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Abstract
Vinberg cones and the ambient vector spaces are important in modern statistics of 
sparse models. The aim of this paper is to study eigenvalue distributions of Gauss-
ian, Wigner and covariance matrices related to growing Vinberg matrices. For 
Gaussian or Wigner ensembles, we give an explicit formula for the limiting distri-
bution. For Wishart ensembles defined naturally on Vinberg cones, their limiting 
Stieltjes transforms, support and atom at 0 are described explicitly in terms of the 
Lambert–Tsallis functions, which are defined by using the Tsallis q-exponential 
functions.

Keywords Eigenvalue distributions · Covariance matrices · Wigner matrices · 
Homogeneous cones · Vinberg cones · q-Exponential · Lambert–Tsallis functions

1 Introduction

In modern data analysis, there is a strong need of covariance models with sparsity 
(see, e.g., Hastie et al., 2015). In mathematical statistics we search for models with 
some mathematical structure allowing rigorous multivariate and asymptotical analy-
sis. Vinberg matrix models presented in this paper constitute an important class of 
such sparse models.

Asymptotics of empirical eigenvalue distributions are a classical topic of the 
random matrix theory (RMT). There are numerous interactions of RMT with 
important areas of modern multivariate statistics: high-dimensional statistical 
inference, estimation of large covariance matrices, principal component analysis 
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(PCA), time series and many others, see the review papers by Diaconis (2003, 
Section 2), Johnstone (2007), Paul and Aue (2014), Bun et al. (2017), the book 
of Yao et al. (2015) and the references therein. RMT is also used in signal pro-
cessing (including MIMO) and compressed sensing (see Hastie et  al., 2015, 
Chapter 10, for example) in the restricted isometry property (RIP) introduced by 
Candès and Tao (2005). Fujikoshi and Sakurai (2016) and Bai et al. (2018) used 
RMT methods to study consistency of the criteria AIC and BIC in estimation of 
the number of components in PCA. Distribution of the largest eigenvalue of a 
Wishart matrix was studied in Takayama et al. (2020).

In this paper, we concentrate on proving fundamental theorems of RMT, 
the Wigner and Marchenko–Pastur-type limit theorems for considered Vinberg 
models.

High-dimensional spectral asymptotics for growing sparse models seem to have 
never been studied before and we are convinced that our results will be useful in 
modern multivariate statistical covariance analysis. A potential perspective of appli-
cations of our results to statistical problems is to study estimation of large sparse 
Vinberg covariance matrices, the number of significative PCA factors and asymptot-
ics of the largest eigenvalue of a sparse Wishart Vinberg matrix in our subsequent 
researches.

Covariance matrices are defined naturally on Vinberg matrices by a quadratic 
construction (see Sect. 2.3), thanks to quadratic triangular group actions on positive 
definite Vinberg matrices (cf. Sect. 2.1).

In Sects. 3 and 4, we provide a complete study of limiting eigenvalue distribu-
tions related to Vinberg matrices. The main results are contained in Theorem 5 for 
the Wigner Ensembles, and in Theorems 18 and 24 and Corollaries 19 and 21 for 
the Wishart Ensembles of Vinberg matrices. We are able to treat both real and com-
plex matrix ensembles, but in view of statistical applications, we focus on real ran-
dom matrices.

As a special case of Corollary  19, we provide an elementary and short proof of 
a result of Dykema and Haagerup (2004, §8) on the asymptotic empirical eigen-
value distribution �0 for the covariance of the triangular real Gaussian ensemble. 
The proof in Dykema and Haagerup (2004) is based on the theory of free probability 
with involved calculations, and the Stieltjes transform S0(z) is given implicitly by 
determining all the moments of �0 . Later, Cheliotis (2018) mentioned that S0(z) can 
be expressed in terms of the Lambert W function.

Our paper contributes to the study of triangular random matrices initiated by 
Dykema and Haagerup (2004) and continued in Cheliotis (2018), also in the frame-
work of the theory of Muttalib-Borodin biorthogonal ensembles (see Borodin, 1999; 
Forrester, 2010; Forrester and Wang, 2017; Muttalib, 1995). This is a part of recent 
developments in the theory of singular values of non-symmetric random matrices 
(see the survey by Chafaï, 2009). In contrast to Cheliotis (2018), we do not dispose 
of an explicit formula for the joint eigenvalue density.

The analysis, probability and statistics on homogeneous cones develops 
intensely in recent years (Andersson and Wojnar, 2004; Graczyk and Ishi, 2014; 
Graczyk et  al., 2019; Ishi, 2014, 2016; Letac and Massam, 2007; Nakashima, 
2020; Yamasaki and Nomura, 2015), and Vinberg cones and dual Vinberg cones 
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are basic examples of homogeneous cones (see Sect. 2.1). Our results are a first 
contribution to the RMT on homogeneous cones.

The main method used in our paper is the variance profile method for Gauss-
ian and Wigner matrix ensembles, presented in Sect.  2.4. It was applied first 
in Shlyakhtenko (1996) in the Gaussian case and developed in Anderson and 
Zeitouni (2006) in the Wigner case. We use the recent approach of Bordenave 
(2019). In Theorem 3, we slightly strengthen for our needs the main variance pro-
file result of Bordenave (2019). Theorem 3 will be useful for studying of eigen-
value distributions related to general growing sparse models.

Note that the variance profile methods were also developed directly for 
Wishart ensembles by Hachem et al. (2005, 2006, 2007, 2008) (cf. Remark 26). 
The variance profile methods are related to operator-valued free probability the-
ory (Mingo and Speicher, 2017, Chapter 9).

Our expression of a limiting Stieltjes transform for Wishart Ensembles of Vin-
berg matrices is based on the introduction of Lambert–Tsallis functions W�,� ; see 
Sect.  4.1. The Lambert–Tsallis functions are defined by using Tsallis q-expo-
nential functions, now actively studied in Information Geometry (cf. Amari and 
Ohara, 2011; Zhang et al., 2018).

Outlines of all proofs are given. Technical details are omitted and can be 
viewed in Supplementary material available from the editor of the journal.

Simulations of histograms of eigenvalues of Vinberg matrices are illustrated 
by Figs. 1, 2 and 3 in the Wigner case and by Figs. 4, 5 and 6 in the Wishart case.

Fig. 1  Simulation for c = 1

5
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Fig. 2  Simulation for c = 1

2

Fig. 3  Simulation for c = 3

5
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Fig. 4  Simulation for � =
1

2

Fig. 5  Simulation for � = 1
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Fig. 6  Simulation for � = 2

Fig. 7  Region of � and �
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2  Preliminaries

We begin this paper with recalling the definition of the empirical eigenvalue distri-
bution of a symmetric matrix. Let Sym(n,ℝ) be the space of symmetric matrices of 
size n and Sym(n,ℝ)+ the open convex cone of positive definite symmetric matrices 
in Sym(n,ℝ) . Let �1(X) ≥ ⋯ ≥ �n(X) be the ordered eigenvalues of X∈ Sym(n,ℝ) 
with counting multiplicities. Denote by �a the Dirac measure at a. Then, the empiri-
cal eigenvalue distribution �X of X is defined by �X =

1

n

∑n

i=1
��i(X).

If {Xn}
∞
n=1

(Xn ∈ Sym(n, ℝ)) is a sequence of Gaussian, Wigner or Wishart matri-
ces, and then it is well known that there exists a limit � of �Xn

 as n → ∞ , and the 
sequence of random measures �Xn

 converges almost surely weakly to the semi-circle 
law or the Marchenko–Pastur law, respectively (see for example Bai and Silverstein, 
2010; Bordenave, 2019). The limits � of �Xn

 , in the almost sure weak sense, are 
said to be the “limiting eigenvalue distributions � of Xn .” For simplicity, we will say 
“i.i.d. matrices” instead of “matrices with independent and identically distributed 
non-null terms”.

2.1  Generalized dual Vinberg cones and Vinberg matrices

Let {an}∞n=1 and {bn}∞n=1 be non-decreasing sequences of positive integers such that 
an + bn = n and the ratio an∕n converges to c ∈ [0, 1] . Then, we introduce the matrix 
space Un as a subspace of Sym(n,ℝ) defined by

where Mat(an × bn;ℝ) denotes the space of an × bn matrices. Set

Then, Pn is an open convex cone in Un . Moreover, the cone Pn admits a transitive 
group action, i.e., Pn is a homogeneous cone, since the following triangular group

acts on Pn transitively by the quadratic action 𝜌(h)U ∶= hUh⊤ for h ∈ Hn and 
U ∈ Pn . This is easily verified by using the Cholesky decomposition (cf. Ishi, 2016, 
p. 3). For definition and basic properties of homogeneous cones, see Vinberg (1963), 
Ishi (2014).

If n = 3 and (an, bn) = (1, 2) , then P3 is the dual Vinberg cone (see Example 1) so 
that, in this paper, we call Pn a generalized dual Vinberg cone and elements U ∈ Un 
Vinberg matrices. On the other hand, if we set an = n − 1 and bn = 1 , then Un is the 
space Sym(n,ℝ) of symmetric matrices of size n, and hence our discussion covers 

Un ∶=

{
U =

(
x y

y⊤ d

)
;
x ∈ Sym(an,ℝ), y ∈ Mat(an × bn,ℝ),

d is a diagonal matrix of size bn

}
,

Pn ∶= Un ∩ Sym(n,ℝ)+.

Hn ∶=

⎧⎪⎨⎪⎩
h =

�
h1 y

0 d

�
∈ GL(n,ℝ);

h1 ∈ GL(an,ℝ) is upper triangular,

y ∈ Mat(an × bn;ℝ),

d ∶ diagonal of size bn

⎫⎪⎬⎪⎭
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the classical results. In what follows, we introduce two kinds of random matrices 
related to the homogeneous cones Pn , that is, Gaussian and Wigner matrices and 
Wishart quadratic (covariance) matrices.

2.2  Gaussian and Wigner matrices in U
n

Analogously to the classical Wigner matrices, we say that Un = (uij) ∈ Un is a 
Wigner random matrix if

where v, v′,M4,M
′
4
 are fixed positive real numbers. If the non-null terms uij are 

Gaussian, with v = 1 and v� = 2 , the matrices Un form a Gaussian Orthogonal 
Ensemble of Vinberg matrices. In Sect. 3, we consider empirical eigenvalue distri-
butions of rescaled Wigner matrices Un∕

√
n ∈ Un.

2.3  Quadratic construction of Wishart (covariance) matrices in U
n

Recall that sample covariance matrices, essential in multivariate statistical analy-
sis, are defined as a quadratic map 1

n
VV⊤ of the observed centered sample vector 

V. Consequently, Wishart matrices are constructed quadratically both in Random 
Matrix Theory and in statistics. In this section, we define, by a quadratic construc-
tion, Wishart (covariance) matrices in Un.

We first recall the notion of a direct sum of quadratic maps. Let 
Qi ∶ ℝ

mi → ℝ
m (i = 1,… , k) be quadratic maps. Then, the direct sum Q1 ⊕⋯⊕ Qk 

is an ℝm-valued quadratic map on ℝm1 ⊕⋯⊕ℝ
mk given by

If Q1 = ⋯ = Qk , then the direct sum Q is denoted by Q⊕k

1
 . As showed in Graczyk 

and Ishi (2014), any homogeneous cone � admits a canonical family of the so-called 
basic quadratic maps qj ( j = 1,… , r ) defined for each j on a suitable finite dimen-
sional vector space Ej and with values in the closure � of � . The number r is called 
the rank of � and r = n for the cones Un . Using the basic quadratic maps qj , one con-
structs quadratic maps Qk for k ∈ ℤ

r≥0 by

defined on Ek ∶= E
⊕k1
1

⊕⋯⊕ E
⊕kr
r  . The maps Qk are �-positive, i.e., if 

� ∈ Ek ⧵ {0} , then Qk(�) ∈ � ⧵ {0}.
In our case � = Pn , the basic quadratic maps are given as follows (cf. Graczyk 

and Ishi, 2014). For j = 1,… , n , define Ej ⊂ ℝ
n by

(1)

⎧⎪⎨⎪⎩

∙ the diagonal terms (uii) are independent of the off-diagonal terms (uij)i<j,

∙ the diagonal u�
ii
s are centered i.i.d. variables with variance v� and fourth moment M�

4
,

∙ the non-nul off-diagonal u�
ij
s, i < j, are centered i.i.d. variables

with variance v and fourth moment M4,

Q(x) ∶= Q1(x1) +⋯ + Qk(xk) where x = x1 +⋯ + xk
(
xi ∈ ℝ

mi

)
.

Qk ∶= q
⊕k1
1

⊕⋯⊕ q⊕kr
r

,
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where ei (i = 1,… , n) is the vector in ℝn having 1 on the ith position and zeros else-
where. We note that each Ej corresponds to the jth column of the Lie algebra �n 
of Hn , that is, we have �n =

{
H = (�1,… , �n); �j ∈ Ej

}
 . Then, the basic quadratic 

maps qj ∶ Ej → Un of the cone Pn are defined by

Let k ∈ ℤ
n≥0 . Then, Ek can be viewed as a subspace of Mat(n × (k1 +⋯ + kn);ℝ) of 

the form

and then Qk(𝜂) = 𝜂 𝜂⊤ for � ∈ Ek . In order to simplify formulas when we apply the 
so-called variance profile method in Sect. 4, we do not multiply 1

2
 in definition of 

Qk(�).
When � ∈ Ek  is an i.i.d. random matrix whose non-null terms have the normal 

law N(0, v), the law of Qk(�) is a Wishart law �Qk ,1∕(2v)Idn
 on the cone Pn . For the 

definition of all Wishart laws on the cone Pn ; see Graczyk and Ishi (2014). More 
generally, in this paper, we consider eigenvalue distributions of rescaled matrix 
Qk(�)∕n under the assumption that � ∈ Ek  is a centered rectangular i.i.d. matrix 
whose non-null terms have variance v and finite fourth moments M4.

We consider two-dimensional multiparameters k = k(n) ∈ ℤ
n≥0 of the form

Example 1 Let n = 3 , a3 = 1 and b3 = 2 . In this case, P3 is the dual Vinberg cone (cf. 
Vinberg, 1963, p. 397, Ishi, 2001, §5.2):

Consider m1 = m2 = 1 , so k = (1, 2, 2) . Then Ek = E(1,2,2) can be written as

Ej =

{(
�

0

)
∈ ℝ

n; � ∈ ℝ
j

}
(j ≤ an),

Ej =

{(
�

0

)
+ 𝜉�ej ∈ ℝ

n; � ∈ ℝ
an , 𝜉� ∈ ℝ

}
(j > an),

qj(�j) ∶= �j�
⊤
j
∈ Un (�j ∈ Ej).

⎧
⎪⎪⎨⎪⎪⎩

� =

⎛
⎜⎜⎜⎜⎝

k1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

�
(1)

1
,… , �

(k1)

1
,… ,

kn−1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

�
(1)

n−1
,… , �

(kn−1)

n−1
,

kn
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

�(1)
n
,… , �(kn)

n

⎞
⎟⎟⎟⎟⎠
;

�
(i)

j
∈ Ej,

1 ≤ j ≤ n,

1 ≤ i ≤ kj

⎫
⎪⎪⎬⎪⎪⎭

,

(2)
k = m1(1,… , 1) + m2(

an
⏞⏞⏞
0,… , 0,

bn
⏞⏞⏞
1,… , 1 ) (m1,m2 ∈ ℤ≥0).

P3 =

⎧⎪⎨⎪⎩
x =

⎛⎜⎜⎝

x11 x12 x13
x12 x22 0

x13 0 x33

⎞
⎟⎟⎠
; x is positive definite

⎫⎪⎬⎪⎭
.
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and Q(1,2,2)(𝜂) = 𝜂 𝜂⊤ is given as

If x, yij, zij are N(0, v) i.i.d. Gaussian variables, the random matrix Q(1,2,2)(�) has a 
Wishart law on P3.

The form (2) of the Wishart multiparameter k englobes and generalizes the fol-
lowing cases. In both cases, with rescaling 1/n, the limiting eigenvalue distribution 
is known. 

 (i) The classical Wishart Ensemble MM⊤ on Sym(n,ℝ)+ , where M = Mn×N is an 
i.i.d. matrix with finite fourth moment M4 , with parameter C ∶= limn

N

n
> 0 

(see Anderson et al., 2010; Faraut, 2014) for (an, bn) = (n − 1, 1) , m1 = 0 and 
m2 ∼ Cn . The limiting eigenvalue distribution is the Marchenko–Pastur law 
�C with parameter C, i.e., denoting a =

�√
C − 1

�2

, b =
�√

C + 1
�2

 and 
[x]+ ∶= max(x, 0) (x ∈ ℝ) , 

 (ii) The Wishart Ensemble related to the Triangular Gaussian Ensemble
   (Cheliotis, 2018; Dykema and Haagerup, 2004) for (an, bn) = (n − 1, 1) , 

m1 = 1 and m2 = 0 . When v = 1 , the limiting eigenvalue distribution, which we 
call the Dykema–Haagerup measure �1 , is absolutely continuous with respect 
to Lebesgue measure and has support equal to the interval [0, e]. Its density 
function � is defined on the interval (0, e] by the implicit formula (Dykema 
and Haagerup, 2004, Theorem 8.9) 

with �(0+) = ∞ and �(e) = 0 . For v ≠ 1 , the limiting measure �v has density 
�(y∕v)∕v on the segment (0, ve].

2.4  Resolvent method for Wigner ensembles with a variance profile �

Let ℂ+ denote the upper half plane in ℂ . In this paper, the Stieltjes transform 
S(z) = S�(z) of a finite measure or a nonnegative L1-function � on ℝ is defined to be

E(1,2,2) =

⎧
⎪⎨⎪⎩
� =

⎛⎜⎜⎝

x y11 y12 z11 z12
0 y21 y22 0 0

0 0 0 z21 z22

⎞
⎟⎟⎠
; x, yij, zij ∈ ℝ

⎫
⎪⎬⎪⎭
,

Q(1,2,2)(�) =
⎛
⎜⎜⎝

x2 + y2
11
+ y2

12
+ z2

11
+ z2

12
y11y21 + y12y22 z11z21 + z12z22

y11y21 + y12y22 y2
21
+ y2

22
0

z11z21 + z12z22 0 z2
21
+ z2

22

⎞
⎟⎟⎠
.

�C = [1 − C]+�0 +

√
(t − a)(b − t)

2�t
�[a,b](t)dt.

(3)𝜙
(
sin x

x
exp(x cot x)

)
=

1

𝜋
sin x exp(−x cot x) (0 ≤ x < 𝜋),
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In the sequel, we will need the following properties of the Stieltjes transform, which 
are not difficult to prove.

Proposition 2 

1. Suppose that S(z) is the Stieltjes transform of a finite measure � on ℝ . If for all 
x ∈ ℝ it holds

then S(z) ≡ 0 and � is a null measure (�(B) = 0 for any Borel set B).
2. Suppose f ≥ 0 and f ∈ L1(ℝ) . Let S(z) be the Stieltjes transform of f. If f is con-

tinuous at x then

If f is continuous on an interval [a, b], a < b , the convergence (4) is uniform for 
x ∈ [a, b].

Recall that if � is a probabilistic measure on ℝ , with Stieltjes transform S(z) 
and the absolutely continuous part of � has density f, then (4) holds for almost all 
x (Lemma 3.2 (iii) of Bordenave, 2019).

We present now the following, slightly strengthened result from the Lecture 
Notes of Bordenave (2019, §3.2), that will be a main tool of proofs in this paper.

Let � ∶ [0, 1] × [0, 1] → [0,∞) be a bounded Borel measurable symmetric 
function. For each integer n, we partition the interval [0, 1] into n equal intervals 
Ji , i = 1,… , n . Put Qij ∶= Ji × Jj , which is a partition of [0, 1] × [0, 1] . We assume 
that Yij (i ≤ j) are independent centered real variables, defined on a common prob-
ability space, with variance

for a sequence �ij(n) . We note that the law of Yij depends on n. We set Yji ∶= Yij and 
we consider the symmetric matrix Yn ∶= (Yij)1≤i,j≤n. We note that, if � is continuous, 
then, up to a perturbation �ij(n) , the variance of 

√
nYij is approximatively �(i∕n, j∕n) , 

and hence we call � a variance profile in this paper.

Theorem 3 Let �0(n) ∶=
1

n2

∑
i,j≤n

|�ij(n)| . Assume (5) and suppose that

S(z) = ∫
ℝ

�(dt)

t − z
(z ∈ ℂ

+).

lim
y→0+

Im S(x + iy) = 0

(4)lim
y→0+

1

�
Im S(x + iy) = f (x).

(5)�Y2
ij
=

1

n

(
∫Qij

�(x, y)

|Qij| dx dy + �ij(n)

)
,
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Let �Yn
 be the empirical eigenvalue distribution of Yn . Then, there exists a probabil-

ity measure �� depending on � such that �Yn
 converges weakly to �� almost surely. 

The Stieltjes transform S� of �� is given as follows. 

(a) For each z with Im z >
√
sup 𝜎 , there exists a unique ℂ+-valued L1-solution 

�z ∶ [0, 1] ↦ ℂ
+ , of the equation

and the function z ↦ �z(x) extends to an analytic ℂ+-valued function on ℂ+ , for 
almost all x ∈ [0, 1] . Then, 

(b) The function x → �z(x) is also a solution of (7) for 0 < Im z ≤ √
sup 𝜎.

Proof The proof is the same as the proof of Bordenave (2019, Theorem 3.1), where 
a stronger assumption |�ij(n)| ≤ �(n) is required for some sequence �(n) going to 0. It 
is replaced by the first condition of (6). Detailed analysis of the proof of the approxi-
mate fixed point equation in Bordenave (2019, page 42) shows that the second con-
dition of (6) is the weakest assumption on the fourth moments �Y4

ij
 ensuring the con-

centration of the conditional variance related to the Schur complement of the 
Stieltjes transform of the approximating matrix of Yn . The property (b) is observed 
in Bordenave (2019, page 39) by analiticity.   ◻

Since now we assume that � ∶ [0, 1]2 → [0,+∞) is bounded (not obligatorily by 1 
as in Bordenave, 2019). Consequently, the condition on z should be Im z >

√
sup 𝜎 , 

not Im z > 1 . Theorem 3 shows that, to each variance profile function � , one asso-
ciates uniquely a Stieltjes transform S�(z) of a probability measure. For the corre-
spondence between � and S� , the conditions (6) are not needed. We define S�(z) as 
the Stieltjes transform associated to �.

Remark 4 A prototype of the variance profile method for Wigner ensembles was 
given by Anderson and Zeitouni (2006, Theorem 3.2). Theorem 3.1 of Bordenave 
(2019) and Theorem 3 provide a simple general approach. Special cases of variance 
profile convergence results for Wigner matrices were studied before, as discussed 
below in (i) and (ii). 

 (i) If we set �(x, y) = 1 for all x, y, then 
√
nY is a Wigner ensemble with v = v� = 1 . 

Let Ssc(z) be the Stieltjes transform of the semi-circle law on [−2, 2] . Then, 

(6)lim
n

�0(n) = 0 and max
i,j≤n

�(Y4
ij
)

n(�Y2
ij
)2

= o(1) (Yij ≠ 0).

(7)�z(x) = −

(
z + ∫

1

0

�(x, y) �z(y) dy

)−1

(for almost all x ∈ [0, 1]),

S�(z) = ∫
1

0

�z(x) dx.
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the functions x → �z(x) do not depend on x (but do on z) and the functional 
equation (7) gives the equation Ssc(z) = −(z + Ssc(z))

−1 , which is well known 
from the detailed study of resolvent matrices (see Tao, 2012, §2.4.3).

 (ii) The paper Anderson and Zeitouni (2006) deals primarily with a variance pro-
file � such that ∫ �(x, y) dy = 1 for any x, corresponding to a band matrix 
model. For band matrix ensembles, see also Erdös et al. (2012a, 2012b), Nica 
et al. (2002), Shlyakhtenko (1996).

3  Wigner ensembles of Vinberg matrices

In this section, we give explicitly the limiting eigenvalue distributions � for the 
Wigner matrices Un ∈ Un defined by (1). Let �I denote the indicator function of 
a subset I ⊂ ℝ . For a real number a, its cubic root is denoted by 3

√
a ∈ ℝ and set 

[ a ]+ = max(a, 0) . We introduce two real numbers �c , �c depending on c ∈ [0, 1) 
by

It is clear that �0 = �0 = 1 , 𝛼c < 𝛽c and 𝛽c > 0 for all c ∈ (0, 1) . We note that 
�1∕2 = 0 , 𝛼c < 0 when c > 1∕2 , limc→1− �c = −∞ , limc→1−(1 − c)�c = −1∕4 and 
limc→1− �c = 4 , so that we set �1 = 4 . It can be shown that c ↦ �c is strictly decreas-
ing and c ↦ �c is strictly increasing on [0, 1].

Theorem  5 Let Un be a Wigner matrix on Un defined by (1). Assume that 
limn→+∞ an∕n = c ∈ (0, 1) . Then, the limiting eigenvalue distribution � of the 
rescaled matrices Un∕

√
n exists and is given for c ∈ (0, 1) as

with

where, for x2 ∈ [�c, �c],

The support of � is given as

(8)�c =
8 + 4c − 13c2 −

√
c(8 − 7c)3

8(1 − c)
, �c =

8 + 4c − 13c2 +
√
c(8 − 7c)3

8(1 − c)
.

� = fc(t) dt + [1 − 2c]+�0

(9)
fc(t) ∶=

3

�
R+

�
t∕
√
v; c

�
− 3

�
R−

�
t∕
√
v; c

�

2
√
3� t

�[�c,�c]

�
t2

v

�
,

R±(x; c) ∶= x6 − 3(c + 1)x4 +
3

2
(5c2 − 2c + 2)x2 + (2c − 1)3

± 3c
√
3 − 3c ⋅ x

�
(x2 − �c)(�c − x2).
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If c = 0 , then � = �0 . If c = 1 , then � is the semicircle law on [−2
√
v, 2

√
v].

Remark 6 The formula (9) is valid for the extreme cases c = 0 or c = 1 . If 
c = 0 then there is no density and � = �0 . If c = 1 , then it can be checked that 
3
√
R+(x; 1) −

3
√
R−(x; 1) =

√
3x

√
4 − x2 so that, for v = 1 we get the semicircle law 

�(dt) = (1∕2�)
√
4 − t2�[−2,2](t)dt of Wigner (1955).

Remark 7 Note that the limiting measure � does not depend on the diagonal variance 
v′ . This phenomenon already holds for the classical Wigner ensemble. In terms of 
the variance profile method, it may be explained by the fact that the variance profile 
(11) does not depend on v′ because the difference |v − v�| on the diagonal is absorbed 
by the perturbation terms �ii.

Remark 8 An intuitive explanation of the fact that if c < 1

2
 then � has an atom at 

0 and �((0,
√
v�c)) = 0 is that small eigenvalues are strongly attracted by the zero 

eigenvalue and asymptotically vanish. Note that if c = 0 , the model is asymptoti-
cally diagonal. For the diagonal Wigner matrices, the empirical eigenvalue distribu-
tion converges to 0 by the Strong Law of Large Numbers.

Sketch of the proof We first derive the Stieltjes transform of the limiting eigenvalue 
distribution by applying Theorem  3 to Yn = Un∕

√
n . Let Un = (Uij)1≤i,j≤n , so that 

Yij = (1∕
√
n)Uij . The variance profile is given as

Here, the perturbation term �ij(n) equals �ij(n) = �U2
ij
− v

|C∩Qij|
|Qij| .

We check easily that the conditions (6) are satisfied, since, by (1) and writing 
M ∶= max{|v − v�|, v�, v} , we get

Let us fix z ∈ ℂ
+ = {z ∈ ℂ; Im z > 0} . The functional equation (7) from Theorem 3 

becomes

(10)supp� =

⎧
⎪⎨⎪⎩

�
−
√
v�c, −

√
v�c

�
∪ {0} ∪

�√
v�c,

√
v�c

�
(if c ∈ (0,

1

2
))�

−
√
v�c,

√
v�c

�
(if c ∈ [

1

2
, 1)).

(11)�(x, y) =

{
v if (x, y) ∈ C,

0 otherwise,
C ∶=

{
(x, y) ∈ [0, 1]2; min(x, y) ≤ c

}
.

�0(n) ≤ 3M

n
and max

i,j≤n
�(Y4

ij
)

n(�Y2
ij
)2

≤ max{M4,M4
�}

nmin{v, v�}
.

𝜂z(x) =

⎧⎪⎨⎪⎩

−
�
z + v ∫ 1

0
𝜂z(y) dy

�−1

(x ≤ c),

−
�
z + v ∫ c

0
𝜂z(y) dy

�−1
(x > c).
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Observe that the right-hand sides are independent of x. Integrating both sides of 
these equations, we obtain the following simultaneous equations

where A = ∫ 1

0
�z(x) dx and B = ∫ c

0
�z(x) dx . Note that A is the desired Stieltjes trans-

form S(z).
If c = 0 , then we have A = −1∕z so that the limiting measure is � = �0 . If c = 1 

then the equation (7) reduces to the equation A = −(z + vA)−1 , which corresponds 
to the Stieltjes transform of the semi-circular law (cf. Tao, 2012, p. 178). Thus we 
assume 0 < c < 1 in what follows. Then, the cubic equation for A, resulting from 
(12) writes

and it is an algebraic equation with polynomial coefficients. The last equation (13) is 
reduced to

where we set zv ∶= z∕
√
v,

and the coefficients p, q are given by the following analytical rational functions on 
ℂ

∗∶= ℂ ⧵ {0}

We shall use classical results on the solutions of cubic equations. 
Let Disc(z) be the discriminant of the cubic equation (14), that is, 
Disc(z) = (s1(z) − s2(z))

2(s2(z) − s3(z))
2(s1(z) − s3(z))

2 , where si(z) are solutions in Y 
of (14). Then, it is well known that Disc(z) can be expressed by p(z) and q(z), using 
�c, �c in (8), as (cf. Ronald, 2004)

Let E =
{
z ∈ ℂ; z = 0 or Disc(zv) = 0

}
 be the set of exceptional points of (14). For 

z ∉ E , the equation (14) has three different solutions (cf. Ronald, 2004). Cardano’s 
method and formula (15) imply that, for z ∈ ℂ

+

(12)B =
−c

z + vA
, A − B =

c − 1

z + vB
,

(13)v2zA3 + (2vz2 + v2(1 − 2c))A2 + (z2 + 2v(1 − c))zA + z2 − vc2 = 0

(14)Y3 + p
(
zv
)
Y + q

(
zv
)
= 0,

(15)Y = Y(z) ∶=
vA

z
+

2

3
−

(2c − 1)v

3z2
,

p(z) ∶= −
z4 − 2(c + 1)z2 + (2c − 1)2

3z4
,

q(z) ∶= −
2

27
⋅

z6 − 3(c + 1)z4 +
3

2
(5c2 − 2c + 2)z2 + (2c − 1)3

z6
.

Disc(z) = −
(
4p(z)3 + 27q(z)2

)
=

4c2(1 − c)

z10
(z2 − �c)(z

2 − �c).
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with u±(z) ∶=
(
Fc(zv) ± i Dc(zv)

) 1

3 , Fc(z) ∶= −
27

2
q(z) and

where convenient branches of the cube and the square roots are chosen, respectively, 
for u±(z) and Dc(z) to be such that S(z) is a Stieltjes transform of a probability meas-
ure. In particular, S(z) is holomorphic on ℂ+ and

Note that the branches of the roots may be different on different subregions of ℂ+ 
and that U ∶= (u+ + u−)∕3 is a solution of (14). In order to derive the limiting eigen-
value distribution � from S(z), we will need the following properties of S(z). Set 
ℝ

∗ ∶= ℝ ⧵ {0}.

Proposition 9 The limit S(x) = lim
y→+0

S(x + yi) exists for each x ∈ ℝ
∗ . The function S 

is continuous on ℝ∗ and S(x) is a solution of (13) on ℝ∗.

Sketch of the proof of the proposition It is sufficient to prove it for a solution U(z) 
of the reduced equation (14) on ℂ+ , such that U(z) is holomorphic on ℂ+ . We apply 
Theorem X.3.7 of Palka (1991) to a convenient connected and simply connected 
domain D avoiding the set E . By the discussion of Ahlfors (1979, p. 304), U has at 
most an ordinary algebraic singularity at a nonzero exceptional point, so U(z) is con-
tinuous on ℝ∗ .   ◻

Without loss of generality, we suppose v = 1 . We first assume that x = 0 . The 
detailed local analysis of (16) and (17) that we omit here, shows that 

 (Z1) if 0 < c < 1

2
 , then lim

y→+0
yIm S(yi) = 1 − 2c , so � has an atom at 0 with the mass 

1 − 2c < 1,
 (Z2) if c = 1

2
 , then lim

y→+0
Im S(yi) = +∞, lim

y→+0
yIm S(yi) = 0 so � does not have an 

atom at 0,
 (Z3) if 1

2
< c < 1 , then lim

y→+0
Im S(yi) = c(2c − 1)−1∕2 = �fc(0) , so � does not have an 

atom at 0.

Next we consider the case x ≠ 0 . Combining the fact that S(z) is an odd function 
as a function on ℂ ⧵ℝ by (16) and the property S(z) = S(z) of the Stieltjes trans-
form, we obtain Im S(−x + iy) = Im S(x + iy) so that Im S(−x) = Im S(x) . Thus we 
can assume that x > 0.

(16)S(z) =
z(u+(z) + u−(z))

3v
−

2z

3v
+

2c − 1

3z

Dc(z) ∶= 27 ⋅

�
Disc(z)

4 ⋅ 27
=

3c
√
3 − 3c

z5

�
(z2 − �c)(z

2 − �c),

(17)u+(z) ⋅ u−(z) = −3p(z), and Im S(z) > 0 (z ∈ ℂ
+).
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Suppose Disc(x) ≥ 0 . Since the coefficients p, q of (14) are real on ℝ∗ , the equa-
tion (14) has only real solutions (cf. Ronald, 2004). Therefore, S(x) is real so that the 
density of � vanishes at such points.

Next we assume that Disc(x) < 0 . By Proposition 9, S(x) is a solution of the cubic 
equation (13) and U(x) = (u+(x) + u−(x))∕3 is a solution of the reduced equation 
(14). In particular, the formulas (16) and (17) hold for S(x), with convenient choices 
of branches of cubic roots and square roots. Consequently, we have{

Fc(x) + iDc(x),Fc(x) − iDc(x)
}
=
{
R�
+
(x), R�

−
(x)

}
 

as a set, where R�
±
(x) ∶= R±(x; c)∕x

6 ∈ ℝ . Let � = e2i�∕3 denote the cube root of 1 
with positive imaginary part. Then, (16) yields that the sum u+(x) + u−(x) has the 
following form

By the first condition in (17), as p(x) ∈ ℝ , we need to have k+ + k− ≡ 0 mod 3, that 
is, (k+, k−) = (0, 0) , (1, 2) and (2, 1). Using the fact that R�

+
(x) > R�

−
(x) when x > 0 

and Disc(x) < 0 , we see that the imaginary part of u+(x) + u−(x) and of 
limy→0+ S(x + iy) is, respectively, nul, positive and negative in these three cases. 
Since Im S(z) > 0 , the last case is impossible. Set 
h(x) ∶= Im

�
� 3
√
R�
+(x) + �2 3

√
R�
−
(x)

�
 . Notice that h is a strictly positive continuous 

function on the set {x ∈ ℝ; Disc(x) < 0} and that 1
�
h(t) = fc(t) , the density part of � 

in the formula (9). Since the function Im S is continuous on ℝ∗ by Proposition 9, we 
have Im S ≡ h or Im S ≡ 0 on the set {x ∈ ℝ

∗; Disc(x) < 0}.
We now show that the latter case is impossible. Note that � has no atoms differ-

ent from zero because S(z) is continuous on ℂ+ ⧵ {0} . By Theorem 2.4.3 of Ander-
son et  al. (2010) and by the dominated convergence, we have for closed intervals 
[a, b] ⊂ ℝ

∗

so that �(0,∞) = 0 and, symmetrically, �(−∞, 0) = 0 . Since � is a probability 
measure, we get � = �0 . This contradicts properties (Z1-3) proven in the case x = 0 . 
Thus, we have Im S ≡ h on the set {x ∈ ℝ

∗; Disc(x) ≤ 0} and, for x ∈ ℝ
∗ , 

lim
y→0+

1

�
Im S(x + iy) =

1

�
h(x) = fc(x) . Note that fc has a compact support 

{Disc(x) ≤ 0} . For c ≠ 1

2
 , the function fc is continuous on ℝ . For c = 1

2
 , a detailed 

analysis shows that limx→0 fc(0) = ∞ , with fc(x) ∼ |x|−1∕2 at x = 0 and fc is continu-
ous on ℝ∗ . By property (Z3), if c > 1

2
 then limy→0+ Im S(iy) = �fc(0) . When c ≠ 1∕2 , 

Proposition 2.1 implies that � = fc(t) dt + [1 − 2c]+�0 . Actually, if s(z) is the Stieltjes 
transform of � − fc(t) dt − [1 − 2c]+�0 , then, using Proposition 2.2, we get 
limy→0+ Im s(x + iy) = 0 for all x ∈ ℝ . When c = 1∕2 , by Proposition 2.2, we get 
limy→0+ Im s(x + iy) = 0 for all x ∈ ℝ

∗ , uniformly on compact intervals [a, b] ⊂ ℝ
∗ . 

Like in (18), we conclude by Theorem  2.4.3 in Anderson et  al. (2010) that 
� = fc(t) dt . The support formula (10) follows by supp fc = {Disc(x) ≤ 0} .   ◻

u+(x) + u−(x) = �k+ 3

√
R�
+(x) + �k− 3

√
R�
−
(x) with k+, k− ∈ {0, 1, 2}.

(18)�([a, b]) =
1

�
lim
y→0+∫

b

a

S(x + iy) dx =
1

� ∫
b

a

lim
y→0+

S(x + iy) dx = 0,
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In the Figs. 1, 2 and 3 we present graphical comparison between simulations for 
n = 4000 and the limiting densities, when c = 1∕5, 1∕2, 3∕5.

Remark 10 The Wigner case may be considered in a framework of operator-valued 
free probability theory by methods of the rectangular free probability (cf. Benaych-
Georges, 2009; Mingo and Speicher, 2017, Chapter 9).

4  Wishart ensembles of Vinberg matrices

In this section, we shall consider the quadratic Wishart (covariance) matrices intro-
duced in Sect.  2.3. We first prepare some special functions which we need later. 
They generalize the Lambert W function appearing (see Cheliotis, 2018) in the case 
Pn = Sym(n,ℝ)+ and m = (1,… , 1).

4.1  Lambert–Tsallis W function and Lambert–Tsallis function W�,

For a nonzero real number � , we set

where we take the main branch of the power function when � is not integer. If 
� =

1

1−q
 , then it is exactly the so-called Tsallis q-exponential function and q-loga-

rithm, respectively (cf. Amari and Ohara, 2011; Zhang et  al., 2018). We have the 
following relationship between these two functions:

Since lim
�→∞

exp�(z) = ez , we regard exp∞(z) = ez and log⟨0⟩(z) = log(z).
For two real numbers �, � such that � ≤ 1

�
≤ 1 and 𝛾 < 1 (see Fig. 7), we intro-

duce a holomorphic function f�,� (z) , which we call generalized Tsallis function, by

We note that � ∈ (−∞, 0) ∪ [1,+∞) . Analogously to Tsallis q-exponential, we also 
consider f∞,� (z) =

zez

1+�z
(z ∈ ℂ) . In particular, f∞,0(z) = zez.

In our work, it is crucial to consider an inverse function to f�,� . A multivariate 
inverse function of f∞,0(z) = zez is called the Lambert W function and studied in 
Corless et al. (1996). Hence, we call an inverse function to f�,� the Lambert–Tsallis 
W function.

The function f�,� (z) has the inverse function w�,� in a neighborhood of z = 0 , 
because we have f �

�,�
(0) = 1 ≠ 0 by

exp�(z) ∶=
�
1 +

z

�

��

(1 +
z

�
∈ ℂ ⧵ℝ≤0), log⟨�⟩(z) ∶= z� − 1

�
(z ∈ ℂ ⧵ℝ≤0),

(19)log⟨1∕𝜅⟩ ◦ exp𝜅(z) = z (−𝜋 < 𝜅Arg
�
1 +

z

𝜅

�
< 𝜋).

f�,� (z) ∶=
z

1 + �z
exp�(z) (1 +

z

�
∈ ℂ ⧵ℝ≤0).
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Let us present some properties of f�,� . When �� ≠ 1 , the function f�,� has a pole at 
x = −

1

�
 . By the condition on � and � , the function �z2 + (1 + 1∕�)z + 1 has two real 

roots, say �1 ≤ �2 , when � ≠ 0 . If � = 0 , there is only one real root, that we denote 
�2 = −

�

�+1
 . f �

�,�
(z) = 0 implies z = �i (i = 1, 2) , or z = −� if 𝜅 > 1 . For the case 

𝜅 < 0 , it is convenient to change the variable by a homographic action z� = z

1+
z

�

 . 

Then

Since a homographic action by an element in SL(2,ℝ) leaves ℂ+ invariant, the analy-
sis of the case 𝜅 < 0 reduces to the case 𝜅′ > 0 and � ′ ≤ 0.

Let us set S ∶= ℝ ⧵ f�,� (ℝ) . We shall see that S appears as the slit with respect to 
the Lambert–Tsallis W function. The set S has the following possibilities. 

 (S1) S = (f�,� (�2), f�,� (�1)) , where f𝜅,𝛾 (𝛼2) < f𝜅,𝛾 (𝛼1) < 0 . It occurs when � ∈ [1,+∞] 
and 𝛾 < 0 , and when 𝜅 < 0 and 𝛾 � = 𝛾 − 1

𝜅
< 0.

 (S2) S = (−∞, f�,� (�2)) , where f𝜅,𝛾 (𝛼2) < 0 . It occurs when 𝜅 > 1 and � ≥ 0 and 
when (�, �) = (1, 0).

 (S3) S = (−∞, f�,� (�1)) , where f𝜅,𝛾 (𝛼1) < 0 . It occurs when 𝜅 < 0 and � � = � − 1

�
= 0.

 (S4) S = (f�,� (�1), f�,� (�2)) , where f𝜅,𝛾 (𝛼1) < f𝜅,𝛾 (𝛼2) < 0 . It occurs when � = 1 and 
0 < 𝛾 ≤ 1.

The cases (S1,S2,S3) are studied in detail in the Supplementary Material. The case 
(S4) appears in the well-known Wishart Ensemble case.

Theorem  11 Let S be an interval or half-line given by (S1)–(S4) above, and 
S ⊂ (−∞, 0) its closure. Then, there exists a complex domain 𝛺 ⊂ ℂ , symmetric with 
respect to the real axis and containing 0, such that f�,� maps � bijectively to ℂ ⧵ S . 
Consequently, the function w�,� can be continued in a unique way to a holomorphic 
function W�,� defined on ℂ ⧵ S . The codomain of W�,� is � , that is, W�,� (ℂ ⧵ S) = �.

Proof The proof is based on the properties of f�,� showed in Proposition 13.   ◻

Recall that the main branch of the Lambert W function is holomorphic on 
ℂ ⧵ (−∞,−

1

e
] (see Corless et al., 1996).

Definition 12 The unique holomorphic extension W�,� of w�,� to ℂ ⧵ S is called 
the main branch of Lambert–Tsallis W function. In this paper, we only study and 
use W�,� among other branches so that we call W�,� the Lambert–Tsallis function for 
short. Note that in our terminology the Lambert–Tsallis W function is multivalued 
and the Lambert–Tsallis function W�,� is single-valued.

f �
�,�
(z) =

�z2 + (1 + 1∕�)z + 1

(1 + �z)2

(
1 +

z

�

)�−1

.

f𝜅,𝛾 (z) = f𝜅�,𝛾 � (z
�) where 𝜅� = −𝜅 > 0, 𝛾 � = 𝛾 −

1

𝜅
.
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We summarize the basic properties of the Lambert–Tsallis function that we need 
later.

Proposition 13 

 (i) Let D = � ∩ ℂ
+ . The function f�,� is continuous and injective on the closure 

D . Consequently, W�,� extends continuously from ℂ+ to ℂ+ ∪ℝ , and one has 
f�,� (�� ∩ ℂ

+) = S.
 (ii) The Lambert–Tsallis function W�,� has the following properties. 

(a) Suppose that � ≥ 1 and 𝛾 < 0 , or 𝜅 < 0 and � ′ ≤ 0 . In these cases, the set 
D is bounded. If � ≥ 1 then D ⊂

{
z ∈ ℂ

+; Arg
(
1 +

z

𝜅

)
∈ (0,

𝜋

𝜅+1
)
}

 and 
z ∈ D satisfies Re z > −𝜅 . If � = ∞ , then D ⊂

{
z ∈ ℂ

+; Im z ∈ (0,𝜋)
}
 . If 

𝜅 < 0 then D ⊂

{
z ∈ ℂ

+; Arg

((
1 +

z

𝜅

)−1
)

∈ (0,
𝜋

|𝜅|+1 )
}

 . Moreover, 

lim|z|→+∞ W�,� (z) = −
1

�
 (recall that − 1

�
 is a pole of f�,�).

(b) Suppose � ∈ [1,+∞] and � = 0 . The set D = � ∩ ℂ
+ is unbounded and 

f�,0(∞) = ∞ . If � ∈ [1,+∞) then D ⊂
{
z ∈ ℂ

+; Arg
(
1 +

z

𝜅
∈ (0,

𝜋

𝜅+1
)
)}

 . 
If � = ∞ , then W∞,0(z) is the classical Lambert function, and one has 
D ⊂

{
z ∈ ℂ

+; Im z ∈ (0,𝜋)
}
.

(c) Suppose 𝛾 > 0 . In this case we have � ∈ [1,
1

�
] . The set D = � ∩ ℂ

+ is 
unbounded and f�,� (∞) = ∞ . Moreover, D =

{
z ∈ ℂ

+; Arg
(
1 +

z

�

)
∈ (0,

�

�
)
}
.

Proof The main tool is the Argument Principle (cf. Ahlfors, 1979, Theorem 18, p. 
152). A detailed study of the inverse image f −1

�,�
(ℝ) is performed. We omit the tech-

nical details, provided in Supplementary Material.   ◻

Remark 14 It is worth underlying that we consider the main branch of the complex 
power function in the Tsallis q-exponential exp�(z) appearing inside the generalized 
Tsallis function f�,� . Consequently, the main branch W�,� is the unique one such that 
W(0) = 0 . A complete study of all branches of the Lambert–Tsallis W function will 
be interesting to do. The study of the Lambert–Tsallis function W�,� in the full range 
of parameters �, � is also an interesting open problem. We exclude the case 𝜅𝛾 > 1 
with 𝜅 > 0 because we do not need it later. We note that, when 𝜅𝛾 > 1 and 𝜅 > 1 
with a condition (1 + 𝜅)2 − 4𝛾𝜅2 > 0 , then f�,� maps a subregion of ℂ+ onto ℂ+.

4.2  Quadratic Wishart matrices

We will now study eigenvalues of Wishart (covariance) matrices in Pn ⊂ Un , defined 
in Sect. 2.3. We apply the approach of Bordenave (2019, Cor.3.5), based on the vari-
ance profile method (Theorem 3).

In this subsection, we first consider the case of an = n − 1 and bn = 1 , that is, 
Pn is the symmetric cone Sym(n,ℝ)+ of positive definite symmetric matrices of 
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size n. Let �n = (�ij) be a rectangular matrix of size n × N , where the entries �ij are 
centered i.i.d. variables with variance v and fourth moment M4 . In order to study 
eigenvalue distributions of Xn = 𝜉n𝜉

⊤
n

 , we equivalently consider Wigner matrices 
of the form

If Xn has eigenvalues �j ≥ 0 (j = 1,… , n) , then those of Yn are exactly 
±
√
�j (j = 1,… , n) and zeros with multiplicity |N − n| . Let Tn denote the Stieltjes 

transform of the empirical eigenvalue distribution of rescaled Xn∕n and Sn the 
Stieltjes transform of rescaled Yn∕

√
n + N . Then, it is easy to see that these Stieltjes 

transforms satisfy, by setting pn ∶=
n

n+N
 and qn =

N

n+N
,

In order to study eigenvalue distributions of covariance matrices from Sect. 2.3, with 
parameters k as in (2), we introduce a trapezoidal variance profile � as follows. Let 
p, � be real numbers such that 0 < p < 1 and 0 ≤ � ≤ (1 − p)∕p . Then, � is defined 
by

where C is given as

The perturbation term �ij(n) in (5) equals �ij(n) = �U2
ij
− v

|C∩Qij|
|Qij|  . Graphically, C is of 

the form below. In particular, the parameter � indicates the slope of the trapezoid 
which appears in �.

If limn pn = p , by Theorem 3, this variance profile determines the limiting distri-
bution of empirical eigenvalue distributions of the Wigner matrices Yn in (20). Recall 
that, to a variance profile � , Theorem 3 associates the Stieltjes transform S�(z) . It 
will be determined in Theorem 15. Analogously, to a variance profile � of �n , we 
associate the “covariance Stieltjes transform” T�(z) of the corresponding covariance 
matrices Qk(𝜉n) =𝜉n𝜉

⊤
n
 . The covariance Stieltjes transform T�(z) is related to S�(z) by 

the formula (21). It will be determined in Proposition 17.

(20)Yn ∶=

(
0 𝜉n
𝜉⊤
n

0

)
∈ Sym(n + N, ℝ).

(21)Tn

(
z2

pn

)
=

1

2z

(
1 − 2pn

z
+ Sn(z)

)
.

(22)�(x, y) ∶= v if (x, y) ∈ C, �(x, y) ∶= 0 (otherwise),

C =

{
(x, y) ∈ [0, 1]2;

(i) x < p and y ≥ p + 𝛼x,
(ii) x ≥ p and 0 ≤ y ≤ min{(x − p)∕𝛼, p}

}
.

(23)



420 H. Nakashima, P. Graczyk 

1 3

Theorem 15 Let � be a variance profile given in (22), and set � ∶= 1∕(1 − �) and 
� ∶= (2p − 1)∕p = 1 − (q∕p) . Then, the Stieltjes transform S�(z) associated to � is 
given as

where W�,� is the Lambert–Tsallis function defined in Sect. 4.1.

Proof We use Theorem 3. Let z ∈ ℂ
+ with Im z >

√
v . By (7), we have

For z fixed, we set

By differentiating both sides in the above equations, we obtain a system

with initial data a(p) = −
(
z + v ∫ 1

p+�p
�z(y) dy

)−1

 , b(0+) = −
1

z
 . Note that the third 

line of definition of �z ensures that �z is constant on the interval [p + �p, 1] so that we 
have

By the unicity part of Theorem 3 holding for �z(x) ∈ ℂ
+ , it is enough to show that 

(24) is satisfied by

where we set w(z) ∶= −
1

vp
W�,�

(
−

vp

z2

)
and X(t) ∶= 1 −

vw(z)

�
t , and that a(t), b(t) ∈ ℂ

+ 
for Im z big enough. Here, we choose the main branches for complex power func-
tions. If � = 1 then

S�(z) = −
2p

zW�,�

(
−

vp

z2

) +
1 − 2p

z
−

2z

v
(z ∈ ℂ

+),

𝜂z(x) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−

�
z + v�

1

p+𝛼x

𝜂z(y) dy

�−1

(0 ≤ x ≤ p),

−

�
z + v�

𝛼−1(x−p)

0

𝜂z(y) dy

�−1

(p < x ≤ p + 𝛼p),

−

�
z + v�

p

0

𝜂z(y) dy

�−1

(p + 𝛼p < x ≤ 1).

a(t) ∶= �z(t), t ∈ [0, p], b(t) ∶= �z(p + �t), t ∈ (0, p].

(24)
{

a�(t) = −v�a(t)2b(t),
b�(t) = va(t)b(t)2,

(25)a(p) = −(z + v(1 − p − �p)b(p))−1.

a(t) = −zw(z)X(t)�� , b(t) = −
1

z
⋅ X(t)−� ,

a(t) = −zw(z)e−vw(z)t, b(t) = −
1

z
⋅ evw(z)t.
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The crucial part of the proof is to show that a(t) satisfies the initial data condition. 
We only give a proof for this in the case of � ≠ 1 . Set w = w(z) and X = X(p) for 
brevity. Since f�,� (−vpw(z)) = −

vp

z2
 , we have

In the second and third equivalences, we use the formulas � = 1∕(1 − �) and 
X = 1 −

vwp

�
 . Since a(p) = −zwX�� = −zwX�−1 by �� = � − 1 , we see that

By (25) and by definition of b(t), we conclude that a(t) satisfies the initial condition. 
We omitted other details of the proof.   ◻

Remark 16 We call the parameter � of Lambert–Tsallis functions the angle parame-
ter since it depends only on the angle of the trapeze in (23). If � = 1 , then we have 
� = 0 so that the trapeze reduces to a rectangle. If � = q∕p , i.e., � = p∕(p − q) = 1∕� , 
then the trapeze reduces to a triangle. On the other hand, the parameter 
� =

2p−1

p
= 1 − C depends directly on the shape parameter C = q∕p . We call � the 

shape parameter of the Lambert–Tsallis function. Note that the geometric condition 
0 ≤ � ≤ p

q
 is equivalent to the condition 1

�
≥ � . The formula � = 1 −

q

p
 shows that 

� ∈ (−∞, 1) , and hence we have � ∈ [1,
1

�
] if 0 ≤ 𝛾 < 1 , and � ∈ [1,∞] ∪ (−∞,

1

�
] if 

𝛾 < 0.

Now we give the covariance Stieltjes transform T�(z) for the profile � . We note 
that, corresponding to a probability measure � , there exists the so-called R-trans-
form R(z) which plays an important role in the field of free probability (cf. Mingo 
and Speicher, 2017, Chapter 3). It satisfies a relation R(z) = S−1(−z) − 1∕z where 
S(z) is the Stieltjes transform of � . We also give the corresponding R-transform 
R� related to � in a view of future studies.

Proposition 17 Let � be a variance profile defined in (22) with parameters p and � . 
Set � ∶=

1

1−�
 and � ∶=

2p−1

p
= 1 −

q

p
 . Then, the covariance Stieltjes transform T�(z) 

corresponding to the profile � is described as

wX�

1 + v(1 − 2p)w
=

1

z2
⟺ wz2X� = 1 + v(1 − 2p)w

⟺ wz2X� = 1 −
vwp

�
− (p + �p − 1)vw

[1em] ⟺ X = z2wX� + (p + �p − 1)vw

⟺ 1 = zwX�−1

(
z + (p + �p − 1)

v

z
⋅ X−�

)

⟺ −zwX�−1 = −

(
z +

v(p + �p − 1)

z
⋅ X−�

)−1

.

a(p) = −

(
z + v ⋅

p + �p − 1

zX�

)−1

.
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for z ∈ ℂ
+ , and its R-transform R�(z) is given as

Proof The first equality of the formula for T�(z) is given by the formula (21), and the 
second by the definition of the Lambert–Tsallis function. To prove the formula of 
R-transforms, we use the fact that −𝜋 < 𝜅Arg

(
1 +

W(z)

𝜅

)
< 𝜋 for any z ∈ ℂ

+ coming 
by Proposition 13 (ii) and we use relation (19).   ◻

Recall that � denotes the codomain of W�,� . By Proposition 13, for each x ∈ S , 
there are exactly two solutions of f�,� (z) = x in z ∈ �� , which are conjugate 
complex numbers, denoted by K+(x) , K−(x) , such that ImK+(x) > 0 . Recall that 
�1 ≤ �2 are zero-points of the function �z2 + (1 + 1∕�)z + 1 . Then, we have the 
following theorem.

Theorem 18 Let � be a trapezoidal variance profile defined by (22). Let �� be the 
probability measure corresponding to the associated covariance Stieltjes transform 
T� given by (26). Then, the density function d� of �� is given as

Moreover, one has the following possibilities. 

1. In the case p < q and q
p
≠ � (i.e.,  � ≥ 1 and 𝛾 < 0 , or 𝜅 < 0 and 𝛾 ′ < 0), the 

measure �� is absolutely continuous and its density d�(x) is continuous on ℝ . In 
particular, �� has no atoms. Its support is given as

2. In the case p = q =
1

2
 or q

p
= � (i.e., � ≥ 1 and � = 0 , or 𝜅 < 0 and � � = 0), the 

measure �� is absolutely continuous. Its density d� is continuous on ℝ∗ and 
limx→+0 d�(x) = +∞ . In particular, �� has no atoms. Let �0 ∶= �2 if � ≥ 1 and 
�0 ∶= �1 = −1 if 𝜅 < 0 . The support of �� is given as

(26)T�(z) = T�,� (z) ∶= −
1

v
−

1

zW�,�

(
−

v

z

) −
�

z
=

exp�
(
W�,� (−v∕z)

)
− 1

v

R�(z) = −
1

z
−

v�

1 − vz
−

v

(1 − vz) log⟨1∕�⟩(1 − vz)
(1 − vz ∈ ℂ ⧵ℝ≤0).

(27)d�(x) =

⎧⎪⎨⎪⎩

1

2�xi

�
1

K−(−
v

x
)
−

1

K+(−
v

x
)

�
(if −

v

x
∈ S),

0 (if −
v

x
∈ ℝ ⧵ S).

(28)supp�� =

[
−

v

f�,� (�2)
,−

v

f�,� (�1)

]
=

[
v

�2
2

(
1 +

�2
�

)1−�

,
v

�2
1

(
1 +

�1
�

)1−�
]
.
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When � = ∞ , the measure �� is the Dykema–Haagerup measure �v with support 
[0, ve].

3. In the case p > q (i.e., � ≥ 1 and 0 < 𝛾 < 1), we have �� = d�(x)dx + (1 −
q

p
)�0 . 

The measure �� has an atom at x = 0 with mass 1 − q

p
 . Recall that � ∈ [1, 1∕�] . 

When 𝜅 > 1 , the support of �� is given by (29). The function d� is continuous on 
ℝ

∗ and limx→+0 d�(x) = +∞ . For � = 1 and −∞ < 𝛾 < 1 , the measure �� is the 
Marchenko–Pastur law �C  with parameter C =

q

p
= 1 − � ∈ (0, 1) and 

suppd� =
�
v(1 −

√
C)2, v(1 +

√
C)2

�
.

Proof We use Proposition 17. Let z = x + yi . By Proposition 13 (i) and the fact that 
W�,� (z) = 0 only if z = 0 , we see that l(x) ∶= limy→+0 Im T�(x + iy) exists when 
x ≠ 0 and that l(x) = 0 when −v∕x ∉ S.

Assume that x ≠ 0 and −v∕x ∈ S . Set a(x) + ib(x) ∶= limy→0+ W�,� (−v∕z) . 
Since the function f�,� is continuous and injective on the closure D ⊂ ℂ+ , the 
function a + ib is continuous. By Proposition 13 (i), we have b(x) > 0 and 
a(x) + ib(x) = K+(−

v

x
) . Since S ⊂ (−∞, 0) by Theorem 11, we have −v∕x < 0 , that 

is, x > 0 . Thus, we obtain for −v∕x ∈ S with x ≠ 0

and thus l(x) is a continuous function on ℝ∗ . Therefore, x ∈ ℝ
∗ is included in the 

support of �� if and only if −v∕x ∈ S . By (4), we have d�(x) =
1

�
l(x) , so that we 

obtain (27).
Let us consider the case (S1). In this case, since S = (f�,� (�2), f�,� (�1)) and 

f𝜅,𝛾 (𝛼1) < 0 , we see that the condition x ∈ supp� is equivalent to

Recall that �i , i = 1, 2 are the real solutions of the equation �z2 + (1 + 1∕�)z + 1 = 0 . 
For a solution � of this equation, we have by 1 + �∕� = −�(1 + ��)

so that we arrive at the assertion 1 of the theorem. The argument for other two cases 
is similar, and hence we omit it.

Next we consider the case x = 0 . We present the case � ∈ [1,+∞) and � = 0 . For 
z ∈ ℂ

+ , let us set rei𝜃 = 1 +
W𝜅,0(−v∕z)

𝜅
(r > 0, 𝜃 ∈ (0,𝜋)) . By Proposition 13 (ii-b), 

(29)supp�� =

[
0,−

v

f�,� (�0)

]
=

[
0,

v

�2
0

(
1 +

�0
�

)1−�
]
.

(30)

l(x) = lim
y→0+

Im T𝜎(x + yi) = Im

(
−
1

v
−

1

x(a(x) + ib(x))
−

𝛾

x

)

= −
1

2xi

(
1

K+(−
v

x
)
−

1

K−(−
v

x
)

)
=

b(x)

x(a(x)2 + b(x)2)
> 0,

f𝜅,𝛾 (𝛼2) ≤ −
v

x
≤ f𝜅,𝛾 (𝛼1) < 0 ⟺ −

v

f𝜅,𝛾 (𝛼2)
≤ x ≤ −

v

f𝜅,𝛾 (𝛼1)
.

f�,� (�) =
�

1 + ��

(
1 +

�

�

)�

= −�2
(
1 +

�

�

)�−1

,
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the set D = � ∩ ℂ
+ is unbounded and f�,0(∞) = ∞ . Consequently, if z → 0 in ℂ+ , 

or equivalently −v∕z → ∞ in ℂ+ , then we have W�,0(−v∕z) → ∞ and r → +∞ . 
Again by Proposition 13 (ii-b), we see that � ∈ (0,

�

�+1
) so that sin 𝜅𝜃 > 0 when 

z = −v∕(iy) ∈ ℂ
+ , and thus

On the other hand, �� does not have an atom at x = 0 because we have by 
W�,0(−v∕z) → ∞ and by � = 0

The proofs for other cases are similar, and hence we omit them.
The absolute continuity of �� follows from Proposition 2, by considering 

�0 ∶= �� − d�(x)dx , or, in the case with atom at x = 0 , of �0 ∶= �� − d�(x)dx − ��0 
and using the fact that the Stieltjes transform S0(z) of �0 satisfies 
limy→0+ Im S0(x + iy) = 0 for all x ∈ ℝ . The argument is similar as in the proof of 
Theorem 5.   ◻

In the following corollary, we give a real implicit equation for the density d� 
analogous to the Dykema–Haagerup equation (3). To do so, we introduce the fol-
lowing notation

If � = ∞ , we set e�(z) ∶= eRe z and ��(z) ∶= Im z . Then, we have 
exp�(z) = e�(z)

(
cos

(
��(z)

)
+ i sin

(
��(z)

))
.

Corollary 19 

 (i) Suppose v = 1 for simplicity. For two real numbers �, � such that � ≤ 1

�
≤ 1 

and 𝛾 < 1 , the density d� of the limiting law �� satisfies the equation

for z = a + bi ∈ �� ∩ ℂ
+ . In particular, when (�, �) = (∞, 0) , the density d� 

satisfies the equation (3) with b = x and a = −x cot x (x ∈ [0,�)).
 (ii) If � ∈ [1,∞] and 𝛾 < 0 , then the correspondence a ↦ b = b(a) is unique for 

each z = a + bi ∈ �� ∩ ℂ
+ . Then, a ∈ [�1, �2] . The same is true for � = ∞ 

and � = 0 with a ∈ [−1,+∞).

ImT�(z) =Im
exp�

(
W�,0(−v∕z)

)
− 1

v
= Im

(rei�)� − 1

v

=Im
r� cos �� − 1 + ir� sin ��

v
=

r� sin ��

v
→ +∞ (y → +0).

yT�(iy) = −
y

v
−

1

iW�,0(−v∕(yi))
−

�

i
→ �i = 0 (y → +0).

e�(z) ∶=
||exp�(z)|| ≥ 0, ��(z) = �Arg

(
1 +

z

�

)
(z ∈ ℂ

+).

(31)d�

(
sin

(
��(z)

)
b

⋅

1 + �a − �b cot
(
��(z)

)
e�(z)

)
=

e�(z)

�
⋅ sin

(
��(z)

)



425

1 3

Wigner and Wishart ensembles for sparse Vinberg models  

Proof 

 (i) Let z = a + bi ∈ �D ∩ ℂ
+ . Then, it satisfies f�,� (z) ∈ S . Suppose f�,� (z) = −

1

x
 , 

and set X = a + �a2 + �b2 and Y = |1 + �z|2 = (1 + �a)2 + (�b)2 . Notice that 
X2 + b2 = (a2 + b2)Y  . The equation f�,� (z) = −

1

x
 means that 

The latter one (33) yields that cos
(
��(z)

)
= −

sin (�� (z))
b

X so that 

On the other hand, (33) can be written as X = −b cot
(
��(z)

)
 , and using this 

expression together with (32), we obtain 

 and hence 

 It is easy to check that we have Y = 1 + �a + �X . By (30), the density can be 
described as d�(x) =

1

�x
⋅

b

a2+b2
 so that we obtain the formula (31).

 (ii) We shall show the part (ii) for � ∈ (1,∞) and 𝛾 < 0 . The other cases can be 
done by a similar way. Let z = a + bi ∈ D = � ∩ ℂ

+ . Set �(a, b) = Arctan
b

�+a
 

for a > −𝜅  and b > 0 .  By Proposition 13 (ii-a), we see that 
Re

(
1 +

z

𝜅

)
= 1 +

a

𝜅
> 0 and hence ��(a + ib) = ��(a, b) .  Note that 

�

�b
��(a + ib) = � ⋅

�+a

(�+a)2+b2
 . For given a > −𝜅 , set g(y; a) ∶= y cot(��(a + iy)) . 

Let y0 > 0 satisfy �(a, y0) =
�

�+1
 . Then, we can show that g(y; a) is monotonic 

decreasing for y ∈ (0, y0).

Set h(y) = h(y; a) ∶= a + �a2 + �y2 + g(y) for the fixed a > −𝜅 . Recall that 
h(y; a) = 0 if and only if z = a + iy ∈ �D ∩ ℂ

+ . As 𝛾 < 0 , we see that the function 
h(y) ∶= a + �a2 + �y2 + g(y) is decreasing on y ∈ (0, y0) for each fixed a > −𝜅 . 
Since cot(��(a + iy0)) = −

�+a

y0
 , we see that h(y0; a) < 0 . By the fact that 

limy→+0 g(y; a) = 1 +
a

�
 , we have limy→+0 h(y; a) = �(a − �1)(a − �2) . Since h is 

monotonic decreasing on y ∈ (0, y0) , if a ∈ (�1, �2) then limy→+0 h(y; a) > 0 so that 
there exists a unique solution y = b of h(y; a) = 0 in y ∈ (0, y0) for each a ∈ (�1, �2) 
by the intermediate value theorem, whereas if limy→+0 h(y; a) ≤ 0 then there is no 

(32)
e�(z)

Y

(
X cos

(
��(z)

)
− b sin

(
��(z)

))
= −

1

x
,

(33)X sin
(
��(z)

)
+ b cos

(
��(z)

)
=0.

−
1

x
= −

e�(z)

Y
⋅

sin
(
��(z)

)
b

(X2 + b2) ⟺
1

x
⋅

b

a2 + b2
= e�(z) sin

(
��(z)

)
.

−
1

x
=

e�(z)

Y

(
−b cot

(
��(z)

)
cos

(
��(z)

)
− b sin

(
��(z)

))
= −

b

sin
(
��(z)

) ⋅

e�(z)

Y

x =
sin

(
��(z)

)
b

⋅ Y
(
e�(z)

)−1
.
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solution of h(y; a) = 0 in y ∈ (0, y0) . Therefore, the correspondence a ↦ b = b(a) 
is unique for each z = a + bi ∈ �� ∩ ℂ

+ .   ◻

Remark 20 Corollary 19 (ii) enables us to write the density d� with one real param-
eter in a way similar to Dykema and Haagerup (2004, Theorem 8.9), see formula 
(3). In particular, in the case (a), we obtain the formula

A natural conjecture that we always have a 1-1 correspondence a → b or b → a is 
not confirmed by numerical generation of the domain � . We have a counterexample 
in the case 𝜅, 𝛾 < 0.

4.3  Applications to Wishart ensembles of Vinberg matrices

Now we apply Theorem 18 to the covariance matrix Xn = Qk(�n) ∈ Pn in two situa-
tions. The first (Corollary 21) is the case when Pn is the symmetric cone Sym(n,ℝ)+ 
with k of the form (34) below. The second situation (Theorem  24) is the general 
case when Pn ⊂ Un is a dual Vinberg cone with k of the form (2). This case contains 
the first one, that we present separately because of the importance of the symmetric 
cone Sym(n,ℝ)+.

Let us assume that k = k(n)= (k1,… , kn) in (2) is of the form

where m1 ∈ ℤ≥0 is a fixed nonnegative integer and m ∈ ℝ≥0 is a nonnegative real 
such that m1 + m > 0 . Set N ∶= k1 +⋯ + kn = m1n + m2(n) . We note that the case 
m1 = 0 corresponds to the classical Wishart ensembles, and if m1 ≥ 1 then we have 
N ≥ n.

Corollary 21 Let k be as in (34). Suppose that �n ∈ Ek is an i.i.d. matrix with finite 
fourth moments. Let Xn = 𝜉n𝜉

⊤
n
 and �n the empirical eigenvalue distribution of Xn∕n . 

Then, there exists a limiting eigenvalue distribution � = limn �n . The Stieltjes trans-
form T(z) of � is given by formula (26)

The measure � is absolutely continuous and has no atoms. If m1 = 0 then the meas-
ure � is the Marchenko–Pastur law with parameter C = m . The case (m1,m) = (1, 0) 
corresponds to the Dykema–Haagerup measure �v . If m = 0 then the density d is 
continuous on ℝ∗ and limx→+0 d(x) = +∞ . When m1 ≥ 2 then the support of � is 
[0, vm

m1∕(m1−1)

1
] . Otherwise, for m1,m > 0 , the density d(x) of � is continuous on ℝ , 

and its support equals [A(�2),A(�1)] where A(�i) ∶= v�−2
i
(1 + (1 − m1)�i)

m1∕(m1−1) 
and 𝛼1 < 𝛼2 are roots of the function (1 − m1 − m)x2 + (2 − m1)x + 1.

d�

(
sin b(a)

b(a)
(1 + �a − �b(a) cot b(a)) e−a

)
=

1

�
⋅ ea sin b(a) (a ∈ [�1, �2]).

(34)k = m1(1,… , 1, 1) + m2(n)(0,… , 0, 1), lim
n

m2(n)

n
= m,

T(z) = T�,� (z) =
exp�

(
W�,� (−v∕z)

)
− 1

v
with � =

1

1 − m1

, � = 1 − m − m1.
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Proof We use Theorem 3. It is enough to show that the matrix Yn in (20) has the 
variance profile � in (22) and that the conditions (6) are satisfied. Since we have for 
n large enough

and if �|Yij|2 ≠ 0 then

we can easily check the conditions (6). Thus, we can apply Theorem 18. Consider 
m1 ≥ 2 . Then 𝜅 < 0 . When m = 0 , then we have � � = � − 1

�
= 0 so that we apply 

Theorem 18.2. We have � = −1 , 1 − 1

�
= m1 and 1 − � =

m1

m1−1
 . By (29), the support 

is given by supp� =

[
0,

v

�2

(
1 +

�

�

)1−�
]
=
[
0, vm

m1∕(m1−1)

1

]
 . When m > 0 , we have 

𝛾 ′ < 0 so that we apply Theorem 18.1. The support of � is given by the formula (28), 
where �1 ≤ �2 are roots of the function �x2 + (1 + 1∕�)x + 1 .   ◻

Remark 22 If m = 0 , our results contain those of Claeys and Romano (2014, Sec-
tion  4.5.1) and Cheliotis (2018, Theorem  4 and (12)). The result on the limit-
ing densities of biorthogonal ensembles in Cheliotis (2018) can be reproduced 
from Corollary 21. In fact, our random matrices Qk(�n) essentially correspond to 
those considered in Cheliotis (2018) through adjusting parameters m1 = � − 1 and 
m2(n) = b − 1 (not depending on n), where � and b are parameters used in that paper.

Remark 23 Until now, we assumed that m1 ∈ ℤ≥0 and hence the parameter � of 
the variance profile � needs to be also an integer. However, we can take a sequence 
{k(n)}∞

n=1
 so that the corresponding � is an arbitrary given positive real number. In 

fact, when 𝛼 > 0 is given, we consider a right triangle with lengths 1 and � . For 
an arbitrary n, we cover the triangle by 1∕n × 1∕n squares as in the figure. To each 
j = 1,… , n , we associate an integer kj(n) such that kj(n)

n
≤ j

n
𝛼 <

kj(n)+1

n
 , or equiva-

lently kj(n) ≤ j𝛼 < kj(n) + 1 , and we set k(n) = (k1(n),… , kn(n)) . Note that this con-
dition is independent of n so that kj(m) = kj(n) when m ≥ n ≥ j , and hence {Ek(n)}n is 
a sequence of vector spaces such that Ek(n) ⊂ Ek(n+1).

Let us return to the quadratic Wishart case for general Pn with parameter k as in 
(2) such that m1,m2 ∈ ℤ≥0 with m1 + m2 > 0 are fixed. Note that m2(n) in the previ-
ous discussion is now m2(n) = m2bn . Set Nn ∶= m1n + m2bn . Let Ek be a subspace 
of Mat(n × Nn, ℝ) consisting of matrices of the form

||�0(n)|| ≤ 1

n2
⋅ 2v(m1 + m + 1)n =

2v(m1 + m + 1)

n
→ 0 (n → ∞)

�(Y4
ij
)

(n+N)(�Y2
ij
)2

=
M4

v(n+N)
→ 0 (n → ∞),

� =

(
�
�

)
, � = (�ij) ∈ Mat(an × Nn, ℝ), � = (�ij) ∈ Mat(bn × Nn, ℝ),
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such that �ij = 0 if j ≤ (m1 − 1)i and �ij = 0 if M(i, j) ∉ {1, 2,… ,m1 + m2} , respec-
tively, where M(i, j) ∶= j − m1an − (m1 + m2)(i − 1).

Theorem 24 Let {Pn}n be a sequence of generalized dual Vinberg cones such that 
limn→∞ an∕n = c ∈ (0, 1] . Let k be a vector as in (2) such that m1,m2 are fixed. Set 
� ∶= 1∕(1 − m1) and � ∶= 1 −

(
m1 + m2(1 − c)

)
∕c . Then, the Stieltjes transform 

T(z) of the limiting eigenvalue distribution of Qk(�n)∕n with i.i.d. matrices �n ∈ Ek is 
given for z ∈ ℂ

+ as

The properties of absolute continuity and support of the limiting measure can be 
derived analogously to those obtained in Theorem 18 for c = 1.

Proof We construct a variance profile � from Ek likely to (22). We embed the 

 rectangular matrix �n ∈ Ek in a square matrix Y(𝜉n) =

(
0 𝜉n
𝜉⊤
n

0

)
 , and set 

Vn =
{
Y(�n); �n ∈ Ek

}
 . Set p� = lim

n→∞

n

n + Nn

=
1

1 + m1 + m2(1 − c)
 . Let � be a 

function [0, 1] × [0, 1] → ℝ≥0 defined by �(x, y) = v if (i) x < cp′ and y ≥ p� + m1x , 
or if (ii) x ≥ p′ and 0 ≤ y ≤ min{(x − p�)∕m1, cp

�} , and �(x, y) = 0 otherwise.
Then, we can show that � is the variance profile of Vn . On the other hand, let us 

consider a subspace E�
k
∶=

{
� =

(
�
�

)
∈ Ek; � = 0

}
 of Ek , and let 

V �
n
=
{
Y(�n); �n ∈ E�

k

}
 . Then, � is also the variance profile of V ′

n
 . Thus, we consider 

equivalently the limiting eigenvalue distribution of V ′
n
 , and that of covariance matri-

ces on E′
k
 . If �n =

(
�n

0 ∈ E�
k

)
 , then 1

n
Qk(𝜉n) =

1

n

(
𝜂n𝜂

⊤
n
0

0 0

)
 , and thus it is enough to 

study the limiting eigenvalue distribution of 1
n
𝜂n𝜂

⊤
n
 . The variance profile of covari-

ance matrix 1
an
𝜂n𝜂

⊤
n
 , rescaled by size of 𝜂n𝜂⊤n  , has a trapezoidal form (22) (illustrated 

by (23)) with parameters � = m1 and p = limn
an

an+Nn

=
c

c+m1+m2(1−c)
 . Applying Propo-

sition 17, we see that the corresponding Stieltjes transform T1(z) is given by

In general, for two symmetric matrices Ai (i = 1, 2) of size ni , the Stieltjes transform 
S(z) of diag(A1, A2)∕(n1 + n2) can be described by using the Stieltjes transforms 
Si(z) of Ai∕ni (i = 1, 2) as

In our situation, we have (n1, n2) = (an, bn) and (A1,A2) = (𝜂n𝜂
⊤
n
, 0) . Hence, we have 

S2(z) = −
1

z
 and S1(z) is the Stieltjes transform of 𝜂n𝜂

⊤
n
∕an so that 

T(z) = −
1

v
−

c

zW�,� (−
cv

z
)
−

c� + 1 − c

z
=

exp�
(
W�,� (−vc∕z)

)
− 1

v
−

1 − c

z
.

T1(z) = T�,� (z) with � =
1

1 − m1

, � =
2p − 1

p
=

c − m1 − m2(1 − c)

c
.

(35)S(z) = S1

(
n1 + n2

n1
z

)
+ S2

(
n1 + n2

n2
z

)
(z ∈ ℂ

+).
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limn→∞ S1(z) = T1(z) . Thus, taking the limit n → ∞ , we get the limiting Stieltjes 
transform T(z) corresponding to E′

k
 , and hence to Ek by using (35) with S1(z) = T1(z) 

and S2(z) = −
1

z
 , which proves the corollary.   ◻

Remark 25 In the Figs.  4, 5 and 6 we present simulations of k-indexed Wish-art 
ensembles Xn = Qk(�n) on the symmetric cone Sym(n,ℝ)+ (i.e., c = 1 ), for n = 4000 
and N = |k| = 2n with parameters � = m1 = 1∕2 , 1 and 2, respectively. We have 
� = −1 and � = 2,∞,−1 respectively. The red line is the graph of d(x) generated 
by the R program from its Stieltjes transform given in Corollary  21. In two first 
cases, the limiting density d(x) is continuous on ℝ with compact support contained 
in (0,∞) . The last case (�, �) = (−1,−1) corresponds to (��, � �) = (1, 0) which is the 
classical Wishart case with C = 1 . Thus its density explodes to ∞ at 0.

Remark 26 Let Yn be a rectangular n × N i.i.d. matrix with variance profile �(x, y) , 
and assume that limn→∞ N∕n = c . In papers Hachem et  al. (2005, 2006, 2008), a 

functional equation �(u, z) =
(
−z + ∫ 1

0
�(u, v)

(
1 + c ∫ 1

0
�(x, v)�(x, z)dx

)−1

dv

)−1

 is 

given to get the limiting Stieltjes transform f(z) for the rescaled random matrices 
1

n
YnY

∗
n
 , as the integral ∫ 1

0
�(u, z)du . This equation appears in Girko (1990) in the set-

ting of Gram matrices based on Gaussian fields (cf. Hachem et al., 2006, Remark 
3.1).

However, thanks to symmetry, solving the equations  (24) resulting from Theo-
rem 3 is easier than solving the last functional-integral equation for �(u, z) . There-
fore we opted for variance profile method for Gaussian and Wigner ensembles as the 
main tool of studying Wishart ensembles of Vinberg matrices.

5  Complementary remarks

Remark 27 (Modified Vinberg matrices) Observe that the variance profiles (11) 
and (22) remain the same when we consider the following two cases (a) and (b) of 
modified Vinberg matrices. This is due to the fact that different forms of d in the 
lower right block of the matrix U can be absorbed by the perturbation terms �ij in 
(5). Accordingly, we obtain Theorem 5 for the Wigner Ensembles and Theorems 18 
and 24 and Corollaries 19 and 21 for the Wishart Ensembles on the corresponding 
matrix spaces. 

(a) For s = 0 or s ∈ 2ℕ + 1 , let Us
n
 be the subspace of Sym(n,ℝ) defined by 

 Here, 0-diagonal matrix means the zero matrix. From the statistical point of 
view of Gaussian covariance models (Lauritzen, 1996), the space U0

n
 does not 

U
s
n
=

{
U =

(
x y

y⊤ d

)
;
x ∈ Sym(an,ℝ), y ∈ Mat(an × bn,ℝ),

d is a s-diagonal matrix of size bn

}
.
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apply, because covariance matrices have nonzero diagonal terms and nonzero 
determinant.

(b) Take k ∈ ℤ>0 and assume that each bn is a multiple of k, say bn = kcn . Let U(k)
n

 be 
a subspace of Sym(an + bn,ℝ) consisting of matrices U of the form above with 
d being a block diagonal matrix d = diag(d1,… , dcn ) , where each dj is a square 
matrix of size k.

Remark 28 (Matrix ensembles related to dual cones of Pn ) In this remark, we 
consider the dual cone Qn of Pn , which is realized as a minimal matrix form in 
the sense of Yamasaki and Nomura (2015) as follows. Let Vn be a subspace of 
Sym(an(bn + 1), ℝ) defined by

Then, the dual cone Qn is described as Qn ∶= Vn ∩ Sym(an(bn + 1), ℝ)+.
We consider Wigner Ensembles Vn ∈ Vn and quadratic Wishart Ensembles 

Xn ∈ Qn as those in the sense of Sym(an(bn + 1), ℝ) . Assume that limn→+∞ an = ∞ . 
By the theory of lower rank perturbation (see Tao, 2012, §2.4.1, for example), the 
study of eigenvalue distributions of these ensembles boils down to the study of the 
eigenvalue distributions of x and, after suitable normalization, the limiting eigen-
value distributions of Vn and Xn are the same as for x ∈ Sym(an, ℝ).

This essential difference in the Random Matrix Theory for the cones Qn and Pn 
may be explained by a substantial difference between the cones Qn and Pn in terms 
of numbers of sources in the sense of Yamasaki and Nomura (2015). In the case Pn , 
there is only one source so that Pn can be realized in a usual matrix form. On the 
other hand, Qn has bn sources so that bn copies of a usual matrix form appear.

Remark 29 (Relation of Vinberg cones to graphical models) Daisy graphs provide 
natural classes of Gaussian decomposable graphical models (cf. Lauritzen, 1996; 
Maathuis et al., 2018). They are defined as follows. Let a + b = n and let D(a, b) be 
a graph with vertices V = {1,… , n} , such that the first a elements form a complete 
graph and the latter b elements are satellites (petals) of the complete graph, that is, 
each satellite connects to all elements in the complete graph and does not connect to 
the other satellites.

The position of zeros in Wigner and Wishart Vinberg matrices in Un considered 
in this paper is encoded by daisy graphs D(an, bn) by setting uij = 0 whenever i and j 
are not connected by an edge in D(an, bn) . We can also consider the class of general-
ized daisy graphs D(a, b, k), with b complete satellites of k vertices, so that there are 
N = a + kb vertices. If all three sequences an, bn, kn are non-decreasing, the graphs 
D(an, bn, kn) form a growing sequence of graphical models. The case when kn = k is 
fixed for n large enough corresponds to Remark 27(b).

Mathematical bases of Wishart distributions on matrix cones related to decom-
posable and homogeneous graphs considered in this paper were laid down by 

(36)Vn ∶=

⎧
⎪⎨⎪⎩
diag

��
x y1
y⊤
1
d1

�
,… ,

�
x ybn
y⊤
bn

dbn

��
;

x ∈ Sym(an,ℝ),

y1,… , ybn ∈ ℝ
an ,

d1,… , dbn ∈ ℝ

⎫
⎪⎬⎪⎭
.
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Lauritzen (1996), Letac and Massam (2007), Ishi (2014), Graczyk and Ishi (2014). 
This paper is a first step towards studying RMT related to growing Gaussian graphi-
cal models.

Note that statistical Gaussian graphical models is a different notion from Erdös–
Rényi random graphs, which are deeply studied in the RMT (cf. the book of Durrett, 
2006).

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10463- 021- 00800-8.
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