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Abstract
Broken adaptive ridge (BAR) is a computationally scalable surrogate to L

0
-penalized 

regression, which involves iteratively performing reweighted L
2
 penalized regres-

sions and enjoys some appealing properties of both L
0
 and L

2
 penalized regressions 

while avoiding some of their limitations. In this paper, we extend the BAR method 
to the semi-parametric accelerated failure time (AFT) model for right-censored sur-
vival data. Specifically, we propose a censored BAR (CBAR) estimator by apply-
ing the BAR algorithm to the Leurgan’s synthetic data and show that the resulting 
CBAR estimator is consistent for variable selection, possesses an oracle property for 
parameter estimation and enjoys a grouping property for highly correlation covari-
ates. Both low- and high-dimensional covariates are considered. The effectiveness of 
our method is demonstrated and compared with some popular penalization methods 
using simulations. Real data illustrations are provided on a diffuse large-B-cell lym-
phoma data and a glioblastoma multiforme data.

Keywords  Accelerated failure time model · Grouping effect · L0 penalization · Right 
censoring · Variable selection

1  Introduction

L0-penalized regression, which directly penalizes the cardinality of a model, has 
been commonly used for variable selection in the low-dimensional setting via well-
known information criteria such as Mallow’s Cp (Mallows 1973), Akaike’s infor-
mation criterion (AIC) (Akaike 1974), the Bayesian information criterion (BIC) 
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(Schwarz 1978; Chen and Chen 2008), and risk inflation criteria (RIC) (Foster and 
George 1994). It has also been shown to possess some optimal properties for varia-
ble selection and parameter estimation (Shen et al. 2012; Johnson et al. 2015). How-
ever, L0-penalization is also known to have some limitations such as being compu-
tationally NP-hard, not scalable to high-dimensional data, and unstable for variable 
selection (Breiman 1996). To overcome these shortcomings, the broken adaptive 
ridge (BAR) method has been recently introduced as a surrogate to L0 penalization 
for simultaneous variable selection and parameter estimation under the linear model 
(Dai et al. 2018, 2020). It was noted by Dai et al. (2018, 2020) that the BAR estima-
tor, defined as the limit of an iteratively reweighted L2 (ridge) penalization algo-
rithm, retains some appealing properties of L0 penalization while avoiding its pit-
falls. For instance, BAR generally yields a more sparse, accurate, and interpretable 
model than some popular L1-type penalization methods such as LASSO and its vari-
ous variations, while maintaining comparable prediction performance. Moreover, 
unlike the exact L0 penalization, BAR is computationally scalable to high-dimen-
sional covariates and is stable for variable selection. Lastly, in addition to being con-
sistent for variable selection and oracle for parameter estimation, the BAR estimator 
enjoys a grouping property for highly correlated covariates, a desirable feature not 
shared by most other oracle variable selection procedures.

Because of its appealing properties, the BAR penalization method has been 
recently extended to the Cox (1972) model with censored survival data (Zhao et al. 
2019; Kawaguchi et al. 2020) via penalized likelihood. However, it is well known 
that the Cox (1972) proportional hazards assumption do not always hold in prac-
tice. Thus, it is desirable to extend the BAR penalization method to other common 
survival regression models. This paper studies an extension of the BAR penaliza-
tion method to the semi-parametric accelerated failure time (AFT) model, a popu-
lar alternative to the Cox model for right censored survival data. To this end, we 
note that the semi-parametric AFT model is a linear model for the log-transformed 
survival time with a completely unspecified error distribution, for which the likeli-
hood approach does not yield a consistent parameter estimator even for the classical 
uncensored linear regression model. Hence, the BAR-penalized likelihood methods 
of Kawaguchi et al. (2020) and Zhao et al. (2019) for the Cox (1972) do not apply to 
the semiparmetric AFT model. A different approach would be required.

In this paper, we propose an extension of the BAR penalization method to the semi-
parametric AFT model by coupling the Leurgans (1987) synthetic data approach with 
the BAR penalty, study its large sample properties and demonstrate it effectiveness in 
comparison with some popular penalization methods using simulations. Specifically, 
we first use the Leurgans (1987) synthetic variable method to construct a synthetic 
outcome variable and then apply the BAR method for uncensored linear regression 
(Dai et al. 2018) to the synthetic outcome variable. We then give sufficient conditions 
under which the proposed censored BAR (CBAR) estimator is consistent for variable 
selection, behaves asymptotically as well as the oracle estimator based on the true 
reduced model and possesses a grouping property for highly correlated covariates. We 
also combine BAR with a sure joint screening method to obtain a two-step variable 
selection and parameter estimation method for ultra-high-dimensional covariates. Not 
surprisingly, our simulations demonstrate that the proposed CBAR method generally 
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yields a more sparse and more accurate model as compared to some other popular 
penalization methods such as LASSO, SCAD, MCP and adaptive LASSO within the 
Leurgans (1987) synthetic data framework, which is consistent with the findings of Dai 
et al. (2018) for uncensored data. Lastly, we have implemented the proposed CBAR 
method in an R package, named CenBAR, and made it publicly available at https://​
CRAN.R-​proje​ct.​org/​packa​ge=​CenBAR.

Before going further, we note that there exist a number of other variable selection 
methods in the literature for the semiparametric the AFT model with right censored 
data. These methods are derived by combining various penalization methods such as 
LASSO with different extensions of the least squares principle for right censored data. 
For example, the Lasso, bridge, elastic net or MCP penalties have been combined with 
the Stute (1993) weighted least squares method (Huang et  al. 2006; Huang and Ma 
2010; Datta et al. 2007); and the Dantzig, elastic net, Lasso, adaptive Lasso and SCAD 
penalties have been combined with the Buckley and James (1979) method (Wang et al. 
2008; Johnson et al. 2008; Johnson 2009; Li et al. 2014). This paper makes a unique 
theoretical contribution since neither the BAR penalization nor the Leurgans (1987) 
synthetic data method has been previously rigorously studied in the context of vari-
able selection for the semiparametric the AFT model. We also illustrate and compare 
empirically the BAR penalization versus some popular penalization methods when the 
Leurgans (1987) synthetic data least squares method is used. We do not compare differ-
ent penalization methods when they are coupled with different censored least squares 
methods because different censored least squares methods are derived under different 
conditions and none is expected to dominate another across all scenarios.

The rest of the paper is organized as follows. In Sect. 2, we define our CBAR esti-
mator and state its theoretical properties. We also discuss how to handle ultra-high-
dimensional covariates. In Sect. 3, we evaluate the finite sample performance of CBAR 
in comparison with other penalization methods via extensive simulations. In Sect. 4, 
we illustrate the CBAR method on a diffuse large-B-cell lymphoma data and a glio-
blastoma multiforme data with high-dimensional covariates. Proofs of the theoretical 
results are provided in the appendix.

2 � Censored broken adaptive ridge (CBAR) regression

2.1 � Notations and preliminaries

2.1.1 � Model and data

Consider the linear regression model

where for the ith subject, Yi denotes the response variable, �i is the pn-vector random 
covariates, � = (𝛽1, ..., 𝛽pn )

⊤ is a vector of regression coefficients, and �i is i.i.d. error 
term with an unknown error distribution, E(�i) = 0 and Var(𝜀i) = 𝜎2 < ∞ . Model 

(1)Yi = �
⊤
i
� + 𝜀i, i = 1, 2, ..., n,

https://CRAN.R-project.org/package=CenBAR
https://CRAN.R-project.org/package=CenBAR
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(1) is commonly referred to as the accelerated failure time (AFT) model when Y is 
the log-transformed survival time (Kalbfleisch and Prentice 2002).

Without loss of generality, assume that �0 = (�⊤
01
, �⊤

02
)⊤ is the true value of � , 

where �01 is a q × 1 nonzero vector and �02 is a (pn − q) × 1 zero vector. We further 
assume the columns of the design matrix � = (�1, ..., �n)

⊤ have mean zero and unit 
L2-norm. Throughout the paper, ‖ ⋅ ‖ represents the Euclidean norm for a vector and 
spectral norm for a matrix.

Assume that one observes a right censored data consisting of n independent 
and identically distributed triples (Ti, �i, �i) , i = 1,… , n , where for the ith subject, 
Ti = min(Yi,Ci) is the observation time, �i = I(Yi ≤ Ci) is a censoring indicator, Ci is 
the i.i.d. censoring time with the distribution function H. Ci is assumed to be inde-
pendent of Yi and �i.

2.1.2 � Broken adaptive ridge (BAR) for uncensored data

For reader convenience, we first briefly review the broken adaptive ridge (BAR) 
estimator of Dai et al. (2018) for simultaneous variable selection and parameter esti-
mation with the uncensored data � and � , where � = (Y1, ..., Yn)

⊤.
Following the notations of Dai et  al. (2018), the BAR estimator of � based on 

� and � is a surrogate L0-penalized estimator defined as the limit of the following 
iteratively reweighted ridge regression algorithm:

where �(0) = argmin�{‖� − ��‖2 + 𝜉n
∑pn

j=1
𝛽2
j
} = (�⊤� + 𝜉n�)

−1�⊤� is an initial 
ridge estimator, 𝜉n > 0 and �n ≥ 0 are tuning penalization parameters, and for any pn
-dimensional vector � = (�1, ..., �pn)

T , �(�) = diag (
1

�2
1

, ...,
1

�2
pn

) . Note that each 

reweighted L2 penalty can be regarded as an adaptive surrogate L0 penalty and the 
approximation of L0 penalization improves with each iteration. Dai et  al. (2018) 
showed that the BAR estimator �̂ = limk→∞ �(k) is selection consistent and possesses 
an oracle property: if the true model is sparse with some zero coefficients, then with 
probability tending to 1, BAR estimates the true zero coefficients as zeros and esti-
mates the non-zero coefficients as well as the scenario when the true sub-model is 
known in advance.

2.2 � Broken adaptive ridge estimator for censored data (CBAR)

For right censored data, the above BAR algorithm is obviously not applicable since 
one only observes (Ti, �i) instead of Yi . To overcome the problem, we propose to adopt 
the Leurgans (1987) synthetic data approach for censored linear regression to variable 
selection by first transforming (Ti, �i) into a synthetic variable Y∗

i
 and then applying the 

(2)
� (k) = argmin

�
{‖� − ��‖2 + 𝜆n

pn�

j=1

𝛽2
j

{�
(k−1)

j
}2
}

={�⊤� + 𝜆n�(�
(k−1))}−1�⊤�, k = 1, 2, ...
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BAR method to the synthetic data variable Y∗
i
 . Specifically, the Leurgans (1987) syn-

thetic data Y∗
i
 is defined as

where Tn = max{T1, ..., Tn} and Ĥ is the Kaplan-Meier estimator of H. To apply the 
BAR method to synthetic data Y∗

i
 , let �∗ = (Y∗

1
, ..., Y∗

n
)⊤ and define an initial ridge 

estimator

and then, for k ≥ 1,

where

Finally, the CBAR estimator is defined as

In the next section, we give conditions under which the CBAR estimator �̂∗ is selec-
tion consistent and has an oracle property for estimation of the nonzero component 
�01 of �.

2.3 � Large sample properties of CBAR

Similar to Zhou (1992), define Fi(t) = P{Yi ≥ t} , Gi(t) = P{Ti ≥ t} = Fi(t)(1 − H(t)) , 
K(t) = − ∫ t

0

1

lim (1∕n)
∑

Fi

dG

G2
 and denote

Then,

(3)Y∗
i
= �

Tn

−∞

(
I(Ti ≥ s)

1 − Ĥ(s)
− I(s < 0)

)
ds,

(4)�̂
(0)

= (�⊤� + 𝜉n�)
−1
�
⊤
�

∗,

(5)�̂
(k)

= g(�̂
(k−1)

),

(6)g(�̃) = argmin
�
{‖�∗ − ��‖2 + 𝜆n

pn�

j=1

𝛽2
j

𝛽2
j

} = {�⊤� + 𝜆n�(�̃)}
−1
�
⊤
�

∗.

(7)�̂
∗
= lim

k→∞
�̂
(k)
.

Λ+
i
(t) = −∫

t

0

dGi(s)

Gi(s
−)
, ΛD

i
(t) = −∫

t

0

dFi(s)

Fi(s
−)
, ΛC(t) = ∫

t

0

dH(s)

1 − H(s−)
.

M+
i
(t) =I[Ti≤t] − �

t

0

I[Ti≥s]dΛ
+
i
(s),

MD
i
(t) =I[Ti≤t;�i=1] − �

t

0

I[Ti≥s]dΛ
D
i
(s),
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are square-integrable martingales and satisfies M+
i
= MD

i
+MC

i
 (Zhou 1992). Let 

�(�) = (�kl(�)) be defined by

where 𝜔ji = ((�⊤�)−1�⊤)ji . Let �i denote the ith column of the matrix (�⊤�)−1�⊤ , 
�1 denote the first qn columns of � , �n = n−1�⊤� and �n1 = n−1�⊤

1
�1 . Write 

�̂
∗
= (�̂

∗⊤

1
, �̂

∗⊤

2
)⊤ , where �̂

∗

1
 is a q × 1 vector estimator of �01 and �̂

∗

2
 is a (pn − q) × 1 

vector estimator of �02.
The following conditions are needed for our theoretical derivations. 

	(C1)	 supt E(𝜀i − t|𝜀i > t) < ∞ , and for any pn-vector �n satisfying ‖�n‖ ≤ 1 , 
�⊤
n
�(𝜏)�n is finite for � ∈ [K,∞] and �⊤

n
�(𝜏)�n → �⊤

n
�(∞)�n as � → ∞.

	(C2)	 supn ∫ ∞

0

∑n

i=1
(�⊤

n
�i)

2 ∑n

i=1
F2
i
dK(t) < ∞ for any pn-vector �n satisfy-

ing ‖�n‖ ≤ 1 . Xi are bounded, and for some constants C∗ > 0 and S < 1 , 
C∗Fi(t)

S ≤ 1 − H(t).
	(C3)	 ∫ ∞

0
{
n
∑
(�⊤

n
�i)

2Fi

1−H(s)
}

1

2 ds ≤ M < ∞ and ∫ ∞

0
K1∕2(t)�

∑
�⊤
n
�iFi�dt < ∞ for any pn

-vector �n satisfying ‖�n‖ ≤ 1.
	(C4)	 There exists a constant C̃ > 1 such that 0 < 1∕C̃ < 𝜆min(�n) ≤ 𝜆max(�n) < C̃ < ∞ 

for every integer n.
	(C5)	 Let a0 = min1≤j≤q |�0j| and a1 = max1≤j≤q |�0j| . As n → ∞ , pn∕

√
n → 0 , 

�n∕
√
n → 0 and �n∕

√
n → 0.

Conditions (C1)-(C3) are regularity conditions required to establish the asymptotic 
properties of the unpenalized synthetic data least squares estimator under diverging 
dimension. Conditions (C4) and (C5) are additional conditions needed to derive the 
selection consistency and oracle property of the synthetic data BAR estimator of this 
paper as stated in Theorem 1 below.

Theorem  1  (Oracle property) Assume conditions (C1)–(C5) hold. For any 
q-dimensional vector � satisfying ‖�‖ ≤ 1 , define z2 = �⊤�1� , where �1 is the 
first q × q sub-matrix of �(∞) . Define f (�) = {�⊤

1
�1 + 𝜆n�1(�)}

−1�
⊤
1
�∗ , where 

�1(�) = diag(�−2
1
,… , �−2

q
) . Then, with probability tending to 1, 

	 (i)	 ��
∗
= (��

∗⊤

1
, ��

∗⊤

2
)
⊤

 exists and is unique, with �̂
∗

2
= 0 and �̂

∗

1
 being the unique 

fixed point of f (�);
	 (ii)	

√
n z−1�

⊤
(�̂

∗

1
− �01) →D N(0, 1).

MC
i
(t) = I[Ti≤t;�i=0] − �

t

0

I[Ti≥s]dΛ
C
i
(s)

(8)

�kl(�) = lim n

n�

i=1

�ki�li �
�

0

�

�
�

t

Fids

�2 dΛD
i
(t)

Gi

+ lim n

n�

i=1
�

�

0

�

ci=�ki,�li

�∑
cj ∫ �

t
Fjds

(1 − H)
∑

Fj

−
ck∫ �

t
Fids

Gi

�
GidΛ

C,
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Part (i) of the above theorem guarantees that the CBAR estimator is consistent 
for variable selection. Part (ii) states that the asymptotic distribution of the nonzero 
component of the CBAR estimator is the same as the one when the true model is 
known in advance. The proof of Theorem 1 is deferred to the Appendix.

2.4 � Grouping effect

When the true model has a group structure, it would be desirable for a variable 
selection method to either retain or drop all variables that are clustered within the 
same group. Below we establish that the CBAR estimator possesses a grouping 
property in the sense that highly correlated covariates tend to be grouped together 
with similar coefficients. With similarly estimated coefficients, the highly correlated 
covariates would likely to be retained together by the CBAR method.

Theorem 2  Assume that the columns of matrix � are standardized and �∗ is cen-
tered. Let �̂

∗
 be the CBAR estimator and 𝛽∗

i
𝛽∗
j
> 0 , then, with probability tending to 

1,

where rij = �
⊤
i
�j is the sample correlation of �i and �j.

The above result implies that the estimated coefficients of two highly positively-
correlated variables will be similar in magnitude. The proof of Theorem 2 is given 
in the Appendix. Similarly, it can be shown that the estimated coefficients of two 
highly negatively-correlated variables will also be similar in magnitude. It is inter-
esting to note that this grouping property of CBAR is similar to that of Elastic Net 
(Zou and Hastie 2005). In particular, Zou and Hastie (2005) showed that for the lin-
ear model with uncensored data, if 𝛽i(EN)𝛽j(EN) > 0 , then

where 𝛽i(EN) is the Elastic Net estimate of �i and � is a tuning parameter. It is also 
worth noting that this grouping property is different from some well known grouped 
variable selection methods such as grouped LASSO (Yuan and Lin 2006; Nardi and 
Rinaldo 2008) because the CBAR does not assume the underlying group structure 
is known in advance, whereas grouped LASSO makes use of a pre-specified group 
structure.

2.5 � Ultra‑high‑dimensional covariates

Theorem 1 is established under a sufficient condition that pn < n . In many appli-
cations, pn can be much larger than the sample size n. For high dimensional 

(9)�𝛽∗−1
i

− 𝛽∗−1
j

� ≤ 1

𝜆n
‖�∗‖

�
2(1 − rij),

�𝛽i(EN) − 𝛽j(EN)� ≤ 1

𝜆
‖�‖

�
2(1 − rij),
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problems, a common strategy is to proceed a variable selection method with a 
sure screening dimension reduction step (Fan and Lv 2008; Zhu et al. 2011; Cui 
et  al. 2015). This strategy also applies to the semiparametric AFT model with 
right censored data. For example, one can first apply the sure joint screening 
method BJASS of Liu et al. (2020) to obtain a lower dimensional model and then 
apply the CBAR method to the reduced model. We refer to the resulting two-step 
estimator �̂∗ as the BJASS-CBAR estimator.

Below we give some additional sufficient conditions under which the BJASS-
CBAR estimator �̂∗ has an oracle property. 

	(D1)	 log(p) = O(nd) for some 0 ≤ d < 1.
	(D2)	 P(t ≤ Yi ≤ Ci) ≥ 𝜏0 > 0 for  some posi t ive constant  �0  and any 

t ∈ [0, �] , where � denotes the maximum follow up time. Furthermore, 
sup{t ∶ P(Y > t) > 0} ≥ sup{t ∶ P(C > t) > 0} . H(t) has uniformly bounded 
first derivative.

	(D3)	 minj∈s∗ |�∗j | ≥ �1n
−�1 and q < k ≤ 𝜔2n

𝜏2 for some positive constants �1, �2 and 
nonnegative constants �1, �2 satisfying 𝜏1 + 𝜏2 < 1∕3 , where k is the size of the 
screened model from BJASS.

	(D4)	 For sufficiently large n, 𝜆min(n
−1�⊤

s
�s) ≥ c1 for some constant c1 > 0 and 

all s ∈ S2k
+

 , where �min(⋅) denotes the smallest eigenvalue of a matrix, and 
Sk
+
= {s ∶ s∗ ⊂ s;‖s‖0 ≤ k} denotes the collection of the over-fitted models of 

cardinality k or smaller.
	(D5)	 L e t 𝜎2

i
= ∫ ∫ [ Gi(s∨t)

(1−H(s))(1−H(t))
− Fi(s)I(t < 0) − Fi(t)I(s < 0) + I(s < 0)I(t < 0)]dsdt − E

2(Yi)   .  
There exist positive constants c2 , c3 , c4 , � such that |Xij| ≤ c2 , |X⊤

i
�∗| ≤ c3 , 

|�i| ≤ � and for sufficiently large n, 

	(D6)	 There are positive constants K1 , K2 and �3 such that 

for any M = O(n𝜏) > 0 , where � ≥ 0 , 𝜏1 + 𝜏2 + 𝜏 < (1 − d)∕2 , 
𝜏2 + d − 𝜏𝜏3 < 0 , and 2𝜏2 + 2𝜏 + d < 1∕3.

Theorem  3  (Oracle property of the BJASS-CBAR estimator) Assume that condi-
tions (D1)–(D6) hold for the full model of size p and that the assumptions of Theo-
rem 1 hold for the BJASS reduced model of size k. Then, with probability tending to 
1, 
	 (i)	 �̂

∗

2
= 0;

	 (ii)	 �̂
∗

1
 performs as well as the oracle estimator for the true model 

M∗ = {1 ≤ j ≤ q} in the sense of part (ii) of Theorem 1.

max
1≤j≤p max

1≤i≤n

�
X2
ij

∑n

i=1
X2
ij
�2
i

�
≤ c4n

−1.

P(|�| ≥ M) ≤ K1 exp(−K2M
�3 ),
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The above result is a direct consequence of Theorems 4 of Liu et al. (2020) and 
the oracle property of CBAR stated in Theorem 1. In Sect. 3.2, we present a simula-
tion study to illustrate the advantages of BJASS-BAR with k = 2log(n) ∗ n(1∕4) in 
comparison with some other penalization methods under a high-dimensional setting.

3 � Simulations

We present some simulations to illustrate the effectiveness of the proposed CBAR 
estimator for variable selection, prediction, parameter estimation in comparison with 
some popular penalization methods including Lasso (Tibshirani 1996), adaptive 
Lasso (Zou 2006), SCAD (Fan and Li 2001) and MCP (Zhang 2010)), in the context 
of the Leurgans (1987) synthetic data framework. We use the R package glmnet 
(Friedman et al. 2010) for Lasso and adaptive Lasso and R package ncvreg (Bre-
heny and Huang 2011) for SCAD and MCP, performed on the Leurgans (1987) syn-
thetic data outcome. Fivefold cross-validation (CV) is used to select tuning parame-
ters for all methods. For CBAR, we all use 10 equally log-spaced grid points on 

[a, b] for the paths of �n and �n where a = 1e−4 and b = max

{
(�T

j
�)2

4�T
j
�j

}p

j=1

.

3.1 � Simulation 1: pn < n

We consider the following two model settings similar to Tibshirani (1997), Fan and 
Li (2002), Cai et al. (2009): 

Model 1:	 Yi = �
⊤
i
�0 + 𝜀i , where the covariate vector �i is generated from a 

multivariate normal distribution with mean 0 and variance-covariance matrix 
� = (�|i−j|) , and the error �i has the standard normal distribution and is independ-
ent of the covariates. The true parameter value is �0 = (3,−2, 0, 0, 6, 0,… , 0)⊤.

Model 2:	 The same as Model 1 except that
	   �0 = (3,−2, 6, 0.3,−0.2, 0.6, 0,… , 0)⊤.

Note that Model 1 contains strong signals, whereas Model 2 includes both strong 
and weak signals. The censoring variable Ci is generated from the normal distribu-
tion N(c, 2), where c is chosen to yield a desired level of censoring rate.

The variable selection performance is assessed using five measures: the mean 
number of misclassified non-zeros and zeros (MisC), mean of false non-zeros (FP), 
mean of false zeros (FN), probability that the selected model is identical to the true 
model (TM), and a similarity measure (SM) between the selected set Ŝ and the true 
active set |S|0 : SM =

�Ŝ∩S�0√
�Ŝ�0�S�0

, where |.|0 denotes model size. The prediction perfor-

mance is measured by the mean squared prediction error (MSPE) from the fivefold 
CV. The parameter estimation performance is measured by the mean of the absolute 
bias of the parameter estimator (MAB). We have run extensive simulations for a 
variety of settings by varying n, p, � and the censoring rate, with 1000 Monte Carlo 
replications for each setting. Part of the findings are presented in Table 1.
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Table 1   Comparison of CBAR with Lasso, SCAD, MCP, and Adaptive Lasso (ALasso) when coupled 
with the Leurgans (1987) synthetic data procedure based on 1000 Monte-Carlo replications

Data settings: n = 100 , p ∈ {10, 50, 80, 90} . (MisC = mean number of misclassified non-zeros and zeros; 
FP = mean of false positives (non-zeros); FN = mean of false negatives (zeros); TM = probability that 
the selected model is exactly the true model; SM = similarity measure; MSPE = mean squared predic-

Model p Method MisC FP FN TM SM MSPE MAB

1 10 CBAR 0.60 0.60 0 74% 0.94 8.86 1.50
Lasso 3.05 3.05 0 6.6% 0.73 9.28 2.29
SCAD 1.11 1.11 0 46.2% 0.89 9.03 1.47
MCP 0.76 0.76 0 63.6% 0.92 9.01 1.45
Alasso 1.12 1.12 0 49.2% 0.89 8.91 1.68

50 CBAR 0.73 0.71 0.02 74.80% 0.94 8.9 1.69
Lasso 7.33 7.33 0 1.7% 0.58 9.77 3.36
SCAD 2.96 2.96 0 21.3% 0.76 9.09 1.72
MCP 1.24 1.23 0.01 47.7% 0.88 9.03 1.56
Alasso 6.09 6.09 0 15.2% 0.67 8.69 3.04

80 CBAR 0.86 0.84 0.02 72.3% 0.93 8.84 1.81
Lasso 9.40 9.40 0 1.30% 0.54 10.06 3.79
SCAD 3.90 3.90 0 15.2% 0.72 9.33 1.89
MCP 1.41 1.40 0.01 45.6% 0.87 9.26 1.65
Alasso 11.09 11.08 0.01 11.8% 0.59 8.74 4.51

90 CBAR 0.94 0.92 0.02 69.7% 0.93 8.93 1.88
Lasso 9.36 9.36 0 1.4% 0.54 10.05 3.82
SCAD 4.09 4.09 0 13.5% 0.71 9.27 1.91
MCP 1.44 1.43 0.01 43.2% 0.87 9.20 1.64
Alasso 4.29 4.27 0.02 10.5% 0.70 9.13 2.69

2 10 CBAR 2.61 0.65 1.96 0.9% 0.77 9.36 2.36
Lasso 3.00 2.14 0.86 2.2% 0.78 9.50 2.74
SCAD 2.64 1.10 1.54 2.3% 0.78 9.35 2.35
MCP 2.64 0.86 1.78 1.9% 0.77 9.34 2.36
Alasso 2.50 0.92 1.58 3.1% 0.79 9.14 2.37

50 CBAR 3.65 1.03 2.62 0.1% 0.69 9.41 2.92
Lasso 9.75 7.99 1.76 0% 0.52 10.40 4.37
SCAD 5.57 3.40 2.17 0% 0.61 9.84 2.77
MCP 3.92 1.46 2.46 0% 0.67 9.80 2.64
Alasso 9.18 7.22 1.96 0.1% 0.55 9.21 4.27

80 CBAR 3.89 1.19 2.70 0% 0.68 9.11 3.02
Lasso 11.61 9.69 1.92 0% 0.48 10.39 4.70
SCAD 6.48 4.21 2.27 0% 0.57 9.66 2.86
MCP 4.06 1.49 2.57 0% 0.66 9.60 2.64
Alasso 13.82 11.78 2.04 0% 0.48 8.99 5.55

90 CBAR 3.85 1.16 2.69 0% 0.68 9.31 3.05
Lasso 12.44 10.47 1.97 0% 0.46 10.20 4.86
SCAD 6.92 4.67 2.25 0% 0.56 9.40 2.92
MCP 4.24 1.68 2.56 0% 0.65 9.36 2.68
Alasso 7.00 4.50 2.50 0% 0.54 9.27 3.73
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It is seen from Table 1 that CBAR stands out as the top or top two performers 
with respect to almost all variable selection performance measures (MisC, FP, TM 
and SM). In particular, CBAR generally yields a more sparse and accurate model 
with the largest TM and SM, and much lower MisC and FP. Also, using fewer active 
features, CBAR achieves comparable prediction accuracy as other methods that use 
more features. For estimation, CBAR, SCAD and MCP are comparable with similar 
bias (MAB), whereas Lasso and Adaptive lasso can be substantially worse.

3.2 � Simulation 2: pn >> n

In this simulation, we consider the same models as in Simulation 1, except in a 
high-dimensional setting with n = 200 , p = 1000 . We again compared the same 
five penalization methods, with each method proceeded with the sure joint screen-
ing method BJASS of Liu et al. (2020) with k = 2log(n) ∗ n(1∕4) for the semi-para-
metric AFT model to yield a two-step sparse estimator. We denote these methods 
by BJASS-CBAR, BJASS-Lasso, BJASS-SCAD, BJASS-MCP and BJASS-ALasso. 
The censoring rate is 0.2. The results are summarized in Table 2.

It is observed from Table 2 that although most penalization methods had compa-
rable performance in terms of estimation bias (MAB) and prediction error (MSPE), 

tion error from fivefold CV or five-jointly CV and MAB = mean of the absolute bias of the parameter 
estimator)
Boldface indicates the best performance among the five methods

Table 1   (continued)

Table 2   Comparison of BJASS-CBAR with CBAR with BJASS-Lasso, BJASS-SCAD, BJASS-MCP, 
and BJASS-ALasso when coupled with the Leurgans (1987) synthetic data procedure in a high-dimen-
sional setting: n = 200 , p = 1000

MisC= mean number of misclassified non-zeros and zeros; FP = mean of false positives (non-zeros); FN 
= mean of false negatives (zeros); TM = probability that the selected model is exactly the true model; 
SM = similarity measures; MSPE = mean squared prediction error from fivefold CV or five-jointly CV 
and MAB = mean of the absolute bias of the parameter estimator
Boldface indicates the best performance among the five methods

Model Method MisC FP FN TM SM MAB MSPE

1 BJASS-CBAR 2.24 2.15 0.09 63% 0.93 2.87 10.40
BJASS-Lasso 12.61 12.55 0.06 0% 0.63 4.79 10.87
BJASS-SCAD 4.23 4.14 0.09 20% 0.82 2.79 10.46
BJASS-MCP 2.82 2.73 0.09 43% 0.88 2.69 10.45
BJASS-ALasso 8.08 8.00 0.08 12% 0.73 4.05 10.35

2 BJASS-CBAR 6.15 3.15 3 41% 0.69 2.51 12.17
BJASS-Lasso 17.14 14.14 3 0% 0.49 4.49 12.64
BJASS-SCAD 8.68 5.68 3 7% 0.62 2.09 12.39
BJASS-MCP 6.38 3.38 3 26% 0.68 1.96 12.38
BJASS-ALasso 12.78 9.78 3 3% 0.54 3.75 11.91
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BJASS-CBAR outperformed the other methods in the variable selection domain 
with the lowest MisC, FP and the largest TM and SM, which are consistent with the 
simulation results for the low-dimension pn < n settings in Simulation 1.

4 � Real data examples

We illustrate the CBAR method on two real data sets with high-dimensional 
covariates.

4.1 � Diffuse large‑B‑cell lymphoma data

The diffuse large-B-cell lymphoma (DLBCL) data includes n = 240 patients and 
p = 7399 gene features, which was downloaded from http://​statw​eb.​stanf​ord.​edu/​
~tibs/​super​pc/​staudt.​html. We first apply the BJASS sure joint screening method of 
Liu et  al. (2020) to reduce data dimension to k = 2log(n)n

1

4 = 43 and then apply 
CBAR and four other popular penalization methods. The results are summarized in 
Table 3.

It is seen that BJASS-CBAR is among the most sparse model and has the smallest 
CV error, which is consistent with the findings in the simulation studies.

4.2 � Glioblastoma multiforme data

The glioblastoma multiforme (GBM) methylation data was downloaded from the 
TCGA program (https://​www.​cancer.​gov/​tcga) using TCGA-Assembler 2 (TA2). 
The initial data consists of 577 patients and 20,156 GBM methylation variables. 
After removing missing data, the complete case data includes n = 136 patients and 

Table 3   Estimated coefficients of BAJSS-CBAR, BAJSS-Lasso, BAJSS-SCAD, BAJSS-MCP and 
BAJSS-Alasso for the DLBCL data

Parameter BAJSS-CBAR BAJSS-Lasso BAJSS-SCAD BAJSS-MCP BAJSS-Alasso

1456  −0.0591 −0.394 −0.609 −0.630 −0.513
1819 −0.069
1863 −0.006
2603 −0.025
2672 −0.062
3236 −0.480 −0.348 −0.394 −0.426 −0.399
5775 −0.261 −0.143 −0.133 −0.131 −0.111
6566 −0.088 −0.061 −0.004
Tuning parameters �

n
= 43 � = 0.197 � = 3.7, � = 0.260 � = 3.598,

�
n
= 5.721 � = 0.211 � = 2.058

Number of selected 3 8 4 4 3
CV error 6.399 6.731 6.496 6.515 6.472

http://statweb.stanford.edu/%7etibs/superpc/staudt.html
http://statweb.stanford.edu/%7etibs/superpc/staudt.html
https://www.cancer.gov/tcga
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p = 20, 037 methylation variables. Applying the method described in Sect. 2.5, we 
first performed sure joint screening using the BJASS method of Liu et  al. (2020) 
reduce data dimension to k = 2log(n)n

1

4 = 34 before applying the CBAR penaliza-
tion method and four other penalization methods (Lasso, SCAD, MCP and Alasso). 
The final variable selection results are summarized in Table 4.

It is seen from Table 4 that our BJASS-CBAR selected the sparsest model with 
4 variables while achieving a comparable CV error as compared to the other four 
methods, which is consistent with our findings in simulation studies. It is interesting 
to note that the four features selected by BJASS-CBAR have also been selected by 
three other methods. Among the four selected features, NPM2 and IRX6 have been 
previously discussed in the literature to possibly play critical roles with human dis-
eases (Eirín-López et al. 2006; Box et al. 2016; Nachmani et al. 2019; Mummenhoff 
et al. 2001).

5 � Discussion

We have rigorously extended the broken adaptive ridge (BAR) penalization method 
for simultaneous variable selection and parameter estimation to the semiparametric 
AFT model with right-censored data by coupling BAR penalization with the Leur-
gans (1987) synthetic data. We have established that the resulting CBAR estima-
tor is asymptotically consistency for variable selection and have an oracle estima-
tion property and enjoy a grouping property for highly correlated covariates. We 
consider both low- and high-dimensional covariate settings. Our empirical studies 

Table 4   Estimated coefficients of BJASS-CBAR, BJASS-Lasso, BJASS-SCAD, BJASS-MCP and 
BJASS-Alasso for the TCGA GBM methylation data

Variables BJASS-CBAR BJASS-Lasso BJASS-SCAD BJASS-MCP BJASS-Alasso

BCL2L10 0.051 0.038 0.038
CDCP2 − 0.272 − 0.077 − 0.057 − 0.068
HES5 − 0.139 − 0.153 − 0.265 − 0.162
HLA.E 0.104  0.117 0.167 0.098
HRH3 0.021
IRX6 0.014
KIF5C 0.004
NIPSNAP3B 0.034 0.017
NPM2 0.230 0.087 0.065 0.089 0.078
OXGR1 0.059 0.066 0.045
SLC12A5 0.282 0.144 0.104 0.072 0.167
SMIM11A 0.417 0.349 0.469 0.507 0.418
Tuning parameters �

n
= 19 � = 0.122 � = 3.7, � = 0.190 � = 0.625

�
n
= 1.642 � = 0.154

Number of selected 4 12 9 5 9
CV error 3.793 3.832 3.804 3.835 3.620
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demonstrate that CBAR generally produces a more sparse and accurate model as 
compared to some popular L1-based penalization methods, which corroborates pre-
vious findings in the literature for uncensored data.

We note that coupling the BAR method with the Leurgans (1987) synthetic vari-
able is only one of several possible ways of extending the BAR method to right-
censored linear model for simultaneous variable selection and parameter estima-
tion. For example, one may couple the BAR method with the Koul et  al. (1981) 
synthetic data method, the Stute (1993) weighted least squares method, or the Buck-
ley and James (1979) iterative imputation method. Our limited numerical studies 
(not reported here) indicate that using Koul et al. (1981) synthetic data is generally 
inferior to using Leurgans (1987) synthetic variable, whereas iteratively performing 
BAR using the Buckley and James (1979) imputation may sometimes improve the 
performance of the CBAR method based on the Leurgans (1987) synthetic variable. 
However, asymptotic properties of each of these distinct approaches require different 
theoretical developments. Thorough investigations and comparisons of these alter-
native approaches are needed in future research.

Lastly, missing data often occur in real-world applications. Although there is a 
vast amount literature on missing data problems, little has been done to deal with 
missing data in the context of variable selection for survival data. Further research 
in this domain is waranteed.

Appendix: Proofs of the theorems

We first introduce notations and lemmas used to prove Theorem 1.
Using Leurgans (1987) method, we transform � into synthetic data �∗ . Let 

� = (�⊤, �⊤)⊤ , where � and � are qn × 1 and (pn − qn) × 1 vector, respectively, 
�n = �⊤�∕n.

For simplicity, we write �∗(�) and �∗(�) as �∗ and �∗ hereafter. �−1
n

 can be parti-
tioned as

where the A11 is a q × q matrix. Multiplying (�⊤�)−1(�⊤� + 𝜆n�(�)) to equation (10)

where �∗ = �∗ − ��0 , �̂Z = (�⊤�)−1�⊤�∗ , �1(�) = diag (�−2
1
, ..., �−2

q
) and 

�2(�) = diag (�−2
1
, ..., �−2

pn−q
).

(10)g(�) = {�⊤� + 𝜆n�(�)}
−1
�
⊤
�

∗ = (�∗(�)⊤, �∗(�)⊤)⊤.

�
−1
n

=

(
�11 �12

�
⊤
12

�22

)

(11)

(
�∗ − �01

�∗

)
+

𝜆n
n

(
�11�1(�)�

∗ + �12�2(�)�
∗

�
⊤
12
�1(�)�

∗ + �22�2(�)�
∗

)
= (�⊤�)−1�⊤�∗= �̂Z − �0,
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Lemma 1  Let �n be a sequence of positive real numbers satisfying �n → ∞ 
and pn�

2
n
∕�n → 0 . Define �n = {� ∈ ℝ

pn ∶ ‖� − �0‖ ≤ �n
√
pn∕n} and 

�n1 = {� ∈ ℝ
q ∶ ‖� − �01‖ ≤ �n

√
pn∕n} . Assume conditions (C1)–(C5) hold. 

Then, with probability tending to 1, we have

(a)	 sup�∈�n
‖�∗‖∕‖�‖ < 1∕C0, for some constant C0 > 1;

(b)	 g is a mapping from �n to itself.

Proof  We first prove part (a).
First, under �n∕

√
n → 0 and pn�2n∕�n → 0 , we have �n

√
pn∕n → 0.

Let �̂Z = (�⊤�)−1�⊤�∗ , 𝜔ji = ((�⊤�)−1�⊤)ji , �∗
j
=
∑

i �ji ∫ Tn
0

Fidt and 
� = (�∗

1
,�∗

2
, ...,�∗

pn
) . For any pn-vector �n which ‖�n‖ ≤ 1 , define t2

n
= �⊤

n
�(∞))�n . 

Then, we have 
√
n t−1

n
�⊤
n
(�̂Z − �) →D N(0, 1). This result can be proved using simi-

lar techniques to those used in the proof of Theorem 3.1 of Zhou (1992) along the 
same lines as outlined below: First, we separate �⊤

n
(�̂Z − �) like (3.6) in Zhou 

(1992) with a main term S�(T
n) and a remainder term SS�(T

n) , i.e., 
�⊤
n
(�̂Z − �) = S�(T

n) + SS�(T
n) , where S�(Tn) is a weighted sum of Ĥ(t) − H(t) and 

Ĝ(t) − G(t) ; and SS�(Tn) is a weighted sum of (Ĥ(t) − H(t))(Ĝ(t) − G(t)) and 
(Ĥ(t) − H(t))(Ĥ(t) − H(t)) . Second, under conditions (C2) and (C3), one can show 
that 

√
nSS�(T

n) is negligible. Finally, by applying the martingale central limit theo-
rem and conditions (C1) and (C4), we establish the asymptotic normality of √
nS�(T

n) . By conditions (C1) and (C2), we have 
√
nt−1

n
�⊤
n
(�0 − �) = op(1) , for 

�n = �i = (0, ..., 1, 0, ..., 0) . Hence, we have ‖�̂Z − �0‖2 = Op(pn∕n).
It then follows from (11) that

Note that ‖� − �01‖ ≤ �n(pn∕n)
1∕2 and ‖�∗‖ ≤ ‖g(�)‖ ≤ ‖�̂Z‖ = Op(

√
pn) . By 

assumptions (C4) and (C5), we have

where the second inequality uses the fact ‖�⊤
12
‖ ≤ √

2 C̃ , which follows from the 
inequality ‖�12�

⊤
12
‖ − ‖�2

11
‖ ≤ ‖�2

11
+ �12�21‖ ≤ ‖�−2

n
‖ < C̃2. Combining (12) 

and (13) gives

Note that �22 =
∑pn−q

i=1
𝜏2i�2i�

⊤
2i

 is positive definite and by the singular value decom-
position, , where �2i and �2i are eigenvalues and eigenvectors of �22 . Then, since 
1∕C̃ < 𝜏2i < C̃ , we have

(12)sup
𝛽∈�n

���
∗ + 𝜆n�

⊤
12
�1(�)�

∗∕n + 𝜆n�22�2(�)�
∗∕n�� = Op(

√
pn∕n).

(13)

sup
�∈�n

���𝜆n�
⊤
12
�1(�)�

∗∕n
��� ≤ 𝜆n

n
‖�⊤

12
‖ sup
�∈�n

‖�1(�)�
∗‖

≤ √
2 C̃

𝜆n
n

a1

a2
0

sup
�∈�n

‖�∗‖ = op(
√
pn∕n),

(14)sup
�∈�n

���
∗ + �n�22�2(�)�

∗∕n�� = Op(
√
pn∕n).
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This, together with (14) and (C4), implies that with probability tending to 1,

Let �𝛾∗∕𝛾 = (𝛾∗
1
∕𝛾1,… , 𝛾∗

pn−q
∕𝛾pn−q)

⊤ . Because ‖�‖ ≤ �n
√
pn∕n , we have

and

Combining (15), (16) and (17), we have that with probability tending to 1,

for some constant C0 > 1 provided that �n∕(pn�2n) → ∞.
It is worth noting that Pr(‖��∗∕�‖ → 0) → 1 , as n → ∞ . Furthermore, with prob-

ability tending to 1,

This proves part (a).
Next we prove part (b). First, it is easy to see from (17) and (18) that, as n → ∞,

Then, by (11), we have

Similar to (13), it is easily to verify that

Moreover, with probability tending to 1,

𝜆n
n

‖�22�2(�)�
∗‖ =

𝜆n
n

�����

pn−q�

i=1

𝜏2i�2i�
⊤
2i
�2(�)�

∗
�����
=

𝜆n
n

�
pn−q�

i=1

𝜏2
2i
‖�⊤

2i
�2(�)�

∗‖2
�1∕2

≥ 𝜆n
n

1

C̃

�
pn−q�

i=1

‖�⊤
2i
�2(�)�

∗‖2
�1∕2

=
1

C̃
��𝜆n�2(�)�

∗∕n��.

(15)
1

C̃
��𝜆n�2(�)�

∗∕n�� − ‖�∗‖ ≤ 𝛿n
√
pn∕n.

(16)
1

C̃

����
𝜆n
n

�2(�)�
∗
����
=

1

C̃

𝜆n
n

���{�2(�)}
1∕2

��∗∕�
��� ≥ 1

C̃

𝜆n
n

√
n

𝛿n
√
pn

‖��∗∕�‖

(17)‖�∗‖ = ‖�2(�)
−1∕2

��∗∕�‖ ≤ �n
√
pn

√
n

‖��∗∕�‖.

(18)‖��∗∕�‖ ≤ 1

𝜆n∕(pn𝛿
2
n
C̃) − 1

< 1∕C0

‖�∗‖ ≤ ‖��∗∕�‖ max
1≤j≤(pn−q)

��j� ≤ ‖��∗∕�‖ × ‖�‖ ≤ ‖�‖∕C0.

(19)Pr
�
‖�∗‖ ≤ �n

√
pn∕n

�
→ 1.

(20)sup
�∈�n

���
∗ − �01 + �n�11�1(�)�

∗∕n + �n�12�2(�)�
∗∕n�� = Op(

√
pn∕n).

(21)sup
�∈�n

���n�11�1(�)�
∗∕n�� = op(

√
pn∕n).
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where the last step follows from (15), (19), and the fact that ‖�12‖ ≤ √
2C̃ . It fol-

lows from (20), (21) and (22) that with probability tending to 1,

Because �n
√
pn∕

√
n → 0 , we have, as n → ∞,

 Combining (19) and (24) completes the proof of part (b).	�  ◻

Lemma 2  Assume that (C1)–(C5) hold. For any q-vector � satisfying ‖�‖ ≤ 1 , define 
z2 = �⊤�1� as in Theorem 1. Define

Then, with probability tending to 1,

(a) f (�) is a contraction mapping from �n ≡ {� ∈ ℝ
q ∶ ‖� − �01‖ ≤ �n

√
pn∕n} 

to itself;

(b) 
√
n z−1�⊤(�̂◦ − �01) ⇝ N(0, 1), where �̂◦ is the unique fixed point of f (�) 

defined by

Proof  We first prove part (a). Note that (25) can be rewritten as

where �̂1Z = (�⊤
1
�1)

−1�
⊤
1
�∗ . Then,

It follows from (26) and (27) that

where �n → ∞ and �n∕
√
n → 0 . Then we can get

(22)

sup
�∈�n

��𝜆n�12�2(�)�
∗∕n�� ≤ 𝜆n

n
sup
�∈�n

���2(�)�
∗�� × ‖�12‖ ≤ 2

√
2C̃2𝛿n

√
pn∕n,

(23)sup
�∈�n

‖�∗ − �01‖ ≤ �
2
√
2C̃2 + 1

�
𝛿nn

−1∕2
√
pn.

(24)Pr(�∗ ∈ �n1) → 1.

(25)f (�) = {�⊤
1
�1 + 𝜆n�1(�)}

−1
�
⊤
1
�

∗.

�̂◦ = {�⊤
1
�1 + 𝜆n�1(�̂

◦)}−1�⊤
1
�

∗.

f (�) − �01 +
𝜆n
n
�
−1
n1
�1(�)f (�) = �̂1Z − �01,

(26)sup
�∈�n

���f (�) − �01 + (�n∕n)�
−1
n1
�1(�)f (�)

��� = Op(1∕
√
n).

(27)sup
�∈�n

���(�n∕n)�
−1
n1
�1(�)f (�)

��� = op(1∕
√
n).

(28)sup
�∈�n

��f (�) − �01
�� ≤ �n∕

√
n,
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This means that f is a mapping from the region �n to itself.
Rewrite (25) as {�⊤

1
�1 + 𝜆n�1(�)}f (�) = �

⊤
1
�∗ , then, we have

where ḟ (�) = 𝜕f (�)∕𝜕�⊤ and diag {
−2fj(�)

�3
j

} = diag {
−2f1(�)

�3
1

, ...,
−2fq(�)

�3
q

}. With the 

assumption �n∕
√
n → 0,

Write �n1 =
∑q

i=1
𝜏1i�1i�

⊤
1i

 , where �1i and �1i are eigenvalues and eigenvectors of 
�n1 . Then, by (C4), 1∕C̃ < 𝜏1i < C̃ for all i and

Therefore, it follows from � ∈ �n , (32) and (C4) that

This, together with (31) and the fact �n∕n → 0 , implies that

Finally, we can get the conclusion in part (a) from (29) and (33).
Next we prove part (b). Write

(29)Pr (f (�) ∈ �n) → 1, as n → ∞.

(30)(�n1 + (𝜆n∕n)�1(�))ḟ (�) + (𝜆n∕n) diag {−2fj(�)∕𝛼
3
j
} = 0,

(31)sup
�∈�n

‖‖
{
�n1 +

𝜆n
n
�1(�)

}
ḟ (�)‖‖ = sup

�∈�n

2𝜆n
n

‖‖ diag

{
fj(�)

𝛼3
j

}
‖‖ = op(1).

(32)

‖�n1 ḟ (�)‖ = sup
‖�‖=1,�∈Rq

‖�n1 ḟ (�)�‖ = sup
‖�‖=1,�∈Rq

�����

q�

i=1

𝜆1i�1i�
⊤
1i
ḟ (�)�

�����

= sup
‖�‖=1,�∈Rq

�
q�

i=1

𝜆2
1i
‖�⊤

1i
ḟ (�)�‖2

�1∕2

≥ sup
‖�‖=1,�∈Rq

1

C̃

�
q�

i=1

‖�⊤
1i
ḟ (�)�‖2

�1∕2

= sup
‖�‖=1,�∈Rq

1

C̃
‖ḟ (�)�‖ =

1

C̃
‖ḟ (�)‖.

���
�
�n1 + (𝜆n∕n)�1(�)

�
ḟ (�)

��� ≥ ���n1 ḟ (�)
�� − ��(𝜆n∕n)�1(�)ḟ (�)

��
≥ (1∕C̃)‖ḟ (�)‖ − (𝜆n∕n) ⋅ a

−2
0
‖ḟ (�)‖.

(33)sup
�∈�n

‖ḟ (�)‖ = op(1).

(34)

n1∕2 z−1�⊤(�̂◦ − �01) = n1∕2 z−1�⊤

[{
�n1 +

𝜆n
n
�1(�̂

◦)

}−1

�n1 − �qn

]
�01

+ n−1∕2 z−1�⊤
{
�n1 +

𝜆n
n
�1(�̂

◦)

}−1

�
⊤
1
�∗ ≡ I1 + I2.
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By the first order resolvent expansion formula

the first term on the right-hand side of equation (34) can be rewritten as

Hence, by the assumption (C4) and (C5), we have

Furthermore, applying the first order resolvent expansion formula, it can be shown 
that

where �1 = (�∗
1
,�∗

2
, ...,�∗

q
) . I2 converges in distribution to N(0, 1) by the Lindeberg-

Feller central limit theorem. Finally, combining (34), (35), and (36) proves part (b).  	
� ◻

Proof of Theorem 1  Given the initial ridge estimator �̂(0) in (4), we have

By the first-order resolvent expansion formula and �n∕
√
n → 0,

It is easy to see that ‖�2‖ = Op(
√
pn∕n). Thus ‖�̂(0)

− �0‖ = Op((pn∕n)
1∕2) . This, 

combined with part (a) of Lemma 1, implies that

Hence, to prove part (i) of Theorem 1, it is sufficient to show that

(� + �)−1 = �
−1 −�

−1
�(� + �)−1,

I1 = −z−1�⊤�−1
n1

𝜆n√
n
�1(�̂

◦)

�
�n1 +

𝜆n
n
�1(�̂

◦)

�−1

�n1�01.

(35)‖I1‖ ≤ �n√
n
z−1a−2

0
‖�−1

n1
�01‖ = Op

�
�n∕

√
n

�
→ 0.

(36)

I2 =
z−1
√
n
�
T
�
−1
n1
�
T
1
�∗ + op(1)

=
z−1
√
n
�
T
�
−1
n1
�
T
1
(�∗ − �1� + �1� − �1�01) + op(1)

=
√
nz−1�T(�̂1Z − �1 + �1 − �01) + op(1)

(37)
�̂
(0)

− �0 =

[(
�n +

𝜉n
n
�pn

)−1

�n − �pn

]
�0 +

(
�n +

𝜉n
n
�pn

)−1

�
⊤�∗∕n

≡ �1 + �2.

(38)‖�1‖ =
�����
−�−1

n

𝜉n
n

�
�n +

𝜉n
n
�pn

�−1

�n�0

�����
≤ C̃3

𝜉na1
√
pn

n
= op

��
pn

n

�
.

(39)Pr ( lim
k→∞

�̂(k) = 0) → 1.
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where �̂◦ is the fixed point of f (�) defined in part (b) of Lemma 2.
Define �∗ = 0 if � = 0 , for any � ∈ �n,

Combining (41) with the fact

implies that for any � ∈ �n,

Therefore, g(⋅) is continuous and thus uniformly continuous on the compact set 
� ∈ �n . This, together with (39) and (42), implies that as k → ∞,

with probability tending to 1.
Note that

where the last step follows from ‖f (�̂(k)) − �̂◦‖ = ‖f (�̂(k)) − f (�̂◦)‖ ≤ (1∕C̃)‖�̂(k) − �̂◦‖ . 
Let ak = ‖�̂(k) − �̂◦‖ , for all k ≥ 0 . From (43), we can induce that with probability 
tending to 1, for any 𝜖 > 0 , there exists an positive integer N such that for all k > N , 
|𝜂k| < 𝜖 and

This proves (40).
Therefore, it immediately follows from (39) and (40) that the with probabil-

ity tending to 1, limk→∞ � (k) = limk→∞(�̂
(k)⊤, �̂(k)⊤)⊤ = (�̂◦⊤, 0)T , which completes 

the proof of part (i). This, in addition to part (b) of Lemma 2, proves part (ii) of 
Theorem 1. � □

(40)Pr ( lim
k→∞

‖�̂(k) − �̂◦‖ = 0) → 1,

(41)lim
�→0

�∗(�, �) = 0.

(
�
⊤
1
�1 + 𝜆n�1(�) �

⊤
1
�

�

�
⊤
2
�1 �

⊤
2
�2 + 𝜆n�2(�)

)(
�∗

�∗

)
=

(
�
⊤
1
�∗

�
⊤
2
�∗

)
,

(42)lim
�→0

�∗(�, �) = {�T
1
�1 + �n�1(�)}

−1
�1�

∗= f (�).

(43)𝜂k ≡ sup
�∈�n

‖‖‖f (�) − �∗(�, �̂(k))
‖‖‖ ⟶ 0,

(44)
‖�̂(k+1) − �̂◦‖ =

����
∗(�̂

(k)
) − �̂◦��� ≤ ����

∗(�̂
(k)
) − f (�̂(k))

��� + ‖f (�̂(k)) − �̂◦‖

≤𝜂k + 1

C̃
‖�̂(k) − �̂◦‖,

ak+1 ≤ ak−1

C̃2
+

𝜂k−1

C̃
+ 𝜂k

≤ a1

C̃k
+

𝜂1

C̃k−1
+⋯ +

𝜂N

C̃k−N
+ (

𝜂N+1

C̃k−N−1
+⋯ +

𝜂k−1

C̃
+ 𝜂k)

≤ (a1 + 𝜂1 + ... + 𝜂N)
1

C̃k−N
+

1 − (1∕C̃)k−N

1 − 1∕C̃
𝜖 → 0, as k → ∞.
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Proof of Theorem 2  Recall that �̂∗
= limk→∞ �̂

(k+1) and �̂
(k+1)

= argmin�{Q(�|�̂
(k)
)} , 

where

If �∗
�
≠ 0 for � ∈ {i, j} , then �̂∗ must satisfy the following normal equations for 

� ∈ {i, j}:

Thus, for � ∈ {i, j},

where �̂∗(k+1) = �∗ − ��̂
(k+1) . Moreover, because

we have

Letting k → ∞ in (45) and (46), we have, for � ∈ {i, j} and ‖�̂∗‖ ≤ ‖�∗‖ , 
𝛽∗−1
�

= �
⊤
�
�̂∗𝜆n , where �̂∗ = �∗ − ��̂

∗ . Therefore,

	�  ◻
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