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In Section 4.2 we analyze the MSE of the Schweder-Spjstvoll estimator in
case the LFC p-values are independent or positively dependent. We employed
the multiple Z-tests model and applied a pairwise correlation coefficient p =
0 or p > 0 on the test statistics. We can also determine the dependency
structure among the LFC p-values directly by defining their copula. In case of
independent LFC p-values, their joint copula is the product copula. In case of
positively dependent LFC p-values we consider the Gumbel-Hougaard copula,

defined as
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where v > 1. For increasing v the degree of dependence increases.

We employed the same model as in the left graph of Figure 2 in the paper,
i.e. the multiple Z-tests model with mo = 0.7 and 6;(9) = 2.5/,/n; if Hj is
false and 0;(9) = —1/,/n; if H; is true, m = 500 and n; = 50.

Figures 1 and 2 illustrate the effect of the copula of the p-values utilized
in 7y on its variance and its MSE, respectively, in our context. On the left
we assumed independent LFC p-values and on the right we assumed that the
LFC p-values had the Gumbel-Hougaard copula as a joint copula with copula
parameter v = 2. The values were calculated via Monte-Carlo Simulation with
100,000 repetitions.

In the left graph of Figure 1, the variance of #(1/2, ¢) is decreasing in ¢,
cf. also Lemma 1. Furthermore, the variance on the left graph is always below
1/m = 1/500. So, we may conclude here that taking into account Uy, ..., U,
increases the variance of 7, but only to a magnitude which is in essentially
all considered cases smaller than that of the bias reduction achieved by ran-
domization. This is also in line with the findings of Dickhaus (2013); see the
discussion around Table 2 in that paper.

In the right graph of Figure 1, the behavior of the variance of 7o(1/2,¢) is
different. Here, the randomization reduces the variance of 7, often by a consid-
erable amount. This can be explained by the fact, that in the dependence struc-
ture among p}*"4(X,Uy,c), ..., pre"4(X, Uy, c) the Gumbel-Hougaard copula

of pHY(X),...,pEFC(X) and the product copula of Uy, ..., U, are "mixed”,

meaning that the degree of dependency among p7*"4(X, Uy, c),...,pr¢" (X, Uy, c)

is smaller than that among pF¥'¢(X),...,pkFC (X).

Furthermore, comparing the scalings of the vertical axes in the two graphs
of Figure 1, we can confirm the previous findings by Neumann et al (2021)
(and other authors), that (positively) dependent p-values lead to an increased
variance of 7y when compared with the case of jointly stochastically indepen-
dent p-values. These results are similar to our results in Section 4.2 and are
intended to provide an additional example.
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Fig. 1 The variance Vary(7#o(1/2,¢)) for ¢ =0,0.05,...,1 in the multiple Z-tests model for
7o = 0.7, and ¥ € O such that 6;(9) = —1/+/50 if H; is true and 0;(9) = 2.5//50 if K is
true, j = 1,...,m = 1,000. The LFC-based p-values are jointly stochastically independent in
the left graph and have the Gumbel-Hougaard copula with copula parameter v = 2 in the
right graph.
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Fig. 2 The mean squared error MSEy(#9(1/2,¢)) for ¢ = 0,0.05,...,1 in the multiple Z-
tests model for mo = 0.7, and ¥ € @ such that 6;(9) = —1/v/50 if H; is true and 6;(9) =
2.5/\/% if K is true, j = 1,...,m = 1,000. The LFC-based p-values are jointly stochastically
independent in the left graph and have the Gumbel-Hougaard copula with copula parameter
v = 2 in the right graph.
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