0.0032 0.0321
−0.1622 −0.1620 0.0002 0.0059 −0.1632 0.0010 0.0197
0.3708 0.3708 0 0.0037 0.3731 0.0023 0.0167
n
3

= 5000

−1 −1.0028 0.0028 0.0172 −0.9960 0.0040 0.0174
−2 −1.9954 0.0146 0.0041 −2.0059 0.0059 0.0196
1 0.9972 0.0028 0.0133 1.0052 0.0052 0.0268
−2 −2.0202 0.0202 0.0210 −2.0043 0.0043 0.0284
−3 −3.0091 0.0091 0.0441 −3.0013 0.0013 0.0261
1 1.0585 0.0585 0.0409 1.0253 0.0253 0.1249
2 2.0109 0.0109 0.0318 2.0479 0.0479 0.0346
0.4751 0.4759 0.0008 0.0100 0.4735 0.0016 0.0200

−0.1622 −0.1652 0.0030 0.0088 −0.1634 0.0012 0.0135
0.3708 0.3904 0.0196 0.0079 0.3727 0.0019 0.0109
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6 � Proofs for the Whittle estimator in Sect. 3

6.1 � Proofs of Sect. 3.1

Proof of Proposition 2  We divide Wn in two parts and investigate them separately. 
Therefore, define

Table 2   Estimation results 
for a NIG driven bivariate 
MCARMA(2,1) process with 
parameter �(1)

0

Whittle QMLE

�
0

Mean Bias Std. Mean Bias Std.

n
1

= 500

−1 −0.9555 0.0445 0.1559 −0.9651 0.0349 0.1854
−2 −1.8822 0.1178 0.2653 −1.6978 0.3022 0.3452
  1 0.8746 0.1254 0.1888 1.1479 0.1479 0.2526    
−2 −2.0981 0.0981 0.2273 −2.0066 0.0066 0.2962
−3 −3.1833 0.1833 0.2517 −3.0578 0.0578 0.4076
  1 1.0533 0.0533 0.3614 1.0272 0.0272 1.2301
  2 2.0461 0.0461 0.5710 2.0490 0.0490 1.6673
  0.4751 0.4992 0.0241 0.1061 0.4645 0.0106 0.8220
−0.1622 −0.1520 0.0102 0.1130 −0.1669 0.0047 0.3317
  0.3708 0.4100 0.0392 0.1081 0.3748 0.0040 0.6100
n
2

= 2000

−1 −1.0351 0.0351 0.1224 −0.9673 0.0327 0.0243
−2 −1.8779 0.1221 0.1894 −1.0564 0.0426 0.0713
  1 0.9457 0.0543 0.2620 1.1331 0.1331 0.1214
−2 −1.9586 0.0414 0.2573 −1.9494 0.0506 0.0827
−3 −3.1682 0.1682 0.2238 −3.1990 0.1990 0.4911
  1 1.1234 0.1234 0.3120 1.1720 0.1720 0.5933
  2 2.0842 0.0842 0.4842 2.0432 0.0432 0.1817
  0.4751 0.5010 0.0259 0.1000 0.5237 0.0486 0.2726
−0.1622 −0.1740 0.0118 0.0992 −0.0856 0.0766 0.1413
  0.3708 0.3908 0.0200 0.0758 0.3220 0.0488 0.0049
n
3

= 5000

−1 −1.0238 0.0238 0.1182 −0.9844 0.0156 0.0194
−2 −1.9954 0.0046 0.2048 −2.0139 0.0139 0.0246
  1 0.9942 0.0058 0.1517 1.0102 0.0102 0.0299
−2 −2.2202 0.2202 0.2210 −2.0043 0.0043 0.0284
−3 −3.0104 0.0104 0.2463 −3.0015 0.0015 0.2291
  1 1.0585 0.0585 0.2409 1.0655 0.0655 0.1347
  2 2.1169 0.1169 0.0866 2.0400 0.0400 0.0355
  0.4751 0.4855 0.0104 0.1180 0.4737 0.0018 0.0206
−0.1622 −0.1682 0.0060 0.0408 −0.1634 0.0012 0.0145
  0.3708 0.3908 0.0200 0.0842 0.3730 0.0022 0.0139
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and

W (1)
n
(�) ∶=

1

2n

n∑
j=−n+1

tr
(
fY (�) (�j, �)

−1In(�j)
)

W (2)
n
(�) =

1

2n

n∑
j=−n+1

log
(
det

(
fY (�) (�j, �)

))
,

Table 3   Estimation results for a Brownian motion driven CARMA(2,1) process with parameter �(2)
0

Whittle Adjusted Whittle QMLE

�
0

Mean Bias Std. Mean Bias Std. Mean Bias Std.

n
1

= 500

−2 −2.0951 0.0951 0.7766 −3.1063 1.1063 3.4195 −2.0880 0.0880 0.7628
−2 −2.0482 0.0482 0.6500 −2.9233 0.9233 2.9957 −2.0449 0.0449 0.5889
−1 −0.9731 0.0269 0.1186 −0.9028 0.0972 0.3710 −0.9729 0.0271 0.1779
n
2

= 2000

−2 −2.0204 0.0204 0.0755 −2.0816 0.0816 1.0399 −2.0015 0.0015 0.1926
−2 −1.9975 0.0025 0.0637 −2.0732 0.0732 0.9199 −1.9948 0.0052 0.1466
−1 −0.9933 0.0067 0.0547 −0.9965 0.0035 0.1267 −0.9993 0.0007 0.0674
n
3

= 5000

−2 −2.0046 0.0046 0.0117 −1.9854 0.0146 0.0860 −2.0068 0.0068 0.0997
−2 −1.9914 0.0086 0.0149 −1.9840 0.0160 0..0821 −1.9942 0.0058 0.0772
−1 −1.0004 0.0004 0.0153 −1.0070 0.0070 0.0488 −1.0009 0.0009 0.0408

Table 4   Estimation results for a NIG driven CARMA(2,1) process with parameter �(2)
0

Whittle adjusted Whittle QMLE

�
0

Mean Bias Std. Mean Bias Std. Mean Bias Std.

n
1

= 500

−2 −2.3278 0.3278 1.7598 −3.0174 1.0174 3.2090 −2.3175 0.3175 1.0862
−2 −2.2612 0.2612 1.4892 −2.8550 0.8550 2.8684 −2.2047 0.2047 0.8023
−1 −0.9855 0.0145 0.1652 −0.9445 0.0555 0.3376 −0.9243 0.0757 0.2938
n
2

= 2000

−2 −2.0261 0.0261 0.1038 −1.9996 0.0004 0.5351 −2.0122 0.0122 0.2526
−2 −1.9977 0.0023 0.0784 −1.9988 0.0012 0.4552 −2.0034 0.0034 0.1845
−1 −0.9968 0.0032 0.0607 −1.0153 0.0153 0.0961 −1.0037 0.0037 0.0848
n
3

= 5000

−2 −2.0138 0.0138 0.0575 −1.9842 0.0158 0.0902 −1.9938 0.0062 0.1093
−2 −1.9948 0.0052 0.0466 −1.9866 0.0134 0.0825 −1.9917 0.0083 0.0906
−1 −0.9991 0.0009 0.0339 −1.0097 0.0097 0.0508 −1.0059 0.0059 0.0415
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such that Wn(�) = W (1)
n
(�) +W (2)

n
(�). By Assumption (A1) and (A4) and the repre-

sentation (8), we can apply Lemma 7 of the Supplementary Material, which gives 
the uniform convergence

It remains to prove the appropriate convergence of W (1)
n

 . Therefore, it is sufficient to 
show that

holds. We approximate fY (�) (�j, �)
−1 by the Cesáro sum of its Fourier series of size 

M for M sufficiently large. Define

The inverse fY (�) (�, �)−1 exists, is continuous and 2�-periodic in the first component. 
Thus, it follows from Féjer’s Theorem (see, e.g., Theorem 2.11.1 of Brockwell and 
Davis 1991) that for any 𝜖 > 0 there exists an M0(�) ∈ ℕ such that for M ≥ M0(�)

Let 𝜖 > 0. In view of (18), we get

Since all matrix norms are equivalent, using the 1-norm yields

Trivially, In(�j) is positive semidefinite and Hermitian. Therefore, for 
k,� ∈ {1,… ,m}, j ∈ {−n + 1,… , n},

(16)sup
�∈�

||||W
(2)
n
(�) −

1

2� ∫
�

−�

log
(
det

(
fY (�) (�, �)

))
d�

||||
n→∞
⟶ 0.

(17)sup
�∈�

‖‖‖‖‖‖
1

2n

n∑
j=−n+1

fY (�) (�j, �)
−1In(�j) −

1

2� ∫
�

−�

fY (�) (�, �)−1fY (�) (�)d�

‖‖‖‖‖‖
a.s.
⟶ 0

qM(𝜔, 𝜗) ∶=
1

M

M−1∑
j=0

(∑
|k|≤j

bk(𝜗)e
−ik𝜔

)
=

∑
|k|<M

(
1 −

|k|
M

)
bk(𝜗)e

−ik𝜔 with

bk(𝜗) ∶=
1

2𝜋 �
𝜋

−𝜋

fY (𝛥) (𝜔, 𝜗)−1eik𝜔d𝜔.

(18)sup
𝜔∈[−𝜋,𝜋]

sup
𝜗∈𝛩

‖‖‖fY (𝛥) (𝜔, 𝜗)−1 − qM(𝜔, 𝜗)
‖‖‖ < 𝜖.

(19)

‖‖‖‖‖‖
1

2n

n∑
j=−n+1

fY (�) (�j, �)
−1In(�j) −

1

2n

n∑
j=−n+1

qM(�j, �)In(�j)

‖‖‖‖‖‖
≤ �

2n

n∑
j=−n+1

‖‖‖In(�j)
‖‖‖.

(20)
�

2n

n∑
j=−n+1

‖‖‖In(�j)
‖‖‖ ≤ �ℭ

2n

n∑
j=−n+1

m∑
k=1

m∑
�=1

|In(�j)[k,�]|.

det

(
In(�j)[k, k] In(�j)[k,�]

In(�j)[�, k] In(�j)[�,�]

)
≥ 0,
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which implies

Combining (19), (20), (21) and Lemma 4 of the Supplementary Material gives for 
M ≥ M0(�)

Since 
∑m

k=1
𝛤

(𝛥)

n
(0)[k, k]

a.s.
⟶

∑m

k=1
𝛤 (𝛥)(0)[k, k] < ∞ due to Lemma 5 in the Supple-

mentary Material, we obtain for M ≥ M0(�) and n large

almost surely. Consequently, for the proof of (17) it is sufficient to show that

On the one hand, Lemma 4 of the Supplementary Material yields

(21)|||In(�j)[k,�]
||| ≤

√
In(�j)[k, k]In(�j)[�,�] ≤ In(�j)[k, k] + In(�j)[�,�].

‖‖‖‖‖‖
1

2n

n∑
j=−n+1

fY (�) (�j, �)
−1In(�j) −

1

2n

n∑
j=−n+1

qM(�j, �)In(�j)

‖‖‖‖‖‖
≤ �ℭ

2n

n∑
j=−n+1

m∑
k=1

m∑
�=1

[
In(�j)[k, k] + In(�j)[�,�]

]

≤ �ℭm

n

n∑
j=−n+1

m∑
k=1

In(�j)[k, k]

≤ 2�ℭm

m∑
k=1

�
(�)

n
(0)[k, k].

sup
�∈�

‖‖‖‖‖‖
1

2n

n∑
j=−n+1

(
fY (�) (�j, �)

−1In(�j)
)
−

1

2n

n∑
j=−n+1

qM(�j, �)In(�j)

‖‖‖‖‖‖
≤ �ℭ

(22)sup
�∈�

‖‖‖‖‖‖
1

2n

n∑
j=−n+1

qM(�j, �)In(�j) −
1

2� ∫
�

−�

fY (�) (�, �)−1fY (�) (�)d�

‖‖‖‖‖‖
a.s.
⟶ 0.

(23)

1

2n

n∑
j=−n+1

qM(𝜔j, 𝜗)In(𝜔j)

=
1

2𝜋

∑
|k|<M

∑
|h|<n

((
1 −

|k|
M

)
bk(𝜗)𝛤

(𝛥)

n
(h)

(
1

2n

n∑
j=−n+1

e−i(k+h)𝜔j

))

=
1

2𝜋

∑
|k|<M

(
1 −

|k|
M

)
bk(𝜗)𝛤

(𝛥)

n
(−k)

a.s.
⟶

1

2𝜋

∑
|k|<M

(
1 −

|k|
M

)
bk(𝜗)𝛤

(𝛥)(−k)
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uniformly in � , since bk(�) is uniformly bounded in � for all k. The reason is that 
fY (�) (�, �)−1 is continuous on the compact set [−�,�] × � and

On the other hand, due to (5), we get

where we used (18) and the continuity of fY (�) (�) for the last inequality. Combining 
(23) and (24) gives (22). 	�  ◻

Proof of Lemma 1  In view of Proposition 1, we express the linear innovations as

and define the pseudo-innovations as

An application of Theorem 11.8.3 of Brockwell and Davis (1991) leads to the spec-
tral densities of (�(�)

k
(�))k∈ℕ and (�(�)

k
(�))k∈ℕ as

 respectively. Consequently,

sup
�∈�
k∈ℤ

‖bk(�)‖ = sup
�∈�
k∈ℤ

����
1

2� �
�

−�

fY (�) (�, �)−1eik�d�
���� ≤ max

�∈�
max

�∈[−�,�]
‖fY (�) (�, �)−1‖.

(24)

‖‖‖‖‖‖
1

2𝜋

∑
|h|<M

(
1 −

|h|
M

)
b−h(𝜗)𝛤

(𝛥)(h) −
1

2𝜋 �
𝜋

−𝜋

fY (𝛥) (𝜔, 𝜗)−1fY (𝛥) (𝜔)d𝜔

‖‖‖‖‖‖
=

‖‖‖‖‖‖
1

2𝜋

∑
|h|<M

(
1 −

|h|
M

)
b−h(𝜗)�

𝜋

−𝜋

fY (𝛥) (𝜔)eih𝜔d𝜔 −
1

2𝜋 �
𝜋

−𝜋

fY (𝛥) (𝜔, 𝜗)−1fY (𝛥) (𝜔)d𝜔
‖‖‖‖

=
‖‖‖‖
1

2𝜋 �
𝜋

−𝜋

(
qM(𝜔, 𝜗) − fY (𝛥) (𝜔, 𝜗)−1

)
fY (𝛥) (𝜔)d𝜔

‖‖‖‖
≤ 1

2𝜋 �
𝜋

−𝜋

‖‖‖qM(𝜔, 𝜗) − fY (𝛥) (𝜔, 𝜗)−1
‖‖‖‖‖fY (𝛥) (𝜔)‖‖d𝜔 ≤ 𝜖ℭ,

�
(�)

k
(�) = �(�,�)Y

(�)

k
(�), k ∈ ℕ,

�
(�)

k
(�) ∶= �(�,�)Y

(�)

k
(�0), k ∈ ℕ.

f𝜀(𝛥) (𝜔, 𝜗) = 𝛱(e−i𝜔, 𝜗)fY (𝛥) (𝜔, 𝜗)𝛱(ei𝜔, 𝜗)⊤, 𝜔 ∈ [−𝜋,𝜋],

f𝜉(𝛥) (𝜔, 𝜗) = 𝛱(e−i𝜔, 𝜗)fY (𝛥) (𝜔)𝛱(ei𝜔, 𝜗)⊤, 𝜔 ∈ [−𝜋,𝜋],

1

2𝜋 ∫
𝜋

−𝜋

tr
(
fY (𝛥) (𝜔, 𝜗)−1fY (𝛥) (𝜔)

)
d𝜔

=
1

2𝜋
tr

(
∫

𝜋

−𝜋

2𝜋𝛱(ei𝜔, 𝜗)⊤V (𝛥)(𝜗)−1𝛱(e−i𝜔, 𝜗)fY (𝛥) (𝜔)d𝜔

)

= tr

(
V (𝛥)(𝜗)−1 ∫

𝜋

−𝜋

f𝜉(𝛥) (𝜔, 𝜗)d𝜔

)

= �

[
tr
(
𝜉
(𝛥)

1
(𝜗)⊤V (𝛥)(𝜗)−1𝜉

(𝛥)

1
(𝜗)

)]
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holds. Finally,

and an application of Theorem 3’’’ of Chapter 3 of Hannan (2009) results in

which completes the proof. 	�  ◻

Proof of Proposition 3  Considering Lemma 1 we get W(�) = L(�) . Schlemm and 
Stelzer (2012a),  Lemma 2.10, proved that L has a unique global minimum in �0 
under conditions which are fulfilled in our setting (see Lemma 2.3 and Lemma 3.14 
of Schlemm and Stelzer 2012a). 	�  ◻

Proof of Theorem 1  Note that by Proposition 3 W has a unique global minimum in 
�0 . By Proposition 2, Wn converges almost surely to W. Since fY (�) is continuous 
under Assumption A and therefore W as well, the assertion follows directly from 
Theorem 2.1 of Newey and McFadden (1994) and the discussion below. 	�  ◻

6.2 � Proofs of Sect. 3.2

Proof of Proposition 4  Under the Assumptions (A1)–(A4) and (B3) the spectral den-
sity fY (�) (�, �) and its inverse fY (�) (�, �)−1 are three times continuously differentiable 
in � (see Remarks 1 and 2). Furthermore,

k,� ∈ {1,… , r}.  Therefore, the proof of

goes in the same way as the proof of Proposition 2. It remains to show that 
∇2

�
W(�0) = �∇2W.
First, note that

On the one hand,

1

2� ∫
�

−�

log
(
det

(
fY (�) (�, �)

))
d� =

1

2� ∫
�

−�

log
(
det

(
2�fY (�) (�, �)

))
d� − m log(2�),

(25)

1

2� ∫
�

−�

log
(
det

(
2�fY (�) (�, �)

))
d� − m log(2�) = log(detV (�)(�)) − m log(2�),

�2

��k���
tr
(
fY (�) (�, �)−1In(�)

)
= tr

(
�2

��k���

(
fY (�) (�, �)−1

)
In(�)

)
,

sup
�∈�

‖‖‖∇
2
�
Wn(�) − ∇2

�
W(�)

‖‖‖
a.s.
⟶ 0

(26)

∇2
�
W(�0) =

1

2� ∫
�

−�

∇2
�
tr(fY (�) (�, �0)

−1fY (�) (�)) + ∇2
�
log

(
det

(
fY (�) (�, �0)

))
d�.
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holds. On the other hand, Jacobi’s formula leads to

Combining (26), (27), (28) and the property

for appropriate matrices A,  B,  C,  D (see Brewer 1978, properties T2.4, T3.4 and 
T3.8) give

	�  ◻

Proof of Lemma 2  Let c ∈ ℂ
r be fixed and �∗ as in (B4). The continuity of fY (�) (�) 

and its regularity imply for any � in a neighborhood of �∗ that

where ‖ ⋅ ‖2 is the Euclidean norm. Consequently,

Therefore, �∇2W is positive definite. 	�  ◻

(27)

1

2� ∫
�

−�

tr

(
�2

��k��l

(
fY (�) (�, �0)

−1
)
fY (�) (�)

)
d�

=
1

2� ∫
�

−�

tr

(
2fY (�) (�)−1

(
�

��k
fY (�) (�, �0)

)
fY (�) (�)−1

(
�

��
�

fY (�) (�, �0)

)
d�

−∫
�

−�

fY (�) (�)−1
(

�2

��k���
fY (�) (�, �0)

))
d�

(28)

�2

��k���
log(det(fY (�) (�, �0)))

= tr

(
−fY (�) (�)−1

(
�

��k
fY (�) (�, �0)

)
fY (�) (�)−1

(
�

��
�

fY (�) (�, �0)

))

+ tr

(
fY (�) (�)−1

(
�2

��k���
fY (�) (�, �0)

))
.

(29)vec
(
A⊤

)⊤(
B⊤ ⊗ C

)
vec(D) = tr(BACD)

∇2
𝜗
W(𝜗0) =

1

2𝜋 ∫
𝜋

−𝜋

∇𝜗fY (𝛥) (−𝜔,𝜗0)
⊤
[
fY (𝛥) (−𝜔)−1 ⊗ fY (𝛥) (𝜔)−1

]
∇𝜗fY (𝛥) (𝜔, 𝜗0)d𝜔

= 𝛴∇2W .

‖‖‖
(
fY (𝛥) (−𝜔)−1∕2 ⊗ fY (𝛥) (𝜔)−1∕2

)
∇𝜗fY (𝛥) (𝜔, 𝜗0)c

‖‖‖2 > 0

c⊤𝛴∇2Wc =
1

2𝜋 ∫
𝜋

−𝜋

c⊤∇𝜗fY (𝛥) (𝜔, 𝜗0)
H
[
fY (𝛥) (−𝜔)−1 ⊗ fY (𝛥) (𝜔)−1

]
∇𝜗fY (𝛥) (𝜔, 𝜗0)cd𝜔

=
1

2𝜋 ∫
𝜋

−𝜋

‖‖‖
(
fY (𝛥) (−𝜔)−1∕2 ⊗ fY (𝛥) (𝜔)−1∕2

)
∇𝜗fY (𝛥) (𝜔, 𝜗0)c

‖‖‖
2

2
d𝜔 > 0.
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For the proof of Proposition 5 we require some auxiliary result. Therefore, we 
denote the periodogram and the sample covariance corresponding to N(�)

1
,… ,N(�)

n
 

as defined in (7) as In,N and � n,N , respectively.

Lemma 3  Let Assumptions (A2)–(A4) hold and � ∶ [−�,�] → ℂ
m×m be a matrix-

valued continuous function with �(�) = �(�)H ,� ∈ [−�,�], and Fourier coefficients 
(�u)u∈ℤ satisfying 

∑∞

u=−∞
‖�u‖ < ∞. Then,

Proof  Define Rn(𝜔) = In(𝜔) −𝛷(e−i𝜔)In,N(𝜔)𝛷(ei𝜔)⊤ for � ∈ [−�,�] . We get

Thus,

We have to show that these 8 components converge to zero. Since we can treat each 
component similarly, we only give the detailed proof for the convergence of the first 
term.

Due to tr(A) ≤ ‖A‖1 for all quadratic matrices A, we get an upper bound for the 
trace of any quadratic matrix. Once again, the equivalence of all matrix norms and 
�(�j) =

∑∞

u=−∞
�ue

−i�ju yield

lim
n→∞

�

������
1

2
√
n

n�
j=−n+1

tr
�
𝜂(𝜔j)In(𝜔j) − 𝜂(𝜔j)𝛷(e−i𝜔j )In,N(𝜔j)𝛷(ei𝜔j )⊤

�������
= 0.

Rn(𝜔j) =
1

2𝜋n

(
n∑

k=1

∞∑
s=0

𝛷sNk−s
(𝛥)

)(
n∑

�=1

∞∑
t=0

𝛷tN�−t
(𝛥)

)⊤

e−i(k−�)𝜔j

−
1

2𝜋n

(
n∑

k=1

∞∑
s=0

𝛷sNk
(𝛥)

)(
n∑

�=1

∞∑
t=0

𝛷tN�

(𝛥)

)⊤

e−i(k+s−�−t)𝜔j

=
1

2𝜋n

(
∞∑
s=0

∞∑
t=0

𝛷s

((
n∑

k=1

0∑
�=1−t

−

n∑
k=1

n∑
�=n−t+1

+

0∑
k=1−s

n∑
�=1

+

0∑
k=1−s

0∑
�=1−t

−

0∑
k=1−s

n∑
�=n−t+1

−

n∑
k=n−s+1

n∑
�=1

−

n∑
k=n−s+1

0∑
�=1−t

+

n∑
k=n−s+1

n∑
�=n−t+1

)

Nk
(𝛥)N

(𝛥)⊤

�
e−i(k+s−�−t)𝜔j

)
𝛷⊤

t

)

=∶

8∑
i=1

R(i)
n
(𝜔j).

�

������
1

2
√
n

n�
j=−n+1

tr
�
�(�j)Rn(�j)

�������
≤

8�
i=1

�

������
1

2
√
n

n�
j=−n+1

tr
�
�(�j)R

(i)
n
(�j)

�������
.
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Due to (A2), �‖N(𝛥)

1
‖2 < ∞. Furthermore, by Assumption (A3) the coefficients of � 

are exponentially decreasing which implies 
∑∞

t=0
t‖𝛷t‖ < ∞ . Along with an applica-

tion of Lemma 4 of the Supplementary Material, it follows

	�  ◻

This lemma helps to deduce Proposition 5, which can be seen as the main part of 
the proof of the asymptotic normality of the Whittle estimator.

Proof of Proposition 5  Due to Lemma 3, we get

We define

and approximate q by its Fourier series of degree M, namely,

The coefficients bk satisfy

�

������
1

2
√
n

n�
j=−n+1

tr
�
R(1)
n
(𝜔j)𝜂(𝜔j)

�������
≤ ℭ�

������

n�
j=−n+1

1√
n

1

n

∞�
s=0

∞�
t=0

𝛷s

n�
k=1

0�
𝓁=1−t

Nk
(𝛥)N

(𝛥)⊤

𝓁
𝛷⊤

t

∞�
u=−∞

𝔣ue
−i(k+s−𝓁−t+u)𝜔j

������
≤ ℭ

1√
n

∞�
s=0

∞�
t=0

‖𝛷s‖
n�

k=1

0�
𝓁=1−t

�‖N(𝛥)

1
‖2‖𝛷t‖

⋅

∞�
u=−∞

‖𝔣u‖1
n

������

n�
j=−n+1

e−i(k+s−𝓁−t+u)𝜔j

������
.

�

������
1

2
√
n

n�
j=−n+1

tr
�
R(1)
n
(�j)�(�j)

�������
≤ ℭ

1√
n

∞�
s=0

‖�s‖
∞�
t=0

t‖�t‖
∞�

u=−∞

‖𝔣u‖
n→∞
⟶ 0.

1

2
√
n

n�
j=−n+1

tr
�
𝜂(𝜔j)In(𝜔j) − 𝜂(𝜔j)fY (𝛥) (𝜔j)

�

=
1

2
√
n

n�
j=−n+1

�
tr
�
In,N(𝜔j)𝛷(ei𝜔j )⊤𝜂(𝜔j)𝛷(e−i𝜔j )

�
− tr

�
𝜂(𝜔j)fY (𝛥) (𝜔j)

��
+ o

ℙ
(1).

q(𝜔) ∶= 𝛷(ei𝜔)⊤𝜂(𝜔)𝛷(e−i𝜔), 𝜔 ∈ [−𝜋,𝜋],

(30)qM(�) =
∑
|k|≤M

bke
ik� where bk =

1

2� �
�

−�

e−ik�q(�)d�, k ∈ ℤ.
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and therefore 
∑∞

k=−∞
‖bk‖ < ∞ as well. It follows from Körner (1989),  Theo-

rem 3.1, that

Step 1: We show

Consider

We investigate the terms with h = 0 and h ≠ 0 separately. For h = 0 and n > M we 
get

since Remark 10 in the Supplementary Material and the continuous mapping theo-
rem imply ‖� n,N(0)‖

a.s.
→ ‖�(�)

N
‖.

Now, we investigate the terms with h ≠ 0 . The independence of the sequence 
(N

(�)

k
)k∈ℕ0

 leads to

(31)

∞�
k=−∞

‖bk‖�k�1∕2 =
∞�

k=−∞

����
1

2𝜋 �
𝜋

−𝜋

e−ik𝜔𝛷(ei𝜔)⊤𝜂(𝜔)𝛷(e−i𝜔)d𝜔
�����k�

1∕2

=

∞�
k=−∞

������
1

2𝜋

∞�
j=0

∞�
�=0

∞�
u=−∞

𝛷⊤
j
𝔣u𝛷� �

𝜋

−𝜋

e−i(k−j+u+�)𝜔d𝜔

������
�k�1∕2

≤
∞�
j=0

∞�
�=0

∞�
u=−∞

‖𝛷j‖‖𝔣u‖‖𝛷�
‖�j − u − ��1∕2

≤ ℭ

∞�
j=0

‖𝛷j‖(max{1, �j�})1∕2
∞�

u=−∞

‖𝔣u‖(max{1, �u�})1∕2
∞�
�=0

‖𝛷
�
‖(max{1, ���})1∕2

< ∞,

qM(�)
M→∞
⟶ q(�) uniformly in � ∈ [−�,�].

(32)

lim
M→∞

lim sup
n→∞

ℙ

�
1√
n

������

n�
j=−n+1

tr(In,N(𝜔j)(q(𝜔j) − qM(𝜔j))

������
> 𝜖

�
= 0 ∀ 𝜖 > 0.

(33)

1√
n

n�
j=−n+1

tr
�
In,N(𝜔j)(q(𝜔j) − qM(𝜔j))

�

=

√
n

𝜋

�
�k�>M

tr

�
n−1�

h=−n+1

𝛤 n,N(h)bk

�
1

2n

n�
j=−n+1

e−i(h−k)𝜔j

��
.

(34)

������

√
n

𝜋

�
�k�>M

tr
�
𝛤 n,N(0)bk�{∃z∈ℤ⧵{0}∶k=2nz}

�������
≤ ℭ

√
n‖𝛤 n,N(0)‖

�
�k�≥2n

‖bk‖
n→∞
⟶ 0 ℙ-a.s.,
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and therefore,

Due to (33)–(35) and the Tschebycheff inequality, for the proof of (32) it is sufficient 
to show that

First, property (29) and �
‖‖‖‖vec

(
𝛤 n,N(h)

)
vec

(
𝛤 n,N(h)

)⊤‖‖‖‖ ≤ ℭ

n
 result in

Step 2: We show

Let M > n . Then, due to Lemma 8 of the Supplementary Material and Parseval’s 
equality, we receive

�

[
� n,N(h)

]
= 0 for h ≠ 0

(35)𝔼

�√
n
�
�k�>M

tr

��
n−1�
h=1

𝛤 n,N(h) +

−1�
h=−n+1

𝛤 n,N(h)

�
bk�{∃z∈ℤ∶h=k+2nz}

��
= 0.

(36)

lim
M→∞

lim
n→∞

Var

�√
n
�
�k�>M

tr

��
n−1�
h=1

𝛤 n,N(h) +

−1�
h=−n+1

𝛤 n,N(h)

�
bk�{∃z∈ℤ∶h=k+2nz}

��
= 0.

Var

�√
n
�
�k�>M

tr

��
n−1�
h=1

𝛤 n,N(h) +

−1�
h=−n+1

𝛤 n,N(h)

�
bk�{∃z∈ℤ∶h=k+2nz}

��

= Var

⎛⎜⎜⎝
2
√
n

n−1�
h=1

vec

� �
�k�>M

b⊤
k
�{∃z∈ℤ∶h=k+2nz}

�⊤�
IN ⊗ IN

�
vec

�
𝛤 n,N(h)

�⎞⎟⎟⎠

≤ 4n

n−1�
h=1

������
vec

� �
�k�>M

b⊤
k
�{∃z∈ℤ∶h=k+2nz}

�������

2

���
�
IN ⊗ IN

����
2

⋅

�����
𝔼

�
vec

�
𝛤 n,N(h)

�
vec

�
𝛤 n,N(h)

�⊤
������

≤ ℭ

n−1�
h=1

������
�
�k�>M

bk�{∃z∈ℤ∶h=k+2nz}

������

2

≤ ℭ

� �
�k�>M

‖bk‖
�2

M→∞
⟶ 0.

(37)

1√
n

n�
j=−n+1

�
tr
�
In,N(�j)qM(�j)

�
− tr

�
�(�j)fY (�) (�j)

��

=

√
n

�
tr

�
M�

h=−M

�
� n,N(h) − �N(h)

�
bh

�
+ o(1).
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Taking �N(h) = 0N×N for h ≠ 0 into account, we receive

Using the representation fY (𝛥) (𝜔) =
1

2𝜋
𝛷(e−i𝜔)𝛴

(𝛥)

N
𝛷(ei𝜔)⊤ and 

q(𝜔) = 𝛷(ei𝜔)⊤𝜂(𝜔)𝛷(e−i𝜔) for � ∈ [−�,�] , yield

Then, (38)–(40) result in (37).
Step 3: Next, we prove the asymptotic normality

where ��(M) is defined as

(38)

1√
n

n�
j=−n+1

�
tr
�
In,N(�j)qM(�j)

�
− tr

�
�(�j)fY (�) (�j)

��

=

√
n

�
tr

�
M�
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� n,N(h)bh

�
−

√
n

� ∫
�

−�

tr
�
�(�)fY (�) (�)

�
d�

+

√
n

� ∫
�

−�

tr
�
�(�)fY (�) (�)

�
d� − tr

�
1√
n

n�
j=−n+1

�(�j)fY (�) (�j)

�

=

√
n

�
tr

�
M�

h=−M

� n,N(h)bh

�
−

√
n

� ∫
�

−�

tr
�
�(�)fY (�) (�)

�
d� + o(1).

(39)

√
n

�
tr

�
M�

h=−M

� n,N(h)bh

�
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√
n

� ∫
�

−�

tr
�
�(�)fY (�) (�)

�
d�

=

√
n

�
tr

�
M�

h=−M

�
� n,N(h) − �N(h)

�
bh

�

+

√
n

�

�
tr(�N(0)b0) − ∫

�

−�

tr
�
�(�)fY (�) (�)

�
d�

�
.

(40)
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tr
�
𝛤N(0)b0
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=
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tr
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− tr
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Therefore, we consider

Writing

an application of Lemma 6 of the Supplementary Material leads to
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Therefore, note that

But

where we plugged in the definition of q in the last equality. Eventually, due to the 
representation of b0 , we receive
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Finally, Step 3, Step 4 and a multivariate version of Problem 6.16 of Brockwell and 
Davis (1991) give

Along with Step 1, Step 2 and Proposition 6.3.9 of Brockwell and Davis (1991), the 
statement follows. 	�  ◻

Proof of Proposition 6  The proof is based on the Cramér Wold Theorem and Proposi-
tion 5. Therefore, let 𝜆 = (𝜆1,… , 𝜆r)

⊤ ∈ ℝ
r . We obtain
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Apparently, �� is two times continuously differentiable by Remark 2 and 2� peri-
odic. Moreover, every component of the Fourier coefficients (��,u)u∈ℤ of �� sat-
isfies 

∑∞

u=−∞
��𝜆,u[k,�]��u�1∕2 < ∞, k,� ∈ {1,… ,m} (see Brockwell and 

Davis 1991,  Exercise 2.22 applied to �� and its derivative �′
�
 ), and therefore, ∑∞

u=−∞
‖�𝜆,u‖�u�1∕2 < ∞ follows. Then, due to Proposition 5, we get as n → ∞,

where
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for the third term. 	�  ◻

Proof of Theorem 2  Since �̂(�)
n

a.s.
⟶ �0 (see Theorem 1) and �∇2W is positive definite 

(see Theorem 2) the conclusion follows from (12), Propositions 4 and 6. 	�  ◻

Sketch of the proof of Remark 5  Let �Z be the polynomial of the (existing) VAR(∞) 
of the VARMA(p,  q) process. Proposition  5 can be formulated for VARMA pro-
cesses. As in the proof of Theorem 2 we have to plug in there for � the function �� as 
given in (44). Then, b0 in (30) has for the VARMA process (Zn)n∈ℕ the form

If �Z is two times differentiable, the Leibniz rule yield

Similarly to the proof of Theorem  5.8.1 of Brockwell and Davis (1991), one can 
show that the integrals are constant and therefore, that b0 = 0 . For a more detailed 
approach, we refer to Dunsmuir and Hannan (1976).

Supplementary Information  The online version supplementary material is available at https://​doi.​org/​10.​
1007/​s10463-​021-​00802-6.
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