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Abstract
Feature screening has been seen as the first step in analyzing the ultrahigh-dimen-
sional data with the censored survival time. In this article, we develop a surrogate-
variable-based model-free feature screening approach for the censored data under 
the general censoring mechanism, where the censoring variable may depend on the 
survival variable and the covariates. This approach is developed by finding some 
observable variables whose active covariates contain the active covariates of the sur-
vival variable as a subset, respectively. Then, any existing model-free feature screen-
ing method with the sure screening property for full data can be applied to estimat-
ing the sets of the active covariates of the observable variables and hence the set of 
the active covariates of the survival variable. The sure screening property of the pro-
posed approach is established, and its finite sample performances are demonstrated 
through some simulations. Further, we illustrate the proposed approach by analyzing 
two real datasets.
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1  Introduction

In the analysis of ultrahigh-dimensional data, feature screening has become indis-
pensable and received much attention in recent literatures. A crowd of model-
based and model-free variable screening methods for fully observed outcomes 
have been proposed. For example, Fan and Lv (2008) proposed sure independ-
ence screening (SIS) methods based on the marginal Pearson correlation for the 
linear regression model, which was further extended to generalized linear models 
by Fan and Song (2010); Chang et al. (2013) developed a screening for general-
ized linear models based on the marginal empirical likelihood ratio; Zhu et  al. 
(2011) proposed a sure independent ranking and screening (SIRS) approach for 
ultrahigh-dimensional multi-index models; Fan et  al. (2011) presented a non-
parametric independence screening (NIS) procedure based on the B-spline 
approximation for ultrahigh-dimensional additive models; He et  al. (2013) gave 
a quantile-adaptive model-free screening means (QA-SIS) for the heteroscedas-
tic model, which further improves the robustness of NIS; Li et al. (2012a) used 
Kendall � correlation to replace the Pearson correlation in marginal correlation 
screening for the semiparametric single-index model with a monotone link func-
tion; Li et al. (2012b) similarly employed the distance correlation to replace Pear-
son correlation in marginal correlation screening, which is a model-free screen-
ing approach (DC-SIS); Mai and Zou (2015) presented a model-free variable 
screening method, called fused Kolmogorov filter basing on the Kolmogorov-
Smirnov test statistic; Cui et al. (2015) developed a feature screening procedure 
based on the empirical conditional distribution function, which avoids the com-
plex numerical optimization; Pan et al. (2019) gave a generic nonparametric sure 
independence screening procedure (BCor-SIS) on the basis of a universal depend-
ence measure: Ball correlation, which can work for more scenarios under less 
restrictive assumptions.

These methods mentioned above have their own advantages. However, they 
mainly focus on the feature screening study for the fully observed data and may 
not be directly applied to the time-to-event survival data, which has widespread 
applications in biomedical research and other follow-up studies. For example, in 
an ultrahigh-dimensional gene expression cancer dataset, the primary interest is 
to find genes that are active and predictive for the survival time of patients. To 
handle this problem, some other screening methods for censored data have been 
developed. Gorst-Rasmussen and Scheike (2013) developed the feature aberra-
tion at survival times (FAST) screening procedure for the single-index hazard 
rate model, which requires the censoring mechanism to be partially random in 
the sense of depending on inactive covariates of the survival variable for obtain-
ing the sure screening property. He et al. (2013) applied directly QA-SIS to the 
heterogeneous censored data by using the inverse probability weighting tech-
nique, and Song et al. (2014) suggested a censored rank independence screening 
(CRIS) based on an inverse probability-of-censoring weighted Kendall � . How-
ever, these two methods both need to estimate the censoring probability under the 
complete random censoring (CRC) assumption, where the censoring variable is 
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independent of the survival variable and all covariates. Under the commonly used 
random censoring (RC) mechanism, where the censoring variable is independent 
of the survival variable given all covariates, more screening methods have also 
been proposed for the censored data problem. Fan et al. (2010) extended SIS to 
the Cox’s proportional hazard model, but without yet the theoretical guarantee. 
Zhao and Li (2012) proposed the principled sure independence screening (PSIS) 
method based on the standardized marginal maximum partial likelihood estima-
tors, and Yang et al. (2016) proposed the sure joint screening (SJS) method based 
on the joint likelihood of potential active predictors. Although both methods 
provided theoretical proofs, they was only suitable for the posited Cox model. 
Besides, He et al. (2013) further relaxed the CRC mechanism with the RC mecha-
nism. Recently, Chen et al. (2018) presented two model-free screening approaches 
based on the robust distance correlation (Zhong et al. 2016). Nevertheless, both 
of them depend on the Kaplan-Meier estimator and hence more additional condi-
tions are needed to make sure that the Kaplan-Meier estimator is well behaved. 
Since survival time cannot be observed completely under random censorship, 
these methods hence use the values of Kaplan-Meier estimator at every censored 
observation to replace their value at every survival time, which may be lead to 
bias. Li et  al. (2016) proposed a survival impact index (SII) screener, and Liu 
et al. (2018) proposed a screener based on an appropriate Kolmogorov-Smirnov 
measure.

It is noted that all the existing feature screening approaches for censored survival 
data are developed under CRC or RC mechanism. In practice, however, it is hard 
to verify whether a censoring mechanism is CRC or RC. Actually, in many cases, 
the censoring may depend on the survival time variable and the covariates. This 
is a very general censoring (GC) mechanism, which include CRC and RC censor-
ing mechanisms as special cases. Under the GC mechanism, the preceding feature 
screening methods may not be applicable. This is because these approaches depends 
on the assumed censoring mechanism heavily. For example, Kaplan-Meier estima-
tor used in these approaches does not work well under the more general censoring 
mechanism. As Leung et al. (1997) pointed out: ”the Kaplan-Meier estimator may 
overestimate the survival function if the survival time and the censoring time are 
positively correlated, and underestimate the survival function if the times are nega-
tively correlated.” This motivates us to develop the feature screening under the GC 
mechanism, which includes these censoring mechanisms considered in literature as 
special cases.

In this paper, based on the GC mechanism, we develop a model-free feature 
screening approach by proving some observable variables whose active covariates 
respectively contain the active covariates of the survival variable as a subset. Then, 
any available model-free feature screening methods for full data can be applied to 
estimating the sets of the active covariates of the observable variables and hence 
the set of the active covariates of the survival variable. The sure screening property 
can be kept as long as the used screening method for full data is of sure screening 
property. This method need to find at least a suitable observable variable, and is 
hence called surrogate-variable-based feature screening. The procedure enjoys sev-
eral appealing merits, which are explained after Theorem 2.
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The rest of this article is organized as follows. We present the results and the 
theoretical properties of the proposed feature screening approach in Section 2. Some 
simulation studies are conducted to evaluate the finite sample performances of the 
proposed approach in Section 3. In Section 4, two real data examples are analyzed 
using a mantle cell lymphoma data and a breast cancer data to illustrate the pro-
posed approach. We also give a conclusion in Section 5. All of the technical proofs 
are provided in the Appendix.

2 � Main results and methodologies

Let T and � = (X1,… ,Xp)
T be the survival time variable and p-dimensional covar-

iate vector, respectively. Suppose T is censored by the censoring variable C, and 
denote the observed response variable by Y = min(T ,C) and the censoring indicator 
by � = I(T ≤ C) , where I(⋅) is the indicator function.

Let � denote the maximum follow-up time. Without any specified model, we 
define the index sets of the active covariates for T, � given T > t and C given T > t 
by

respectively. Similarly, we can define A(C|�) , A(Y|�) and A(�T|�) , the index sets 
of the active covariates for C, Y and the product �T  of T and � , respectively. Our 
goal here is to recover the set of active variables A(T|�) on the basis of the sparsity 
assumption, which only a small number of covariates actually contribute to T.

Throughout this paper, we assume the GC mechanism. Under the GC mecha-
nism, Y and � are both likely to provide information which covariates are active to T. 
Hence, we expect to develop the feature screening approach based on observations 
of (Y , �) . Prior to this, the essential lemma deserves first attention. We first list the 
following conditions.

Condition 1. For any k ∈ A(T|�) ∩A
∗(C|�) , the product of pr(T > t|�) and 

pr(C > t|T > t,�) depends functionally on the covariate Xk for some t ∈ [0, �).
Condition 2. For any k ∈ A(T|�) ∩A

∗(�|�) , the product of pr(T > t|�) and 
pr(𝛿 = 1|T > t,�) depends functionally on the covariate Xk for some t ∈ [0, �).

Conditions 1 and 2 require that the product of the two conditional distribution 
functions does not cancel their mutual active covariates, respectively, which aims 
at ensuring that pr(Y > t|�) and pr(𝛿T > t|�) depend functionally on these mutual 
active covariates. These are very weak conditions, which are widely satisfied in the 
practical application of censored data. It is easy to verify the two conditions in the 
case where pr(T > t|� = x) , pr(C > t|T > t,� = x) and pr(𝛿 = 1|T > t,� = x) are 
differentiable on x.

Lemma 1  Under Conditions 1 and 2, we have

A(T|�) = {k ∶ pr(T > t|�) depends functionally on Xk for some t ∈ [0, 𝜏)},

A
∗(𝛿|�) = {k ∶ pr(𝛿 = 1|T > t,�) depends functionally on Xk for some t ∈ [0, 𝜏)},

A
∗(C|�) = {k ∶ pr(C > t|T > t,�) depends functionally on Xk for some t ∈ [0, 𝜏)},



383

1 3

Surrogate-FR-Censor

	 (i)	 A(Y|�) = A(T|�) ∪A
∗(C|�),

	 (ii)	 A(�T|�) = A(T|�) ∪A
∗(�|�).

Lemma 1 shows that A(T|�) is a subset of A(Y|�) and A(�T|�) , respectively. 
Hence, we can directly apply any available model-free feature screening proce-
dures for fully observed data to censored data based on fully observed variables 
(Y ,�) or (�T ,�) . Denote the corresponding estimators Â1(T|�) = Â(Y|�) and 
Â2(T|�) = Â(𝛿T|�) , where Â(Y|�) and Â(𝛿T|�) are respectively the estimator 
of A(Y|�) and A(�T|�) gained by some model-free feature screening method for 
full data. And the sure screening property can be kept as long as the model-free 
feature screening approach for full data is of sure screening property.

Theorem 1  (Sure Screening Property) Assume the conditions of Lemma 1 and the 
corresponding conditions for the sure screening property of the used model-free fea-
ture screening method for full data, we then have

	 (i)	 limn→∞ pr{A(T|�) ⊆ Â1(T|�)} = 1,
	 (ii)	 limn→∞ pr{A(T|�) ⊆ Â2(T|�)} = 1.

Up to now, we give two estimators for the active variable set A(T|�) . Although 
the two estimators both possess the sure screening property, it can be seen from 
Lemma 1 that these estimators are somewhat conservative since this screening 
procedure uses the results A(T|�) ⊆ A(Y|�) and A(T|�) ⊆ A(𝛿T|�) for the esti-
mators, respectively. Thus, it deserves further research how to reduce the false 
positive number of elements in the estimated set. Here, a natural method is to take 
the intersection of these two estimators as the final estimator of A(T|�) . That is, 
we define Â(T|�) = Â1(T|�) ∩ Â2(T|�) = Â(Y|�) ∩ Â(𝛿T|�) , which makes the 
false positive much less likely. What’s more, the improved estimator is also of 
sure screening property.

Theorem 2  (Sure Screening Property) Under the conditions of Theorem 1, we then 
have

The proposed feature screening approach is easy to implement since it avoids 
complex operations needed in the screening methods with censored data in litera-
ture. It is widely applicable since the censoring mechanism is very general. It is 
flexible since it makes that any model free feature screening approaches for full 
data are applicable to the censored data. It can be extended to other survival data 
types, such as left censored data, interval censored data and truncated data.

It is noted that the CRC and RC mechanisms are two special cases of the GC 
mechanism. Hence, the proposed method can also be applied to the two cases.

1. Application to the CRC mechanism

lim
n→∞

pr{A(T|�) ⊆ Â(T|�)} = 1.
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The CRC mechanism, where C is assumed to be independent of T and � , has 
been considered by many literatures, such as He et al. (2013), Song et al. (2014) and 
so on. Under this censoring mechanism, because C does not contain any information 
of � , and hence Lemma 1 reduces to the following Lemma 2.

Lemma 2  Under the CRC mechanism, we have A(T|�) = A(Y|�) = A(�T|�).

Lemma 2 shows that the index set of interest is exactly the same as A(Y|�) and 
A(�T|�) , which can be estimated by any model-free feature screening approach 
for full data, under the CRC mechanism. Compared with the estimators obtained in 
the GC case, the resulting estimator here may contain less false positive covariates, 
which is also verified by the simulation results.

2. Application to the RC mechanism
The RC mechanism, where C is independent of T given � , is most commonly 

used in literatures (e.g., Li et al. 2016; Liu et al. 2018 and Chen et al. 2018). Due to 
C |= T X|  for this case, then Lemma 1 reduces to the following Lemma 3.

Condition 3. For any k ∈ A(T|�) ∩A(C|�) , the product of pr(T > t|�) and 
pr(C > t|�) depends functionally on the covariate Xk for some t ∈ [0, �).

Lemma 3  Under the RC mechanism, if Conditions 2 and 3 are satisfied, we then 
have

	 (i)	 A(Y|�) = A(T|�) ∪A(C|�),
	 (ii)	 A(�T|�) = A(T|�) ∪A

∗(�|�).

Under the RC mechanism, Lemma 3(i) replaces A∗(C|�) of Lemma 1(i) with 
A(C|�) , where the latter is obviously a subset of the former. Hence, it is expected 
that the false positive number of the resulting estimator may be less in contrast to 
the estimators obtained in the general censoring case. In addition, the proposed 
screening method is also applicable to the case considered in Gorst-Rasmussen and 
Scheike (2013), where the censoring mechanism is assumed to be partially random 
in the sense of depending on inactive covariates of the survival variable.

3 � Simulations

3.1 � Simulation design

In this section, some simulation studies were conducted to investigate the finite sam-
ple performances of the proposed screening approach. Rather than comparing with 
all existing feature screening methods for survival data, we only compared with the 
latest screening procedures proposed by Chen et  al. (2018) and Liu et  al. (2018). 
This is because their works have already demonstrated that their proposed meth-
ods can outperform previous feature screening approaches in various survival cases. 
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Denote these two screening procedures from Chen et al. (2018) by Chen 1 and Chen 
2, respectively. Denote the screening procedure from Liu et  al. (2018) by Liu. To 
make it fair, we use the robust distance correlation

to implement our approach (denoted by proposed-DC) for comparing with Chen 1 
and Chen 2 since Chen 1 and Chen 2 use the above robust distance correlation based 
screening method. We use the fused Kolmogorov filter

to implement our approach (denoted by proposed-FKS) for comparing with Liu 
since Liu uses the fused Kolmogorov filter based screening method. In all the mod-
els, we set the sample size n = 200 , the dimension of covariates p = 2, 000 , and 
repeated each experiment 500 times. To evaluate the proposed approach, we consid-
ered the following model settings.

Model 1. In the first example, we considered the common Cox proportional haz-
ard model with the conditional hazard function given by

where the baseline hazard function is set to be �0(t) = 1 and the covariate 
� ∼ N(0,Σ) with Σ = (0.8|k−m|)p×p for k,m = 1,⋯ , p . We considered the following 
four censoring mechanisms: 

(a)	 C = C̃ with C̃ ∼ U(0, c0),
(b)	 C = exp(0.5 tan(0.5�X2) + 6X3

3
+ c0),

(c)	 C = exp(0.5 tan(0.5�X2) + 3X5
5
+ 0.3X20 + c0),

(d)	 C = exp(0.5 sin(T) + 0.5 tan(0.5�X2) + 3X5
5
+ c0),

where c0 is chosen such that censoring rate is about 40% or 20% for these cases.
Model 2. In this example, we generated T from the following nonlinear acceler-

ated failure time (AFT) model, which is another popular semi-parametric model in 
survival analysis.

where � ∼ N(0,Σ) with Σ = (0.8|k−m|)p×p for k,m = 1,⋯ , p , � ∼ N(0, 1) is inde-
pendent of � . And we considered the following four censoring mechanisms: 

(a)	 C = C̃ with C̃ ∼ U(0, c0),

�j = dcorr(Fj(Xj),F(Y)) =
dcov(Fj(Xj),F(Y))

√
dcov(Fj(Xj),Fj(Xj))dcov(F(Y),F(Y))

(docv is the distance covariance,F(⋅) is the distribution function)

�j =

Nj∑

k=1

K
Λkj

j
=

Nj∑

k=1

max
l1,l2

sup
0≤t≤�

|Sj(t|Ikj = l1) − Sj(t|Ikj = l2)|

(Λkj is the kth partition of Xj, S(⋅|⋅) is the conditional survival function)

�(t|�) = �0(t) ⋅ exp(0.6X
3
1
+ 1.3X2 − 1.2 arccos(�X3) − X4 + 1.4X5 + X6),

log(T) = X1 + 0.4X3 − exp(−X1 − 0.8X2 − X7) ⋅ �,
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(b)	 C = |0.5X7
1
+ c0|,

(c)	 C = | − 1.2X5
1
∕(��C) + c0|,

(d)	 C = 0.3(sin(T) − 0.2 sin(X3
1
) + c0)

2,

where c0 is chosen such that censoring rate is about 40% or 20% for these cases, and 
�C = (2.5, 0.7,−3,−1.8, 0p−4)

�.
Model 3. Suppose that T took the following model, which represents various 

types of covariate functions with different degree of non-linearity, similarly adapted 
from Li et al. (2016).

where g1(x) = 5 cos(2�x) , g2(x) = 5 exp(1.2(x − 1)) , g3(x) = −2.5x + 1 , 
g4(x) = 3 arctan(3x − 2) , � ∼ N(0,Σ) with Σ = (0.8|k−m|)p×p for k,m = 1,⋯ , p , 
� ∼ N(0, 1) is independent of � . And we considered the following four censoring 
mechanisms: 

(a)	 C ∼ N(0, 4) − N(5, 1) + N(27, 1),
(b)	 C = exp(0.6 tan(X1) − X3

3
+ c0),

(c)	 C = exp(0.6 tan(2�X1) − X3
3
+ 2 sin(�

�

�C) + c0),
(d)	 C = exp(0.6 tan(0.5�T) − X3

3
+ sin(�

�

�C) + c0),

where c0 is chosen such that censoring rate is about 40% or 20% for these cases, and 
�C = (0, 0, 0, 0,−3.8,−4.2, 0, 0, 3, 5,−4, 0p−11)

�.
For all the above models, we consider four different censoring mechanisms. Case 

(a) means the CRC mechanism, where A(T|�) = A(Y|�) = A(�T|�) . Cases (b) 
and (c) mean the RC mechanism, where A(T|�) ⊆ A(Y|�) and A(T|�) ⊆ A(𝛿T|�) . 
Case (d) means the GC mechanism. We assessed the performances of the screen-
ing approaches through the minimum model sizes (MMS), the minimum number of 
covariates needed to include all the active variables, like Fan and Lv (2008) and Mai 
and Zou (2015).

3.2 � Simulation results and conclusions

Tables 1-2 present the simulation results, which contains the MMS’s median of 500 
replicates and the mean absolute deviation (parenthesis). In summary, we can find 
the following conclusions.

•	 The proposed feature screening approach works reasonably well and performs 
stably for all the models under four different censoring mechanisms considered 
here. In addition, our approach’s finite sample performances are more robust 
according to these results of different censoring situations, whereas other screen-
ing methods have their ups and downs.

•	 For Case (a), the censoring variable completely independent of the survival 
variable and all covariates, the proposed approach is exactly comparable to 
other methods in terms of MMS, but its mean absolute deviation is gener-

log(T) = g1(X1) + g2(X2) + g3(X3) + g4(X4) + �,
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ally smaller. However, Case (a) is rare in practice. In Cases (b) and (c) for all 
models, our approach outperforms the other methods in terms of MMS, and 
its mean absolute deviation is much smaller than others. The reason might be 
that our method uses fully observed data to estimate A(T|�) and does not use 
Kaplan-Meier estimator. In Case (d) for all the models, other screening meth-

Table 1   Simulation results for Models 1-3 under four censoring mechanisms with the censoring rate 40%

Method (a) (b) (c) (d)

Model 1 (d=6) proposed-DC 6(0.072) 6(0.216) 6(1.212) 6(1.802)
Chen 1 6(0.294) 10(12.756) 42(73.080) 31(38.946)
Chen 2 6(2.112) 7(13.532) 12(33.380) 7(10.990)
proposed-FKS 6(0.274) 6(5.496) 8(22.552) 6(1.992)
Liu 6(0.172) 33(94.672) 41(109.130) 11(31.194)

Model 2 (d=4) proposed-DC 9(13.130) 7(7.024) 7(6.766) 9(13.202)
Chen 1 25(65.104) 11(41.740) 17(49.232) 18(51.036)
Chen 2 10(28.288) 13(35.600) 13(34.204) 15(42.854)
proposed-FKS 8(22.406) 8(15.034) 8(14.910) 7(17.680)
Liu 64(139.668) 262(392.178) 129(243.194) 56(129.486)

Model 3 (d=4) proposed-DC 8(22.522) 10(37.470) 5(10.728) 5(5.352)
Chen 1 10(31.618) 372(493.868) 515(612.042) 417(522.374)
Chen 2 8(27.468) 17(31.950) 24(42.766) 18(31.312)
proposed-FKS 5(20.432) 5(5.000) 4(1.234) 4(0.774)
Liu 6(24.280) 7(45.252) 11(80.414) 7(50.102)

Table 2   Simulation results for Models 1-3 under four censoring mechanisms with the censoring rate 20%

Method (a) (b) (c) (d)

Model 1 (d=6) proposed-DC 6(0.008) 6(1.542) 6(0.990) 6(1.592)
Chen 1 6(0.022) 8(12.612) 6(6.042) 24(27.054)
Chen 2 6(0.028) 6(4.408) 6(1.316) 6(4.254)
proposed-FKS 6(0.018) 6(4.120) 6(1.742) 6(5.048)
Liu 6(0.036) 6(4.602) 6(2.016) 7(9.964)

Model 2 (d=4) proposed-DC 6(3.336) 6(1.568) 6(1.908) 5(1.984)
Chen 1 18(32.166) 23(49.640) 20(34.130) 19(30.134)
Chen 2 7(12.818) 9(17.728) 7(13.756) 7(11.962)
proposed-FKS 5(3.832) 5(1.206) 5(1.814) 5(2.232)
Liu 23(60.800) 23(69.606) 17(42.526) 21(57.916)

Model 3 (d=4) proposed-DC 5(4.790) 8(16.356) 9(16.802) 8(14.648)
Chen 1 5(8.360) 312(438.976) 244(398.612) 264(404.038)
Chen 2 5(6.290) 18(56.930) 17(56.968) 17(56.298)
proposed-FKS 4(6.726) 5(3.228) 4(2.340) 4(2.910)
Liu 5(7.702) 5(26.440) 5(21.828) 5(22.234)
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ods perform poorly because they are only proposed under the RC mechanism. 
However, our proposed approach works well under this GC mechanism.

•	 As the censoring rate increases from 20% to 40% , the proposed screening 
approach always works well, but the performance of other screening methods 
become worse. This shows that the proposed method is robust for different cen-
soring rates. The reason may be that the proposed method uses these observable 
variables more effectively.

In addition, in order to more clearly show the performance of our approach under 
the GC mechanism, we also present the bar graph of the MMS’s median for all mod-
els’ Case (d) (Figs. 1-2). It is easily to see that the MMSs of proposed-DC and pro-
posed-FKS are much closer to the true model size in either censoring rate.

4 � Applications

4.1 � Mantle cell lymphoma data

Now, we applied the proposed screening approach to the mantle cell lymphoma 
(MCL) dataset. The dataset contains 8,810 expression genes for 92 patients diag-
nosed with MCL based on the morphologic and immunophenotypic criteria, which 
has been studied by Rosenwald et al. (2003) and Liu et al. (2018). This dataset is 
available at http://​llmpp.​nih.​gov/​MCL. During the follow-up, 64 patients were died 
of MCL and the rest of them were censored. That is, the overall censoring rate is 

Fig. 1   Bar graph of the MMS’s median for Case (d) of Models 1-3 with the censoring rate 40%

http://llmpp.nih.gov/MCL
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30.43% . Patient’s survival time ranges from 0.02 to 14.05 years with the median 
observed survival time of 2.8 years. The primary goals of this research are to inves-
tigate which genes had expression patterns that correlated with life of patients, and 
to predict the length of survival of these patients. Because of such small sample size 
and huge number of covariates, a screening is necessary prior to any meaningful 
statistical analysis.

For comparisons, we also applied the other competing methods mentioned in 
Simulations to screen genes that may be relevant to the survival time. Instead of 
removing these genes with missing values, we firstly impute them by the K-nearest 
neighbor method with K = 15 . In our subsequent analysis, we standardized each 
gene and screened the first 20 = [92∕ log(92)] important genes with [a] denoting the 
integer part of a. The gene unique identification (UNIQID) of these selected genes 
were displayed in Table 3. From this table, we can observe that seven genes with 
UNIQID 17198, 28346, 28990, 30334, 30898, 31420 and 34771 were selected by 
all the five feature screening approaches, indicating that they may be strongly asso-
ciated with patients’s survival time; five more genes with UNIQID 24656, 26950, 
28534, 31443 and 32187 were only selected by our screening procedures. By con-
sulting the literature, Rosenwald et al. (2003) had shown that the selected genes with 
UNIQID 28346, 28990, 30334, 34771 and 26950 had significant influences on the 
survival time. However, other screening methods could not select the important one 
with UNIQID 26950.

To evaluate the predictive accuracy of these methods, we randomly splitted 
the data into training dataset and test dataset, where the number of the train-
ing dataset accounts for about 2/3 of all samples (61 patients) and the censoring 
rate is roughly remained the same. The remainder of the observed dataset was 

Fig. 2   Bar graph of the MMS’s median for Case (d) of Models 1-3 with the censoring rate 20%
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considered as the test part. We applied all the above feature screening approaches 
to the training dataset and selected 14 = [61∕ log(61)] genes. Then, we fitted an 
AFT model with the lasso penalty based on selected genes on the training data-
set and used this fitted model to make a prediction on the survival time in the 
test dataset. After repeating this procedure 200 times, we reported the average of 
the mean relative error (MRE, MRE=1

n

∑
� True value−Prediction

True value
� ) of different screen-

ing approaches, with a smaller value indicating better performance, in Table  4. 
And the box plots of the MREs are also given in Fig. 3. It can be seen that pro-
posed-DC and proposed-FKS are the two top performers in terms of the average 
of MRE under the working AFT model. This indicates that our proposed screen-
ing procedure has better predictive performance for the MCL data, which again 
shows the reliability of our screening results in Table 3.

Table 3   The UNIQIDs of the 
top 20 selected genes for MCL 
data

proposed-DC Chen 1 Chen 2 proposed-FKS Liu

16787 27762 30898 17176 28990
17198 30898 30122 17198 30334
23826 17198 30334 17326 30898
24610 30334 28990 24656 31049
26944 27116 27762 26944 30157
27095 28640 31420 26950 17176
27116 24723 30157 27095 25234
27762 34771 34790 27116 17198
28346 23826 34771 28346 28346
28534 16787 17198 28872 24794
28872 34790 28346 28990 26944
28990 29897 29897 29897 31420
29897 28346 28872 30142 29357
30334 31420 27095 30282 30142
30898 30282 24610 30334 34771
31049 30122 17326 30898 27310
31420 24610 28640 31420 30378
32187 28990 25234 31443 17691
34771 27095 16787 32187 34790
34790 30949 26944 34771 24723

Table 4   The average of 200 
MREs under a working AFT 
model for MCL data

proposed-DC Chen 1 Chen 2 proposed-FKS Liu

MRE 1.6431 1.6485 1.6448 1.6340 1.7228
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4.2 � Breast cancer data

Another real dataset from a breast cancer study (Van Houwelingen et al. 2006) con-
tains 295 female patients with primary invasive breast carcinoma. For each patient, 
the expressions of 24,885 genes were profiled on cDNA arrays from all tumors. A 
set of 4,919 candidate genes were selected after initial screening by the Rosetta error 
model (Van’t Veer et al. 2002). The median follow-up time is 7.2 years, and 73.2% 
of the observations (216 patients) were censored. The study aims to identify genes 
that are associated with the overall survival of breast cancer patients, and to predict 
patient’s survival.

Similarly, we applied all the above feature screening methods to screen for active 
genes related to survival after the missing genes imputed by the K-nearest neighbor 
method with K = 15 . All predictors were standardized with mean zero and variance 
one. We screened the first 51 = [295∕ log(295)] genes and displayed these genes in 
Table 5. It can be easily seen that 19 genes were screened by all the five screening 
methods. One of them Contig38288.RC had been identified as an active predictive 
gene in Van’t Veer et al. (2002). Besides, the gene NM.006623 was also selected by 
Song et al. (2014), but it was only selected by our screening approaches.

In addition, we examined and compared the predictive accuracy of these screened 
genes by different methods with 200 random partitions of the data. For each parti-
tion, about 2/3 of all samples (196 patients) were randomly selected as the train-
ing dataset with the roughly same censoring rate. The remainder of the observed 
dataset was considered as the test part. Like the above, we applied these screening 
approaches to the training dataset and selected 37 = [196∕ log(196)] genes. Then, 
we fitted an AFT model with the lasso penalty based on selected genes on the train-
ing dataset and used this fitted model to make a prediction on the survival time in the 
test dataset. Table 6 reports the average of MRE of different screening approaches 
and Fig. 4 presents the box plots of the MREs. These results indicate that our pro-
cedure has better predictive performance for the breast cancer data in terms of the 
smallest average of MRE. Hence, our screening approach might give more reliable 
selection results than three others.

5 � Conclusion

We propose a very easily implemented surrogate-variable-based model-free fea-
ture screening approach for the censored survival data under the GC mechanism, 
and demonstrate its superior performances by Monte Carlo simulations and the real 
applications. In this paper, for fairly comparing with the three existing screening 
methods, the proposed approach uses the corresponding dependence measures. Nev-
ertheless, one can use any dependence measures from a wealth of available feature 
screening literatures, which is a rather appealing and distinct trait. In addition, com-
pared with the existing screening methods, our approach is developed under a very 
general censoring mechanism. This shows that our approach is much more credible 
in reality due to the unknown censoring mechanism.
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Table 5   The names of the top 51 selected genes for breast cancer data

proposed-DC Chen 1 Chen 2 proposed-FKS Liu

NM.002358 Contig38288.RC NM.003981 NM.001605 NM.016359
NM.003158 NM.007057 NM.003600 NM.000926 NM.014176
NM.002497 NM.003981 D14678 NM.001673 NM.001168
NM.003258 Contig48328.RC U74612 NM.003158 U96131
NM.001809 NM.003600 NM.004701 NM.002497 NM.016569
NM.002689 Contig31288.RC NM.016359 NM.003258 D43950
AB024704 NM.003158 Contig57584.RC NM.001809 NM.003035
AF279865 NM.001605 NM.007019 AF279865 NM.020974
Contig45816.RC NM.005733 NM.003158 Contig45816.RC NM.014321
NM.004217 Contig33814.RC NM.004217 NM.004217 NM.004217
NM.003504 NM.018410 NM.018410 NM.003504 D38553
NM.012291 D14678 NM.014176 AB040926 NM.003600
NM.003600 NM.014585 AB024704 NM.003600 Contig38288.RC
NM.004336 NM.013277 NM.007057 NM.004336 Contig55725.RC
NM.003686 NM.004336 U96131 Contig31288.RC NM.003504
Contig31288.RC NM.006607 NM.013277 NM.004456 NM.005733
NM.012474 NM.001809 NM.001168 NM.013277 NM.014791
NM.004456 Contig51749.RC NM.003258 NM.005375 NM.004456
NM.013277 Contig8818.RC NM.003504 NM.020686 NM.012067
NM.006027 NM.004701 Contig48328.RC NM.003981 NM.004358
NM.020675 NM.006845 Contig31288.RC Contig35629.RC NM.006845
NM.003981 NM.000270 Contig38288.RC NM.014176 NM.006607
NM.014176 U74612 NM.018455 NM.004702 NM.004701
NM.004701 Contig34766.RC NM.006607 U74612 NM.013277
NM.004702 AB040926 NM.001809 AL160131 NM.001122
Contig48328.RC NM.014501 M96577 M96577 NM.006461
U74612 NM.001109 NM.004336 NM.007019 NM.003981
M96577 NM.003258 Contig45816.RC NM.014321 NM.003579
NM.007019 NM.007019 NM.004456 NM.007057 Contig36879.RC
NM.007057 Contig38726.RC NM.006027 NM.020974 Contig64688
D43950 Contig45816.RC NM.005733 D43950 NM.001809
NM.014454 AL137566 NM.001333 NM.006461 NM.006500
NM.005733 NM.004217 NM.012291 NM.005733 AL137347
AF047002 NM.004456 Contig38901.RC NM.014501 NM.012291
NM.006607 Contig55069.RC D43950 NM.006607 NM.007019
Contig64688 Contig56843.RC D38553 NM.006623 Contig31288.RC
NM.014791 NM.020974 NM.003686 Contig64688 Contig38901.RC
Contig38288.RC Contig57584.RC NM.006845 NM.014791 NM.001124
Contig38901.RC NM.001333 NM.014791 Contig38288.RC NM.001905
NM.006845 NM.001255 AL049265 NM.006845 NM.001333
NM.014875 NM.003686 NM.006461 AJ224741 NM.003258
D38553 NM.006027 NM.014501 Contig56843.RC U74612
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As mentioned before, the active variable set estimated by the proposed screen-
ing approach may include some redundant covariates. Although we ulteriorly cut 
down the false positive number through taking a intersection of two estimated 
sets, it deserves further study how to obtain a more accurate estimator. We will 
consider the problem in a subsequent study.
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Appendix

Proof of Lemma 1  To facilitate the presentation, we write �A = {Xk ∶ k ∈ A} for 
any non-negative integer set A . First, we prove Lemma 1 (i).

Under the GC mechanism, for any t ∈ [0, �) , we have

Recalling the definition of A(Y|�) , it is easy to see A(Y|�) ⊆ A(T|�) ∪A
∗(C|�) . 

On the other hand, for any Xj ∈ �A(T|�)∪A∗(C|�) , we have Xj ∈ �A(T|�) or 
Xj ∈ �A

∗(C|�) . That is, pr(T > t|�) or pr(C > t|T > t,�) depend functionally on Xj 
for some t ∈ [0, �) , and hence pr(Y > t|�) depends functionally on Xj by the condi-
tions of Lemma 1. This proves Xj ∈ �A(Y|�) . Lemma 1 (i) is then proved.

Lemma 1 (ii) can be proved similar to Lemma 1(i) by noting

(1)pr(Y > t|�) = pr(min(T ,C) > t|�) = pr(T > t|�) ⋅ pr(C > t|T > t,�).

Table 5   (continued)

proposed-DC Chen 1 Chen 2 proposed-FKS Liu

NM.016359 NM.001168 NM.020675 D38553 NM.001071
NM.016448 NM.014176 NM.002497 AL049265 NM.018410
U96131 NM.020686 AF279865 NM.016359 Contig48270.RC
NM.018410 NM.006006 NM.004702 AL137566 NM.017522
NM.018455 NM.016359 Contig33814.RC Contig38726.RC NM.004336
D14678 NM.004648 NM.005804 U96131 NM.002106
NM.001168 AL160131 AB040926 NM.018410 Contig57584.RC
NM.001333 NM.007274 Contig34766.RC D14678 NM.002497
NM.002106 NM.000926 NM.001605 NM.001168 NM.006027

Table 6   The average of 200 
MREs under a working AFT 
model for breast cancer data

proposed-DC Chen 1 Chen 2 proposed-FKS Liu

MRE 2.0486 2.1374 2.1469 2.1089 2.1384
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for t ∈ [0, �) . 	�  ◻

Proofs of Theorems 1 and 2  The proofs are direct based on Lemma 1, and hence we 
omit it. 	�  ◻

Proof of Lemma 2  Under the CRC mechanism, namely, C |= (T,X), we then have 
A

∗(C|�) is an empty set and A∗(�|�) is a subset of A(T|�) . This proves Lemma 2. 	
� ◻

Proof of Lemma 3  Under the RC mechanism, Lemma 3 is a direct result of Lemma 1 
by noting A∗(C|�) = A(C|�). 	�  ◻
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