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Supplementary Material

This is a supplement to the paper “Variable selection for functional linear models
with strong heredity constraint”, in which it contains the proofs of Theorems 1-2,

and Lemmas 1-2 and their proofs.

S1 Appendix A: Proofs of theorems

We provide the proofs of Theorems 1-2 in Appendix A.

S1.1 Proof of Theorem 1

For part (i), a simple calculation yields
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Note that
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Moreover, invoking Lemma 1 and condition (A3), we have
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Hence, invoking Lemma 2, we complete the proof of part (i).

For part (ii), the proof is similar and so is omitted. O

S1.2 Proof of Theorem 2

We first consider P(f3;(t) = 0 for j € AS) — 1. Suppose that there exists a ko € AS
such that Sy, (t) # 0, then ||By,|l2 > 0. For such ko, let 3 denote the vector whose
entries Bj equal Bj except for j = kg and /Bko = 0. Then,
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By Lemma 1, Lemma 2 and the Cauchy-Schwarz inequality, we have
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In addition, a simple calculation yields
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Thus, we have
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Invoking condition (A5), the second term dominates the first term. Consequently,
we have

N
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with probability tending to one, which contradicts to the fact that (B,d) is the
minimizer of L(5,«). This completes the proof of the first part of the theorem.
Next, we prove P(¥;m(s,t) = 0 for (j,m) € A3) — 1. For (j,m) where (j,m) €
A§ and j, m € Ay: we can prove P(9;,(s,t) = 0) — 1 in a similar way. For (j,m)
where (7, m) € A and either j or m is in A§: without loss of generality, assume that
185(t)|| = 0. Notice that ||Bj(t)|| = 0 implies ||&jm|l2 = 0, because if ||Gjm|l2 # 0,
then the value of the loss function does not change but the value of the penalty
function will increase. Since we already have P(f;(t) = 0) — 1, we can conclude

P(3jm(s,t) = 0) — 1 as well. -

S2 Appendix B: Some lemmas and their proofs

In order to prove Theorems 1-2, we provide Lemmas 1-2 in Appendix B.
Lemma 1. Assume that conditions (A1)-(A4) hold. Then we have
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(iv) N ds(t) = g (D)l = O(n=2k),
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Proof. For part (i), by conditions (A1)-(A3) and the similar argument as in the
proof of Proposition 1 in Wong et al. (2019), we can obtain that |fwk — &kl =
Op(n_l/le_“/2).

For part (ii), it can be observed that
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Invoking part (i), we have
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It is obvious that n=t >°1 | &t — F(&ir€ij) = Op(n~1/2). Hence, part (i) holds.
For part (iii), we note that
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Then by conditions (A1)-(A3), a simple calculation yields
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Further by condition (A4), part (iii) holds.

For part (iv), by formula (5.22) in Hall and Horowitz (2007) we have ||¢;x(t) —
di(t)||* = O(n~'k?). This verifies part (iv) and so the proof of Lemma 1 is complete.
O

Lemma 2. Assume that conditions (A1)-(A4) hold and let 0* = (3*7, o*")". Then,
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where A® B and C'® D denote the Hadamard product of A and B and the Kronecker
product of C' and D, respectively. Let also
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Thus, we have W; = Gzﬂﬁ
In what follows, we show that, for any given e > 0, there exists a large constant
Cy such that
P{ inf L(0) > L(G*)} >1—e (B.1)
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Denote Q(0) = > i, (Y; — UTB — (G?)Ta)?, then a simple calculation yields
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Then let A, (0) = L(6) — L(0*) = L(6* + pd) — L(6*), we have
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where Q; = (U, (G777,
For By, by Lemma 1 we have
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For Bs, note that
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According to Lemma 1, it is easy to derive that By = O,(K'~%2)||§||z, Bay =
Op(K*=)|16]l2, Bas = Op(n'/2 K= 04342220 [15]|9, Boy = Op(n'/?)[[8]l2, Bas = Op(n'>K'=/2)[6]s,
and By = O,(nK~(2+ta=1/2)||§||,. Taken together, we have
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For Bj, we have
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= B3y + B3y + Bss + B3y + Bss + Bag.

By conditions (A2)-(A4) and Lemma 1, a simple calculation yields
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Similarly, we can obtain that Bsy = O,(np?)||ull3, Bss = O,(np?)||ull3, Bss =
Op(np®)||ull3, Bss = Op(np®)|ull3, and Bss = O,(np*)||ul|3. Taken together, we
have
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For By, by a similar argument we have
n ~ ~ A Q% ~ * ~ T
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Combining (B.2)—(B.5), it is easy to see that B; dominates the rest terms Bs,
Bs, By and Bs uniformly in ||d||s = Cy. Therefore, by choosing a sufficiently large
Co, (B.1) holds and there exists a local minimizer § such that ||§ — 6*||, = O,(p).
This completes the proof of Lemma 2. O



S3 Appendix C: Simulation studies

In this example, we evaluate the performance of the new procedure when the func-

tional predictors are dependent. We consider

Xis(t) = /nl(s,t)Xi4(s)ds + open (t)

and
Xi (t) = /T]Q(S,t)Xﬂ(S)dS + 0'061'2(75)7

where oy = 0.5, 1n1(s,t) = 0.6st, na(s,t) = 0.4st, and e;1(t) and e;»(t) are inde-
pendent Brownian motions on [0, 1]. All other settings remain the same as those
for the independent case. We then repeat the simulations and report the variable
selection results in Table 7. Comparing with the results in Table 1, we can see that,
even though some of the functional predictors are dependent, the proposed variable
selection procedure is still able to identify the true model structure with a higher

probability.
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Table 7:

Variable selection results for dependent case.

Proposed method

Group SCAD

Group Lasso

Cwm

Cr

Cz

Cum

Cr

Cz

Cm

Cr

Cz

EBIC

C-EBIC

100
200
300

100
200
300

2.6920
2.7480
2.8220

2.6840
2.7620
2.8180

0.8820
0.9140
0.9360

0.8940
0.9120
0.9380

5.7140
5.7940
5.8280

5.7420
5.7960
5.8320

2.0120
2.0340
2.0880

2.0180
2.0320
2.0720

0.7760
0.7920
0.8180

0.7840
0.8020
0.8220

4.1020
5.0960
5.2640

4.0980
5.1040
5.2820

1.8960
1.9440
2.0320

1.9040
1.9680
2.0180

0.7280
0.7780
0.8040

0.7260
0.7720
0.8060

3.8420
4.9620
5.2280

3.9060
5.0140
5.2460

UF

CF

OF

UF

CF

OF

UF

CF

OF

EBIC

C-EBIC

100
200
300

100
200
300

0.0920
0.0620
0.0320

0.0840
0.0520
0.0280

0.8020
0.8760
0.9120

0.8040
0.8720
0.9140

0.1060
0.0620
0.0560

0.1120
0.0760
0.0580

0.3600
0.3340
0.2940

0.3840
0.3300
0.3660

0.2720
0.3020
0.3280

0.2680
0.3040
0.3260

0.3680
0.3640
0.3780

0.3480
0.3660
0.3080

0.3820
0.4180
0.4520

0.3780
0.4320
0.5160

0.0920
0.0980
0.1040

0.0740
0.0940
0.0980

0.5260
0.4840
0.4440

0.5480
0.4740
0.3860
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