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Abstract This Supplementary Material part contains the following additional material. In Section
S1 a simple illustration of the relationship between quantiles and expectiles is given. The proof of
Proposition 1 is given in Section S2. Further simulation results are summarized and discussed in
Section S3. Additional real data applications can be found in Section S4. In Section S5 some additional
explanations about the ROT-bandwidth selection in case of location-scale models are provided. Finally,
Section S6 contains the proofs of Lemmas 1 and 2, that are stated in Appendix A.2.

S1 Illustration of relationship between expectiles and quantiles

An illustration of relationship (10) is provided in Figure S.1, which depicts for each value α the
corresponding value ωpαq such that τωpαq � qα when the distribution of ε is a standard normal
distribution (solid line) or Student-t distribution with 5 degrees of freedom (dashed line). For α   0.5
(respectively α ¡ 0.5) the ωpαq curve lies below (respectively above) the 45� line (the grey line) where
α � ωpαq.

S2 Proof of Proposition 1

From (5) the ωth conditional expectile of Y, τωpxq, can be defined as the solution of
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Figure S.1: One-to-one mapping between α and ωpαq for a standard normal distribution and a
Student-t distribution with 5 degrees of freedom as distribution for ε.

From the definitions of conditional expectiles and quantiles, it is clear that, for any 0   α   1, and
any x which is a point of continuity of FX , there exists a ωpα, xq such that

τωpα,xqpXq � qαpXq.
Henceforth,

ωpα, xq

�

³qαpxq
�8 ydFY |Xpy|xq �

³qαpxq
�8 qαpxqdFY |Xpy|xq³qαpxq

�8 ydFY |Xpy|xq �
³qαpxq
�8 qαpxqdFY |Xpy|xq �

³�8
qαpxq

ydFY |Xpy|xq �
³�8
qαpxq

qαpxqdFY |Xpy|xq

�

³qαpxq
�8 ydFY |Xpy|xq � EY |X rqαpXq1tY ¤ qαpXqu|X � xs

EY |X rY p1tY ¤ qαpXqu � 1tY ¡ qαpXquq |X � xs � EY |X rqαpXq p1tY ¡ qαpXqu � 1tY ¤ qαpXquq |X � xs

�

³qαpxq
�8 ydFY |Xpy|xq � αqαpxq

2EY |X rY 1tY ¤ qαpXqu|X � xs � EY |X rY |X � xs � qαpxqp1� 2αq

�
αqαpxq �

³qαpxq
�8 ydFY |Xpy|xq

2
�
αqαpxq �

³qαpxq
�8 ydFY |Xpy|xq

�
�

�
EY |X rY |X � xs � qαpxq

� .

l

S3 Additional simulation results

S3.1 Performances of practical bandwidth selectors

In Section 6.2.1 we presented simulation results for Model 2 to illustrate the finite-sample performances
of the practical bandwidth selectors. Here we show additional simulation results for Models 1 and 3.

Figure S.2 depicts kernel density estimates of qhrksopt � hopt for k � 1, 2, 3, for Model 1, for sample
sizes n � 100, n � 500 and n � 1 000. As before, for the purpose of visual comparison the range of
the vertical and horizontal axis are kept the same for all three plots, with a vertical line indicating the
position of the point zero. Firstly, all density estimates are concentrated around a positive value, meaning
that mostly the bandwidth estimates are larger than the theoretical optimal bandwidth. Secondly,
the density estimates of the three ROT bandwidths selectors GenROT, LSROTWith and LSROT are
quite comparable. Also here, using knowledge of the error distribution (in LSROT) or not makes
little difference. Thirdly, the bandwidth selector LSROTWithout is further away from the theoretical
bandwidth hopt. Fourthly, all bandwidth selectors improve with increasing n, but the convergence of

them to hopt is quite slows: for sample size n � 100, the difference ph�hopt is, for GenROT, LSROTWith
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Figure S.2: Model 1. Kernel density estimates of the three ROT bandwidth selectors of Sections 5.2
and 5.3, for estimation of τ0.3p�q. The vertical lines indicates the zero position. Sample size n � 100
(left), n � 500 (middle) and n � 1 000 (right).
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Figure S.3: Model 1. Kernel density estimates of the quantile-based bandwidth selector of Section 5.3.3,
with or without assuming knowledge of the distribution of ε, for estimation of τ0.3p�q. The vertical lines
indicates the zero position. Sample size n � 100 (left), n � 500 (middle) and n � 1 000 (right).

and LSROT, concentrated around 0.075, and for n � 1 000 this mode position has shifted closer to
zero, and is around 0.05.

Figure S.3 shows density estimates of the quantile-based bandwidth selector of Section 5.3.3 for
Model 1, when either using knowledge about the error distribution or not. Note again the slow con-
vergence, and also the almost indistinguishable density estimates when comparing the situations of
knowing or not the error distribution.

As remarked already, from Figures S.2 and S.3 one can notice that the bandwidth selectors tend to
provide larger values than their theoretical counterparts for Model 1. Recall that all bandwidth selectors
are based on quite some rough estimations in the ROT-development. What is of importance of course is
to investigate whether such rough bandwidth selectors can lead to good performance for the expectile
estimator pτωp�q. We investigated this, and present results regarding this aspect for Model 1 in Section
S3.2.
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Figure S.4: Model 3. Kernel density estimates of the three ROT bandwidth selectors of Sections 5.2
and 5.3, for estimation of τ0.3p�q. Sample size n � 100 (left) and n � 1 000 (right).
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Figure S.5: Model 3. Kernel density estimates of the quantile-based bandwidth selector of Section 5.3.3
for estimation of τ0.3p�q. Sample size n � 100 (left) and n � 1 000 (right).

In Figures S.4 and S.5 we depict the kernel density estimates of all bandwidth selectors for Model 3,
for sample sizes n � 100 and n � 1 000. In contrast to the pictures for Models 1 and 2, the bandwidth
selector values are presented on the horizontal axes. There is no position of reference now, but one can
notify that the density estimates in Figure S.4 are more concentrated for n � 1 000 than for n � 100.
This is not the case for the density estimates in Figure S.5. Recall that the derivations in Section 5.3
might not be valid, since Model 3 is not a location-scale model. The only bandwidth selector for which
the validity is guaranteed is the GenROT bandwidth selector. Note however, from Figure S.4 that the
bandwidth selectors LSROTWith and LSROTWithout perform quite comparable, in contrast to the
quantile-based bandwidth selector illustrated in Figure S.5.
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Figure S.6: Model 1. Boxplots of the AISE-values from 100 simulated samples using the differ-
ent methods listed in Table 1. Grey-filled boxplots are for the cases when we assume the error
distribution to be known.
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S3.2 Simulation results for Model 1

Figure S.6 shows boxplots of the AISE-values of the local linear expectile regression estimates for all
methods in Table 1, for the considered values of ω. As for Model 2 the performances of the local linear
estimation method with any of the Rule-of-Thumb (ROT) bandwidth selectors are quite comparable
(see the first four boxplots). The quantile-based bandwidth selector of Section 5.3.3 seems to be a
good choice here, although the performance of some of the ROT bandwidth selectors is also good.

−3 −2 −1 0 1 2 3

−
1

0
1

2

Estimated 0.3−expectile using GenROT

X

Y

True

0.05th perc.

0.50th perc.

0.95th perc.

−3 −2 −1 0 1 2 3

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

Estimated 0.3−expectile using LSQBased

X

Y

True

0.05th perc.

0.50th perc.

0.95th perc.

Figure S.7: Model 1. True expectile curve τ0.3p�q (in black) and three representative local linear es-
timates: 0.05th AISE-percentile (light-grey; color blue), 0.5th AISE-percentile (dashed line), 0.95th
AISE-percentile (grey; color ochre yellow), using respectively the bandwidth selection method Gen-
ROT (left panel) and the LSQBased method (right panel).

Figure S.7 gives a graphical idea about the quality of the estimator pτωp�q by presenting the true
expectile curve τ0.3p�q together with the three representative estimates. The shown scatter plot is that
of the sample with the median performance. The estimated curves are slightly smoother when using
the GenROT bandwidth selector.

ω GenROT LSROT- LSROT- LSROT LSQBased LSQBased- LSEfron
Without With Known

model 1
0.1 23.18 24.12 50.50 27.99 49.99 21.08 4033.38
0.3 20.67 21.67 53.80 33.28 53.29 27.25 1946.12
0.5 10.52 11.55 42.28 12.41 42.36 13.98 3393.56
0.7 21.33 21.52 49.03 22.40 48.38 21.50 5251.61
0.9 23.22 25.05 54.95 23.64 51.89 24.50 7617.66

model 2
0.1 23.89 25.02 56.61 38.47 56.20 31.36 3865.96
0.3 21.11 21.68 50.03 21.94 49.38 26.38 1670.48
0.5 10.34 11.38 47.86 11.33 47.70 11.07 3700.24
0.7 20.89 22.23 66.08 20.16 65.70 21.95 5513.80
0.9 22.60 21.41 67.61 20.73 63.88 20.77 7570.03

Table S.1: Computation times in seconds for Models 1 and 2.

S3.3 Computational costs

In Table S.1 (first block of lines) we present average computing times for the local linear regression
expectile estimator (for various values of ω) for the several bandwidth selectors (and methods) in
Table 1. The Efron quantile-based approach, which was considered also in Yao and Tong (1996), has
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a high computational cost. The lowest average computation cost is for the methods GenROT and
LSROTWithout. The conclusions are in line with these of the simulations for Model 2 (see the second
block of lines in Table S.1).
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Figure S.8: Model 3. True expectile curve τ0.3p�q (in black) and three representative local linear es-
timates: 0.05th AISE-percentile (light-grey; color blue), 0.5th AISE-percentile (dashed line), 0.95th
AISE-percentile (grey; color ochre yellow), using respectively the bandwidth selection method Gen-
ROT (top left), the LSROTWithout (top right), the LSROTwith (bottom left) and the LSQBased
method (bottom right).

S3.4 Additional information on results for Model 3

Figure S.8 depicts the true τ0.3p�q expectile curve for this model, together with the three representative
estimates (n � 100), for the four methods for which boxplots are shown in Figure 9. From this the
results seem quite comparable for all methods.

S3.5 Finite-sample evaluation of practical implementation issues

An approximation of the minimizer of (12) is obtained through the iterative procedure of Section 3.2,

using a local polynomial least squares regression estimator βp0q (see (17)) as a starting vector, and
applying stopping criterion (18). In this part of the numerical study we want to get insights in two
issues: (i) the number of iterations needed; and (ii) the impact of the choice for the starting vector

βp0q.
A first aim is to get insight in the number of iterations needed. Figure S.9 shows the convergence of

the iterative algorithm when estimating τ0.7pxq, considering an equispaced grid of 100 values for x in
the interval r�3, 3s. For comparison purpose we superimpose the true curve τ0.7pxq (in red color). The
left (respectively right) column of plots presents simulation results for sample size n � 100 (respectively
n � 200). The subsequent plots in a column (from top to bottom) show the boxplots of the resulting
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Figure S.9: Model 1. Estimation of τ0.7pxq. Boxplots of the pβptq0 pxq after t iterations from 100
simulated samples of size n � 100 (left) and n � 200 (right). The true curve τ0.7pxq is the red
curve.

estimate of τ0.7pxq after 0, 1 and 2 iterations, and after convergence of the algorithm (using the
indicated stopping rule). The latter is denoted in the plots by t=final. Here we use for bandwidth the
theoretical optimal bandwidth hopt. From Figure S.9 it is seen that convergence occurs already after 2
iterations. The bias and the variance of the estimator decrease when passing from sample size n � 100
to n � 200.



8 Adam, C., Gijbels, I.

0.7−expectile

x=
−

3

x=
−

2.
33

3

x=
−

1.
66

6

x=
−

1

x=
−

0.
33

3

x=
0.

33
3

x=
1

x=
1.

66
6

x=
2.

33
3

x=
3

−2

−1

0

1

2

B
et

a

t
t=0
t=1
t=2
t=3
t=final

0.7−expectile

x=
−

3

x=
−

2.
33

3

x=
−

1.
66

6

x=
−

1

x=
−

0.
33

3

x=
0.

33
3

x=
1

x=
1.

66
6

x=
2.

33
3

x=
3

−2

−1

0

1

2

B
et

a

t
t=0
t=1
t=2
t=3
t=final

Figure S.10: Model 1. Estimation of τ0.7pxq. Boxplots of the approximate estimate βptqp.q after t
iteration from 100 simulated samples for each point x in a grid of 10 equispaced grid-values between
�3 and 3. True values of βp�q is added by the horizontal lines. Sample size: n � 100 (top panel) and
n � 200 (bottom panel).

Figure S.10 give a different presentation of the results for sample sizes respectively n � 100 and
n � 200, for only a selection of 10 different equispaced grid-values x (see the horizontal axis). In these
figures boxplots summarize the simulation results after using 0 iterations (just using the starting vector
as an estimator), 1 iteration, 2 iterations, 3 iterations, and after convergence (using the stopping



Local polynomial expectile regression 9

criterion), indicated with t=final. The true value β0 � τωpxq is displayed with the horizontal line
crossing the boxplots. Note first of all that for some x-values the starting vector value is far away from
the true (target) value τωpxq. This is in particular the case for x � �1 and x � �0.333. If one or two
iterations are used the estimates already tend to converge to the final estimator. By comparing the
top and bottom panels of Figures S.10 one gets an idea about the improvements for increasing sample
size.
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Figure S.11: Model 1. Boxplots of the AISE-values for the estimator of τωpxq from 100 simulated
samples using the different methods listed in Table 1 using different starting values.

A second aim is to obtain insights in the impact of the choice of the starting vector. We considered
three different methods for choosing the starting vector:

 Mean initialization: using a polynomial mean regression estimator, as defined in (17);
 Median initialization: using a polynomial median regression estimator (replacing the squared loss in

(17) by the loss function R0.5p�q);
 ω-quantile initialization: using a polynomial ωth quantile regression estimator (replacing the squared

loss in (17) by the loss function Rωp�q).

We consider here estimation of τωpxq, for x in the same equispaced grid on the interval r�3, 3s,
for ω � 0.1, 0.3, 0.5, 0.7 and 0.9. For each simulated sample (of size n � 100) we applied the iterative
procedure (until convergence with the stopping criterion) using the three different methods of initializ-
ation, and with six bandwidth selectors. Boxplots reporting on the AISE-values for estimation of τωpxq,
across all ten values of x in the grid, are depicted in Figure S.11. For each ω value six groups of each
three boxplots are presented, referring to six bandwidth selectors and the three initialization methods.
As can be seen the estimates after convergence of the iterative procedure lead to similar results for any
of the three initialization methods. The findings with respect to the finite-sample performances for the
different bandwidth selectors, are fully in line with these seen in Figure S.6.
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Figure S.12: Model 1. Barplots showing the percentages (over 100 simulated samples) of the number of
iterations using the different methods listed in Table 1 using different starting values for one x � �1.5
and for the 0.3-expectile (left panel) and the 0.7-expectile (right panel).
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Figure S.13: Model 1. Barplots showing the percentages (over 100 simulated samples) of the number
of iterations using the different methods listed in Table 1 using different starting values for 100 values
of x and for the 0.3-expectile (left panel) and the 0.7-expectile (right panel).
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Figure S.14: Model 1. Barplots showing the percentages (over 100 simulated samples) of the number
of iterations using the different methods listed in Table 1 using different starting values for 100 values
of x and considering all 5 values of ω.
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Although the final estimator after convergence of the algorithm appears as very close for all three
initialization methods, one might wonder whether the choice of the initialization method has an impact
on the number of iterations required, i.e. how the choice of initialization method possibly impacts how
fast the algorithm converges. We therefore report in Figures S.12, S.13 and S.14 on the percentages
of number of iterations across the 100 simulated samples (of size n � 100), when using the different
starting values (on the horizontal axes). Figures S.12 reports on the results for estimating τωpxq, with
x � �1.5, for two different values of ω (ω � 0.3 in the left panel and ω � 0.7 in the right panel). In
all simulations only 2,3,4 or 5 iterations (until convergence of the algorithm) were needed. Note that a
similar pattern is seen when using any of the six bandwidth selection methods. Figure S.13 summarizes
the results for estimating τωpxq, across all values of x in a considered grid of 100 values, and for the
same two values of ω. Apart from a couple of times that only one iteration was needed, the findings
are the same, as for Figure S.12. Finally, Figure S.14 summarizes the obtained results for all 100 values
of x and the five considered values of ω. Since for ω � 0.5, the median and the expectile coincide,
this leads to a number of cases where only 1 iteration was needed. In some rare cases 6 iterations were
needed (a small percentage that it is even not visible on the plots). Overall, from Figures S.12, S.13
and S.14 it appears that in the large majority of simulations the algorithm converged after two or three
iterations.

S3.6 Illustration of the asymptotic normality result

In Theorem 1 the asymptotic distribution for pβ the minimizer of (12) is established. Via a small
simulation study we investigate the finite-sample distribution of the approximate estimator obtained
via the iterative procedure discussed in Section 3.2.
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Figure S.15: Model 1. Finite-sample distribution of
?
nh

�pτ p0,Aqω pxq � τ
p0q
ω pxq

	
, for x � 1.5, and

its approximate (asymptotic) normal distribution imposed (solid curve).

For given sample size (n � 100, 500 and 1 000) we simulated 100 samples from Model 1, and

use the iterative procedure of Section 3.2 to get an approximation pτ p0,Aqω pxq of the local polynomial
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expectile estimator, i.e. the first element pτ0ωpxq of the minimizer of (12). Based on each sample we

calculate, for ω � 0.3 and the point x � 1.5, the estimate pτ p0,Aqω pxq. We expect that

?
nh

�pτ p0,Aqω pxq � τ p0qω pxq � βp0qω pxqh2
	
� N

�
0, pσp0qω pxqq2

	
, (S.1)

with β
p0q
ω pxq and pσp0qω pxqq2 as defined in Theorem 1, and calculated for simulation Model 1. We used

the theoretical optimal bandwidth for this illustration.

We look at the histograms of the obtained 100 values for
?
nh

�pτ p0,Aqω pxq � τ
p0q
ω pxq

	
. These his-

tograms are depicted in Figure S.15, for the three sample sizes. Superimposed on the plots are the

approximate (asymptotic) normal densities N
�
β
p0q
ω pxqh2; pσp0qω pxqq2

	
, obtained from (S.1). As can be

seen the approximation with the normal distribution improves with the sample size.

S4 Real data examples

In this section we present two additional real data examples.

– The Motorcycle impact data set of Schmidt et al. (1981). The data is from a study of the effect-
iveness of helmets in collisions with motorcycles and contains 133 observations. The X values are
time measurements in milliseconds (ms) after a simulated impact with a post mortem human test
object. The Y values are measurements of head acceleration in units of g (9.8 meters/sec2). The
data are, for example, available in the R package MASS.

– The lidar dataset is described in Ruppert et al. (2003), among others. The data are from a light
detection and ranging experiment and the data set contains 221 observations. The X values are
the distances that the light travelled before it was reflected back to its source and the Y values is
the logarithm of the ratio of received light from two laser sources. The data can be found in, for
example, the R package SemiPar.
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Figure S.16: Estimated expectile regression curves for τωp�q for ω taking values
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 for the two data examples. Estimated expectiles using
the GenROT (left panels) and the LSQBased (right panels) bandwidth selectors.
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Scatterplots of the data together with the estimated expectile regression curves for ω values equal
to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 are shown in Figure S.16. For both examples the estim-
ated expectiles using the GenROT bandwidth selector are smoother than these using the LSQBased
bandwidth selector. This is most visible for the lidar data. Table S.2 provides the values of the data-
driven bandwidths for both data examples, for five considered ω values. Bandwidth values from the
GenROT method are for all cases larger than the values from the LSQBased bandwidth selector. Note
in particular the substantially larger values for the lidar data. The estimated expectile curves are
clearly non-parallel for the motorcycle impact data and the lidar data. The two data sets clearly show
heteroscedasticity.

Motorcycle lidar
ω GenROT LSQBased GenROT LSQBased
0.1 2.2801 1.0691 16.3997 2.2999
0.3 2.3612 1.0544 16.2280 2.2504
0.5 2.3473 1.0531 16.0395 2.2492
0.7 2.3530 1.0711 15.9404 2.3922
0.9 2.2739 1.0727 16.3682 2.6304

Table S.2: Motorcycle impact data and lidar data. Data-driven bandwidth values.

S5 Additional explanations concerning bandwidth selectors in Sections 5.3.1 and 5.3.2

Note from the expression of the optimal theoretical bandwidth in (22) that one of the unknown
quantities to be approximated is γpω, xq, which in its turn requires approximations of the quantities

P rY ¤ τωpXq|X � xs and P rY ¡ τωpXq|X � xs.
We focus our explanation here on an approximation for P rY ¤ τωpXq|X � xs.

In general we start from

P rY ¤ τωpXq|X � xs � P rY � τωpXq ¤ 0|X � xs � E r1 tY � τωpXq ¤ 0u |X � xs ,
and approximate this conditional expectation by its expectation

EX
 
EY |X r1 tY � τωpXq ¤ 0u |Xs( � E t1 tY � τωpXq ¤ 0uu ,

which is then estimated by an empirical version

1

n

ņ

i�1

1 tYi � qτωpXiq ¤ 0u . (S.2)

In a location-scale model however one has knowledge of an additional structure which one should
try to exploit. Recall first of all that in a location-scale model

rε � Y � τωpxq � σpXq rε� τω,εs . (S.3)

From this relationship between rε and ε one can also provide relationships between the conditional
distribution function of rε given X � x and the cumulative distribution function of ε, which we denoted
by Fε. One obtains, for any v,

P prε ¤ v|X � xq � P pσpXq rε� τω,εs ¤ v|X � xq � P

�
ε ¤ v

σpXq � τω,ε|X � x



� Fε

�
v

σpxq � τω,ε



,
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where in the last line it is used that ε and X are independent. For the conditional pth quantile function
of rε given X, with 0   p   1, this leads to

F�1
rε|Xpp|xq � σpxq �F�1

ε ppq � τω,ε
�
. (S.4)

Recall that
P rY ¤ τωpXq|X � xs � E r1 tY � τωpXq ¤ 0u |X � xs ,

and that the ωth conditional expectile of Y � τωpXq given X � x is zero, under the location-scale
model. Hence, under such a modelling framework, one can replace the zero above by the ωth conditional
expectile. These considerations then led to approximating P rY ¤ τωpXq|X � xs by its unconditional
expectation, and hence by

1

n

ņ

i�1

1 tYi � qτωpXiq ¤ qτωpqεiqu . (S.5)

This reasoning was used in Section 5.3.1.

In Section 5.3.2 we, in addition to the above, try to exploit that under a location-scale model one
has (see (10))

ωpα, xq � ωpαq � αF�1
ε pαq � Eε

�
ε1tε ¤ F�1

ε pαqu�
2Eε

�
ε1tε ¡ F�1

ε pαqu�� p1� 2αqF�1
ε pαq . (S.6)

Since we can obtain pseudo-observations for rε � Y � τωpXq, via the (global) parametric estimation of
the ωth conditional expectile of Y given X � x, and hence first translate (S.6) in terms of rε instead
of in terms of ε. This is easily done by utilizing (S.3) and (S.4).

We translate each of the terms in (S.6). We have from (S.4) that, for 0   α   1,

F�1
ε pαq � 1

σpXqF
�1
rε|Xpα|Xq � τω,ε. (S.7)

Since rε � σpXq rε� τω,εs,

1tε ¤ F�1
ε pαqu � 1

" rε
σpXq � τω,ε ¤ 1

σpXqF
�1
rε|Xpα|Xq � τω,ε

*
� 1

!rε ¤ F�1
rε|Xpα|Xq

)
.

It then follows that

Eε
�
ε1tε ¤ F�1

ε pαqu� � E

�� rε
σpXq � τω,ε



1

!rε ¤ F�1
rε|Xpα|Xq

)�
� EX

"
E
rε|X

�� rε
σpXq � τω,ε



1

!rε ¤ F�1
rε|Xpα|Xq

)
|X

�*
� EX

"
1

σpXq Erε|X

��rε1!rε ¤ F�1
rε|Xpα|Xq

)	
|X

�
� E

rε|X

�
τω,ε 1

!rε ¤ F�1
rε|Xpα|Xq

)
|X

�*
� EX

"
1

σpXqErε|X

�rε1!rε ¤ F�1
rε|Xpα|Xq

)
|X

	
� α τω,ε

*
� EX

"
1

σpXqErε|X

�rε1!rε ¤ F�1
rε|Xpα|Xq

)
|X

	*
� α τω,ε. (S.8)

Note that the term α τω,ε drops out when combining the terms in (S.7) and (S.8) to get to the
numerator in (S.6).
We proceed in a similar fashion for rewriting the terms in the denominator of (S.6). We get that

Eε
�
ε 1tε ¡ F�1

ε pαqu�
� EX

"
1

σpXqErε|X

��rε1!rε ¡ F�1
rε|Xpα|Xq

)	
|X

�
� E

rε|X

�
τω,ε 1

!rε ¡ F�1
rε|Xpα|Xq

)
|X

�*
� EX

"
1

σpXqErε|X

�rε 1!rε ¡ F�1
rε|Xpα|Xq

)
|X

	*
� p1� αq τω,ε. (S.9)
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Combining (S.7), (S.8) and (S.9) and substituting these into (S.6) we obtain the following altern-
ative expression for the right-hand side of (S.6):

α
1

σpXq F
�1
rε|Xpα|Xq � EX

"
1

σpXq Erε|X

�rε 1!rε ¤ F�1
rε|Xpα|Xq

)
|X

	*
2EX

"
1

σpXqErε|X

�rε 1!rε ¡ F�1
rε|Xpα|Xq

)
|X

	*
� p1� 2αq 1

σpXq F
�1
rε|Xpα|Xq � τω,ε

. (S.10)

The term τω,ε in the above is unknown, and one has no access to pseudo-observations of ε. Put
since E rεs � 0 and using relationship (S.3) one can replace τω,ε in (S.10) by

τω,ε � τω,ε � E rεs � τω,ε � E
rε,X

� rε
σpXq � τω,ε

�
� �E

rε,X

� rε
σpXq

�
. (S.11)

Combining (S.10) and (S.11) we obtain the following expression for the right-hand side of (S.6)

α
1

σpXq F
�1
rε|Xpα|Xq � EX

"
1

σpXq Erε|X

�rε 1!rε ¤ F�1
rε|Xpα|Xq

)
|X

	*
2EX

"
1

σpXqErε|X

�rε1!rε ¡ F�1
rε|Xpα|Xq

)
|X

	*
� p1� 2αq 1

σpXq F
�1
rε|Xpα|Xq � E

rε,X

� rε
σpXq

� .

Following the same reasonings as those that led to (S.5), we write

1

!rε ¤ F�1
rε|Xpα|Xq

)
� 1

!rε� F�1
rε|Xpα|Xq ¤ 0

)
,

and replace the zero above by the ωth conditional expectile of rε given X � x. The term in the
denominator involving the indicator function, is looked upon in a similar manner.

Further approximations then consist of treating σpxq as a constant. The remaining quantities can
then be estimated, using the pseudo-observations obtained via the global parametric fit, via

1

n

ņ

i�1

qεi 1tqεi � qF�1
qε ppαq ¤ qτωpqεiqu, 1

n

ņ

i�1

qεi 1tqεi � qF�1
qε ppαq ¡ qτωpqεiqu, and

1

n

ņ

i�1

qεi.
All the above considerations resulted into (27). Although the approximations used are quite rough, this
simple attempt to exploit (to a full extent) the known location-scale setting, can pay off, as is seen
from the simulation results.

S6 Proofs Lemmas 1 and 2

S6.1 Proof of Lemma 1

The reason for presenting second-order expansions is that first-order terms may vanish due to the
symmetry of K which causes its odd moments to be null.
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For some real value ξ between Xi and x and thanks to Assumption (A4), we have

EY,X rUn,js � EY,X

�
2

nh

ņ

i�1

LωpY �
i qpadjpSqZiqj�1Ki

�

� 2

nh

ņ

i�1

EY,X rLωpY �
i qpadjpSqZiqj�1Kis

� 2

nh

ņ

i�1

EX
�
EY |X rLωpY �

i q|Xis padjpSqZiqj�1Ki

�
� 1

nh

ņ

i�1

EX

�
ϕp1q

�
τωpXiq � τωpxq � τ p1qω pxqpXi � xq � . . .� τ

ppq
ω pxq
p!

pXi � xqp
�����Xi

�
padjpSqZiqj�1Kis

� 1

nh

ņ

i�1

EX

�
ϕp1q

�
τ
pp�1q
ω pxq
pp� 1q! pXi � xqp�1 � τ

pp�2q
ω pxq
pp� 2q! pXi � xqp�2

�τ
pp�3q
ω pξq
pp� 3q! pXi � xqp�3

�����Xi

�
padjpSqZiqj�1Ki

�

� 1

h

»
ϕp1q

�
1

pp� 1q!τ
pp�1q
ω pxqpv � xqp�1 � τ

pp�2q
ω pxq
pp� 2q! pv � xqp�2p1� op1qq

�����X � v

�

padjpSqzqj�1K

�
v � x

h



fXpvqdv.

By a change of variable and with zu �
�
1, u, u2, . . . , up

�T
we have

EY,X rUn,js �
»
ϕp1q

�
1

pp� 1q!τ
pp�1q
ω pxqpuhqp�1 � τ

pp�2q
ω pxq
pp� 2q! puhq

p�2p1� op1qq
�����X � x� uh

�
padjpSqzuqj�1K puq fXpx� uhqdu.

By Taylor expansion we find

ϕp1qpt|xq � ϕp1qp0|xq � ϕp2qp0|xqtp1�Optqq � ϕp2qp0|xqtp1�Optqq as tÑ 0

by the definition of τωpxq. Then

EY,X rUn,js �
»
ϕp1q

�
1

pp� 1q!τ
pp�1q
ω pxqpuhqp�1 � τ

pp�2q
ω pxq
pp� 2q! puhq

p�2p1� op1qq
�����X � x� uh

�
padjpSqzuqj�1K puq fXpx� uhqdu

�
»
ϕp2q p0|X � x� uhq

�
1

pp� 1q!τ
pp�1q
ω pxqpuhqp�1 � τ

pp�2q
ω pxq
pp� 2q! puhq

p�2p1� op1qq
�

padjpSqzuqj�1K puq fXpx� uhqdu
� 1

pp� 1q!τ
pp�1q
ω pxqhp�1γpω, xqpadjpSqcpqj�1fXpxq

� 1

pp� 2q!τ
pp�2q
ω pxqhp�2γpω, xqpadjpSqrcpqj�1fXpxq

� 1

pp� 1q!τ
pp�1q
ω pxqhp�2γpω, xqpadjpSqrcpqj�1f

p1q
X pxq � ophp�2q.
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Remark S1 If K is symmetric, we can make a remark similar to Remark 2 regarding the structure
of S. Using the special structure of S and of cp and rcp, it is seen that some elements of adjpSqrcp
and adjpSqcp are equal to zero. Two cases are possible:

(i) p� j odd

EY,X rUn,js � 1

pp� 1q!τ
pp�1q
ω pxqhp�1γpω, xqpadjpSqcpqj�1fXpxq � ophp�2q

(ii) p� j even

EY,X rUn,js � 1

pp� 2q!τ
pp�2q
ω pxqhp�2γpω, xqpadjpSqrcpqj�1fXpxq

� 1

pp� 1q!τ
pp�1q
ω pxqhp�2γpω, xqpadjpSqrcpqj�1f

p1q
X pxq � ophp�2q.

To obtain the conditional result, we proceed as follows. Suppose that the support of K is contained in
r�M,M s. Then,

|padjpSqZqj�1|K
�
X � x

h



¤ CK

�
X � x

h



.

It follows, by the law of iterated expectation, that

EX

��
EY |X rUn,j |X s � EY,X rUn,js

�2� � EX

��
EY |X rUn,j |X s � EX rEY |X rUn,j |X ss

�2�
� VarX rEY |X rUn,j |X ss

� VarX

�
EY |X

�
2

nh

ņ

i�1

LωpY �
i qpadjpSqZiqj�1Ki

�����X
��

� 4

n2h2
VarX

�
ņ

i�1

EY |X rLωpY �
i qpadjpSqZiqj�1Ki|X s

�

� 4

n2h2

ņ

i�1

VarX
�
EY |X rLωpY �

i qpadjpSqZiqj�1Ki|X s
�

� 4

n2h2

¸
m�n

CovX
�
EY |X rLωpY �

i qpadjpSqZiqj�1Ki|X � Xms ,

EY |X rLωpY �
i qpadjpSqZiqj�1Ki|X � Xns

�
� 4

n2h2

ņ

i�1

VarX
�
EY |X rLωpY �

i qpadjpSqZiqj�1Ki|X s
�

� 1

nh2
VarX

�
ϕp1q

�
τωpXq � τωpxq � . . .� τ

ppq
ω pxq
p!

pX � xqp
�����X

�

padjpSqZqj�1K

�
X � x

h


�
¤ C2

nh2
EX

��
ϕp1q

�
1

pp� 1q!τ
pp�1q
ω pxqpX � xqp�1 � oP php�1q

����X

K

�
X � x

h



2
�

� C2

nh

» �
ϕp2q p0|X � x� uhqOphp�1qK puq

	2

fXpx� uhqdu

� O

�
h2pp�1q

nh



.

Two cases must be taken into account
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(i) p� j odd: with hÑ 0 and nhÑ8 ,

EY |X rUn,j |X s � EY,X rUn,js � oP php�1q � dhp�1p1� oP p1qq
since

hp�
1
2?

nhp�1
� 1?

nh
ÝÑ 0 as nhÑ8.

(ii) p� j even: with hÑ 0 and we need another assumption for this case, nh3 Ñ8 ,

EY |X rUn,j |X s � EY,X rUn,js � oP php�2q � dhp�1p1� oP p1qq
since

hp�
1
2?

nhp�2
� 1?

nh3
ÝÑ 0 as nh3 Ñ8.

Therefore, the first assertion is established.
For the second assertion we write

VarY |X rUn,j |X s � VarY |X

�
2

nh

ņ

i�1

LωpY �
i qpadjpSqZiqj�1Ki|X

�

� 1

n2h2
VarY |X

�
2

ņ

i�1

LωpY �
i qpadjpSqZiqj�1Ki|X

�

� 1

n2h2

��EY |X

���2
ņ

i�1

LωpY �
i qpadjpSqZiqj�1Ki

�2

|X
��

�EY |X
�
2

ņ

i�1

LωpY �
i qpadjpSqZiqj�1Ki|X

�2
�

� 1

n2h2

ņ

i�1

padjpSqZiq2j�1K
2

�
Xi � x

h



EY |X

�
4L2

ωpY �
i q|X

�� oP

�
1

nh




� 1

n2h2

ņ

i�1

padjpSqZiq2j�1K
2

�
Xi � x

h




EY |X

�
4L2

ωpYi � τωpxq � τ p1qω pxqpXi � xq � . . .� τ
ppq
ω pxq
p!

pXi � xqpq|X
�
� oP

�
1

nh




� 1

n2h2

ņ

i�1

Zn,i � oP

�
1

nh



,

where

Zn,i � padjpSqZiq2j�1K
2

�
Xi � x

h



EY |X

�
4L2

ωpYi � τωpxq � τ p1qω pxqpXi � xq � . . .� τ
ppq
ω pxq
p!

pXi � xqpq|X
�
.

It follows from the conditional Jensen inequality and Assumption (A3) that

EX r|Zn,i|1�δ{2s

¤ C2�δEX,Y

�������2LωpY1 � τωpxq � τ p1qω pxqpX1 � xq � . . .� τ
ppq
ω pxq
p!

pX1 � xqpqK
�
X1 � x

h


�����
2�δ

��
¤ C2�δh

» » �����2Lωpy � τωpxq � τ p1qω pxqhv � . . .� τ
ppq
ω pxq
p!

phvqpq
�����
2�δ

fY |Xpy|x� hvqdyK2�δ pvq fXpx� hvqdv
� Ophq.
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By the moment inequality for the sum of independent random variables we have

1

nh

ņ

i�1

Zn,i � EX rZn,is
h

� oP p1q

� fXpxq
»
p2Lωpy � τωpxqqq2 fY |Xpy|xqdy

»
padjpSqzvq2j�1K

2 pvq dv � oP p1q

and therefore

VarY |X rUn,j |X s �
1

nh
fXpxq

»
p2Lωpy � τωpxqqq2 fY |Xpy|xqdy

»
padjpSqzvq2j�1K

2 pvq dvp1� oP p1qq.
l

S6.2 Proof of Lemma 2

Denote

Z�
n,i � padjpSqZiqj�1K

�
Xi � x

h



2Lω

�
Yi � τωpxq � τ p1qω pxqpXi � xq � . . .� τ

ppq
ω pxq
p!

pXi � xqp
�
.

Then

Un,j � EY |X rUn,j |X s �
1

nh

ņ

i�1

�
Z�
n,i � EY |X rZ�

n,i|Xis
�
.

Note that given X , the previous equation is a sum of independent random variables. To show that

P

��Un,j � EY |X rUn,j |X sb
VarY |X rUn,j |X s

¤ t|X
�� � Φptq � opp1q , as nÑ8,

it suffices to verify the conditional Lyapunov condition:

1

pnhq2�δrVarY |X rUn,j |X ss1�δ{2
ņ

i�1

EY |X r|Z�
n,i|2�δ|Xis � oP p1q

for some δ ¡ 0. By Lemma 1

EX

�
ņ

i�1

EY |X
�|Z�

n,i|2�δ|Xi

�� � nEX
�|Z�

n,i|2�δ
� � Opnhq.

Thus
ņ

i�1

EY |X
�|Z�

n,i|2�δ|Xi

� � OP pnhq.

This and the second assertion of Lemma 1 imply the conditional Lyapunov condition. l
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