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Abstract
This paper studies local polynomial estimation of expectile regression. Expectiles 
and quantiles both provide a full characterization of a (conditional) distribution 
function, but have each their own merits and inconveniences. Local polynomial fit-
ting as a smoothing technique has a major advantage of being simple, allowing for 
explicit expressions and henceforth advantages when doing inference theory. The 
aim of this paper is twofold: to study in detail the use of local polynomial fitting in 
the context of expectile regression and to contribute to the important issue of band-
width selection, from theoretical and practical points of view. We discuss local poly-
nomial expectile regression estimators and establish an asymptotic normality result 
for them. The finite-sample performance of the estimators, combined with various 
bandwidth selectors, is investigated in a simulation study. Some illustrations with 
real data examples are given.

Keywords Asymptotic normality · Bandwidth selection · Expectile regression · 
Local polynomial fitting · Quantile regression

1 Introduction

Among the main interests in regression analysis is to explore the influence that d 
covariates � = (X1,… ,Xd) have on a variable of interest Y, the response. There is an 
extensive literature on flexible mean regression, in which the targeted quantity is the 
conditional mean of the response given the covariates, i.e. E[Y|�].

In a nonparametric regression model, no assumptions are made on the form of 
the relation between the covariates and the response. See e.g. the books of Härdle 
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(1990) and Wand and Jones (1995). For nonparametric mean regression, Fan and 
Gijbels (1995) developed adaptive-order local polynomial fitting. Fan and Gijbels 
(1996) provided an extensive study of the local polynomial modelling technique 
and its applications to various areas. Local polynomial fitting is a popular smooth-
ing technique due to its simplicity, the ease of computation and its nice asymptotic 
properties.

The conditional mean (regression), however, describes only the average effect 
of the response Y given the covariates � and if the conditional distribution of the 
response is skewed, it is not appropriate to describe it only via its conditional mean. 
Therefore, a more complete characterization of the conditional distribution of Y 
given the covariate vector is preferred. Quantile regression aims at estimating the 
conditional median or other quantiles of the response variable given the covariates 
and takes into account the mentioned drawback of conditional mean regression. 
There is a vast literature on conditional quantile regression, e.g. Koenker and Bassett 
(1978) for a study of the asymmetric least absolute deviation approach, and Koenker 
(2005) for a book dedicated to quantile regression.

An alternative to quantiles are expectiles, who also fully characterize (condi-
tional) distributions. Newey and Powell (1987) introduced conditional expectiles in 
the context of linear regression models. They proposed an estimator by using an 
asymmetric least squares approach and showed that this estimator is asymptotically 
normal distributed.

Both quantiles and expectiles have some advantages and inconveniences. Quan-
tiles and expectiles provide a complete characterization of the (conditional) distri-
bution. A main advantage of quantiles is their appealing interpretability, whereas 
expectiles have a less natural interpretation. Theoretically, neither expectile nor 
quantile curves, for different orders of the quantiles/expectiles, can cross. However, 
the problem of crossing of estimated quantile curves is well known. This crossing 
problem is less frequently observed for estimated expectile curves. Quantiles do not 
need to be unique, whereas expectiles are always uniquely defined for any (condi-
tional) distribution with a finite mean. Quantiles are robust to outliers due to the 
asymmetric absolute deviation loss function. In contrast, expectiles are sensitive to 
extreme small or large observations, given they are based on an asymmetric quad-
ratic type of loss function. Obviously a certain sensitivity to extremal observations is 
preferable when it comes to risk management (e.g. in financial applications). Finally, 
expectiles are easier to compute than quantiles. A detailed discussion on quantile 
and expectile regression can be found in Schulze Waltrup et al. (2015).

Since the first papers by Newey and Powell (1987) and Efron (1991), there is 
an increasing interest in expectiles due to, among others, their properties as risk 
measures. Breckling and Chambers (1988) showed that quantiles and expectiles 
both belong to the class of so-called M-quantiles and later on Bellini et al. (2014) 
showed that the only M-quantiles that lead to coherent risk measures are expectiles. 
Moreover, Ziegel (2016) argued that expectiles induce the only coherent and elicit-
able law-invariant risk measure (i.e. with meaningful point forecasts performance). 
Henceforth, although expectiles are not as easy to interpret as quantiles, they have 
interesting properties, in particular as risk measure. Recent papers on expectiles 
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include Taylor (2008), Schulze Waltrup et  al. (2015), Bellini and Di Bernardino 
(2017) and Krätschmer and Zähle (2017).

A linear model for expectile regression, as studied by Newey and Powell (1987) and 
Efron (1991), is often too restrictive in view of real applications. Yao and Tong (1996) 
studied nonparametric expectile regression in case of a univariate explanatory variable 
and allowing for observations that are strictly stationary and �-mixing. They considered 
a local linear estimator for regression expectiles and established its asymptotic normal-
ity. Schnabel and Eilers (2009) contributed in the issue of smoothing parameter selec-
tion by defining an asymmetric variant of cross-validation. Yang and Zou (2015) used 
the gradient tree boosting algorithm to derive a fully nonparametric multiple expectile 
regression method. Little attention so far went to good bandwidth selectors for expec-
tile regression, based on theoretical considerations. The aim of this paper is to provide 
a detailed study of the use of local polynomial fitting to estimate nonparametrically a 
univariate expectile regression curve as well as its derivatives, including (i) asymptotic 
bias and variance expressions for estimators of the expectile curve and its derivatives 
(up to a certain order), and (ii) a discussion on theoretical optimal bandwidths as well 
as selection procedures for data-driven bandwidths.

The paper is organized as follows. Section 2 briefly recalls the definition of expec-
tiles and quantiles and the existing links between the two concepts. In Sect. 3, we pre-
sent the local polynomial expectile regression method, and in Sect. 4 we establish its 
asymptotic normality. Section 5 is devoted to the bandwidth selection issue and pro-
vides an explicit expression for the optimal bandwidth but also presents several data-
driven bandwidth selectors. The performances of these are investigated in a simulations 
study in Sect. 6. The practical use of the methods is illustrated on a real data example 
in Sect. 7. We conclude with some further discussions and recommendations in Sect. 8. 
The proof of the main theorem is given in Appendix. Proofs of other theoretical results 
are provided in the Supplementary Material. Some more material, including discussion 
on some additional simulation results and two more real data applications can also be 
found in the Supplemental Material part.

2  Expectiles and quantiles

Consider first the unconditional setting with focus on a real-valued variable Y. The 
unconditional � th quantile, with � ∈ (0, 1) , of Y is q� ∶= inft{t ∈ ℝ ∶ P(Y ≤ t) ≥ �}, 
which can also be obtained, in case of uniqueness, by solving the L1-minimization 
problem q� = argmin �∈ℝEY [R�(Y − �)] with R� the quantile check function

With � = 0.5 , we obtain q0.5 the (unconditional) median of Y. Figure 1 depicts the 
quantile check function for � = 0.4, 0.5 and 0.6.

The unconditional � th expectile, with � ∈ (0, 1) , of Y is the solution to the L2-mini-
mization problem

(1)R�(y) = |� − �{y ≤ 0}||y|.
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with Q� the expectile loss function

With � = 0.5 , the quantity �0.5 equals E[Y] the (unconditional) mean of Y. For an 
overview of basic properties of expectiles, see e.g. Newey and Powell (1987). We, 
in particular, mention the following basic property. Let Ỹ = a + bY  , with a, b ∈ ℝ , 
then the � th expectile of Ỹ  , denoted by ��,Ỹ , is given by

where we denote the � th expectile of Y by ��,Y to stress that it is the expectile of Y. 
See, for example, Newey and Powell (1987, Theorem 1, page 823) and Remillard 
and Abdous (1995, Theorem 1).

Figure 1 shows the expectile loss function Q�(⋅) for � = 0.4, 0.5 and 0.6. Note 
that the check loss function R�(⋅) is not differentiable in 0, whereas the expectile 
loss function Q�(⋅) is continuously differentiable everywhere.

Both quantiles and expectiles characterize a distribution function, although 
they are different in nature. Figure 2 shows the quantile curve (solid line) and the 
expectile curve (dotted line) of a Student-t distribution with 5 degrees of free-
dom. For this symmetric distribution, the mean and the median coincide as is 
observed on this figure at the location � = � = 0.5.

In terms of interpretation, the � th quantile determines the point below which 
100 × �% of the mass of Y lies, i.e. � = EY

[
�{Y ≤ q�}

]
∕EY [1], while the � th 

expectile specifies the position �� such that the average distance from Y to �� , 
when Y is below �� , is 100 × �% of the average distance between Y and �� , i.e. 
� = EY

[|Y − ��|�{Y ≤ ��}
]
∕EY [|Y − ��|].

Consider (X, Y) a bivariate random vector. The concepts of quantiles and expec-
tiles are easily extended to the conditional case, in which Y is the variable of 

�� = argmin
�∈ℝ

EY [Q�(Y − �)]

(2)Q�(y) = |� − �{y ≤ 0}|y2.

(3)𝜏𝜔,�Y =

{
a + b 𝜏𝜔,Y if b > 0

a + b 𝜏1−𝜔,Y if b ≤ 0,
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Fig. 1  Quantile check functions (solid lines) and expectile loss functions (dashed curves) for 
{�,�} ∈ {0.4, 0.5, 0.6}



345

1 3

Local polynomial expectile regression  

interest and X a covariate. The � th conditional quantile of Y given X = x is, in case 
of uniqueness, q�(x) = argmin a∈ℝEY|X[R�(Y − a)|X = x], with R� the check func-
tion (see (1)). The � th conditional expectile of Y given X = x , with � ∈ (0, 1) , is

with Q� the loss function in (2). Since Q�(⋅) has a first continuous derivative, ��(x) 
satisfies

with L�(y) = |� − �{y ≤ 0}|y.
Similar interpretations as in the unconditional setting hold. The � th conditional 

quantile determines, given X = x , the point below which 100 × �% of the mass of Y 
lies,

whereas the � th conditional expectile specifies, given X = x , the position ��(x) such 
that the average distance of Y to ��(x) , when Y is below ��(x) , is 100 × �% of the 
average distance between Y and ��(x) , i.e.

Jones (1994) pointed out that expectiles are quantiles, not of the distribution func-
tion FY of Y itself but of another distribution function that is related to FY . Yao and 
Tong (1996) formulated this in an alternative way, showing that there is a one-to-one 
mapping (in fact a bijection) between the (conditional) quantile and the (conditional) 
expectile. See also De Rossi and Harvey (2009), Schulze Waltrup et  al. (2015) 
and Yang and Zou (2015), among others. Since the existence of such a one-to-one 

(4)��(x) = argmin
a∈ℝ

EY|X
[
Q�(Y − a)|X = x

]

EY|X
[
L�(Y − ��(x))|X = x

]
= 0

� =
EY|X

[
�{Y ≤ q�(x)}|X = x

]
EY|X[1|X = x]

,

(5)� =
EY|X

[|Y − ��(x)|�{Y ≤ ��(x)}|X = x
]

EY|X[|Y − ��(x)| ∣ X = x]
.
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Fig. 2  Expectile function (dashed curve) and quantile function (solid curve) of a Student-t distribution 
with 5 degrees of freedom
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mapping is of crucial importance, we precise this further. Denote by FX the cumula-
tive distribution function of X, and with FY|X the cumulative conditional distribu-
tion function of Y given X. For simplicity, we assume throughout this paper that 
FY|X(y|x) is a continuous function in y, for all x ∈ ℝ . The link between conditional 
quantiles and expectiles is formally stated in Proposition 1. Since a formal statement 
with proof of this result does not seem to be available in the literature, we also, for 
completeness, provide a proof for it in Section S2 in the Supplementary Material.

Proposition 1 (One-to-one mapping) Let x be a point of continuity of FX , for 
which |EY|X(Y|X = x)| < ∞ . Then, there exists a one-to-one mapping (a bijection) 
(0, 1) → (0, 1) ∶ � ↦ � = �(�, x) such that ��(�,x)(x) = q�(x) , i.e. the �(�, x)th con-
ditional expectile equals the �th conditional quantile. Specifically, we have

The relation in (6) can be further simplified in case of a location-scale model in 
which

where m(.) and �(.) are unknown functions, with 𝜎(x) > 0 and � has a continuous 
strictly increasing distribution function F� and quantile function F−1

�
 . Further X and � 

are independent, with E[�] = 0 and Var(�) = 1 . Under a location-scale model (7) the 
� th conditional quantile of Y given X = x , for � ∈ (0, 1) , is

Moreover, using (4) and a conditional version of (3) it is easily seen that the � th 
conditional expectile of Y given X = x equals (since 𝜎(x) > 0)

where ��,� denotes the (unconditional) � th expectile of the random variable � . In 
case of a homoscedastic location-scale model, i.e. when Y = m(X) + �� , equation 
(8) becomes q�(x) = m(x) + �F−1

�
(�) and hence, for �1 and �2 ∈ (0, 1) we have 

q�1(x) − q�2(x) = �
(
F−1
�

(
�1
)
− F−1

�

(
�2
))

 which is constant for all x. Hence, in a 
homoscedastic location-scale model, the quantile curves are parallel. From (9), it is 
seen that the same holds for the expectile curves in a homoscedastic location-scale 
model setting.

Furthermore, in case of a location-scale model (7) Yao and Tong (1996, Proposition 
1) establish that the one-to-one mapping in (6) is independent of x, and reduces to

(6)�(�, x) =
�q�(x) − ∫ q�(x)

−∞
ydFY|X(y|x)

2
[
�q�(x) − ∫ q� (x)

−∞
ydFY|X(y|x)

]
+
[
EY|X(Y|X = x) − q�(x)

] .

(7)Y = m(X) + �(X)�,

(8)
q�(x) = inf

y
{y ∶ FY|X(y|x) ≥ �} = inf

y

{
y ∶ F�

(
y − m(x)

�(x)

)
≥ �

}

= m(x) + �(x)F−1
�
(�).

(9)��(x) = m(x) + �(x)��,� ,
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An illustration of relationship (10) is provided in Figure S.1 in the Supplementary 
Material.

3  Local polynomial expectile regression

3.1  Local polynomial expectile regression estimator

Let (X1, Y1),… , (Xn, Yn) be an i.i.d. sample from (X, Y). The aim is to estimate the � th 
conditional expectile ��(x) , defined in (4), as well as derivatives of this function.

To estimate ��(⋅) we use local polynomial fitting (see Fan and Gijbels 1996). 
Consider x a fixed value in the domain of the covariate X. Assume that the unknown 
function ��(⋅) can be approximated by a polynomial function of degree p in a neigh-
bourhood of x via a Taylor expansion up to order p, i.e. for z in a neighbourhood of 
x,

where � (j)� (x) denotes the jth order derivative of the function ��(.) at the point x, and 
we denoted �j =

1

j!
�
(j)
� (x) for j = 0,… , p . Obviously, we need the existence of deriv-

atives up to order p of the expectile function ��(⋅).
We consider the minimization problem

with Q�(⋅) as in (2) and where K(⋅) and h > 0 denote, respectively, a kernel func-
tion and a bandwidth. We denote the solution of (11) by (�̂0,… , �̂p) . The estimator 
of ��(x) is then �̂0 and the estimator of � (j)� (x) =

dj��(x)

dxj
 is �̂j j! , for j = 0,… , p . The 

choice of an appropriate bandwidth is important and studied in Sect. 5.
It is convenient to express the minimization problem in (11) in matrix notation, 

starting from

and � = diag (r1(�),… , rn(�)) is a diagonal matrix with as ith diagonal element 
the weight ri(�) defined by ri(𝜔) = (1 − 𝜔)�{Yi ≤ ∑p

j=0
𝛽j(Xi − x)j} + 𝜔�{Yi >

∑p

j=0
𝛽j(Xi − x)j}. 

(10)𝜔(𝛼, x) = 𝜔(𝛼) =
𝛼F−1

𝜖
(𝛼) − E𝜖

[
𝜖 �{𝜖 ≤ F−1

𝜖
(𝛼)}

]

2E𝜖

[
𝜖 �{𝜖 > F−1

𝜖
(𝛼)}

]
− (1 − 2𝛼)F−1

𝜖
(𝛼)

.

��(z) ≈ ��(x) + � (1)
�
(x)(z − x) +⋯ +

�
(p)
� (x)

p!
(z − x)p ≡ �0 + �1(z − x) +⋯ + �p(z − x)p

(11)minimize
�0,…,�p

n∑
i=1

Q�

(
Yi −

p∑
j=0

�j(Xi − x)j

)
K

(
Xi − x

h

)
,

� =

⎛⎜⎜⎝

Y1
⋮

Yn

⎞⎟⎟⎠
, �D =

⎛⎜⎜⎝

1 X1 − x (X1 − x)2 ⋯ (X1 − x)p

⋮ ⋮ ⋮ ⋱ ⋮

1 Xn − x (Xn − x)2 ⋯ (Xn − x)p

⎞⎟⎟⎠
, � =

⎛⎜⎜⎝

�0
⋮

�p

⎞⎟⎟⎠
,

� = diag

�
K

�
X1 − x

h

�
,… ,K

�
Xn − x

h

��
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Hence, the diagonal matrix is composed of elements from the set {�, 1 − �} , for a 
given � ∈ (0, 1) , according to whether the observation Yi is located above or below 
the polynomial function 

∑p

j=0
�j(Xi − x)j . Note that the design matrix �D and the 

matrices � and � in fact depend on the given value x, as also minimization problem 
(11). So estimation of the entire function ��(⋅) requires solving (11) for a grid of 
points in the domain of X. Using the matrix notations, minimization problem (11) 
reads as

Denote the minimizer of (12) by �̂ . The estimator �̂0 is the local polynomial expec-
tile regression estimator of ��(x).

3.2  Iterative procedure

Since ri(�) and hence � depend on � = (�0,… , �p)
T an iterative procedure is 

needed to find the estimators of � . Suppose that at step t of the iteration, we have 
given a value �(t) for the vector of unknown parameters. Denote the corresponding 
diagonal matrix with �(t) , i.e. the diagonal matrix with as ith element the weight 
r
(t)

i
(�) , given by

We then need to find an improvement of the current parameter vector value �(t) by 
exploiting minimization problem (12), and minimizing

with respect to � . Writing

where we use the fact that the transpose of a scalar is a scalar, i.e.

To find the improved vector value we differentiate (14) with respect to � , and need 
to solve

(12)minimize
�

(� − �D�)
T
��(� − �D�).

r
(t)

i
(𝜔) =

⎧
⎪⎪⎨⎪⎪⎩

1 − 𝜔 if Yi ≤
p�
j=0

𝛽
(t)

j
(Xi − x)j

𝜔 if Yi >

p�
j=0

𝛽
(t)

j
(Xi − x)j.

(13)(� − �D�)
T
�

(t)
�(� − �D�)

(14)
(� − �D�)

T
�

(t)
�(� − �D�) = �

T
�

(t)
�� − 2�T

�
T
D
�

(t)
�� + � T

�
T
D
�

(t)
��D�,

� T
�

T
D
�

(t)
�� = (� T

�
T
D
�

(t)
��) T = �

T
�

(t)
��D�.

(15)− 2� T
D
�

(t)
�� + 2� T

D
�

(t)
��D� = 0,
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which leads to the solution �(t+1) =
(
�

T
D
�(t)��D

)−1
�

T
D
�(t)�� , provided that the 

inverse of the matrix � T
D
�(t)��D exists. This solution is indeed a minimizer of 

(13) since the matrix of second order partial derivatives of it equals 2� T
D
�(t)��D 

obtained from (15), which is a positive definite matrix with high probability. We 
thus have that

The iterative procedure reads as follows. 

InItIalIzatIon step  Obtain �(0) the vector of least squares estimators 

IteratIon steps  For t = 0, 1,… , obtain �(t+1) from (16). Continue the iteration 
until convergence. Denote the value of �(t+1) after convergence 
by �̂

(∞)
.

The estimator �̂
(∞)

0
 is an approximation of the local polynomial expectile regres-

sion estimator �̂0 of ��(x) , that is obtained via the iterative procedure.
A crucial quantity in (16) is the matrix � T

D
�(t)��D which we denote as �(t)

n
 . 

Denote the unit vector �j+1 = (0,… , 0, 1, 0,… , 0) T , the (p + 1) × 1 vector with 1 
on the (j + 1) st position, and zero’s everywhere else. At the iteration step t, the 
estimator �̂(t+1)

j
 of �j is then given by

with j = 0,… , p and where

is a (p + 1) × (p + 1) matrix with

Example 1 (Local linear case.)
If p = 1, we have to minimize

(16)�(t+1) = (� T
D
�

(t)
��D)

−1
�

T
D
�

(t)
��.

(17)� (0) = argmin
�0,…,�p

n∑
i=1

(
Yi −

p∑
j=0

�j(Xi − x)j

)2

.

�
(t+1)

j
= �

T
j+1

�̂
(t+1)

= �
T
j+1

(
�
(t)
n

)−1
�

T
D
�

(t)
��

�
(t)
n

= �
T
D
�

(t)
��D =

⎛
⎜⎜⎜⎜⎝

S
(t)

n,0
S
(t)

n,1
⋯ S(t)

n,p

S
(t)

n,1
S
(t)

n,2
⋯ S

(t)

n,p+1

⋮ ⋮ ⋱ ⋮

S(t)
n,p

S
(t)

n,p+1
⋯ S

(t)

n,2p

⎞⎟⎟⎟⎟⎠

S
(t)

n,j
=

n∑
i=1

r
(t)

i
(�)K

(
Xi − x

h

)
(Xi − x)j and j = 0,… , p.
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with respect to �0 and �1 . In this case we have that

with T (t)

n,�
=
∑n

i=1
r
(t)

i
(�)K

�
Xi−x

h

�
(Xi − x)�Yi for � = 0, 1.

Therefore, the estimators �̂ = (�̂0, �̂1)
T can be computed by resolving iteratively

which corresponds to the expression for the (approximate) estimators given by Yao 
and Tong (1996).

Remark 1 Since the minimizer of (12) is obtained approximatively via the iterative 
procedure explained above, this raises two important question: (i) does the itera-
tive procedure converge?; (ii) when it converges, to �̂

(∞)
 say, is then �̂

(∞)
 equal to 

�̂ the minimizer of (12)? The answer to both questions is affirmative. The answer 
to the second question follows from the fact that the function Q�(⋅) defined in (2) is 
a convex function. Indeed, due to the convexity of the expectile loss function, both 
problems, the optimization problem (12) and the solution to equation (15), after con-
vergence, lead to the same unique quantity, i.e. �̂

(∞)
= �̂ . Regarding the first ques-

tion, we would like to remind that the iterative procedure behind (local polynomial) 
expectile estimation is an iterative reweighted least squares type of algorithm. For 
such algorithms, the convergence has been studied. See, for example, Huber and 
Ronchetti (2009,  Section  7.8.3). See also, among others, Wolke and Schwetlick 
(1988) for a convergence analysis regarding iteratively reweighted least squares 
algorithms involving convex criterion functions.

3.3  Practical implementation issues

When using iterative procedures in practice, some stopping rule is needed. Since 
we know from Remark 1 that the iterative algorithm converges, one could set a 
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maximum number of iterations and stop the iteration process when this maximum 
number of iterations is reached. Another more interesting approach is to quantify the 
difference between the estimator at two consecutive iteration steps, i.e. by evaluating 
the difference between �(t+1) and �(t) . In our practical implementation, when focus-
ing on estimation of ��(x) , we used as a stopping criterion

which was inspired by the computer calculation precision.
The iterative procedure described in Sect. 3.2 requires a starting vector �(0) . One 

possibility is to use the least squares polynomial regression estimator (17) as a start-
ing vector. Other options to be used as starting vectors include a polynomial median 
regression estimator or a polynomial � th quantile regression estimator, which are 
obtained by replacing in (17), the squared loss by the appropriate check loss func-
tions R0.5(⋅) or R�(⋅), respectively. In a simulation study in Section S3.5 (in the Sup-
plementary Material), we investigated the impact of these different choices of start-
ing vector �(0) . In general, it seems that the choice of starting point has very little 
influence. We therefore opted for the simple choice in (17), for which an analytical 
expression for �(0) is available.

In our simulation study, we found that with the stopping rule as in (18), mostly 
only two iterations where needed, and this no matter which method was used to 
choose the starting point �(0) . See Section S3.5.

4  Asymptotic results

In this section, we establish an asymptotic normality result for the local polynomial 
expectile regression estimators of ��(x) and its derivatives up to order p. Before stat-
ing the assumptions we introduce some notations. The moments of the kernel K and 
its square K2 are denoted by, respectively,

Further we denote

Lastly we define

(18)
|||�

(t+1)

0
− �

(t)

0

||| < 10−6,

�j = ∫ ujK(u)du and �j = ∫ ujK2(u)du with j = 0, 1,… , 2p.

� =

⎛
⎜⎜⎜⎝

�0 �1 ⋯ �p

�1 �2 ⋯ �p+1

⋮ ⋮ ⋱ ⋮
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⎞
⎟⎟⎟⎠
, �̃ =

⎛
⎜⎜⎜⎝
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⋮ ⋮ ⋱ ⋮
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⎞
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⎛
⎜⎜⎜⎝

�0 �1 ⋯ �p
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⋮ ⋮ ⋱ ⋮
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⎟⎟⎟⎠
= (�j+l)0≤j,l≤p, cp =

⎛⎜⎜⎝
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⋮
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⎞
⎟⎟⎠
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⋮

�2p+2

⎞
⎟⎟⎠
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• �(t|x) = EY|X
[
Q�(Y − ��(X) + t)|X = x

]
• �(1)(t|x) = ��(t|x)

�t
= 2EY|X

[
L�(Y − ��(X) + t)|X = x

]

• 𝜑(2)(t|x) = 𝜕2𝜑(t|x)
𝜕t2

= 2(1 − 𝜔)P[Y ≤ 𝜏𝜔(X) − t|X = x] + 2𝜔P[Y > 𝜏𝜔(X) − t|X = x]

• 𝛾(𝜔, x) = 𝜑(2)(0|x) = 2(1 − 𝜔)P[Y ≤ 𝜏𝜔(X)|X = x] + 2𝜔P[Y > 𝜏𝜔(X)|X = x] .

The following notations and assumptions ((A1)-(A6)) are needed for the theoreti-
cal results. 

 (A1) The quantity �(2)(t|z) , regarded upon as a function of t, is continuous in a neigh-
bourhood of the point 0, uniformly for z in a neighbourhood of x. Furthermore, 
we assume that �(t|z),�(1)(t|z) and �(2)(t|z) , as functions of z, are bounded and 
continuous in a neighbourhood of x for all small t and that �(0|x) ≠ 0.

 (A2) The density function fX(.) of X has a continuous first derivative and fX(x) > 0.
 (A3) The function fY|X(y|x) is continuous in x for each y. Moreover, there 

exist positive constants � and � and a positive function, H(y|x), such that 
sup|xn−x|≤� fY|X(y|xn) ≤ H(y|x) and that 

 (A4) The function ��(.) has a continuous (p + 2) th derivative.
 (A5) The kernel K(.) ≥ 0 is a continuous density function having a bounded support.
 (A6) When estimating � (j)� (⋅) and in case p − j is even, we require that nh3 → ∞ , as 

n → ∞.

Theorem  1 Under Assumptions (A1)—(A6) and if h → 0 and nh → ∞ as n → ∞ . 
Then, for x ∈ {y ∶ fX(y) > 0} , for each j = 0,… , p,

with

with �u =
(
1, u, u2,⋯ , up

)T , det(�) is the determinant of � and adj(�) is the adjugate 
matrix of �.

∫
|||||
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The proof of Theorem 1 is provided in Appendix.
From Theorem  1, we obtain approximations of the asymptotic variance and 

bias, conditionally upon X = {X1,… ,Xn} . We find

and the asymptotic expression for the conditional bias is

So far we only assumed that the kernel function K is a probability function. Further 
simplifications in the asymptotic bias are obtained when K is in addition a symmet-
ric density. See the following remark.

Remark 2 Suppose we have that the kernel K(.) ≥ 0 is a continuous, symmetric den-
sity function with a bounded support, hence satisfying

Since K is symmetric, �2j+1 = 0 for j = 0, 1,⋯ , p , the matrices � and �̃ have the fol-
lowing structure

with ∗ denoting any nonzero number. The matrix �−1 has a structure similar to that 
of � . The vectors cp and c̃p contain zero’s at alternating positions.

Using the particular structures of these matrices, we have to distinguish two dif-
ferent cases:

• p − j odd 

(19)
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−1
�
∗
�
−1
�j+1(j!)

2
∫ (

2L�(y − ��(x))
)2
fY|X(y|x)dy

�2(�, x)fX(x)

1

nh1+2j

+ oP

(
1

nh1+2j

)

≡ApVar(x) + oP

(
1

nh1+2j

)
,
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X
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+ oP(h
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≡ApBias(x) + oP(h
p+2−j).

∫
+∞

−∞

K(z)dz = 1 and ∫
+∞

−∞

zK(z)dz = 0.

� =
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∗ 0 ∗ 0 ⋯

0 ∗ 0 ∗ ⋯

∗ 0 ∗ 0 ⋯

⋮ ⋮ ⋮ ⋮ ⋱
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• p − j even 

Remark 3 In the local linear case ( p = 1 ) and under the extra assumption of Remark 
2, we have

The asymptotic conditional bias of �̂�(x) is

and of �̂(1)
�
(x) is

The asymptotic conditional variances of �̂�(x) and �̂(1)
�
(x) are

Yao and Tong (1996) obtained the asymptotic normality result for the local linear 
case ( p = 1 ) in a setting of strictly stationary processes. Our result for �̂�(⋅) reduces 
to the result in Yao and Tong (1996, see Theorem 1). For the estimation of the first 
derivative � (1)

�
(⋅) some caution is needed, since then p − j = 0 and even, and the 

approximate bias expression is as in Remark 2 in case of symmetric kernels. The 
result in Yao and Tong (1996, see Theorem 1) for �̂(1)

�
(⋅) shows a flaw here since for 

a symmetric kernel the term ∫ u3K(u)du = 0.

Remark 4 When using the iterative procedure in Sect. 3.2, this procedure is imple-
mented with a stopping rule. See Sect.  3.3. One may then wonder whether the 
asymptotic normality result that is established in Theorem 1 also holds for the esti-
mator �(t) for a fixed number of iterations t, and thus for the approximation of the 
minimizer of (12) obtained via the iterative procedure described in Sect. 3.2. The 
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asymptotic normality result indeed continues to hold for the approximate solution. 
This is illustrated in Section S3.6 in the Supplementary Material, via some simula-
tions, and is argued from theoretical side in Sect. 8.

5  Bandwidth selection

In this section, we focus on the bandwidth selection problem. For simplicity, we restrict 
the discussion to the case that K is a symmetric kernel and p − j is odd. Firstly, we 
derive an expression for an optimal bandwidth. Secondly, we discuss a rule-of-thumb 
(ROT) bandwidth selector. Thirdly, we turn to a location-scale model (7) and discuss 
bandwidth selection under this specific setting.

5.1  A theoretical optimal bandwidth choice

From the approximations of the asymptotic conditional bias and variance derived in 
Sect. 4, we can obtain an expression for a theoretical optimal bandwidth. Based on the 
approximate bias and variance expressions in (19) and (20), we compute the approxi-
mate mean square error (AMSE),

and the approximate weighted mean integrated square error (AMISE),

where k(⋅) ≥ 0 is some weight function. To minimize AMISE , looked upon as a 
function of h, we differentiate (21) with respect to h, put this derivative equal to zero 
and obtain

This leads to the theoretical optimal constant bandwidth

AMSE
(
�̂(j)
�
(x)
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with

Values of the constant Cp,j(K) for various kernels K and values p and j were tabulated 
in Fan and Gijbels (1996, see Table 3.2, page 67). Note that the optimal bandwidth 
in (22) depends on several unknown quantities � (p+1)� (x) , �(�, x) , fX(x) and fY|X(⋅|x).

5.2  Rule‑of‑thumb (ROT) bandwidth selector

We firstly discuss a practical rule-of-thumb (ROT) bandwidth selection procedure that 
is in general applicable. For this, we follow the approach exposed in Fan and Gijbels 
(1996).

By taking the weight function k(x) = k0(x)fX(x) with k0(⋅) ≥ 0 a chosen weight 
function, we obtain from (22)

A rule-of-thumb bandwidth selector is then obtained via the following procedure.

• Fit globally a parametric polynomial model of order p + 4 , and obtain the fitted 
model 𝜏𝜔(x) = �̌�0 + �̌�1x + �̌�2x

2 +⋯ + �̌�p+4x
p+4.

• Replace the unknown quantities EY|X[L2�(Y − ��(X))|X = x] and 

 in (23) by the estimated unconditional sample versions: 

(22)

hopt = Cp,j(K)

⎛⎜⎜⎜⎜⎜⎝

�
∫ �

2L�(y − ��(x))
�2
fY�X(y�x)dy

�2(�, x)fX(x)
k(x)dx

� (�(p+1)
�

(x))2k(x)dx

⎞⎟⎟⎟⎟⎟⎠

1∕(2p+3)

n−1∕(2p+3)

Cp,j(K) =

⎛⎜⎜⎜⎝

(p + 1)!(1 + 2j)�T
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�
�
T
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�−1cp

�2

⎞⎟⎟⎟⎠

1∕(2p+3)

.

(23)hopt = Cp,j(K)

⎛⎜⎜⎜⎜⎝

∫
EY�X[4L2�(Y − ��(X))�X = x]

�2(�, x)
k0(x)dx
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�

(x))2k0(x)fX(x)dx

⎞⎟⎟⎟⎟⎠
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𝛾(𝜔, x) =2(1 − 𝜔)P[Y ≤ 𝜏𝜔(X)|X = x] + 2𝜔P[Y > 𝜏𝜔(X)|X = x]
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• This leads to the following “rough” approximation of the optimal bandwidth in 
(22) 

 in which the denominator can be estimated by 

• The rule-of-thumb (ROT) bandwidth selector is then defined as 

Although some of the above estimations are based on very rough approximations, it 
is seen from the simulation study that the resulting estimated expectile curves using 
this general ROT bandwidth selector are of very good quality.

5.3  Bandwidth selection under a location‑scale model

When we are in a location-scale model (7), there are two important observations 
to be made: (i) the expression for the � th expectile of Y given X in (9); and (ii) the 
simplified expression for the one-to-one mapping in (10). This leads to three band-
width selectors under a location-scale model: a first one that only exploits fact (i); a 
second bandwidth selector in which both facts (i) and (ii) are exploited; and a third 
bandwidth selector in which we only exploit (ii), and link up to bandwidth selection 
for quantile regression, relying on the work of Yu and Jones (1998).

1
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5.3.1  Rule‑of‑thumb (ROT) bandwidth selector (without the one‑to‑one mapping)

One of the unknown quantities appearing in (22) is �(�, x).
In a location-scale model this quantity can be simplified. Indeed, by exploiting that 

Y = m(X) + �(X)� and in particular (9) we obtain

since � and X are independent. If we know the distribution of �, then we simply 
know the quantity �(�) . However, if we do not know the distribution of � we need to 
estimate �(�) . From the location-scale model and (9), it follows that

and applying a conditional version of (3) it is clear that ��,�̃ = 0 . A rough way to 
estimate P

(
� ≤ ��,�

)
 is then to use estimates for �̃  which are provided by the esti-

mated residuals from a global parametric polynomial fit as in Sect. 5.2:

A rough estimator for P
(
� ≤ ��,�

)
 is then n−1

∑n

i=1
�{𝜖i ≤ 𝜏𝜔(𝜖i)} . See Section S5 

in the Supplementary Material for some additional explanation regarding this. Sub-
sequently, an estimator for �(�) is

Note that the difference between this estimator for �(�) and the estimator for �(�, x) 
in (24) is that here we replace 0 by 𝜏𝜔(𝜖i) , which is possibly different for different 
index values i.

The above considerations lead to the bandwidth selector

5.3.2  Rule‑of‑thumb (ROT) bandwidth selector (with the one‑to‑one mapping)

In case of a location-scale model, we can also further exploit the simple expression for 
the one-to-one mapping in (10) between quantiles and expectiles which is independent 
of the distribution of X. With this relation �(�(�), x) can be written as

(25)

𝛾(𝜔, x) = 2(1 − 𝜔)P{Y ≤ 𝜏𝜔(x)|X = x} + 2𝜔P{Y > 𝜏𝜔(x)|X = x}

= 2
{
(1 − 𝜔)P

(
𝜖 ≤ 𝜏𝜔,𝜖|X = x

)
+ 𝜔P

(
𝜖 > 𝜏𝜔,𝜖|X = x

)}
= 2

{
(1 − 𝜔)P

(
𝜖 ≤ 𝜏𝜔,𝜖

)
+ 𝜔P

(
𝜖 > 𝜏𝜔,𝜖

)} ≡ 𝛾(𝜔),

�̃ = Y − ��(X) = �(X)
[
� − ��,�

]
,

𝜖i = Yi − 𝜏𝜔(Xi), for i = 1,⋯ , n.

�𝛾(𝜔) = 2

{
(1 − 𝜔)

1

n

n∑
i=1

�{𝜖i ≤ 𝜏𝜔(𝜖i)} + 𝜔
1

n

n∑
i=1

�{𝜖i > 𝜏𝜔(𝜖i)}

}
.

(26)ȟ
[2]
opt = Cp,j(K)

⎛⎜⎜⎜⎝

1

n

∑n

i=1
4L2

𝜔
(Yi − 𝜏𝜔(Xi)) ∫ k0(x)dx

�
�𝛾(𝜔)

�2 1
n

∑n

i=1

�
dp+1𝜏𝜔(Xi)

dxp+1

�2

k0(Xi)

⎞⎟⎟⎟⎠

1∕(2p+3)

n−1∕(2p+3).
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with �(�) as defined in (10).
If we know the distribution of � we know the precise relationship �(�) . Taking 

as before k(x) = k0(x)fX(x) the practical version of (22) becomes

Remark 5 If we do not know the distribution of � we can estimate the relation �(�) 
which means that for a given � we need to find the corresponding � , which we 
denote by �̂ . In Section S5 in the Supplementary Material, we argue, via approxima-
tion of (10), that the approximate �̂ is obtained by resolving

with F̌−1
𝜖
(�𝛼) the �̂ th sample quantile of the residuals (of the global parametric poly-

nomial fit). Using this �(�̂) , then leads to the data-driven bandwidth selector

5.3.3  Quantile‑based bandwidth selector

In a location-scale model when we have the simple one-to-one mapping in (10), 
we can also exploit the link between expectiles and quantiles by relying on data-
driven bandwidth selectors that have been proposed for quantile regression. 
Indeed, we can use the one-to-one mapping and then working with quantiles and 
not expectiles. The minimizing function of (11) becomes

𝛾(𝜔(𝛼), x) = 2
(
(1 − 𝜔(𝛼))P{Y ≤ 𝜏𝜔(𝛼)(x)|X = x} + 𝜔(𝛼)P{Y > 𝜏𝜔(𝛼)(x)|X = x}

)

= 2
(
(1 − 𝜔(𝛼))P{Y ≤ q𝛼(x)|X = x} + 𝜔(𝛼)P{Y > q𝛼(x)|X = x}

)
= 2(𝜔(𝛼)(1 − 2𝛼) + 𝛼),

ȟopt = Cp,j(K)

⎛⎜⎜⎜⎝

1

n

∑n

i=1
L2
𝜔(𝛼)

(Yi − 𝜏𝜔(𝛼)(Xi)) ∫ k0(x)dx

(𝜔(𝛼)(1 − 2𝛼) + 𝛼)2
1

n

∑n

i=1

�
dp+1𝜏𝜔(𝛼)(Xi)

dxp+1

�2

k0(Xi)

⎞⎟⎟⎟⎠

1∕(2p+3)

n−1∕(2p+3).

(27)𝜔(�𝛼) =

F̌−1
𝜖
(�𝛼)�𝛼 −

1

n

n∑
i=1

𝜖i �{𝜖i − F̌−1
𝜖
(�𝛼) ≤ 𝜏𝜔(𝜖i)}

F̌−1
𝜖
(�𝛼)[2�𝛼 − 1] + 2

1

n

n∑
i=1

𝜖i �{𝜖i − F̌−1
𝜖
(�𝛼) > 𝜏𝜔(𝜖i)} −

1

n

n∑
i=1

𝜖i,

(28)

ȟ
[3]
opt = Cp,j(K)

⎛⎜⎜⎜⎝

1

n

∑n

i=1
L2
𝜔(�𝛼)

(Yi − 𝜏𝜔(�𝛼)(Xi)) ∫ k0(x)dx

�
𝜔(�𝛼)(1 − 2�𝛼) + �𝛼

�2 1
n

∑n

i=1

�
dp+1𝜏𝜔(�𝛼)(Xi)

dxp+1

�2

k0(Xi)

⎞⎟⎟⎟⎠

1∕(2p+3)

n−1∕(2p+3).

(29)
n∑
i=1

Q�(�)

(
Yi −

p∑
j=0

�j(Xi − x)j

)
K

(
Xi − x

h

)
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with �(�) as in (10).
The estimate of ��(x) is �̂0 and the estimate of � (j)� (x) =

dj��(x)

dxj
 be �̂jj! . However, 

with the particular relationship between expectiles and quantiles we have

Then, the minimization problem of the � th conditional expectile of Y given X = x 
can be seen as a minimization problem to find the � th conditional quantile of Y 
given X = x.

If the problem is seen as a minimization problem for the � th conditional quantile of 
Y given X = x , we can rely on bandwidth selectors that have been developed for quan-
tile regression, such as the one proposed by Yu and Jones (1998) for the local linear 
quantile regression ( p = 1 ), which was extended to the general local polynomial case in 
Gijbels et al. (2019). This results into: 

step 1  Use ready-made and sophisticated methods to select hmean , the optimal 
bandwidth choice for mean regression mean estimation (i.e. estimation of 
m(⋅)).

step 2  Compute 

where �(⋅) and �(⋅) are, respectively, the standard normal density and cumulative 
distribution function.

In this case when the distribution of � is known, we refer to (30) as ȟ[5]opt.
If we do not know the distribution of � , we proceed as in in Remark 5 to obtain an 

estimate for � in �(�) . In this case, we denote the bandwidth according to (30) as ȟ[4]opt.

5.4  Location‑scale model and approach inspired by Efron (1991)

Using minimization problem (29), we can yet find another way to compute 
�̂(�) when the distribution of � is not known, following Yao and Tong (1996) 
and relying on an approach of Efron (1991). The estimate of �(�) , denoted by 
�̂(�) ∈ (0, 1) is determined in such a way that the proportion of data in the sample 
{(Xi, Yi), 1 ≤ i ≤ n} lying below the regression curve {y = q̂�(x) ∶ x ∈ ℝ} equals � . 
For a grid of �-values, between 0 and 1, we vary the values of � until that the pro-
portion of the sample lying below the regression curves is equal to � (the value of � 
is fixed). In this case, the bandwidth used is h� (see (30)). This approach is of a very 
different nature. It results into a different estimation procedure in case of a location-
scale model with unknown error distribution.

�j =
�
(j)

�(�)
(x)

j!
=

1

j!

djq�(x)

dxj
.

(30)h� = hmean

(
�(1 − �)

(�
(
�−1(�)

)
)2

)1∕(2p+3)

,
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6  Simulation study

We conducted a simulation study to investigate the finite sample performance of 
the local polynomial expectile estimator and the different practical bandwidth 
selectors in Sect.  5. For this study, we restrict to local linear fitting ( p = 1 ) for 
estimating the expectile function ��(⋅) ( j = 0 ). A main focus will be on the qual-
ity of the bandwidth selectors.

6.1  Simulation models and settings

In the simulation study, we considered 3 simulation models:

• Model 1: a homoscedastic location-scale model 

• Model 2: a heteroscedastic location-scale model 

• Model 3: a non-location-scale model, in which the conditional density of Y given 
X = x follows a gamma distribution (Y ∣ X = x) ∼ � (exp(5x), exp(3x)) , with con-
ditional density function 

Model 1 is inspired by a model considered in Fan and Gijbels (1996), and Model 
2 by a heteroscedastic regression model in Zhang and Mei (2008). Figure 3a, b 
shows a sample of size n = 100 of, respectively, Model 1 and Model 2, together 
with the true expectiles curves, shown for � values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.8 and 0.9. Notice that in the homoscedastic Model 1, the expectile curves are 
parallel, whereas this is not the case in the heteroscedastic Model 2. Figure  8a 

Y = sin(2X) + 2 exp(−16X2) + 0.3� with X ∼ U(−3, 3) and � ∼ N(0, 1).

Y = 1.5 + 2X3 + 3 sin(5X) + exp(0.9X)� with X ∼ U(0, 1) and � ∼ N(0, 1).

fY|X=x(y|x) = exp(3x)exp(5x)

� (exp(5x))
yexp(5x)−1 exp(− exp(3x)y), with X ∼ U(0, 1).
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(b)Model 2.(a)Model 1.

Fig. 3  Scatterplot and true expectile curves for Models 1 and 2
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depicts the scatterplot of a sample of size n = 100 from Model 3, with the true 
expectile curves.

For all models, we take samples of size n = 100 , unless differently indicated. 
For each sample, we calculate the local linear expectile regression estimate �̂0(x) , 
for each point in a grid of 200 equispaced grid-values denoted by {x1,… , x200} on 
the domain (a, b) of the variable X. For the local linear method, we use a Gauss-
ian kernel K(u) = (

√
2�)−1e−

1

2
u2 and take k0(⋅) the indicator function on [−2.8, 2.8] 

for Model 1, and on [0.1, 0.9] for Models 2 and 3.
For each of the simulation models, we investigate the performance of the band-

width selection methods, discussed in Sect. 5. Under a location-scale model, we 
can consider two situations: when the distribution of � is known or not. So for 
the bandwidth selectors in Sects. 5.3.1, 5.3.2 and 5.3.3 we could consider these 
two situations. When we know the error distribution the quantile �(�) in (25) is 
known and the bandwidths from Sects. 5.3.1 and 5.3.2 coincide. We present sim-
ulation results that investigate the impact of the error distribution to be known or 
not for the rule-of-thumb (ROT) type of bandwidth selectors in Sects. 5.3.1 and 
5.3.2, and the quantile-based bandwidth selector in Sect. 5.3.3. A summary of the 
investigated bandwidth selectors is presented in Table 1, together with the abbre-
viations used when presenting the results. For the data driven choice for hmean in 
the quantile-based method in Sects. 5.3.3 and 5.4, we used the plug-in bandwidth 
selector for mean regression from Fan and Gijbels (1996) that is implemented in 
the R package locpol under the command pluginBw.

We draw 100 samples of the indicated sizes for each model. For each sample, 
we calculate the local linear expectile regression estimator �̂�(⋅) for ��(⋅) using 
the specified bandwidth selector/method. We present results for five values of � : 
0.1, 0.3, 0.5, 0.7 and 0.9. For each value of � and each method (see Table 1), we 
compute for each estimator �̂�(⋅) the approximate integrated square error (AISE): 

Table 1  Different data-driven bandwidth selectors and methods

Method Described 
in section

Distribution of � Data-driven bandwidth Abbreviation

General rule-of-thumb 5.2 ȟ
[1]
opt

 in (24) GenROT

Location-scale based ROT 5.3.1 Unknown ȟ
[2]
opt

 in (26) LSROTWithout

   without one-one map-
ping

Location-scale based ROT 5.3.2 Unknown ȟ
[3]
opt

 in (28) LSROTWith

   with one-one mapping
Location-scale-based ROT Known ȟ

[2]
opt

 in (26) LSROT

But with (25)
Location-scale quantile-

based
5.3.3 Unknown ȟ

[4]
opt

LSQBased

Location-scale quantile-
based

Known ȟ
[5]
opt

LSQBasedKnown

Approach of Efron (1991) 5.4 Unknown ȟ
[4]
opt

LSEfron
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AISE =
b−a

200

∑200

j=1

�
�̂�(xj) − ��(xj)

�2
. For the method in Sect.  5.4, we present 

results for � ∈ {0.1945, 0.3680, 0.5000, 0.6320, 0.8055} , since these � values cor-
respond to the theoretical � values 0.1, 0.3, 0.5, 0.7 and 0.9, respectively (know-
ing the distribution of �).

For each bandwidth selector/method in Table  1, we present a boxplot of the 
AISE-values. Furthermore, we depict three representatives of the 100 estimated 
curves as follows. We order the 100 values of AISE, and depict the estimates cor-
responding to the 0.05th percentile, the 0.50th percentile (i.e. the median) and the 
0.95th percentile of the AISE-values. These are in the sequel called the three repre-
sentative estimated curves.

6.2  Simulation results

6.2.1  Performances of practical bandwidth selectors

We first compare the qualities of the different data-driven bandwidth selectors in 
Sects.  5.2 and 5.3 with their (approximate) theoretical counterparts (denoted by 
h opt ) in, respectively, (22) and (30), where the value of the theoretical optimal hmean 
is as can be found in Fan and Gijbels (Fan and Gijbels 1996, see expression (3.21) 
on page 68). We take � = 0.3 for this illustration. To give an idea about the behav-
iour of the practical bandwidth selectors with increasing sample size, we here also 
consider three sample sizes n = 100 , n = 500 and n = 1 000 . For each simulated 
sample, we calculate the different data-driven bandwidth selectors.

We investigate the performances of the various practical bandwidth selectors for 
Models 1—3. For Models 1 and 2, which are location-scale models, we can com-
pare the bandwidth estimates with the theoretical optimal bandwidths h opt . Model 
3, however, is not a location-scale model, and hence for this model we have no the-
oretical optimal value to compare with. Due to space limitations, we only present 
here results for Model 2, for sample sizes n = 100 and n = 1 000 . Similar results for 
Model 1 (for sample sizes n = 100 , n = 500 and n = 1 000 ), and for Model 3 (for 
sample sizes n = 100 and n = 1 000 ) are provided in Section S3.1 in the Supplemen-
tary Material.

For all bandwidth selectors, we present density estimates of these data-driven 
bandwidth selectors based on their 100 realizations for the 100 simulated sam-
ples. For a clear graphical presentation, we present on the horizontal axis the val-
ues of ĥ − h opt with ĥ the considered data-driven bandwidth selector (for ȟ[k]opt for 
k = 1, 2, 3, 4, 5 ) and h opt the respective optimal bandwidth selector.

Figures 4 and 5 depict kernel density estimates of ȟ[k]opt − h opt for k = 1, 2, 3 , for 
Model 2, for, respectively, the sample sizes n = 100 and n = 1 000 . For the pur-
pose of visual comparison, the range of the vertical and horizontal axes is kept the 
same for the two plots, and we indicate with a vertical line the position of the point 
zero. Firstly, the density estimates of the three ROT bandwidths selectors GenROT, 
LSROTWith and LSROT are quite comparable. Remarkable is that using knowl-
edge of the error distribution (in LSROT) or not makes little difference. Secondly, 



364 C. Adam, I. Gijbels 

1 3

the bandwidth selector LSROTWithout is further away from the theoretical band-
width h opt . Thirdly, all bandwidth selectors improve with increasing n, but the con-
vergence of them to h opt is moderately slow: for sample size n = 100 , the difference 
ĥ − h opt is, for GenROT, LSROTWith and LSROT, concentrated around approxi-
mately −0.008 , and for n = 1 000 this mode position has shifted closer to zero.

What is of course crucial is to see whether the bandwidth selectors lead to a 
good performance for the expectile estimator �̂�(⋅) . We investigated this and present 
results regarding this aspect for Models 2 and 3 in, respectively, Sects.  6.2.2 and 
6.2.3. Similar results for Model 1 are discussed in Section S3.2 in the Supplemen-
tary Material.

6.2.2  Simulation results for Model 2

Boxplots of the AISE-values of the local linear expectile regression estimates for 
Model 2 for all methods in Table 1, for the considered values of � , are provided 
in Fig. 6. In general the more extreme expectiles (i.e. for � = 0.1 and � = 0.9 ) are 
(a bit) less well estimated. The (red) dot in each boxplot presents the mean of the 
AISE-values. The performances of the local linear estimation method with any of 
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Fig. 4  Model 2. Kernel density estimates of the three ROT bandwidth selectors in Sects.  5.2 and 5.3, 
for estimation of �0.3(⋅) . The vertical lines indicates the zero position. Sample size n = 100 (left) and 
n = 1 000 (right)
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without assuming knowledge of the distribution of � , for estimation of �0.3(⋅) . The vertical lines indicates 
the zero position. Sample size n = 100 (left) and n = 1000 (right)
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the rule-of-thumb (ROT) bandwidth selectors are quite comparable (see the first 
four boxplots). Furthermore, having to estimate the error distribution (compare the 
grey-filled boxplots with the appropriate non-filled boxplots), only has little impact. 
From the overall slightly larger AISE-values (compared to those in Figure S.6), we 
see that the estimation task for Model 2 is a bit more difficult than for Model 1 (See 
Section S3.2). Furthermore, for Model 2 there is a clear superior performance of the 
bandwidth selection procedures in Sects.  5.2, 5.3.1 and 5.3.2. The quantile-based 
bandwidth selectors in Sect.  5.3.3 perform the worst among all methods, even in 
case the distribution of the error � is known. The LSEfron method performs bet-
ter for this simulation model, but it performs less than the bandwidth selectors in 
Sects. 5.2, 5.3.1, and 5.3.2. In Table S.1 in the Supplementary Material, we provide 
average computing times for the local linear regression expectile estimator (for vari-
ous values of � ) for the several bandwidth selectors (and methods) in Table 1. From 
Table S.1, it can be seen that the local linear expectile estimator using the LSEfron 
implementation approach has a (too) high computational cost. Therefore, it is not 
included in our further summary of simulation results.

Figure 7 depicts the three representatives of the estimated curves for the expectile 
curve �0.3(⋅) under Model 2, using the bandwidth selectors GenROT and LSQBased. 
The estimated curve with the GenROT bandwidth appears as slightly smoother.
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Fig. 6  Model 2. Boxplots of the AISE-values from 100 simulated samples of size n = 100 , using the 
different methods listed in Table 1. Grey-filled boxplots are for the cases when we assume the error dis-
tribution to be known
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6.2.3  Simulation results for Model 3

A sample of size n = 100 together with the GenROT data-driven bandwidth imple-
mentation of the expectile curves is depicted in Fig.  8b. We can observe that the 
estimated expectile curves seem to be a bit less ‘regular’ than the true curves.

Since Model 3 is a non-location-scale model, we can use this model to investigate 
the loss in efficiency when using location-scale based data-driven bandwidth selec-
tors (obviously all without knowing the error distribution). See Fig. 9 for boxplots 
of the AISE-values. Among the methods that are exploiting (wrongly) a location-
scale modelling setting, the two ROT type methods perform still quite well, as well 
as the quantile-based method LSQBased. However, the latter method is perform-
ing a bit less, with slightly higher mean AISE-values and a slightly larger variance. 
The performance of the GenROT method which is theoretically the only appropriate 
one is comparable to these for the other ROT type of methods, in particular that of 
LSROTWith. In Figure S.8 in the Supplementary Material, the reader can find a 
graphical presentation of the true �0.3(⋅) expectile curve together with the three rep-
resentative estimates, for the four methods for which boxplots are shown in Fig. 9.
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Fig. 7  Model 2. True expectile curve �0.3(⋅) (in black) and three representative local linear estimates, 
based on samples of size n = 100 : 0.05th AISE-percentile (light-grey; color blue), 0.5th AISE-percen-
tile (dashed line), 0.95th AISE-percentile (grey; color ochre yellow), using, respectively, the bandwidth 
selection method GenROT (left panel) and the LSQBased method (right panel) (color figure online)
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Fig. 8  Model 3. a. True expectile curves; and b estimated expectile curves, based on a sample of size 
n = 100 , using the GenROT bandwidth selector



367

1 3

Local polynomial expectile regression  

Keeping in mind the results for the three simulation models, we recommend to 
use any of the rule-of-thumb bandwidth selectors.

7  Real data illustration

We apply the studied method to real data on the Head Circumference of Dutch Boys. 
The data are coming from the Fourth Dutch Growth Study, see Fredriks et al. (2000), 
which is a cross-sectional study that measures growth and development of the Dutch 
boys population between the ages 0 and 21 years and contains 7 040 observations. 
The X values are the square root of the age, and the Y values are the head circumfer-
ence (in cm). There are 1 000 different observations for X. The data are to be found 
in the R package gamlss. Since for a real data set, one does not know whether a 
location-scale modelling background would be appropriate or not, one would prefer 
to work with the GenROT bandwidth selector in Sect. 5.2. For comparison purpose, 
we include the estimates using the LSQBased method.
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Fig. 9  Model 3. Boxplots of the AISE-values from 100 simulated samples of size n = 100 , using meth-
ods listed in Table 1

Table 2  Head circumference 
data. Data-driven bandwidth 
values

� 0.1 0.3 0.5 0.7 0.9

GenROT 0.1059 0.0961 0.0944 0.0956 0.1052
LSQBased 0.0951 0.0787 0.0741 0.0742 0.0760
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Scatterplots of the data together with the estimated expectile regression curves 
for � equal to 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 and 0.99 are shown in Fig. 10. 
In Table 2, we give the values of the data-driven bandwidths, for five considered � 
values. Bandwidth values from the GenROT method are mostly larger than the val-
ues from the LSQBased bandwidth selector. The estimated expectile curves appear 
as quite parallel, which might indicate that a location-scale model could possibly be 
appropriate for the modelling. The data clearly show heteroscedasticity.

From the estimated expectile curves, one can get some insights. For example, if 
we focus on Dutch boys of 1 and 4 years old, we see that the estimated 0.3-expectile 
for the Dutch boys of 1 year old equals 46.64. So the average distance from the data 
Yi (the head circumference) below 46.64 to 46.64 is 30% . In comparison, for Dutch 
boys of 4 years old, the estimated 0.3-expectile is 50.57, which is an increase of 
about 8.5% when compared to the group of 1 year old boys. So the individual differ-
ences are increasing when passing from one group to the other.

Additional real data applications are provided in Section S4 of the Supplemen-
tary Material.

8  Further discussion and conclusion

This paper contributes with a detailed study of local polynomial expectile regres-
sion. The unique solution to the optimization problem is found by an iterative pro-
cedure, which results into consecutively solving reweighted least squares problems. 
As such the way to proceed is similar as for expectile estimation in the linear case, 
introduced by Newey and Powell (1987). This is due to the fact to local polynomial 
fitting can conveniently be viewed as a weighted least squares problem. The above 
arguments are also at the heart of the fact that the iterative algorithm converges to 
effectively the minimizer of (12).

Although we do not establish a formal theoretical result for the approximate solu-
tion �(t) (with t a fixed (but random) number of iterations), we would like to men-
tion that we expect that such a result could be proven formally following the ideas 
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Fig. 10  Head circumference data. Estimated expectile regression curves for ��(⋅) for � taking values 0.0
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LSQBased (right panel) bandwidth selectors
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provided in Chen and Shao (1993). See Theorem 3 in that paper, which states such 
a result for the iterative weighted least squares estimators in a linear model context. 
A key result to get to this is Theorem 1 in Chen and Shao (1993) which constitutes 
a kind of i.i.d. representation of the concerned estimator. From the proof of Theo-
rem 1 (see e.g. (A.3)), it is seen that such an i.i.d. representation is also valid in our 
context. Mimicking reasonings as in Chen and Shao (1993) would enable to show 
that an asymptotic normality result continues to hold for the approximate estimator 
�(t) , for any fixed number of iterations t, under the working conditions of a starting 
vector �(0) as in (17), and under the assumption that the error term � in a regression 
model has a symmetric distribution.

In this paper, we also deal with the important bandwidth selection issue. We pro-
vide a general rule-of-thumb (ROT) bandwidth selector and also discuss special 
cases of it when one is in the framework of a location-scale model. Furthermore, 
we also discuss a quantile-based bandwidth selector that exploits the relationship 
between quantiles and expectiles. Our detailed study shows that the ROT bandwidth 
selectors, although based intermediately on some rough approximations of unknown 
quantities, lead to very good finite-sample performance of the local polynomial 
expectile regression estimator. We therefore recommend in general to use either the 
general ROT bandwidth selector (GenROT), or in case of a location-scale model, 
the bandwidth selector LSROTWith.

As mentioned above, the bandwidth selectors were derived making some rough 
approximations. Of course, one could further improve these approximations. As an 
example, one could estimate conditional expectations with appropriate estimates for 
conditional expectations. This, however, would be at the cost of introducing extra 
smoothing/bandwidth parameters. In future research, one could thus work towards 
more sophisticated practical bandwidth selection rules, which will very likely 
improve upon their convergence rates towards the theoretical optimal bandwidths. 
It is not expected though that this would lead to a significant improvement of the 
finite-sample performance of the local polynomial expectile regression estimator, 
which is already very good.

Appendix

A.1 Proof of Theorem 1

The proof of this theorem is similar in setup as the one provided by Fan et  al. 
(1994) to study nonparametric regression based on i.i.d. observations. The main 
idea of the proof is to approximate the quantity to be minimized in (11) by a quad-
ratic function whose minimizer is asymptotically normal, and then to show that 
(�̂�(x), �̂

(1)
�
(x),⋯ , �̂

(p)
� (x)) T lies close enough to that minimizer to share the latter’s 

asymptotic behaviour. The convexity lemma (Pollard 1991) plays a role in the above 
approximation. We give the details of the proof below.

Recall that, for x a given point, �0 = ��(x), �1 = �(1)
�
(x),⋯ , �p =

�
(p)
� (x)

p!
 and 

�̂0 = �̂�(x), �̂1 = �̂(1)
�
(x),⋯ , �̂p =

�̂
(p)
� (x)

p!
 with (�̂0,⋯ , �̂p) minimizing
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Let

For (�0,… , �p)
T = � ∈ ℝ

p+1 , �̂ minimizes the function

Note that the function Gn(�) is convex in � (the second derivative is ≥ 0 for all � ). It 
is sufficient to prove that this function converges pointwise to its conditional expec-
tation, since it follows from the convexity lemma of Pollard (1991) that the conver-
gence is also uniform on any compact set of �.

We next approximate Gn(⋅) by a quadratic function whose minimizing value has an 
asymptotic normal distribution. Two terms contribute to the approximation. One is a 
quadratic function obtained via a Taylor expansion of the expected value, and the other 
term is random and linear in � . Write

with

Let M be a real number such that the interval [−M,M] contains the support of K. By 
Taylor expansion,

with �n,i = oP
(|Xi − x|p+1) = oP(h

p+1) holds uniformly as Xi → x , i.e. 
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Moreover,
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Thus, we have
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from the fact that K has bounded support (see e.g. Fan and Gijbels 1996) that

where the last equality comes from the dominated convergence theorem where we 
assumed that h → 0 and fX(.) is continuous in a neighbourhood of x.

A similar argument leads to

With this result and the definition of the matrix � , we have

We then obtain that

EY�X[Gn(�)�X] = −2√
nh

n�
i=1

EY�X
�
L�

�
Y∗
i
�Xi

��
(� T

Zi)Ki

+
1

2nh
� T

�
n�
i=1

Ki�(�,Xi)ZiZ
T
i

�
�(1 + oP(1)).

1

nh

n�
i=1

Ki�(�,Xi)ZiZ
T
i

=
1

nh

n�
i=1

Ki�(�,Xi)

⎛
⎜⎜⎜⎜⎜⎜⎝

1
Xi−x

h

�
Xi−x

h

�2

⋯

�
Xi−x

h

�p

Xi−x

h

�
Xi−x

h

�2 �
Xi−x

h

�3

⋯

�
Xi−x

h

�p+1

⋮ ⋮ ⋮ ⋱ ⋮�
Xi−x

h

�p �
Xi−x

h

�p+1 �
Xi−x

h

�p+2

⋯

�
Xi−x

h

�2p

⎞
⎟⎟⎟⎟⎟⎟⎠

.

S̃n,j = EX[S̃n,j] + OP

(√
VarX(S̃n,j)

)

EX[S̃n,j] =
n

nh ∫ �(�, v)fX(v)
(
v − x

h

)j

K
(
v − x

h

)
dv = ∫ �(�, x + uh)fX(x + uh)ujK(u)du

= fX(x)�(�, x)�j + o(1),

VarX[S̃n,j] = EX[S̃
2
n,j
] − EX[S̃n,j]

2 ≤ n

n2h2 �
(
�(�, v)

(
v − x

h

)j

K
(
v − x

h

))2

fX(v)dv

=
1

nh �
(
�(�, x + uh)ujK(u)

)2
fX(x + uh)du = o(1).

1

nh

n∑
i=1

Ki�(�,Xi)ZiZ
T
i

= �(�, x)fX(x)� + oP(1).



373

1 3

Local polynomial expectile regression  

Next we show that Rn(�) = oP(1) (for the definition of Rn(�) see (A.2)). We start by 
rewriting and approximating this quantity as follows:

By using Assumption (A3), we obtain
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which also implies that EY ,X[Wn] = O(1) as a result of Jensen’s inequality.
Note that

is a convex function of � which converges in probability to the convex function 
1

2
� T �(w, x)fX(x)��.

By the convexity lemma, Pollard (1991), for any compact subset � ∈ ℝ
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So the quadratic approximation to the convex function Gn(�) holds uniformly for 
� in any compact set. Then, using the convexity assumption again, the minimizer 
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with

and hence

So

The (j + 1) th component (for j = 0, 1,… , p ) of the above equality is

denoting Vn,j =
Un,j
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∗
i
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det(�) is the determinant of � and adj(�) is the adjugate matrix of �.
Equivalently, for any 𝜖 > 0 , we have
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Hence, the conditional asymptotic normality follows from that of Un,j , which is 
established with the help of Lemmas 1 and 2 stated in Section A.2. The proofs of the 
lemmas are provided in Section S6 of the Supplementary Material part.   ◻

A.2 Two lemmas

Lemma 1 Under the assumptions of Theorem 1, we have

where Un,j = 2(nh)−1
∑n

i=1
L�(Y

∗
i
)(adj(�)�i)j+1Ki,

with �v =
(
1, v, v2,⋯ , vp

) T.

Lemma 2 Under Assumptions (A1)—(A5), we have

with d and v define as in (A.4) and (A.5), respectively.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10463- 021- 00799-y.
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