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Abstract
In this paper we propose statistical inference tools for the covariance operators of 
functional time series in the two sample and change point problem. In contrast to 
most of the literature, the focus of our approach is not testing the null hypothesis of 
exact equality of the covariance operators. Instead, we propose to formulate the null 
hypotheses in the form that “the distance between the operators is small”, where we 
measure deviations by the sup-norm. We provide powerful bootstrap tests for these 
type of hypotheses, investigate their asymptotic properties and study their finite 
sample properties by means of a simulation study.

Keywords  Covariance operator · Functional time series · Two sample problems · 
Change point problems · CUSUM · Relevant hypotheses · Banach spaces · Bootstrap

1  Introduction

The field of functional data analysis has found considerable attention in the statisti-
cal literature as in many applications the observed data points exhibit certain degrees 
of dependence and smoothness and thus may naturally be regarded as discretized 
functions. Introductions to this topic can be found in the monographs of Bosq 
(2000), Ramsay and Silverman (2005), Ferraty and Vieu (2010), Horváth and Koko-
szka (2012) and Hsing and Eubank (2015), among others. Interest may, for example, 
be in comparing characteristic parameters of the random functions from two differ-
ent samples (two sample problem) or in investigating whether a certain parameter 
of a functional time series remains stable over time (change point problem). In most 
cases, the considered parameters (such as the mean) are functions themselves, which 
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makes the analysis of this type of problems challenging. In the present paper we 
investigate the second-order properties of a stationary functional time series which 
are contained in its covariance operators and important for the understanding of the 
smoothness of the stochastic fluctuations of the data (Kraus and Panaretos 2012). 
Most of the literature on this topic considers Hilbert space-valued random variables. 
The popularity of this approach is due to the fact that such a framework allows the 
development of dimension reduction techniques such as (functional) principal com-
ponents. On the other hand, dimension reduction may yield to a loss of information 
as data are projected on finite-dimensional spaces, and several authors argue that it 
might be more reasonable to work in the space of functions directly (see, for exam-
ple, Aue et al. 2018 for a recent reference).

In this paper we will develop methodology to compare the covariance opera-
tors of two functional time series and to detect changes in the covariance operator 
of a functional time series in the space of continuous functions defined on a com-
pact interval. Thus—in contrast to most of the literature on this topic, which con-
siders Hilbert space-valued objects—the random variables under consideration are 
(dependent) elements of a Banach space, and it is possible to compare the covari-
ance operators in the sup-norm. Another important difference to the literature con-
sists in the fact that the main focus of our approach is not on classical hypotheses of 
the form

where C1 and C2 are either the covariance operators corresponding to the two sam-
ples or to the covariance operator before and after a change point. In contrast, we 
consider relevant hypotheses of the form

where � ≥ 0 is a given threshold and d a suitable metric on the space of covariance 
operators (in our case the sup-norm). Note that hypotheses of the form (2) contain 
the classical hypotheses in (1) as a special case for the choice � = 0 , but we argue 
that the case 𝛥 > 0 is at least of equal interest. In fact, in many applications it is 
obvious that C1 and C2 cannot exactly coincide but the deviation might be small. 
In such cases testing for exact equality may be questionable and it might be more 
reasonable to test for a relevant or significant deviation between the two covariance 
operators.

In the case of testing classical hypotheses, the metric does not matter because 
under the null hypothesis the distance between C1 and C2 vanishes in any metric. 
However, this is not the case for relevant hypotheses of the form (2). In the pre-
sent context two covariance operators with rather different shapes may still have a 
small L2-distance, which makes an appropriate interpretation of the threshold � for 
practitioners difficult. As an alternative, we propose to consider the maximum devia-
tion between the covariance operators as metric in the hypotheses (2). On the one 
hand, this metric makes the interpretation of the threshold � more easy. On the other 
hand, it leads to a Banach space-based framework where no dimension reduction 

(1)H0 ∶ C1 = C2 versus H1 ∶ C1 ≠ C2 ,

(2)H𝛥
0
∶ d(C1,C2) ≤ 𝛥 versus H𝛥

1
∶ d(C1,C2) > 𝛥
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techniques are available, and the development and theoretical justification of statisti-
cal methods are more challenging.

In Sect. 2 we review some basic properties of random variables in the space of 
continuous functions. In particular we define moments of order two through injec-
tive tensor products. We also state a central limit theorem for a stationary Banach-
space valued process, which will be the basis for all theoretical arguments given in 
this paper. In Sect. 3 we develop statistical methods for the comparison of covari-
ance operators in the two sample problem. In particular a test is proposed for the 
null hypothesis of no relevant difference between the covariance operators from two 
independent samples. As a special (and substantially simpler case), we also con-
struct new tests for the classical hypotheses (1) with a simple structure and nice sta-
tistical properties. Section 4 is devoted to the change point problem, where method-
ology is developed to detect changes in the covariance operator of a functional time 
series. In all cases we make use of a multiplier bootstrap procedure to obtain criti-
cal values for the proposed tests. The theoretical justification of the new methods is 
given in Sect. 1, while Sect. 5 contains a detailed simulation study to investigate the 
finite sample properties of the proposed tests. Although classical hypotheses are not 
the main focus of our work, we also compare the new tests for the classical hypoth-
eses with some of the currently available methodology and demonstrate that they 
provide powerful alternatives to the procedures, which have been proposed in the 
literature so far.

1.1 � Related literature

There exists a considerable amount of the literature considering the comparison of 
covariance operators in the two-sample problem, where random functions in the Hil-
bert space of square-integrable functions and the classical null hypothesis of equal 
covariance operators are investigated. Panaretos et al. (2010) consider independent 
Gaussian data and describe an application to DNA minicircle data. Fremdt et  al. 
(2013) extend the theoretical findings of these authors to a more general model such 
that non-Gaussian curves are also covered. In both references, functional principal 
components (FPCs) are used for dimension reduction. Kraus and Panaretos (2012) 
introduce the notion of a dispersion operator and investigate a robust test, which 
is based on a truncated version of the Hilbert–Schmidt norm of a score operator 
defined via the dispersion operator. Zhang and Shao (2015) propose a pivotal test 
procedure based on FPCs and self-normalization and also provide inference tools for 
the eigensystem of the covariance operators.

Several authors argue that dimension reduction may yield to a loss of infor-
mation and propose alternative procedures for the comparison of covariance 
operators in the two-sample problem. Pigoli et  al. (2014) discuss different dis-
tance measures between covariance operators and develop a permutation test, and 
Paparoditis and Sapatinas (2016) propose a bootstrap test for the (classical) null 
hypothesis of equality of K covariance operators. Cabassi et al. (2017) suggest to 
combine all pairwise comparisons between samples of independent data into a 
global test for this problem, where the Hilbert–Schmidt norm between the square 
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roots of the covariance operators is used as a measure of deviation. Boente et al. 
(2018) provide a theoretical framework which clarifies the ability of the test to 
detect local alternatives. Pilavakis et al. (2020) develop a fully functional test for 
the equality of auto-covariance operators of temporally dependent time series, 
which is based on a moving block bootstrap. For independent data the K-sample 
problem has also been considered by Guo et al. (2018) who propose to estimate 
the supremum value of the sum of the squared differences between the estimated 
individual covariance functions and the pooled sample covariance function.

So far, the change point problem for covariance operators has found less atten-
tion in the literature. Jarušková (2013) uses FPCs to develop a test for the exist-
ence of a change point, while Stoehr et  al. (2019) use the circular block boot-
strap to construct a change point test. In particular, these authors develop a test 
based on dimension reduction and two procedures which take the full functional 
structure into account. A fully functional test has also been proposed by Sharipov 
and Wendler (2020), who use a non-overlapping block bootstrap to obtain critical 
values. More recently, Aue et  al. (2020) propose statistical tests for detecting a 
change in the spectrum and in the trace of the covariance operator, respectively.

All these references consider the problem of testing classical hypotheses of 
the form (1). Recently Dette et al. (2020b) propose a comparison of covariance 
operators in the two-sample problem and in the context of change point analy-
sis by testing relevant hypotheses of the form (2), where an L2-distance is used 
as metric. However, in the context of testing relevant hypotheses, the norm mat-
ters as two covariance operators might be close in one norm but not in another. 
In particular, relevant deviations between covariance operators in the sup-norm 
have—to our best knowledge—not been considered so far and require a differ-
ent methodology as the space under consideration is a Banach but not a Hilbert 
space. There does not exist so much literature on functional data analysis consid-
ering Banach spaces, and exemplarily we mention the recent work of Dette et al. 
(2020a) who considered relevant hypotheses for the mean function and Liebl and 
Reimherr (2019), who developed confidence bands for functional parameters.

2 � C(T)‑valued random variables

In this paper we consider random variables taking values in the Banach space 
of real-valued and continuous functions defined on a compact (metrizable) 
set T and denote this space by C(T), which is equipped with the sup-norm 
‖X‖∞ = maxt∈T �X(t)� for any X ∈ C(T) (note that C(T) is separable). The underly-
ing probability space (�,A,ℙ) is assumed to be complete, and measurability is 
always meant with respect to the Borel �-field generated by the open sets relative 
to the respective sup-norm.

Following Chapter 11 in Janson and Kaijser (2015), we use injective tensor prod-
ucts to define moments of C(T)-valued random variables and note that C(T)⊗̌k = C(Tk) 
isometrically with the natural identification (Theorem 7.6). The kth moment of a C(T)-
valued random variable X exists, whenever �

�
‖X‖k

∞
] < ∞ (Theorem  7.25) and is 

defined by the function in C(T)⊗̌k = C(Tk) , which maps (t1,… , tk) ∈ Tk to
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(Theorem  7.10). Note that these definitions are essentially equivalent to the defi-
nitions of moments through the dual space, because C(T) is separable, see Theo-
rem 3.11 in Janson and Kaijser (2015) for a precise formulation of the statement. 
Throughout this paper, we write X⊗̌2 = X⊗̌X for any X ∈ C(T) and mean the func-
tion in C(T2) defined by (s, t) ↦ X(s)X(t) . Consequently, the covariance operator of a 
C(T)-valued random variable is defined by

where � = �[X] ∈ C(T) is the expectation of X.
Let � denote a metric on T such that (T , �) is totally bounded, then the met-

ric �max on T2 is defined through �max((s, t), (s
�, t�)) = max{�(s, s�), �(t, t�)} and the 

expression D(�, �max) denotes the packing number with respect to the metric �max 
on T2 , that is the maximal number of �-separated points in T2 (Van der Vaart and 
Wellner 1996). Note that in this case (T2, �max) is totally bounded as well.

In order to describe the dependence in the data, we introduce the concept �
-mixing and denote by ℙ(G|F) the conditional probability of G given F. For two �
-fields F  and G , we define the coefficient

For a given strictly stationary sequence (�j)j∈ℕ of random variables in C(T), denote 
by Fk′

k
 the �-field generated by (�j ∶ k ≤ j ≤ k�) . Then, the kth �-mixing coefficient 

of (�j)j∈ℕ is defined by

and the stationary time series (�j)j∈ℕ is called �-mixing whenever the sequence of 
mixing coefficients converges to zero as k → ∞.

Given the preceding discussion, the analysis of the covariance operators of 
random variables in C(T) can in some sense be regarded to the analysis of C(T2)

-valued random variables. More precisely, Theorem  11.7 in Janson and Kaijser 
(2015) implies that C(T2) is separable such that measurability issues are avoided, 
and Theorem 1.3 in Billingsley (1968) implies that any C(T2)-valued random var-
iable is tight. A random function X in C(T2) is called Gaussian if and only if its 
finite-dimensional vectors (X(t1),… ,X(tk))

⊤ have a multivariate normal distribu-
tion for any t1,… , tk ∈ T2 and k ∈ ℕ.

Assumption 1  (Zj)j∈ℕ is a sequence of C(T)-valued random variables such that

where � ∈ C(T) denotes the expectation function and (�j)j∈ℕ is a strictly stationary 
process. 

�X⊗̌k(t1,… , tk) = �
[
X(t1)⋯X(tk)

]

C(⋅, ⋅) = Cov(X(⋅),X(⋅)) = �
[
(X − 𝜇)⊗̌2(⋅, ⋅)

]
∈ C(T2)

(3)𝜙(F,G) = sup
{
|ℙ(G|F) − ℙ(G)| ∶ F ∈ F, G ∈ G, ℙ(F) > 0

}
.

�(k) = sup
k�∈ℕ

�(Fk�

1
,F∞

k�+k
)

Zj = � + �j, j ∈ ℕ
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	(A1)	 The packing number D(�, �max) satisfies 

 for some 𝜏 > 0 and some even integer J ≥ 2.
	(A2)	 There is a constant K such that 

 for some 𝜈 > 0 , where J is the same integer as in (A1).
	(A3)	 There exists a real-valued non-negative random variable M such that, 

�
�
(‖𝜂1‖∞ M)J

�
< ∞ and for any j ∈ ℕ the inequality 

 holds almost surely for all t, t� ∈ T  . The integer J is the same as in (A1).
	(A4)	 The process (�j)j∈ℕ is �-mixing with mixing coefficients satisfying, for some 

𝜏 ∈ (1∕(2 + 2𝜈), 1∕2) , the condition 

 where the constants J and � are the same as in (A1) and (A2), respectively.

Note that Assumption 1 implies the existence of the covariance operator defined 
by

 Condition (A4) on the summability of the mixing coefficients is satisfied if there 
exists a constant a ∈ (0, 1) such that �(k) ≤ cak ( k ∈ ℕ ). Such conditions are rather 
common in proving CLTs for dependent random variables and basically guarantee 
that the variance of a mean is of order O(1/n). In the present context of C(T2)-valued 
random variables, there is an interplay between condition (A4) and (A1) on the 
packing number, which yields tightness of the C(T2)-valued process 1∕

√
n
∑n

j=1
𝜂
⊗̌2

j
 . 

This is specified by the parameter J. A larger value of J allows to consider sets T 
with a larger packing number, but puts on the opposite stronger summability condi-
tions on the mixing coefficients. On the other hand, stronger moment assumptions in 
(A2), that is larger values for the parameter � , allow to use smaller values for the 
parameter 𝜏 resulting in weaker summability conditions in (A4).

For the formulation and a proof of a CLT of Banach space-valued random vari-
ables, we denote by the symbol “ ⇝ ” weak convergence in (C(T))k or (C(T2))k and 
the symbol “  D

⟶
 ” denotes weak convergence in ℝk for some k ∈ ℕ . The following 

result is proved in Sect. 1.

Theorem 1  Let (Zj)j∈ℕ denote a stochastic process in C(T) satisfying Assumption 1. 
Then,

∫
𝜏

0

D(𝜔, 𝜌max)
1∕J d𝜔 < ∞

�[‖𝜂1‖4+𝜈∞
] < ∞ , �[‖𝜂1‖2J∞] < ∞

|�j(t) − �j(t
�)| ≤ M�(t, t�)

∞∑

k=1

k1∕(1∕2−𝜏)𝜑(k)1∕2 < ∞,

∞∑

k=1

(k + 1)J∕2−1𝜑(k)1∕J < ∞,

(4)C(s, t) = Cov(Zj(s),Zj(t)) = �[(Zj(s) − �(s))(Zj(t) − �(t))].
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in C(T2) as n → ∞ where Z̄n = 1∕n
∑n

j=1
Zj ∈ C(T) , C is defined by (4) and Z is a 

centred Gaussian random variable with covariance operator

In the remaining part of the paper, we consider the unit interval T = [0, 1] and, for 
a positive constant � ∈ (0, 1] , the metric �(s, t) = |s − t|� on [0, 1]. Consequently, on 
T2 = [0, 1]2 , we use the metric

and the packing number of the square [0, 1]2 with respect to this metric satis-
fies D(𝜔, 𝜌max) ≲

⌈
𝜔−2∕𝜃

⌉
 (to see this, consider the points (k�1∕� , l�1∕�) for 

k, l = 0,… , ⌊�−1∕�⌋ ). Therefore, condition (A1) reduces to

and holds, whenever the even integer J satisfies J > 2∕𝜃 and consequently, under 
this assumption, Hölder continuous processes satisfy (A1). Because the paths of the 
Brownian Motion {W(t)}t∈[0,1] are Hölder continuous of order � for any � ∈ (0, 1∕2) 
and the random variable ‖W‖∞ has moments of all order, Assumption 1 is satisfied 
for the Brownian motion (we can use J = 6 in (A4) for this case). For general pro-
cesses with less smoothness, that is a smaller constant � , we require a stronger sum-
mability assumption (A4) on the mixing coefficients and the existence of moments 
of larger order.

Remark 1  It is worthwhile to mention that �-mixing is more restrictive than � - or �
-mixing. However, we expect that similar results as stated in Theorem 1 are availa-
ble for these mixing concepts as well. For example, it can be shown using the results 
in Dehling (1983), p. 400, that under Assumption 1 a central limit theorem is valid 
for absolute regular sequences if the corresponding mixing coefficients �(k) satisfy 
similar conditions as considered here.

3 � The two‑sample problem

Throughout this section, we consider two independent samples (Xj ∶ j = 1,… ,m) and 
(Yj ∶ j = 1,… , n) drawn from independent strictly stationary sequences (Xj)j∈ℕ and 
(Yj)j∈ℕ in C([0, 1]) with representations

Gn =
1√
n

n�

j=1

((Zj − Z̄n)
⊗̌2 − C) ⇝ Z

(5)ℂ((s, t), (s�, t�)) = Cov(Z(s, t), Z(s�, t�)) =

∞∑

i=−∞

Cov
(
𝜂
⊗̌2

0
(s, t), 𝜂⊗̌2

i
(s�, t�)

)
.

�max((s, t), (s
�, t�)) = max{�(s, s�), �(t, t�)} = max

{
|s − s�|� , |t − t�|�

}

(6)∫
𝜏

0

D(𝜔, 𝜌max)
1∕J d𝜔 ≲ ∫

𝜏

0

⌈
𝜔−2∕𝜃

⌉1∕J
d𝜔 ≲

𝜏1−2∕(J𝜃)

1 − 2∕(J𝜃)
< ∞

(7)Xj = �1 + �1,j, Yj = �2 + �2,j,
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where �1,�2 ∈ C([0, 1]) and (�1,j)j∈ℕ , (�2,j)j∈ℕ are centred C([0, 1])-valued processes 
satisfying the following assumption.

Assumption 2  The processes (�1,j)j∈ℕ , (�2,j)j∈ℕ are independent centred strictly sta-
tionary processes satisfying Assumption  1 with metric �(s, t) = |t − s|� for some 
𝜃 > 0 such that J𝜃 > 2.

In the following let

denote the covariance operator of the first and the second sample, respectively. We 
measure the difference between C1 and C2 by their maximal deviation

and are interested in testing if there exists a relevant difference between the covari-
ance operators, that is,

where � ∈ ℝ is a pre-specified constant. Note that the classical hypotheses

are obtained for the choice � = 0.
We denote by X̃m,j = Xj − X̄m, Ỹn,i = Yi − Ȳn the centred random curves (here X̄m 

and Ȳn denote the mean in the first and second sample, respectively), and estimate 
the maximal deviation d∞ in (8) between the two covariance operators by

Now a reasonable decision rule is to reject the null hypothesis in (9) or (10) for large 
values of d̂∞ . Our first result provides the asymptotic properties of the statistic d̂∞.

Proposition 1  If �1,�2 ∈ C([0, 1]) and (�1,j)j∈ℕ , (�2,j)j∈ℕ are strictly stationary and 
centred C([0, 1])-valued processes satisfying Assumption 2 and m

m+n
⟶ � ∈ (0, 1) 

as m, n → ∞ , the following assertions hold true. 

(1)	 If d∞ = 0 , then 

 where Z is a Gaussian random element in C([0, 1]2) with covariance operator 

C1(s, t) = �[�1,j(s)�1,j(t)] = Cov(X1(s),X1(t)),

C2(s, t) = �[�2,j(s)�2,j(t)] = Cov(Y1(s),Y1(t))

(8)d∞ = ‖C1 − C2��∞ = sup
s,t∈[0,1]

�C1(s, t) − C2(s, t)�,

(9)H𝛥
0
∶ d∞ ≤ 𝛥 versus H𝛥

1
∶ d∞ > 𝛥,

(10)H0 ∶ C1 = C2 versus H1 ∶ C1 ≠ C2

(11)d̂∞ = sup
s,t∈[0,1]

||||
1

m − 1

m∑

j=1

X̃⊗̌2

m,j
(s, t) −

1

n − 1

n∑

j=1

Ỹ⊗̌2

n,j
(s, t)

||||
.

(12)
√
m + n d̂∞

D

⟶T = sup
s,t∈[0,1]

�Z(s, t)�,
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 and ℂ1 and ℂ2 are the long-run covariance operators defined by 

(2)	 If d∞ > 0 , we have 

 where Z is a Gaussian random element in C([0, 1]2) with covariance operator 
defined by (13) and 

 are the extremal sets of the difference of the covariance operators C1,C2.

If u1−� denotes the (1 − �)-quantile of the distribution of the random variable T 
defined in (12), a consistent and asymptotic level � tests for the classical hypotheses in 
(10) can be obtained by rejecting the null hypothesis, whenever

Similarly, the null hypothesis in (9) is rejected if

where u1−�,E is the �-quantile of the distribution of the random variable T(E) defined 
in (16). However, the quantile u1−� depends on the long-run covariance opera-
tors ℂ1 and ℂ2 which are difficult to estimate. For the problem of testing relevant 
hypotheses, the situation is even more complicated as the quantile u1−�,E additionally 
depends on the unknown extremal sets defined in (17), which have to be estimated 
as well. To deal with these problems, we propose a bootstrap approach, which is 
explained for the classical and relevant hypotheses separately.

(13)ℂ =
1

�
ℂ1 −

1

1 − �
ℂ2,

(14)ℂ1((s, t), (s
�, t�)) =

∞∑

i=−∞

Cov
(
𝜂
⊗̌2

1,0
(s, t), 𝜂⊗̌2

1,i
(s�, t�)

)
,

(15)ℂ2((s, t), (s
�, t�)) =

∞∑

i=−∞

Cov
(
𝜂
⊗̌2

2,0
(s, t), 𝜂⊗̌2

2,i
(s�, t�)

)
.

(16)
√
m + n (d̂∞ − d∞)

D

⟶T(E) = max
�

sup
(s,t)∈E+

Z(s, t), sup
(s,t)∈E−

−Z(s, t)
�
,

(17)E
± =

{
(s, t) ∈ [0, 1]2 ∶ C1(s, t) − C2(s, t) = ±d∞

}

d̂∞ >
u1−𝛼√
m + n

.

d̂∞ > 𝛥 +
u1−𝛼,E√
m + n
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3.1 � Classical hypotheses

In order to avoid the problem of estimating the long-run covariance operators, we 
propose a bootstrap procedure to mimic the covariance structure of the distribution 
of the process

by a multiplier bootstrap process (note that the second term vanishes in 
the case d∞ = 0 ). To be precise, we denote by (�(1)

k
)k∈ℕ,… ,  (�(R)

k
)k∈ℕ and 

(�
(1)

k
)k∈ℕ,… , (� (R)

k
)k∈ℕ independent sequences of independent standard normal dis-

tributed random variables and define the C([0, 1]2)-valued processes B̂(1)
m,n

, … , B̂(R)
m,n

 
by

The parameters l1, l2 ∈ ℕ define the block length such that l1∕m → 0 and l2∕n → 0 as 
l1, l2,m, n → ∞ . Note that the dependence on l1 and l2 is not reflected in the notation 
of the bootstrap processes. With these notations we consider the bootstrap statistics

and denote by T{⌊R(1−�)⌋}
m,n  the empirical (1 − �)-quantile of the bootstrap sample 

T (1)
m,n

,… , T (R)
m,n

 . Then, rejecting the classical null hypothesis of equal covariance oper-
ators, whenever

defines a bootstrap test for the classical hypotheses in (10). The following result pro-
vides the statistical properties of this test.

Theorem 2  Suppose that the error processes (�1,j)j∈ℕ and (�2,j)j∈ℕ in the represen-
tation (7) satisfy Assumption  2. Let B̂(1)

m,n
,… , B̂(R)

m,n
 denote the bootstrap processes 

defined by (18) such that l1 = ⌊m�1⌋ , l2 = ⌊n�2⌋ with

where 𝜏i, 𝜈i are given in Assumption 1, i = 1, 2.

Then, under the classical null hypothesis H0 ∶ C1 = C2 in (10) we have

1

m − 1

m∑

j=1

X̃⊗̌2

m,j
−

1

n − 1

n∑

j=1

Ỹ⊗̌2

n,j
− (C1 − C2)

(18)

B̂(r)
m,n

=
√
n + m

�
1

m

m−l1+1�

k=1

1√
l1

� k+l1−1�

j=k

X̃⊗̌2

m,j
−

l1

m

m�

i=1

X̃⊗̌2

m,i

�
𝜉
(r)

k

−
1

n

n−l2+1�

k=1

1√
l2

� k+l2−1�

j=k

Ỹ⊗̌2

n,j
−

l2

n

n�

i=1

Ỹ⊗̌2

n,i

�
𝜁
(r)

k

�
(r = 1,… ,R).

(19)T (r)
m,n

= sup
s,t∈[0,1]

|B̂(r)
m,n

(s, t)| (r = 1,… ,R),

(20)d̂∞ >
T
{⌊R(1−𝛼)⌋}
m,n√
m + n

0 < 𝛽i < 𝜈i∕(2 + 𝜈i), 𝜏i > (𝛽i(2 + 𝜈i) + 1)∕(2 + 2𝜈i),
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Under the alternative H1 ∶ C1 ≠ C2 in (10), it follows for any R ∈ ℕ,

Remark 2  In this paper we consider the multiplier block bootstrap. This has mainly 
technical reasons because in the proof of consistency we use some results of Bücher 
and Kojadinovic (2016) formulated for this resampling procedure. We expect that 
similar consistency results can be obtained for the non-overlapping block bootstrap 
Carlstein (1986), moving block bootstrap Künsch (1989), stationary bootstrap Politis 
and Romano (1994) and many other alternative resampling procedures introduced 
for the analysis of stationary time series.

3.2 � Relevant hypotheses

For testing relevant hypotheses it is crucial to estimate the extremal sets in (17) 
properly. For this purpose we propose

as estimators of the sets E± where (cm,n)m,n∈ℕ is a sequence of positive constants sat-
isfying limm,n→∞ cm,n∕ log(m + n) = c for some c > 0 . For the construction of a test 
of the relevant hypotheses in (9), we recall the definition of the bootstrap process in 
(18) and define the statistics

which serves as the bootstrap analogue of the statistic T(E) defined in (16). 
If K{⌊R(1−�)⌋}

m,n  denotes the empirical (1 − �)-quantile of the bootstrap sample 
K(1)
m,n

,… ,K(R)
m,n

 , we propose to reject the null hypothesis of no relevant difference in 
the covariance operators at level � , whenever

The final result of this section states that this test is consistent and has asymptotic 
level �.

Theorem 3  Suppose that the assumptions of Theorem 2 are satisfied and that 𝛥 > 0 . 

(21)lim
m,n,R→∞

ℙ

�
d̂∞ >

T
{⌊R(1−𝛼)⌋}
m,n√
m + n

�
= 𝛼.

(22)lim inf
m,n→∞

ℙ

�
d̂∞ >

T
{⌊R(1−𝛼)⌋}
m,n√
m + n

�
= 1.

(23)Ê
±

m,n
=
�
(s, t) ∈ [0, 1]2 ∶ ±

�
Ĉ1(s, t) − Ĉ2(s, t)

� ≥ d̂∞ −
cm,n√
m + n

�

(24)K(r)
m,n

= max
{

sup
(s,t)∈Ê

+

m,n

B̂(r)
m,n

(s, t), sup
(s,t)∈Ê

−

m,n

(
− B̂(r)

m,n
(s, t)

)}
(r = 1,… ,R)

(25)d̂∞ > 𝛥 +
K

{⌊R(1−𝛼)⌋}
m,n√
m + n

.
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(1)	 Under the null hypothesis H0 ∶ d∞ ≤ � of no relevant difference in the covari-
ance operators, it follows 

 if � = d∞ and, for any R ∈ ℕ , 

 if 0 < d∞ < 𝛥.
(2)	 Under the alternative H1 ∶ d∞ > 𝛥 of a relevant difference in the covariance 

operators, it follows for any R ∈ ℕ

4 � Detecting changes in the covariance operator

In this section we study the change point problem for the covariance operator of 
an array (Xn,j ∶ n ∈ ℕ, j = 1,… , n) of C([0,  1])-valued random variables. For the 
consideration of relevant changes, we require a dependence concept for an array 
(𝜂̃n,j ∶ n ∈ ℕ, j = 1,… , n) of random variables in C([0, 1] ) with strictly stationary 
rows. For this purpose we denote by Fk′

k,n
 the �-field generated by (𝜂̃n,j ∶ k ≤ j ≤ k�) . 

The kth �-mixing coefficient of the array (𝜂̃n,j ∶ n ∈ ℕ, j = 1,… , n) is then defined 
by

and (𝜂̃n,j ∶ n ∈ ℕ, j = 1,… , n) is called �-mixing whenever �(k) → 0 as k → ∞ . For 
our theoretical investigations we make the following assumption.

Assumption 3  For some � ∈ (0,
1

2
] there exists a number s∗ ∈ [�, 1 − �] such that 

the random variables (Xn,j ∶ n ∈ ℕ, j = 1,… , n) are given by Xn,j = 𝜇 + 𝜂̃n,j , where 
� = �[Xn,j] denotes the common expectation function,

and (�1,j)n∈ℕ , (�2,j)n∈ℕ are centred strictly stationary processes satisfying conditions 
(A1)–(A3) of Assumption 1 with metric �(s, t) = |s − t|� for some 𝜃 > 0 such that 
𝜃J > 2 . Furthermore, it is assumed that the array (𝜂̃n,j ∶ n ∈ ℕ, j = 1,… , n) is �
-mixing with mixing coefficients satisfying condition (A4) of Assumption 1.

(26)lim
m,n,R→∞

ℙ

�
d̂∞ > 𝛥 +

K
{⌊R(1−𝛼)⌋}
m,n√
m + n

�
= 𝛼,

lim
m,n→∞

ℙ

�
d̂∞ > 𝛥 +

K
{⌊R(1−𝛼)⌋}
m,n√
m + n

�
= 0,

lim inf
m,n→∞

ℙ

�
d̂∞ > 𝛥 +

K
{⌊R(1−𝛼)⌋}
m,n√
m + n

�
= 1.

�(k) = sup
n∈ℕ

sup
k�∈{1,…,n−k}

�(Fk�

1,n
,Fn

k�+k,n
)

(27)𝜂̃n,j =

�
𝜂1,j if j ∈ {1,… , ⌊s∗n⌋}
𝜂2,j if j ∈ {⌊s∗n⌋ + 1,… , n}
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We denote by C1 and C2 the covariance operator before and after the change point. 
Recalling the definition of d∞ in (8) the relevant and classical hypotheses are given 
by (9) and (10), respectively. For the construction of a test for these hypotheses, we 
consider a sequential empirical process on C([0, 1]3) defined by

where X̃n,j = Xn,j − X̄n (j = 1,… , n; n ∈ ℕ) and note that it can be shown that

Consequently, it is reasonable to consider the statistic

as an estimate of

The following result makes these heuristic arguments precise.

Proposition 2  If Assumption 3 is satisfied, the following statements hold true. 

(1)	 If d∞ = 0 , then 

 where � is a Gaussian random element in C([0, 1]3) with covariance operator 

 and the long-run covariance operators ℂ1,ℂ2 are defined by 

(2)	 If d∞ > 0 , we have 

(28)

�̂n(s, t, u) =
1

n

� ⌊sn⌋�

j=1

X̃⊗̌2

n,j
(t, u) + n

�
s −

⌊sn⌋
n

�
X̃⊗̌2

n,⌊sn⌋+1(t, u) − s

n�

j=1

X̃⊗̌2

n,j
(t, u)

�

𝔼
[
𝕌̂n(s, t, u)

]
=
(
s ∧ s∗ − ss∗

)(
C1(t, u) − C2(t, u)

)
+ o

ℙ
(1).

(29)�̂n = sup
s∈[0,1]

sup
t,u∈[0,1]

|�̂n(s, t, u)|

s∗(1 − s∗) d∞ = s∗(1 − s∗) ‖C1 − C2‖∞.

(30)
√
n 𝕄̂n

D

⟶Ť = sup
(s,t,u)∈[0,1]3

�𝕎(s, t, u)�

(31)
Cov(𝕎(s, t, u),𝕎(s�, t�, u�))

=
{
(s ∧ s� ∧ s∗) + ss�s∗ − s(s� ∧ s∗) − s�(s ∧ s∗)

}
ℂ1((t, u), (t

�, u�))

+
{
(s ∧ s� − s∗)+ + ss�(1 − s∗) − s(s� − s∗)+ − s�(s − s∗)+

}
ℂ2((t, u), (t

�, u�))

(32)ℂl((s, t), (s
�, t�)) =

∞∑

i=−∞

Cov
(
𝜂
⊗̌2

l,0
(s, t), 𝜂⊗̌2

l,i
(s�, t�)

)
(l = 1, 2).

(33)

√
n
�
𝕄̂n − s∗(1 − s∗)d∞

� D

⟶D̃(E)

= max
�

sup
(t,u)∈E+

𝕎(s∗, t, u), sup
(t,u)∈E−

−𝕎(s∗, t, u)
�
,
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 where � is a Gaussian random element in C([0, 1]3) with covariance operator 
defined by (31) and E± are the extremal sets defined in (17).

As in the two sample problem, we can form decision rules, rejecting the null 
hypothesis (classical or relevant) for large values of 𝕄̂n . Note that this requires 
estimation of the long-run covariance operators and (in the case of relevant 
hypotheses) the estimation of the change point and the extremal sets. For the con-
struction of an explicit test (based on a multiplier bootstrap) we investigate again 
classical and relevant hypotheses separately.

4.1 � Classical hypotheses

Most of the literature on change point analysis of covariance operators investi-
gates the classical hypotheses of the form (10), where C1 and C2 denote the covar-
iance operator before and after the change point (see  Jarušková 2013; Sharipov 
and Wendler 2020; Stoehr et al. 2019). In order to obtain critical values for a test 
for a structural break in the covariance operators, we consider a C([0, 1]3)-valued 
bootstrap process defined by

if ⌊sn⌋ ≤ n − l , where (�(1)
k
)k∈ℕ,… , (�

(R)

k
)k∈ℕ denote independent sequences of inde-

pendent Gaussian random variables with mean 0 and variance 1 and

The expressions

are estimators of the covariance operator before and after the change point and

is an estimator of the unknown change location s∗ (note that s∗ ∈ (�, 1 − �) by 
assumption). In (34) the parameter l ∈ ℕ denotes the block length satisfying l∕n → 0 
as l, n → ∞ and for any t, u ∈ [0, 1] and any s ∈ [0, 1] such that ⌊sn⌋ > n − l we 
define

(34)

B̂(r)
n
(s, t, u) =

1√
n

⌊sn⌋�

k=1

1√
l

� k+l−1�

j=k

Ŷn,j(t, u) −
l

n

n�

j=1

Ŷn,j(t, u)
�
𝜉
(r)

k

+
√
n
�
s −

⌊sn⌋
n

�
1√
l

� ⌊sn⌋+l�

j=⌊sn⌋+1
Ŷn,j(t, u) −

l

n

n�

j=1

Ŷn,j(t, u)
�
𝜉
(r)

⌊sn⌋+1,

Ŷn,j = X̃⊗̌2

n,j
(t, u) − (Ĉ2 − Ĉ1)�{j > ⌊ŝn⌋} (j = 1,… , n).

Ĉ1 =
1

⌊ŝn⌋

⌊ŝn⌋�

j=1

X̃⊗̌2

n,j
(t, u) and Ĉ2 =

1

⌊(1 − ŝ)n⌋

n�

j=⌊ŝn⌋+1
X̃⊗̌2

n,j
(t, u)

(35)ŝ = max
{
𝜗, min

{
1

n
arg max

1≤k<n
‖‖�̂n(k∕n, ⋅, ⋅)

‖‖∞, 1 − 𝜗

}}
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Finally, a bootstrap process is defined by

and we consider the bootstrap statistic

If Ť{⌊R(1−𝛼)⌋}
n  denotes the empirical (1 − �)-quantile of the bootstrap sample 

Ť (1)
n
, Ť (2)

n
,… , Ť (R)

n
 , the classical null hypothesis (10) of no change in the covariance 

operators is rejected, whenever

Theorem 4  Assume that the array (Xn,j ∶ n ∈ ℕ, j = 1,… , n) satisfies Assumption 3. 
Further assume that l = ⌊n�⌋ for some constant � ∈ (1∕5, 2∕7) such that the con-
stant � in (A2) satisfies � ≥ 4 and

where 𝜏 is defined in (A4).

Then, under the classical null hypothesis H0 ∶ C1 = C2 , we have

Under the alternative H1 ∶ C1 ≠ C2 we have, for any R ∈ ℕ,

4.2 � Relevant hypotheses

Testing for a relevant change in the covariance operators as formulated in (9) is more 
complicated. In particular because—as indicated in Proposition 2—it additionally 
requires the estimation of the extremal sets. To be precise we recall the definition of �̂n 
in (29) and define

B̂(r)
n
((n − l)∕n, t, u) = B̂(r)

n
(s, t, u).

(36)�̂
(r)
n
(s, t, u) = B̂(r)

n
(s, t, u) − sB̂(r)

n
(1, t, u) (r = 1,… ,R)

(37)Ť (r)
n

= sup
s,t,u∈[0,1]

||�̂(r)
n
(s, t, u)|| (r = 1,… ,R).

(38)�̂n >
Ť
{⌊R(1−𝛼)⌋}
n √

n
.

(𝛽(2 + 𝜈) + 1)∕(2 + 2𝜈) < 𝜏 < 1∕2

lim
n,R→∞

ℙ

�
𝕄̂n >

Ť
{⌊R(1−𝛼)⌋}
n √

n

�
= 𝛼.

lim inf
n→∞

ℙ

�
𝕄̂n >

Ť
{⌊R(1−𝛼)⌋}
n √

n

�
= 1.

(39)d̂∞ =
𝕄̂n

ŝ(1 − ŝ)
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as an estimator of the maximal deviation of the covariance operator before and after 
the change point, and use

as the estimator of the extremal sets, where (cn)n∈ℕ is a sequence of positive con-
stants such that limn→∞ cn∕ log(n) = c > 0 . In order to obtain a test for the relevant 
hypotheses in (9) define, for r = 1,… ,R , the bootstrap statistics

Then, the null hypothesis of no relevant change in the covariance operators is 
rejected at level � , whenever

where Ǩ{⌊R(1−𝛼)⌋}
n  is the empirical (1 − �)-quantile of the bootstrap sample Ǩ(1)

n
, Ǩ(2)

n
, 

… , Ǩ(R)
n

 . The following result shows that the bootstrap test for the relevant hypoth-
eses is consistent and has asymptotic level �.

Theorem 5  Let the assumption of Theorem 4 be satisfied and furthermore assume 
that the random variable M in (A3) is bounded. 

(1)	 Under the null hypothesis H0 ∶ d∞ ≤ � of no relevant difference in the covari-
ance operators, we have 

 if � = d∞ and, for any R ∈ ℕ , 

 if 0 < d∞ < 𝛥.
(2)	 Under the alternative H1 ∶ d∞ > 𝛥 of a relevant difference in the covariance 

operators, we have for any R ∈ ℕ , 

(40)Ê
±

n
=
�
(t, u) ∈ [0, 1]2 ∶ ±(Ĉ1(t, u) − Ĉ2(t, u)) ≥ d̂∞ −

cn√
n

�
,

(41)Ǩ(r)
n

=
1

ŝ(1 − ŝ)
max

{
sup

(t,u)∈Ê
+

n

Ŵ (r)
n
(ŝ, t, u), sup

(t,u)∈Ê
−

n

(
− Ŵ (r)

n
(ŝ, t, u)

)}
.

(42)d̂∞ > 𝛥 +
Ǩ

{⌊R(1−𝛼)⌋}
n √

n
,

lim
n,R→∞

ℙ

�
d̂∞ > 𝛥 +

Ǩ
{⌊R(1−𝛼)⌋}
n √

n

�
= 𝛼,

lim
n→∞

ℙ

�
d̂∞ > 𝛥 +

Ǩ
{⌊R(1−𝛼)⌋}
n √

n

�
= 0,

lim inf
n→∞

ℙ

�
d̂∞ > 𝛥 +

Ǩ
{⌊R(1−𝛼)⌋}
n √

n

�
= 1.



211

1 3

Differences between covariance operators

5 � Finite sample properties

5.1 � Simulation study

In this section we study the finite sample properties of the test procedures devel-
oped in this paper and we also compare it with some competing procedures from 
the literature, which can be used under similar assumptions as considered here. The 
empirical rejection probabilities of the different tests have been calculated by 1000 
simulation runs and 200 bootstrap statistics are used for the calculation of the boot-
strap quantiles in each run.

5.1.1 � Two sample problem

Classical hypotheses: In the following we investigate the finite sample properties of 
the test (20) for the classical null hypothesis of equal covariance operators in (10). 
For the sake of comparison, we use the same scenarios as considered in Paparoditis 
and Sapatinas (2016) who developed a bootstrap test for the hypotheses (10). Pap-
aroditis and Sapatinas (2016) also applied the FPC test developed by Fremdt et al. 
(2013) to these scenarios, such that a comparison with the method developed by 
these authors is also possible. To be precise, curves are generated according to the 
model

(i = 1,… ,m, j = 1,… , n ), where the random variables Vi,k,Wi,k, Ṽj,k, W̃j,k are inde-
pendent and t5-distributed. The constant c determines if the null hypothesis (c = 1) 
holds or not (c ≠ 1) . In order to obtain functional data objects, the curves are eval-
uated at 500 equidistant points in [0,  1] and then the Fourier basis consisting of 
49 basis functions is used to transform these function values into a functional data 
object (using the function “Data2fd” from the “fda” R-package).

In Table 1 we display empirical rejection probabilities for two different sample 
sizes and different choices of c. Paparoditis and Sapatinas (2016) state that the pro-
cedure proposed by Fremdt et al. (2013) achieves the best results if two FPCs are 
used to represent the data, and therefore, the results of this procedure were obtained 
for this case.

We observe that under the null, i.e. c = 1 , the nominal level is well approxi-
mated by the new test (20) and the alternatives are detected with reasonable prob-
ability. Moreover, in all considered scenarios under the alternative, the new proce-
dure achieves a better power than the tests of Paparoditis and Sapatinas (2016) and 
Fremdt et al. (2013).

Relevant hypotheses

(43)

Xi(t) =

10∑

k=1

{
21∕2k−1∕2 sin(𝜋kt)Vi,k + k−1∕2 cos(2𝜋kt)Wi,k

}

Yj(t) = c

10∑

k=1

{
21∕2k−1∕2 sin(𝜋kt)Ṽj,k + k−1∕2 cos(2𝜋kt)W̃j,k

}



212	 H. Dette, K. Kokot 

1 3

We now investigate the finite sample properties of the decision rule (25) for test-
ing relevant hypotheses of the form (9) in the two sample problem. For this purpose 
we define different processes including independent random functions, functional 
moving average processes and non-Gaussian random curves.

For the data generation, we proceed similarly as in Sections 6.3 and 6.4 of Aue 
et  al. (2015). We consider 21 B-spline basis functions �1,… , �21 and restrict our-
selves to functions in the linear space ℍ = span{�1,… , �21} . Then, for a sample of 
size m ∈ ℕ , random functions 𝜀1,… , 𝜀m ∈ ℍ ⊂ C([0, 1]) are defined by

where N1,j,N2,j,… ,N21,j are independent normally distributed random variables 
with expectation zero and variance Var(Ni,j) = �2

i
= 1∕i2 . Independent and identi-

cally distributed Gaussian random functions are then obtained by

(44)�j =

21∑

i=1

Ni,j�i, j = 1,… ,m,

(45)Xi = �i (i = 1,… ,m),

Table 1   Rejection probabilities of the test (20) for the classical hypotheses (10)

The case c = 1 corresponds to the null hypothesis. The numbers in the brackets display the empirical 
rejection probabilities of the tests proposed by Fremdt et al. (2013) and Paparoditis and Sapatinas (2016), 
respectively

n, m c = 1 c = 1.2

1% 5% 10% 1% 5% 10%

25 0.9 4.2 11.8 3.0 13.4 24.7
(0, 0.3) (0.6, 2.5) (2.2, 8.2) (0, 0.5) (1.6, 5.0) (3.9, 14.7)

50 0.8 3.6 8.6 6.6 22.4 35.0
(0, 0.6) (1.6, 3.2) (4.1, 7.6) (0.3, 0.8) (2.6, 9.8) (7.2, 23.9)

c = 1.4 c = 1.6

n, m 1% 5% 10% 1% 5% 10%

25 10.3 32.3 51.0 22.4 54.7 73.8
(0, 1.6) (1.1, 16.8) (5.2, 36.8) (0, 4.7) (1.0, 33.8) (9.5, 61.2)

50 27.8 58.9 75.1 55.0 83.3 91.8
(0.2, 12.8) (6.5, 46.1) (22.1, 67.6) (1.4, 37.0) (28.5, 79.6) (55.9, 90.3)

c = 1.8 c = 2

n, m 1% 5% 10% 1% 5% 10%

25 34.9 72.2 87.4 45.3 81.9 93.3
(0, 10.4) (3.6, 55.7) (23.0, 82.3) (0, 17.7) (7.0, 66.6) (50.5, 89.2)

50 73.0 93.4 97.5 83.0 96.4 98.6
(6.6, 61.2) (57.4, 91.5) (82.1, 96.6) (24.5, 74.2) (83.6, 93.7) (95.7, 97.7)
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and we call {Xi}
m
i=1

 fIID process. In order to obtain independent non-Gaussian 
curves, we replace the normally distributed random coefficients in (44) by independ-
ent t5-distributed random variables, that is Ni,j ∼ t5

√
3∕(5i2) . Then, the variances of 

the coefficients are the same as for the fIID processes, and the corresponding setting 
is called the non-Gaussian process.

Using the processes in (44), fMA(2) processes can be defined by

where �1, �2 ∈ ℝ are parameters defining the dependency (for initialization define 
�−1, �0 as independent copies of �1 ). In the simulations, we set �1 = 0.7, �2 = 0 to 
obtain an fMA(1) processes and �1 = 0.5, �2 = 0.3 for an fMA(2) process.

In order to test for a relevant difference in the covariance operators of two popula-
tions, we generate an independent second sample, Ỹ1,… , Ỹn , in the same way and mul-
tiply it by a constant a such that Yi = a Ỹi ( i = 1,… , n ). Consequently,

where C1,C2 are the covariance operators of X1 and Y1 , respectively.
In the case of fIID and non-Gaussian processes defined by (45), the maximum of the 

covariance operator is given by

which is attained at the point (s, t) = (0, 0) . Consequently, we obtain for the 
sup-norm

in both cases and the extremal sets are defined by E+ = {(0, 0)}, E− = � . For fMA(2) 
processes of the form (46), we obtain

In Table 2 we display empirical rejection probabilities for the hypotheses in (9) for 
the different types of processes and different choices of the sample sizes. In each 
case, we use a =

√
2 and define the threshold � such that � = |a2 − 1| in the fIID 

(46)Xi = �i + �1, �i−1 + �2 �i−2 (i = 1,… ,m)

(47)|C1(s, t) − C2(s, t)| = |C1(s, t)(a
2 − 1)|

max
s,t∈[0,1]

Cov(X1(s),X1(t)) = max
s,t∈[0,1]

D∑

i=1

�i(s)�i(t)∕i
2 = 1

‖C1 − C2‖∞ = �a2 − 1�

‖C1 − C2‖∞ = �a2 − 1� (1 + �2
1
+ �2

2
).

Table 2   Simulated level of the test (25) for a relevant difference in the covariance operators at the bound-
ary of the hypotheses in (9), that is ‖C1 − C2‖∞ = �

m, n fIID Non-Gaussian fMA(1) fMA(2)

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

50, 50 1.0 4.6 8.7 0 1.7 5.4 1.2 5.2 10.5 1.5 5.3 10.4
50, 100 0.9 4.7 10.1 0.6 3.9 9.8 2.1 7.6 13.5 1.8 7.0 11.2
100, 100 0.9 3.9 9.1 0.5 3.1 9.0 1.4 5.7 10.8 0.9 4.1 10.7
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and non-Gaussian setting and � = |a2 − 1| (1 + �2
1
+ �2

2
) in the fMA(1) and fMA(2) 

setting. Throughout this section we call this situation the boundary of the hypoth-
eses (9). For the estimation of the extremal sets, we use cm,n = 0.1 log(n + m) in (23) 
and the block lengths in the bootstrap process (18) are chosen as l1 = l2 = 1 in the 
fIID cases, as l1 = l2 = 2 in the fMA(1) and as l1 = l2 = 3 in the fMA(2) case. We 
observe a reasonable approximation of the nominal level of the test at the boundary 
of the hypotheses in all cases under consideration. The nominal level in the inte-
rior of the hypotheses, that is ‖C1 − C2‖∞ < 𝛥 is usually much smaller (these results 
are not displayed). We also observe a (slightly) better approximation of the nominal 
level for Gaussian errors, in particular for sample sizes m = n = 50 . A possible heu-
ristic explanation for this observation is the existence of an additional bias in the 
non-Gaussian case.

Remark 3  Sensitivity with respect to the choice of the tuning parameters 

(1)	 In order to study the impact of the choice of the block length in the multiplier 
bootstrap on the properties of the test (25), we show in Table 3 the empiri-
cal rejection probabilities for different choices of the block lengths l1, l2 in the 
bootstrap procedure. The sample size is m = n = 100 and again we consider the 
boundary of the hypotheses, that is ‖C1 − C2‖∞ = � , where the rejection prob-
abilities should be approximately � . These results (and similar results for other 
sample sizes) indicate that the test procedure is rather robust with respect to the 
choice of the block length. For example, in the independent case, we basically 
observe no difference (within the simulation error), while in the dependent case 
only for the smallest block length l1 = l2 = 1 the test (25) slightly exceeds its 
nominal level.

	   We finally note that some practical guidelines for the choice of the block 
length l1 and l2 can be found in Section 5.1 of Bücher and Kojadinovic (2016) 
and the procedures proposed in this reference could be adapted to the situation 
considered here.

(2)	 For the problem of testing relevant hypotheses, a second tuning parameter has 
to be chosen, the constant c in the sequence cm,n = c log(m + n) used in the esti-
mator of the extremal sets defined by (23). So far we have used c = 0.1 , which 

Table 3   Simulated level of the test (25) at the boundary of the hypotheses (9) (for different choices of the 
block length)(18)

The sample sizes are m = n = 100 and l1, l2 are parameters in the bootstrap processes

l1, l2 fIID non-Gaussian fMA(1) fMA(2)

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

1, 1 0.9 3.9 9.1 0.5 3.1 9.0 2.3 7.4 12.3 1.8 7.2 13.0
2, 2 1.1 4.2 8.6 0.3 3.2 9.3 1.4 5.7 10.8 1.0 4.2 10.8
3, 3 1.0 4.3 9.1 0.3 3.3 8.3 1.5 5.3 9.8 0.9 4.1 10.7
4, 4 0.8 4.2 9.8 0.5 3.6 9.1 1.4 5.7 9.7 0.8 3.9 10.4
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yields satisfactory results in most examples. In order to study the robustness of 
the test procedure with respect to the choice of this parameter, we consider the 
sample sizes n = m = 100 and the same model as before. More precisely, the 
error terms are defined by (44), where the standard deviations of the coefficients 
Ni,j ( i = 1,… , 21, j = 1,… ,m ) are given by �i = 1∕i . In the left part of Table 4, 
we display the simulated nominal level at the boundary of the null hypothesis for 
different values of the parameter c. We observe a remarkable robustness of the 
test. In the range [0.01, 2.00] the rejection probabilities are not changing with c. 
To obtain a notable difference we also simulated the nominal level for the param-
eter c = 10 , where the rejection probabilities at level 5% are 2% , 2.2% , 5.5% and 
3.8% in the FIID, non-Gaussian, FMA1 and FMA2 model, respectively. Further 
simulation results for the standard deviations �i = 1∕i1∕4 instead of �i = 1∕i2 
show a similar stability and are not displayed for the sake of brevity. A possible 
explanation for this stability consists in the fact that in the considered case the 
set of extremal points is a singleton, that is, E = {(0, 0)⊤} , which can usually be 
estimated rather precisely. We emphasize that this situation is the most likely 
one in applications.

	   In order to investigate a more extreme scenario with E = {(0, 0)⊤, (1, 1)⊤} we 
consider model (47) with a =

√
2 and standard deviations �i = 0.1 ( i = 1,… , 21) . 

In this case the threshold is given by � = 0.01|a2 − 1| in the fIID and non-Gauss-
ian setting and by � = 0.01|a2 − 1| (1 + �2

1
+ �2

2
) in the fMA(1) and fMA(2) 

setting. In the right part of Table 4, we display empirical rejection rates at level 
5% of the test (25) for different choices of the parameter c. The effect is now 
more visible, but the test keeps its nominal values in most case. In particular we 
observe that the test becomes more conservative for an increasing parameter c.

Next we study the properties of the test (25) under the alternative in (9). As 
before, two independent identically distributed samples are generated where the sec-
ond sample is multiplied by a factor a. The threshold � is fixed, and then, empiri-
cal rejection probabilities are simulated for different choices of the constant a, such 
that the properties stated in Theorem 3 can be visualized. The results are displayed 
in Fig.  1 for fMA(1) processes (with �1 = 0.7, �2 = 0 ) and non-Gaussian random 

Table 4   Simulated level (5%) of the test (25) at the boundary of the hypotheses (9) for different choices 
of the constant c in the sequence c

m,n = c log(m + n))

The sample sizes are m = n = 100 and the error terms are defined by (44), where the standard deviations 
of the coefficients Ni,j are given by �i

c �
i
= 1∕i �

i
= 0.1

fIID non-Gaussian fMA1 fMA2 fIID non-Gaussian fMA1 fMA2

0.05 3.90 3.10 5.70 4.10 3.30 1.80 6.80 4.90
0.10 3.90 3.10 5.70 4.10 2.00 1.20 4.30 3.90
0.20 3.90 3.10 5.70 4.10 2.00 0.30 2.40 2.30
2.00 3.90 3.10 5.70 4.10 2.00 0.30 2.40 2.30
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curves. The threshold in (9) is set to � = 1 + �2
1
 and � = 1 , respectively. As illus-

trated before, the nominal level is reasonably well approximated in both cases and 
with increasing factor a, the empirical rejection probability also increases. It can 
be observed that the empirical rejection probability increases slightly faster in the 
fMA(1) case. An explanation of this behaviour consists in the fact that for the same 
factor a, the true maximal difference of the covariance operators is greater in the 
fMA(1) than in the non-Gaussian case.

5.1.2 � Change point problem

Classical hypotheses:
We begin with a comparison of the test (38) for the classical hypotheses (10) with 

two procedures which were recently proposed by Sharipov and Wendler (2020) and 
are based on the sup and L2-norm of the CUSUM statistic. Following these authors 
we generate data from the model

where �X,1,… , �X,n are independent standard Brownian motions. A sample size of 
n = 100 is considered and the true change point is defined by k∗ = 51 . The empiri-
cal rejection probabilities of the three tests are displayed in Table  5. The level 
( d1 = d2 = 0 ) is approximated very well by all procedures under consideration. 
Moreover, the test (38) proposed in this paper is at least competitive in all cases 
under consideration. In the case d1 = 0.4, d2 = 0 , the procedures of Sharipov and 
Wendler (2020) perform slightly better but whenever d2 > 0 , the new procedure 
shows the best performance.

(48)Xn,i(t) =

�
𝜀X,i(t), i < k∗ = ⌊s∗n⌋ + 1

𝜀X,i(t)(1 + d1 + d2(1 + sin(2𝜋t))), i ≥ k∗

Fig. 1   Simulated rejection probabilities of the test (25) for a non-relevant difference in the covariance 
operators. Left panel fMA(1) with threshold � = 1 + 0.72 . Right panel non-Gaussian curves with thresh-
old � = 1 . The second sample is multiplied by a for a =

√
1.6,

√
1.7,… ,

√
3.8 , and the vertical lines 

represent the boundary of the null hypotheses (i.e. a =

√
2)
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Next we provide a comparison with the procedure proposed by Stoehr et  al. 
(2019). Following these authors, we simulate fAR(1) data where the errors (similar 
as in (44)) are defined by

𝜈̃1,… , 𝜈̃55 denote the Fourier basis and the random coefficients N1,j,N2,j,… ,N55,j are 
independent normally distributed with expectation zero and variance Var(Ni,j) = �2

i
 

( i = 1,… , 55 ; j = 1,… , n ). The fAR(1) data are then defined by

where the linear operator � is represented by a 55 × 55 matrix that is applied to the 
vector of the coefficients in the basis representation. Here the matrix with 0.4 on 
the diagonal and 0.1 on the superdiagonal and subdiagonal is chosen, such that the 
generated fAR(1) time series is stationary. For the alternative a change is inserted in 
the first m leading eigendirections for m = 2, 6, 25 by adding an additional normally 
distributed noise term with variance �2

�
∕m for the observations Xn,j for j > ⌊0.5n⌋ . 

The following three settings are considered:

The empirical rejection probabilities of the test (38) with block length l = 6 and the 
test based on dimension reduction developed in Stoehr et al. (2019) are displayed in 
Table 6. We observe that in all cases under consideration the procedure proposed 
here yields an improvement with respect to the power. Note that Stoehr et al. (2019) 
also considered test procedures based on fully functional and weighted functional 
statistics. As these methods considerably overestimate the test level (see Fig. 2 in the 
same reference), these procedures are not included in the comparison.

Relevant hypotheses:

ej =

55∑

i=1

Ni,j𝜈̃i, j = 1,… , n,

(49)Xn,j = � (Xn,j−1) + ej, j = 1,… , n,

Setting 1: �i = 1 for i = 1,… , 8 and �i = 0 for i = 9,… , 55, �� = 1.5

Setting 2: �i = 3−i for i = 1,… , 55, �� = 0.3

Setting 3: �i = i−1 for i = 1,… , 55, �� = 1.

Table 5   Empirical rejection probabilities of the bootstrap test (38) for the classical hypotheses (10) of a 
structural break in the covariance operator

The numbers in the brackets display the empirical rejection probabilities of the test proposed in Sharipov 
and Wendler (2020) based on the supremum type integral type CUSUM statistic (for p = 3)

d1, d2 1% 5% 10% d1, d2 1% 5% 10%

0, 0 1.3 5.0 9.9 0.4, 0 19.3 44.5 61.0
(0.4, 0.6) (4.4, 4.7) (10.0, 10.8) (16.1, 19.8) (46.8, 50.1) (63.2, 65.4)

0.8, 0 60.0 88.4 95.2 0, 0.4 22.4 48.9 65.3
(56.0, 58.8) (88.0, 88.4) (96.0, 95.5) (9.8, 12.5) (33.0, 38.6) (49.4, 55.4)

0, 0.8 69.8 93.6 98.0 0.4, 0.4 63.4 89.3 95.8
(45.8, 50.3) (82.9, 85.8) (93.8, 94.6) (44.2, 49.1) (81.1, 82.2) (91.6, 92.1)
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We conclude this section investigating the finite sample properties of the test 
defined by (42) for the hypotheses (9) of a relevant change in the covariance oper-
ator. For this purpose we consider similar scenarios as in Sect. 5.1.1. In all cases, 
the location of the change is set to s∗ = 0.5 and the observations after the change 
point are multiplied by a constant a such that (47) holds. For the estimation of the 
extremal sets, the parameter in (40) is set as cn = 0.1 log(n).

In Table 7 empirical rejection probabilities are displayed for different processes 
at the boundary of the null hypothesis, i.e. the observations after the change 
point are multiplied by a = 2 and the threshold � is defined in each case such 
that ‖C1 − C2‖∞ = � . For fIID and non-Gaussian data the block length in (34) 
is set to l = 1 and the threshold is given by � = a2 − 1 . The fMA(1) and fMA(2) 
data are defined by (46) with �1 = 0.7, �2 = 0 and �1 = 0.5, �2 = 0.3 , respectively. 
The threshold parameter is set to � = (a2 − 1)(1 + �2

1
+ �2

2
) in both cases, and the 

block length in (34) is set to l = 2 and l = 3 , respectively.
We observe that the nominal level is reasonably well approximated in most 

cases under consideration especially for the sample size n = 200 . Only in the non-
Gaussian case, the nominal level is underestimated for the sample size N = 100 , 
but the approximation improves considerably for the sample size N = 200.

In Table 8, we show the empirical rejection probabilities of the test (42) and 
also for the test developed in Dette et  al. (2020b) for scenarios in the interior 
of the null hypothesis of no relevant change point as well as under the alter-
native. We consider independent identically distributed Gaussian (fIID) and 
fMA(2) data and multiply the observations after the change point by differ-
ent values a = 1.8, 1.9, 2, 2.2, 2.4, 2.6 . In the fIID case the threshold parame-
ter is given by � = 3 and in the fMA(2) case it is � = 3 ⋅ (1 + �2

1
+ �2

2
) (where 

still �1 = 0.5, �2 = 0.3 ). Consequently, the case a = 2 always corresponds to the 
boundary of the null hypothesis, and the cases a < 2 and a > 2 represent the 
interior of the null hypothesis and alternative. Since the procedure developed by 
Dette et al. (2020b) is based on a different metric, the threshold parameter � in 
the relevant hypotheses (2) is set to

Table 6   Empirical rejection 
probabilities (at level 5% ) of 
the bootstrap test (38) and the 
dimension reduction approach 
proposed in Stoehr et al. (2019) 
(numbers in the brackets)

m Setting 1 Setting 2 Setting 3

0 4.7 (3.1) 8.1 (5.0) 3.9 (4.6)
2 37.2 (22.8) 92.5 (50.5) 86.2 (30.4)
6 81.1 (20.4) 99.9 (98.9) 99.9 (94.8)
25 100 (29.0) 100 (92.3) 100 (97.3)

Table 7   Simulated level of the test (42) for the hypotheses defined by (9) at the boundary of the hypoth-
eses, that is, ‖C1 − C2‖∞ = �

n fIID non-Gaussian fMA(1) fMA(2)

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 1.1 3.8 9.5 0 0.8 5.3 0.8 4.9 13.7 1.3 6.0 11.7
200 0.7 4.6 10.1 0.3 3.1 8.4 1.3 4.9 9.8 0.7 4.9 10.5
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for this test procedure. Consequently the boundary of the null hypothesis of no rel-
evant change in the covariance operators (w.r.t. the corresponding metric) is also 
obtained for the factor a = 2 for both data models.

We mention again that the nominal level at the boundary of the hypotheses is 
reasonably well approximated by the test (42), while the test procedure developed 
in Dette et  al. (2020b) is more conservative. In the interior of the null hypothesis 
(a < 2) , the rejection probabilities of both tests are strictly smaller than the nominal 
level. This property is desirable as it means that the probability of a type I error is 
small in  situations with a large deviation from the alternative. On the other hand, 
under the alternative the new test (42) has substantially more power than the test 
developed in Dette et al. (2020b).

5.2 � Data example

Similar as Fremdt et al. (2013) and Paparoditis and Sapatinas (2016) we consider 
egg-laying curves of medflies (Mediterranean fruit flies, Ceratitis capitata). The 
original data consist of the number of eggs which were laid on each day dur-
ing the lifetime of 1000 female medflies and a detailed description of the exper-
iment can be found in Carey et  al. (1998). Only medflies which lived at least 
34 days are considered and split into two samples, the medflies which lived at 
most 43 days and those which lived at least 44 days. A Fourier basis consist-
ing of 49 basis functions is used to transform the discrete observations to func-
tional data (Xj ∶ j = 1,… , 256) and (Yj ∶ j = 1,… , 278) . The expressions Xi(t) and 
Yj(t) denote the number of eggs which were laid on day ⌊30t⌋ by the ith short-
lived and the jth long-lived medfly relative to the total number of eggs laid in the 
whole lifetime of the ith short-lived and the jth long-lived medfly, respectively 
( t ∈ [0, 1], i = 1,… , 256, j = 1,… , 278 ). First, the test (20) is used to study the 

� = ∫[0,1] ∫[0,1]

{(1 − 22)C1(s, t)}
2dsdt

Table 8   Simulated rejection 
probabilities of the test (42) for 
the hypotheses (9) of a relevant 
change in the covariance 
operator considering fIID and 
fMA(2) data (level 5%)

The cases a < 2, a = 2 and a > 2 correspond to the interior, bound-
ary of the null hypothesis and to the alternative. The numbers in 
brackets represent the empirical rejection probabilities of the proce-
dure developed in Dette et al. (2020b)

a fIID fMA(2)

n = 100 n = 200 n = 100 n = 200

1.8 0.3 (0.4) 0 (0) 1.3 (0.1) 1.0 (0.1)
1.9 1.8 (0.9) 0.1 (0.5) 3.4 (0.4) 1.4 (0.4)
2.0 3.8 (2.3) 4.6 (3.2) 6.0 (1.0) 4.9 (1.4)
2.2 21.5 (9.8) 33.6 (25.4) 19.4 (6.2) 27.2 (11.1)
2.4 47.0 (23.3) 74.9 (51.2) 40.0 (15.6) 65.9 (31.2)
2.6 73.0 (37.9) 96.0 (70.6) 63.3 (26.5) 88.0 (49.7)
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classical hypotheses in (10). The window parameters in (18) are set to l1 = l2 = 1 
since the egg-laying curves corresponding to the different medflies can be 
regarded as independent. For the calculation of critical values, 200 bootstrap rep-
lications are used. The test (20) for the classical null hypothesis of equal covari-
ance operators yields a p-value of 3%. The outcome when using the procedure 
developed in Fremdt et al. (2013) depends on the choice of the number of consid-
ered functional principal components p and the procedure developed in Paparodi-
tis and Sapatinas (2016) yields a p value of 0.3% (see Table 3 in Paparoditis and 
Sapatinas (2016)).

In Table  9 we display the p values of the test (25) for the relevant hypoth-
eses in (9) for different choices of the threshold � . It can be seen that even for 
� = 0.0001 , i.e. when a maximal deviation of only 0.0001 is tolerated, the p value 
is 4.5% and the p value increases to 10% and 14% if the slightly larger thresholds 
� = 0.0002 or � = 0.0003 are used in the test (25). For example, the null hypoth-
esis that the maximal deviation between the covariance operators is smaller or 
equal than � = 0.0003 cannot be rejected (at level 10% ). Although the classical 
null hypothesis of equal covariance operators is rejected at level 5% , these results 
may raise the question if the detected difference is really of practical relevance.

Appendix: Proofs of main results

A.1: Proof of Theorem 1

We apply the central limit theorem as formulated in Theorem 2.1 in Dette et al. 
(2020a) to the sequence of C(T2)-valued random variables 
((Zj − 𝜇)⊗̌2)j∈ℕ = (𝜂⊗̌2

j
)j∈ℕ.

It can be easily seen that conditions (A1), (A2) and (A4) in this reference are 
satisfied. In order to see that the remaining condition (A3) also holds, we use the 
triangle inequality and Assumption 1 of the present work to obtain, for any j ∈ ℕ 
and s, t, s�, t� ∈ T ,

�𝜂j(s)𝜂j(t) − 𝜂j(s
�)𝜂j(t

�)� ≤ �𝜂j(s)(𝜂j(t) − 𝜂j(t
�))� + �𝜂j(t�)(𝜂j(s) − 𝜂j(s

�))�
≤ ‖𝜂j‖∞

�
�𝜂j(t) − 𝜂j(t

�)� + �𝜂j(s) − 𝜂j(s
�)�
�

≤ ‖𝜂j‖∞ M
�
𝜌(t, t�) + 𝜌(s, s�)

�

≲ ‖𝜂j‖∞ M 𝜌max

�
(t, s), (t�, s�)

�

Table 9   Empirical p values of 
the test (25) for the relative egg-
laying curves of medflies

� p value (%)

0.0001 4.5
0.0002 10
0.0003 14
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where �
�
(‖𝜂j‖∞ M)J

� ≤ K̃ < ∞ by (A3). Now observe that

Here the error o
ℙ
(1) refers to the supremum norm, because by Theorem 2.1 in Dette 

et  al. (2020a) the sequence 
�

1√
n

∑n

j=1
�j
�
n∈ℕ

 converges weakly in C([0,  1]) and by 
continuous mapping ‖ 1√

n

∑n

j=1
𝜂
⊗̌2

j
‖∞ is of order O

ℙ
(1) , which yields 

1√
n
‖( 1√

n

∑n

j=1
𝜂j)

⊗̌2‖∞ = o
ℙ
(1) . Moreover, as shown above, Theorem  2.1 in Dette 

et al. (2020a) can also be applied to the sequence (𝜂⊗̌2

j
)j∈ℕ , which yields the claim of 

Theorem 1. 	�  ◻

A.2: Proof of Proposition 1

As the samples are independent, it directly follows from Theorem 1 that

in C([0, 1]2)2 as m, n → ∞ , where Z1 and Z2 are independent, centred Gaussian pro-
cesses defined by their long-run covariance operators (14) and (15). By the continu-
ous mapping theorem it follows that

in C([0, 1]2) as m, n → ∞ (the error o
ℙ
(1) refers again to the supremum norm), where 

Z is again a centred Gaussian process with covariance operator (13).
If d∞ = 0 , the convergence in (50) together with the continuous mapping yield 

(12). If d∞ > 0 , the asymptotic distribution of d̂∞ can be deduced from Theorem B.1 
in the online supplement of Dette et al. (2020a) or alternatively from the results in 
Cárcamo et al. (2020). 	�  ◻

A.3: Proof of Theorem 2 and 3

Proof of Theorem  2. Using similar arguments as in the proof of Theorem 1, it fol-
lows that the process B̂(r)

m,n
 in (18) admits the stochastic expansion

1√
n

n�

j=1

(Zj − Z̄n)
⊗̌2 =

1√
n

n�

j=1

𝜂
⊗̌2

j
−

1√
n

�
1√
n

n�

j=1

𝜂j

�⊗̌2

=
1√
n

n�

j=1

𝜂
⊗̌2

j
+ o

ℙ
(1).

√
m + n

�
1

m

m�

j=1

(X̃⊗̌2

m,j
− C1),

1

n

n�

j=1

(Ỹ⊗̌2

n,j
− C2)

�

=
√
m + n

�
1

m

m�

j=1

(𝜂⊗̌2

1,j
− C1),

1

n

n�

j=1

(𝜂⊗̌2

2,j
− C2)

�

+ o
ℙ
(1) ⇝

�
1√
𝜆
Z1,

1√
1 − 𝜆

Z2

�

(50)Zm,n =
√
m + n

�
1

m

m�

j=1

X̃⊗̌2

m,j
−

1

n

n�

j=1

Ỹ⊗̌2

n,j
− (C1 − C2)

�
⇝ Z
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 where the remainder is defined by Rm,n = R(1)
m

− R(2)
n

 with

Because both terms have a similar structure, we consider only the first one. Note that 
it is easy to see that ‖𝜂̄⊗̌2

1
‖ = O

ℙ
(
1

m
) and therefore the third term in (51) is of order 

O
ℙ

(√ l1

m

)
= o

ℙ
(1) . The first and second term can be treated in the same way and we 

only consider the first one. It follows from the proof of Theorem 4.3 in Dette et al. 
(2020a) that the term

is of order O
ℙ
(1) . By Theorem 2.1 in the same reference the second factor of the ten-

sor satisfies ‖𝜂̄1‖∞ = O
ℙ
(

1√
m
) , and therefore the first term in (51) is of order o

ℙ
(1) . 

Using similar arguments for the second term in (51) and the summand R(2)
n

 yields

Next, note that the sequences (𝜂⊗̌2

1,j
)j∈ℕ and (𝜂⊗̌2

2,j
)j∈ℕ satisfy Assumption 2.1 in Dette 

et al. (2020a).
Thus, similar arguments as in the proof of Theorem 3.3 and 4.3 in the same refer-

ence yield

in C([0, 1]2)R+1 as m, n → ∞ where the process Zm,n is defined in (50) and the 
random functions Z(1),… , Z(R) are independent copies of Z which is also defined 
in (50). Note that in this paper the authors prove weak convergence of a vector in 
C([0, 1])R+1 . The proof of weak convergence of the finite dimensional distribu-
tions can be directly transferred to vectors in C([0, 1]2)R+1 , while the proof of equi-
continuity requires condition (A1) in Assumption 1, which reduces for the space 
C([0, 1]2) to (6). If d∞ = 0 , the continuous mapping theorem implies

B̂(r)
m,n

=
√
n + m

�
1

m

m−l1+1�

k=1

1√
l1

� k+l1−1�

j=k

𝜂
⊗̌2

1,j
−

l1

m

m�

i=1

𝜂
⊗̌2

1,j

�
𝜉
(r)

k

−
1

n

n−l2+1�

k=1

1√
l2

� k+l2−1�

j=k

𝜂
⊗̌2

2,j
−

l2

n

n�

i=1

𝜂
⊗̌2

2,j

�
𝜁
(r)

k

�
+ O

�
Rm,n

�
,

(51)R(1)
m

=
1√
m

m−l1+1�

k=1

1√
l1

�
−

k+l1−1�

j=k

𝜂1,j⊗̌𝜂̄1 − 𝜂̄1⊗̌

k+l1−1�

j=k

𝜂1,j + 2l1𝜂̄
⊗̌2

1

�
𝜉
(r)

k
,

(52)R(2)
n

=
1√
n

n−l2+1�

k=1

1√
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�
−

k+l2−1�

j=k
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k+l2−1�

j=k

𝜂2,j + 2l2𝜂̄
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�
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.

������

1√
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m−l1+1�

k=1

1√
l1

�
k+l1−1�

j=k

�1,j

�
�
(r)

k

������∞

Rm,n = o
ℙ
(1).

(53)
(
Zm,n, B̂

(1)
m,n

,… , B̂(R)
m,n

)
⇝ (Z, Z(1),… , Z(R))
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in ℝR+1 as m, n → ∞ where the statistic d̂∞ is defined by (11), the bootstrap statistics 
T (1)
m,n

,… , T (R)
m,n

 are defined by (19) and the random variables T (1),… , T (R) are inde-
pendent copies of T which is defined by (12). Now, Lemma 4.2 in Bücher and Koja-
dinovic (2019) directly implies (21), that is,

For the application of this result, it is required that the distribution of the random 
variable T has a continuous distribution function, which follows from Gaenssler 
et al. (2007). In order to show the consistency of test (20) in the case d∞ > 0 , write

and note that, given (54) and (16), the assertion in (22) follows by simple argu-
ments. 	�  ◻

Proof of Theorem 3. First note that the same arguments as in the proof of The-
orem  3.6 in Dette et  al. (2020a) show that the estimators of the extremal sets 
defined by (23) are consistent that is

where dH denotes the Hausdorff distance. Thus, given the convergence in (53), the 
arguments in the proof of Theorem 3.7 in the same reference yield

in ℝR+1 as m, n → ∞ where the statistic d̂∞ is defined by (11), the bootstrap statis-
tics K(1)

m,n
,… ,K(R)

m,n
 are defined by (24) and the random variables T (1)(E),… , T (R)(E) 

are independent copies of T(E) which is defined by (16). Note that this convergence 
holds true under the null and the alternative hypothesis.

If � = d∞ , Lemma 4.2 in Bücher and Kojadinovic (2019) directly implies (26) 
and again the results in Gaenssler et  al. (2007) ensure that the limit T(E) has a 
continuous distribution function.

If � ≠ d∞ , write

Then, it follows from (55) and simple arguments that, for any R ∈ ℕ,

(54)
�√

m + n d̂∞, T
(1)
m,n

,… , T (R)
m,n

� D

⟶(T , T (1),… , T (R))

lim
m,n,R→∞

ℙ
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T
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�
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ℙ

�
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��������������������������→
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� D

⟶(T(E), T (1)(E),… , T (R)(E))
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d̂∞ > 𝛥 +

K
{⌊R(1−𝛼)⌋}
m,n√
n + m
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if 𝛥 > d∞ and 𝛥 < d∞ , respectively. This proves the remaining assertions of Theo-
rem 3. 	�  ◻

A.4: Proof of Proposition 2

Let Cn,j denote the covariance operator of Xn,j defined by 
Cn,j(s, t) = Cov(Xn,j(s),Xn,j(t)) and consider the sequential process

which is an element of C([0, 1],C([0, 1]2)) . Here the order o
ℙ
(1) for the remainder is 

obtained by similar arguments as given at the beginning of the proof of Theorem 2 
and the details are omitted for the sake of brevity. Note that {�̂n(s)}s∈[0,1] can equiva-
lently be regarded as an element of C([0, 1]3) and we have the representation

where the processes �̃1,n, �̃2,n ∈ C([0, 1]3) are defined by

(s, t, u ∈ [0, 1] ) and

Recall the definition of the array ( ̃𝜂n,j ∶ n ∈ ℕ, j = 1,… , n ) in (27). By Theorem 2.2 
in Dette et al. (2020a) it follows that

in C([0, 1]3) , where �l is a centred Gaussian measure on C([0, 1]3) characterized by 
the covariance operator

and the long-run covariance operator ℂl is defined in (32). From the continuous 
mapping theorem, we obtain

lim
m,n→∞

ℙ

�
d̂∞ > 𝛥 +

K
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�
= 0 and lim inf

m,n→∞
ℙ

�
d̂∞ > 𝛥 +

K
{⌊R(1−𝛼)⌋}
m,n√
n + m

�
= 1

𝕍̂n(s) =
1√
n

⌊sn⌋�

j=1

(X̃⊗̌2

n,j
− Cn,j) +

√
n

�
s −

⌊sn⌋
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⌊sn⌋
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��
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(1)

(56)�̂n = �̃1,n + �̃2,n,

�̃1,n(s, t, u) = �̂1,n(s, t, u)�{⌊sn⌋ < ⌊s∗n⌋} + �̂1,n(⌊s∗n⌋∕n, t, u)�{⌊sn⌋ ≥ ⌊s∗n⌋}
�̃2,n(s, t, u) = (�̂2,n(s, t, u) − �̂2,n(⌊s∗n⌋∕n, t, u))�{⌊sn⌋ ≥ ⌊s∗n⌋}

�̂l,n(s) =
1√
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⌊sn⌋�
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(𝜂⊗̌2
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− Cl) +
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��
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�
(l = 1, 2).

�̂l,n ⇝ �l (l = 1, 2)

Cov
(
𝕍l(s, t, u),𝕍l(s

�, t�, u�)
)
= (s ∧ s�)ℂl((t, u), (t

�, u�)), l = 1, 2
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in C([0, 1]3) , where �̃1, �̃2 are centred Gaussian measures on C([0, 1]3) characterized 
by

with covariance operators

In the following we will show the weak convergence

in C([0, 1]3) as n → ∞ , where � ∈ C([0, 1]3) is a centred Gaussian random variable 
characterized by its covariance operator

and the long-run covariance operators ℂ1,ℂ2 are defined by (32). The convergence 
in (57) implies that the processes �̃1,n, �̃2,n are asymptotically tight and the represen-
tation in (56) yields that �̂n is asymptotically tight as well (see Section 1.5 in Van der 
Vaart and Wellner 1996). In order to prove the convergence in (58), it consequently 
remains to show the convergence of the finite-dimensional distributions. For this, we 
utilize the Crámer–Wold device and show that

for any (s1, t1, u1),… , (sq, tq, uq) ∈ [0, 1]3 , c1,… , cq ∈ ℝ and q ∈ ℕ . Asymptotic 
normality of Z̃n can be proved by the same arguments as in the proof of Theorem 2.1 
in Dette et al. (2020a), and it remains to show that the variance of the random vari-
able Z̃n converges to the variance of Z̃ . Using (3.17) in Dehling and Philipp (2002) 
and assumptions (A2) and (A4) we obtain for any (s, t, u), (s�, t�, u�) ∈ [0, 1]3

(57)�̃l,n ⇝ �̃l (l = 1, 2)

�̃1(s, t, u) = �1(s ∧ s∗, t, u) , �̃2(s, t, u) = (�2(s, t, u) − �2(s
∗, t, u))�{s ≥ s∗}

Cov
(
𝕍̃1(s, t, u), 𝕍̃1(s

�, t�, u�)
)
= (s ∧ s� ∧ s∗)ℂ1((t, u), (t

�, u�))

Cov
(
𝕍̃2(s, t, u), 𝕍̃2(s

�, t�, u�)
)
= (s ∧ s� − s∗)+ ℂ2((t, u), (t

�, u�)) .

(58)�̂n ⇝ �

Cov(𝕍 (s, t, u),𝕍 (s�, t�, u�)) = (s ∧ s� ∧ s∗)ℂ1((t, u), (t
�, u�)) + (s ∧ s� − s∗)+ ℂ2((t, u), (t

�, u�))

Z̃n =

q∑

j=1

cj�̂n(sj, tj, uj) =

q∑

j=1

cj
{
�̃1,n(sj, tj, uj) + �̃2,n(sj, tj, uj)

}

D

⟶Z̃ =

q∑

j=1

cj� (sj, tj, uj)
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where the symbol “ ≲ ” means less or equal up to a constant independent of n, and 
‖X‖2 = �[X2]1∕2 denotes the L2-norm of a real-valued random variable X (also note 
that we implicitly assume 

∑k

i=j
ai = 0 if k < j ). Furthermore, assuming without loss 

of generality that s ≤ s′ , we have

where the last equality follows by the same arguments as used in (59). For the 
remaining expression we use the dominated convergence theorem to obtain

which means that for any (s, t, u), (s�, t�, u�) ∈ [0, 1]3

By similar arguments we obtain

and therefore we have

(59)
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�, t�, u�))

=
1

n

⌊(s∧s∗)n⌋�

j=1

⌊s�n⌋�

i=⌊s∗n⌋+1
Cov(𝜂̃⊗̌2

n,j
(t, u), 𝜂̃⊗̌2

n,i
(t�, u�)) + o(1)

≲
1

n

⌊(s∧s∗)n⌋�

j=1

⌊s�n⌋�

i=⌊s∗n⌋+1
‖𝜂̃⊗̌2

n,j
(t, u)‖2 ‖𝜂̃⊗̌2

n,i
(t�, u�)‖2 𝜑(i − j)1∕2 + o(1)

≲
1

n

⌊(s∧s∗)n⌋�

j=1

⌊s�n⌋�

i=⌊s∗n⌋+1
𝜑(i − j)1∕2 + o(1) ≲

1

n

⌊s�n⌋−1�

i=1

i𝜑(i)1∕2 + o(1)⟶n→∞0,

Cov(�̃1,n(s, t, u), �̃1,n(s
�, t�, u�)) =

1

n

⌊(s∧s∗)n⌋�

j=1

⌊(s�∧s∗)n⌋�

i=1

Cov(𝜂⊗̌2

1,j
(t, u), 𝜂⊗̌2

1,i
(t�, u�)) + o(1)

=
1

n

⌊(s∧s∗)n⌋�

j=1

�⌊(s∧s∗)n⌋�

i=1

+

⌊(s�∧s∗)n⌋�

i=⌊(s∧s∗)n⌋+1

�
Cov(𝜂⊗̌2

1,j
(t, u), 𝜂⊗̌2

1,i
(t�, u�)) + o(1)

=
1

n

⌊(s∧s∗)n⌋�

j=1

⌊(s∧s∗)n⌋�

i=1

Cov(𝜂⊗̌2

1,j
(t, u), 𝜂⊗̌2

1,i
(t�, u�)) + o(1),

1

n

⌊(s∧s∗)n⌋�

j=1

⌊(s∧s∗)n⌋�

i=1

Cov(𝜂⊗̌2

1,j
(t, u), 𝜂⊗̌2

1,i
(t�, u�))

=

⌊(s∧s∗)n⌋−1�

i=−(⌊(s∧s∗)n⌋−1)

⌊(s ∧ s∗)n⌋ − �i�
n

Cov(𝜂⊗̌2

1,0
(t, u), 𝜂⊗̌2
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�, t�, u�))⟶n → ∞(s ∧ s� − s∗)+ ℂ2((t, u), (t
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which finally proves (58).
Next we define the C([0, 1]3)-valued process

then the convergence in (58) and the continuous mapping theorem yield

in C([0, 1]3) , where � is centred Gaussian defined by 
�(s, t, u) = � (s, t, u) − s� (1, t, u) with covariance operator given by (31). Finally, 
recall the definition of the process (𝕌̂n ∶ n ∈ ℕ) in (28) and note that, in contrast to 
�̂n , this process is not centred. Consequently, if d∞ = 0 , we have 

√
n�n = �̂n and 

the convergence in (61) and the continuous mapping theorem directly yield (30).
If d∞ > 0 , assertion (33) is a consequence of the weak convergence in (61) and The-

orem B.1 in the online supplement of Dette et al. (2020a) and also of the results in Cár-
camo et al. (2020). 	�  ◻

A.5: Proof of Theorem 4 and 5

Proof of Theorem 4. Recalling the definition of the bootstrap processes in (34) it can be 
shown by similar arguments as given at beginning of the proof of Theorem 2 that

(for r = 1,… ,R ), where

Ỹn,j = 𝜂̃
⊗̌2

n,j
(t, u) − (Ĉ2 − Ĉ1)�{j > ⌊ŝn⌋} ( j = 1,… , n ). The array 

(𝜂̃⊗̌2

n,j
∶ n ∈ ℕ, j = 1,… , n) satisfies (A1), (A3) and (A4) of Assumption 2.1 in Dette 

Var(Z̃n) =

q∑

j=1

q∑

j�=1

cjcj�Cov(�̂n(sj, tj, uj), �̂n(sj� , tj� , uj� ))

=

q∑

j=1

q∑

j�=1

cjcj�
{
Cov(�̃1,n(sj, tj, uj), �̃1,n(sj� , tj� , uj� ))

+ Cov(�̃2,n(sj, tj, uj), �̃2,n(sj� , tj� , uj� ))
}
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et  al. (2020a). The convergence in (61) and similar arguments as in the proof of 
Theorem 4.3 in the same reference show

in C([0, 1]3)R+1 as n → ∞ , where the process �  is defined in (57) and � (1),… ,� (R) 
are independent copies of �  . For the sake of completeness we repeat the necessary 
main steps here, which are proved using analogous arguments as given in Dette et al. 
(2020a). First we define Yn,j(t, u) = 𝜂̃

⊗̌2

n,j
(t, u) − (C2 − C1)�{j > ⌊s∗n⌋} and show the 

approximation

where the process C̄(r)
n

 is defined by

In a second step we show

where the process C̃(r)
n

 is defined by

In a third step one notes that

and shows the weak convergence

in C([0, 1]3)R+1 as n → ∞ , where the process �  is defined in (57) and � (1),… ,� (R) 
are independent copies of �  . Observing (62), (64) and (65) then proves the weak 
convergence in (63) Finally, this result and the continuous mapping theorem yield

(63)(�̂n, B̂
(1)
n
,… , B̂(R)

n
) ⇝ (� ,� (1),… ,� (R))

(64)sup
s,t,u∈[0,1[3

||Ĉ(r)
n
(s, t, u) − C̄(r)

n
(s, t, u)|| = o

ℙ
(1),

C̄(r)
n
(s, t, u) =

1√
n

⌊sn⌋�

k=1

1√
l

�
k+l−1�

j=k

Yn,j(t, u) −
l

n

n�

j=1

Yn,j(t, u)

�
𝜉
(r)

k

+
√
n

�
s −

⌊sn⌋
n

�
1√
l

� ⌊sn⌋+l�

j=⌊sn⌋+1
Yn,j(t, u) −

l

n

n�

j=1

Yn,j(t, u)

�
𝜉
(r)

⌊sn⌋+1

.

(65)sup
s,t,u∈[0,1[3

||C̄(r)
n
(s, t, u) − C̃(r)

n
(s, t, u)|| = o

ℙ
(1),

C̃(r)
n
(s, t, u) =

1√
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⌊sn⌋�
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1√
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�
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�
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+
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�
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�
1√
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�
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𝜉
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.

Yn,j(t, u) =

�
𝜂̃
⊗̌2

n,j
(t, u) − C1 if j ≤ ⌊s∗n⌋

𝜂̃
⊗̌2

n,j
(t, u) − C2 if j > ⌊s∗n⌋

(�̂n, C̃
(1)
n
,… , C̃(R)

n
) ⇝ (� ,� (1),… ,� (R))
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in C([0, 1]3)R+1 as n → ∞ where the process �̂n is defined by (60), the boot-
strap counterparts �̂(1)

n
,… , �̂(R)

n
 are defined by (36) and the random variables 

�(1),… ,�(R) are independent copies of � which is defined by its covariance oper-
ator (31).

If d∞ = 0 , the continuous mapping theorem directly implies

in ℝR+1 as n → ∞ where the statistic �̂n is defined by (29), the bootstrap statistics 
Ť (1)
n
,… , Ť (R)

n
 are defined by (37) and the random variables Ť (1),… , Ť (R) are inde-

pendent copies of the random variable Ť  defined by (30). Now the same arguments 
as in the discussion starting from Eq. (54) imply the assertions of Theorem 4. 	�  ◻

Proof of Theorem  5. We first mention that it follows by similar arguments as 
given in the proof of Theorem 4.2 in Dette et al. (2020a) that the estimator of the 
unknown change location defined by (35) satisfies

whenever d∞ > 0 . Whenever d∞ = 0 , suppose that the estimate ŝ converges weakly 
to a [�, 1 − �]-valued random variable which is denoted by smax . Then, if d∞ > 0 , the 
convergence in (33) and Slutsky’s theorem yield

where D̃(E) is the same as in (33) and the statistic d̂∞ is defined by (39).
The same arguments as in the proof of Theorem  3.6 in Dette et  al. (2020a) 

again yield that the estimators of the extremal sets defined by (40) are consistent. 
The convergence in (66) and similar arguments as in the proof of Theorem 4.4 in 
the same reference then yield

in ℝR+1 as n → ∞ where the bootstrap statistics Ǩ(1)
n
,… , Ǩ(R)

n
 are defined by (41) 

and the random variables D(1)(E),… ,D(R)(E) are independent copies of D(E) which 
is defined by (67). The convergence in the preceding equation holds true under the 
null and the alternative hypothesis and now the same arguments as in the discussion 
starting from Eq. (55) imply the assertions made in Theorem 5. 	�  ◻
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