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Abstract
Meta-analysis is commonly used to synthesize multiple results from individual stud-
ies. However, its validation is usually threatened by publication bias and between-
study heterogeneity, which can be captured by the Copas selection model. Existing 
inference methods under this model are all based on conditional likelihood and may 
not be fully efficient. In this paper, we propose a full likelihood approach to meta-
analysis by integrating the conditional likelihood and a marginal semi-parametric 
empirical likelihood under a Copas-like selection model. We show that the maxi-
mum likelihood estimators (MLE) of all the underlying parameters have a jointly 
normal limiting distribution, and the full likelihood ratio follows an asymptotic 
central chi-square distribution. Our simulation results indicate that compared with 
the conditional likelihood method, the proposed MLEs have smaller mean squared 
errors and the full likelihood ratio confidence intervals have more accurate cover-
age probabilities. A real data example is analyzed to show the advantages of the full 
likelihood method over the conditional likelihood method.
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1 Introduction

Meta-analysis or systematic review is the statistical technique of collecting and syn-
thesizing multiple published scientific results from individual studies. The most 
important advantage of meta-analysis over a single study is that it usually has higher 
statistical power and can answer research questions that cannot be answered by a 
single study (Jackson et  al. 2011). Since formally introduced by (Glass 1976) to 
evaluate the effectiveness of psychological therapies, it has become increasingly 
important and popular in many fields of research, including medical, social, and bio-
logical sciences (Egger et al. 2001; Cooper et al. 2009; Koricheva et al. 2012).

However, as the basis of meta-analysis, published scientific results may not be 
representative of those from all relevant studies, both published and unpublished, 
due to the so-called publication bias, which is a well-recognized threat to the valida-
tion of the results of a meta-analysis (Rothstein 2008; Jin et al. 2015). Typically, the 
studies used in the meta-analysis are biased toward those which report statistically 
significant positive findings. A standard meta-analysis may arrive at a misleading 
conclusion that is biased toward significance or positivity (Rosenthal 1979) .

To retrieve valid inferences, it is necessary and important to detect and correct 
for publication bias in meta-analysis. Many approaches have been developed in 
the literature for this purpose. They can generally be divided into two categories. 
The first category includes the funnel plot (Light and Pillemer 1984) and related 
graphical methods (Galbraith 1988; Egger et al. 1997; Sterne et al. 2000, 2001). 
The funnel plot is a plot of effect estimates from individual studies versus their 
precisions, an asymmetric plot indicating potential publication bias. The most 
well-known statistical test based on funnel plot asymmetry is (Duval and Tweedie 
2000a, b)’s trim-and-fill test, which is a rank-based data augmentation technique. 
By formalizing the use of funnel plots, it estimates and adjusts for the numbers 
and outcomes of missing studies. However, simulation studies have found that 
the trim-and-fill method may detect “missing” studies in a substantial proportion 
of meta-analyses, even in the absence of bias. In other words, it would add and 
adjust for nonexistent studies in response to funnel plot asymmetry arising from 
nothing more than random variation (Sterne et al. 2001).

The second category includes methods based on parametric models of the selec-
tion mechanism. In these methods, parametric distributions are imposed to charac-
terize the underlying publication mechanism by which effect estimates are selected 
to be observed (Rothstein et al. 2006) . The most popular method is the Copas selec-
tion model (Copas and Li 1997; Copa 1999; Copas and Shi 2000, 2001), which 
is derived from the Heckman two-stage regression model (Copas and Li 1997). 
Assuming the most extreme studies are missing, the trim-and-fill method often pro-
duces excessively conservative inference (Scharzer et  al. 2010). By contrast, the 
Copas model is more flexible, because it not only characterizes the heterogeneity 
and within-variation of individual effect estimates, but also allows the probability of 
selection to depend on both the effect estimate and its standard error.

Much attention has been paid to the Copas model in recent years. After analyz-
ing 157 meta-analyses with binary outcomes, (Carpenter et al. 2009) concluded 
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that the Copas selection model provided a useful summary in 80% of meta-anal-
yses. (Scharzer et al. 2010) demonstrated by empirical evaluation indicated that 
the Copas selection model is preferable to the trim-and-fill method for selection 
bias in meta-analysis. (Mavridis et  al. 2013) implemented the Bayesian method 
for model fitting under the Copas model. This method offers great flexibility to 
incorporate in the model prior information on the extent and strength of selection. 
An unavoidable difficulty that blocks the wide application of the Copas selec-
tion model is the frequent non-convergence in maximizing the likelihood of the 
observed data. A possible reason for this dilemma is that the data often contains 
very little information about the underlying parameters (Copas and Shi 2001). To 
overcome this problem, (Ning et al. 2017) re-casted the biased-sampling problem 
as a missing data problem and proposed an EM algorithm to calculate the maxi-
mum likelihood estimators (MLE).

The main goal of meta-analysis is to estimate the overall effect size � after 
adjusting publication bias. As an index of publication bias, the number of unre-
ported studies, Nu , can also be important to researchers (Rosenthal 1979; Fragkos 
et  al. 2017). If one can estimate or determine Nu in some way from the avail-
able data, one can then compare this with one’s knowledge about the field (Gleser 
and Olkin 1996). To the best of our knowledge, the existing developments on the 
Copas selection model are all based on the conditional likelihood which is the 
conditional joint distribution of data given that they are observed or published. 
Statistical inferences based on conditional likelihood are generally less efficient 
than those based on full likelihood when we are estimating � . Under the Copas 
selection model, the usual point estimator for N = Nu + n , the total number of 
studies of interest, is the inverse-probability-weighting estimator (Mavridis et al. 
2013), whose asymptotical normality is used to construct Wald confidence inter-
vals for N. However such intervals may have poor coverage accuracy, and its 
lower bound can be even less than the sample size n, which is clearly absurd (Liu 
et al. 2017, 2018).

In this paper, we formally show that all the underlying parameters are identifi-
able if publication bias exists or equivalently the parameter � is not equal to zero. 
Assuming publication bias exists, we focus on the estimation of effect size � and 
the total number of studies, N. Motivated by the weaknesses of the conditional 
likelihood methods under the Copas selection model, we propose a full likelihood 
method for meta-analysis by integrating the conditional likelihood and a marginal 
semi-parametric likelihood. We make the same model assumptions as (Ning et al. 
2017) , use (Owen 1990)’s empirical likelihood (EL) to handle the nonparametric 
distribution of the standard errors of the individual effect sizes, and finally derive 
the marginal semi-parametric likelihood. We show that the proposed MLEs of all 
the underlying parameters have a jointly normal limiting distribution, and the full 
likelihood ratio follows an asymptotic central chi-square distribution. In particu-
lar, we propose to construct confidence intervals for the effect size and the total 
number of studies and test the existence of publication bias by the corresponding 
full likelihood ratio tests. Our simulation results indicate that the full maximum 
likelihood estimators have smaller mean squared errors than the conditional-like-
lihood-based estimators. Also the full likelihood ratio confidence intervals for the 
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effect size and the total number of studies have more accurate coverage probabili-
ties than the Wald intervals under the conditional likelihood.

The paper proceeds as follows. In Sect. 2, we introduce the Copas-like model 
of (Ning et  al. 2017), present our semi-parametric full likelihood method, and 
investigate the large-sample properties of the MLE and the likelihood ratio test. 
An algorithm to calculate the proposed MLEs is also provided. Section 3 contains 
simulation results. Section 4 is devoted to two real-life data analyses. We end in 
Sect. 5 with some discussions. For clarity, all proofs are postponed to the supple-
mentary material.

2  Full likelihood approach and its properties

2.1  Model setup

Let N be the total number of studies of interest, including published and unpub-
lished. For study i, let �∗

i
 denote the estimated effect size and s∗

i
 the estimated 

standard variance of �∗
i
 . We make the same assumptions on data as (Ning et al. 

2017). Specifically, suppose that (�∗, s∗
i
) ( 1 ≤ i ≤ N ) are independent and identi-

cally distributed (IID) and that �∗ and s∗
i
 are also independent of each other. Given 

s∗
i
 , (DerSimonian and Laird 1986) modeled �∗

i
 by a random effect model

where the random effect ui and the error �i are independent, and both follow the 
standard normal distribution. Here � is the underlying effect size and �2 describes 
the between-study heterogeneity. To characterize the publishing mechanism, (Copas 
and Li 1997) proposed a separate selection model that uses a latent variable

where (�i, �i) are independent and identically distributed from a bivariate standard 
normal distribution with correlation coefficient � . Study i is assumed to be published 
if Zi > 0 . Suppose there are n studies published with estimated effect sizes and esti-
mated standard variances {(�1, s1),… , (�n, sn)} . We wish to estimate the effect size 
� , heterogeneity � , the total number N of studies, the marginal distribution function 
F(x) of s∗

i
 , and the marginal distribution G(x) of �∗

i
 , after adjusting for publication 

bias.

Lemma 1 If � ≠ 0 , the parameters �1, �2, �, � and � are all identifiable.

Unlike (Ning et  al. 2017), we assume that � ≠ 0 in this paper; therefore, the 
observations (�i, si) ’s constitute a biased sample of the study of interest, or equiv-
alently publication bias exists. Lemma 1 implies that all the parameters are iden-
tifiable in this case.

(1)�∗
i
= � + �ui + s∗

i
�i,

(2)Zi = �1 + �2∕s
∗
i
+ �i,
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2.2  Full semi‑parametric likelihood

Let pr denote the probability density/mass function of a continuous/discrete random 
variable. We assume that the observations (�1, s1),… , (�n, sn) are independent given 
n, the number of observations. It follows that the full likelihood is

Without otherwise statement, we use the same notation to denote both a random ele-
ment and its realization, whose meanings can be clear from the context. For exam-
ple, pr(z) denotes the density function of a random element z at z.

According to its generating process, (�i, si) has the same distribution as 
{(𝜃∗

i
, s∗

i
)|Zi > 0} . Thus formally the full likelihood can be written as

In contrast, the commonly used conditional likelihood (Copas and Shi 2001) is the 
conditional density function of �i ’s given n, si’s, and that they are observed, that is,

These two likelihoods have a close relationship:

Obviously, pr(n) =
(
N

n

)
�n(1 − �)N−n with 𝛼 = pr(Zi > 0) . Lemma 2 presents the 

other conditional probabilities and densities in (3).

Lemma 2 Let �(x) and �(x) denote the standard normal density and distribution 
functions, and � = (𝛾1, 𝛾2, 𝜌, 𝜏, 𝜃)

⊤ . We have

L̃ = pr{n, (𝜃i, si), i = 1,… , n} = pr(n) ×

n∏
i=1

pr(𝜃i, si).

(3)

L̃ =pr(n) ×

n∏
i=1

pr(𝜃∗
i
= 𝜃i, s

∗
i
= si|Zi > 0)

= pr(n) ×

n∏
i=1

pr(Zi > 0|𝜃∗
i
= 𝜃i, s

∗
i
= si)pr(𝜃

∗
i
= 𝜃i|s∗i = si)pr(s

∗
i
= si)

pr(Zi > 0)
.

(4)Lc =

n∏
i=1

pr(Zi > 0|𝜃∗
i
= 𝜃i, s

∗
i
= si)pr(𝜃

∗
i
= 𝜃i|s∗i = si)

pr(Zi > 0|s∗
i
= si)

.

L̃ = pr(n) ×

n∏
i=1

pr(s∗
i
= si|Zi > 0) × Lc.

(5)pr(Zi > 0|𝜃∗
i
= 𝜃i, s

∗
i
= si) =𝛷{vi(�)},

(6)pr(�∗
i
= �i|s∗i = si) =

1√
2�(�2 + s2

i
)

exp

{
−

(�i − �)2

2(�2 + s2
i
)

}
,

(7)pr(Zi > 0|s∗
i
= si) =𝛷(𝛾1 + 𝛾2∕si),
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where

With the formulae in (5–7), the conditional log-likelihood, i.e., log(Lc) , becomes

These formulae also imply that the full log-likelihood is

We use (Owen 1988, 1990)’s EL method to handle the distribution function of s∗
i
 . 

Let pi = pr(s∗
i
= si) . Since pr(Zi > 0|s∗

i
= si) = 𝛷(𝛾1 + 𝛾2∕si) , we have

Hence the feasible pi ’s satisfy

With pi in place of pr(s∗
i
= si) , the maximizer of �̃  with respect to pi ’s under the 

constraints in (9) is pi = n−1[1 + �{�(�1 + �2∕si) − �}]−1, where � is the solution to

Accordingly, we have the profile log EL (up to a constant)

(8)vi(�) =
�1 + (�2∕si) + �si(�i − �)∕(�2 + s2

i
)

√
1 − �2s2

i
∕(�2 + s2

i
)

.

�c(�) =

n∑
i=1

{
log�{vi(�)} −

1

2
log(�2 + s2

i
) −

(�i − �)2

2(�2 + s2
i
)
− log�(�1 + �2∕si)

}
.

�̃ = log

(
N

n

)
+ (N − n) log(1 − 𝛼) +

n∑
i=1

[
log{𝛷(vi(�))} −

1

2
log(𝜏2 + s2

i
) −

(𝜃i − 𝜃)2

2(𝜏2 + s2
i
)

]

+

n∑
i=1

log{pr(s∗
i
= si)}.

𝛼 = pr(Zi > 0) = �{pr(Zi > 0|s∗
i
= si)} = ∫ 𝛷(𝛾1 + 𝛾2∕s)pr(s

∗
i
= s)ds.

(9)pi ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

pi�(�1 + �2∕si) = �.

(10)
n∑
i=1

�(�1 + �2∕si) − �

1 + �{�(�1 + �2∕si) − �}
= 0.

�(N, �, �) = log

(
N

n

)
+ (N − n) log(1 − �) +

n∑
i=1

[
log{�(vi(�))} −

1

2
log(�2 + s2

i
)

−
(�i − �)2

2(�2 + s2
i
)

]
−

n∑
i=1

log[1 + �{�(�1 + �2∕si) − �}].
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2.3  Estimation and asymptotics

We propose to estimate (N, �, �) by the MLEs (N̂, �̂, �̂) = argmax�(N, �, �). 
Define the likelihood ratio function to be R(N, �, �) = 2{�(N̂, �̂, �̂) − �(N, �, �)}. 
This section investigates the asymptotical properties of the MLEs and the likeli-
hood ratio test statistic.

For ease of presentation, we use �12 and �45 to denote (𝛾1, 𝛾2)⊤ and (𝜏, 𝜃)⊤ , 
respectively, and define

Let (N0, �0, �0) be the truth of (N, �, �) with �0 = (𝛾10, 𝛾20, 𝜌0, 𝜏0, 𝜃0)
⊤ . Through-

out the paper, we use �12,0 and �45,0 to denote the truths of �12,0 and �45,0 , respec-
tively. Define �⊗2 = ��⊤ for a matrix or vector � , and �⊕2 = � + �⊤ for a 
square matrix � , �12 = (�2, �2×3)

⊤ , and �45 = (�2×3, �2)
⊤ with �k the k × k iden-

tity matrix. We use ∇� to denote the differentiation operator with respect to � . 
Let �1 = �[{f3(s

∗
i
;�12,0)}

−1] , �2 = �
{
∇�12

log f3(s
∗
i
;�12,0)

}
, �1 = (�4, �4×3) and 

�2 = (�5×2, �5) . Define

where

and

Theorem 1 Assume Conditions C1 and C2 in the supplementary materials, �0 ≠ 0 , 
and that the matrix � defined in (11) is positive definite. As N0 → ∞ , the following 
results hold. 

f1(𝜃i, si;�) =pr(Zi > 0|𝜃∗
i
= 𝜃i, s

∗
i
= si) = 𝛷{vi(�)},

f2(𝜃i, si;�45) =pr(𝜃
∗
i
= 𝜃i|s∗i = si) = {2𝜋(𝜏2 + s2

i
)}−

1

2 exp

{
−

(𝜃i − 𝜃)2

2(𝜏2 + s2
i
)

}
,

f3(si;�12) =pr(Zi > 0|s∗
i
= si) = 𝛷(𝛾1 + 𝛾2∕si).

(11)� = �
⊤
2
�c�2 + �

⊤
1
�̃m�1,

�c =�
{∇� f1(𝜃

∗
i
, s∗

i
;�0)}

⊗2

f1(𝜃
∗
i
, s∗

i
;�0)

+ �

[
�45 ∫

{∇�45
f2(t, s

∗
i
;�45,0)}

⊗2

f2(t, s
∗
i
;�45,0)

f1(t, s
∗
i
;�0)dt�

⊤
45

]

+ �

[
∫ ∇� f1(t, s

∗
i
;�0)∇�⊤

45
f2(t, s

∗
i
;�45,0)dt�

⊤
45

]⊕2

− �

[
�12

{∇�12
f3(s

∗
i
;�12,0)}

⊗2

f3(s
∗
i
;�12,0)

�
⊤
12

]

�̃m =

⎛
⎜⎜⎜⎜⎝

𝛼0
1−𝛼0

1

1−𝛼0
�

1

1−𝛼0

1−𝜑1

(1−𝛼0)(1−𝛼0𝜑1)

�⊤
2

1−𝛼0𝜑1

�
�2

1−𝛼0𝜑1

−
𝛼0�

⊗2

2

1−𝛼0𝜑1

⎞
⎟⎟⎟⎟⎠
.
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(1) N
1∕2

0
(�N∕N0 − 1, �𝛼 − 𝛼0, (�� − �0)

⊤)
d

⟶N(�, �−1) , where d
⟶

 stands for conver-
gence in distribution.

(2) N
1∕2

0
(N̂∕N0 − 1)

d
⟶N(0, �2), and N1∕2

0
(�̂ − �0)

d
⟶N(�, �−1), where �2 is the 

(1, 1) element of �−1 and �−1 is the down-right 5 × 5 submatrix of �−1.
(3) The likelihood ratio R(N0, �0, �0) = 2{�(N̂, �̂, �̂) − �(N0, �0, �0)}

d
⟶�2

7
.

The proof of result (3) of Theorem 1 (See the supplementary material) implies 
that the likelihood ratio statistic of testing any subvector of (N, �, �) also follows 
an asymptotic central chi-square distribution. This result can be used to construct 
likelihood ratio confidence intervals for any of the parameters �, �,N, � and � with 
asymptotically correct coverage probabilities.

The proposed full likelihood method can conveniently provide consistent estima-
tors for the marginal distributions of s∗

i
 and �∗

i
 . Given �̂ and �̂  , the MLE of the distri-

bution function F(x) of s∗
i
 is

where �̂  is the solution to Eq. (10) with (�1, �2, �) replaced by (�̂1, �̂2, �̂) . To estimate 
the marginal distribution G(t) of �∗

i
 , we rewrite G(t) as

where the second equality follows from Eq. (6). Based on the MLE F̂(x) of F(x), we 
immediately obtain the MLE of G(t),

By Theorem 1, �̂ and �̂ are consistent; therefore, F̂ and Ĝ are also consistent estima-
tors of F and G, respectively.

2.4  Comparison with conditional likelihood

In the literature, the conditional likelihood �c(�) is usually used to estimate the under-
lying parameters for the Copas-like model. Let �̃ = argmax� �c(�) be the conditional 

F̂(s) =

n∑
i=1

p̂iI(si ≤ s) =
1

n

n∑
i=1

1

1 + �̂{�(�̂1 + �̂2∕si) − �̂}
I(si ≤ s),

G(t) =∫
t

−∞ ∫ pr(�∗
i
= r�s∗

i
= s)dF(s)dr

=∫
t

−∞ ∫
1�

�2 + s2
i

�

�
r − �√
�2 + s2

�
dF(s)dr

=∫ �

�
t − �√
�2 + s2

�
dF(s),

Ĝ(t) =∫ �

�
t − �̂√
�̂2 + s2

�
dF̂(s) =

n�
i=1

p̂i�

⎛⎜⎜⎜⎝
t − �̂�
�̂2 + s2

i

⎞⎟⎟⎟⎠
.
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MLE of � . Then N can be estimate by the inverse probability weighting estimator or the 
MLE

Theorem 2 Assume Condition C1 in the supplementary materials, �0 ≠ 0 , and that 
�c is positive definite. Then as N0 → ∞ , (i) N1∕2

0
(�̃ − �0)

d
⟶N(�,�−1

c
) , and (ii) 

N
1∕2

0
(Ñ∕N0 − 1)

d
⟶N(0, 𝜎2

c
) , where 𝜎2

c
= 𝜑1 − 1 + �⊤

2
�12�

−1
c
�
⊤
12
�2.

We may wonder whether the proposed MLEs have efficiency gain over the condi-
tional MLEs in terms of asymptotical variance. Unfortunately the answer is negative.

Proposition 1 With the symbols used in Theorems 1 and 2, �2 = �2
c
 and � = �c.

This proposition indicates that to estimate N and � , the conditional MLEs and pro-
posed MLEs have the same asymptotic normal distribution. The proposed full likeli-
hood estimation procedure has no efficiency improvement over the conditional like-
lihood estimation procedure. Even so, the proposed full likelihood method still has 
several advantages over the conditional likelihood method. First, although the result-
ing point estimators are asymptotical equivalent, the interval estimators based on these 
two methods generally have quite different finite-sample performances. Our simulation 
results indicate that the proposed likelihood ratio interval usually has better coverage 
accuracy than the conditional-likelihood-based Wald interval. Second, the proposed 
likelihood ratio interval is free from variance estimation, which however is inevitable 
for the conditional-likelihood-based Wald interval. Third, the Wald interval estimators 
may have so small lower bounds that are even less than the number of studies observed 
in the meta-analysis, which is clearly unreasonable. By contrast, the proposed likeli-
hood ratio interval estimators never suffer from such an embarrassment. Finally, under 
the conditional likelihood method, similar to Ñ , F(x) and G(t) are also estimated by 
their inverse probability weighting estimators

Because of inverse probability weighting, it is well known that the numerical per-
formance of inverse probability weighting estimators can be quite unstable when 
some of 𝛷(�̃�1 + �̃�2∕si) are close to 0. The use of EL in our full likelihood estima-
tor considerably mitigates this embarrassment. The maximization of the empirical 
likelihood 

∏n

i=1
pi greatly prevents the occurrence of extreme small weights and thus 

leads to more stable numerical performances of F̂(s) . This numerical advantage of 

Ñ =

n∑
i=1

1

f3(si;�̃12)
=

n∑
i=1

1

𝛷(�̃�1 + �̃�2∕si)
.

F̃(s) =
1

Ñ

n�
i=1

{𝛷(�̃�1 + �̃�2∕si)}
−1I(si ≤ s) =

∑n

i=1
{𝛷(�̃�1 + �̃�2∕si)}

−1I(si ≤ s)∑n

j=1
{𝛷(�̃�1 + �̃�2∕sj)}

−1
,

G̃(t) =

∑n

i=1
{𝛷(�̃�1 + �̃�2∕si)}

−1𝛷{(t − 𝜃)∕
�

𝜏2 + s2
i
}

∑n

j=1
{𝛷(�̃�1 + �̃�2∕sj)}

−1
.
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the proposed MLE over the inverse probability weighting estimator was also noticed 
by Han (2014) .

2.5  Calculation of MLEs

Maximizing the full likelihood �(N, �, �) is computationally challenging because 
the function �(N, �, �) takes maximum over a very flat plateau and its maximiza-
tion often produces non-convergence results. If �12 is fixed, then the maximiza-
tion can be stably obtained. This phenomenon has been acknowledged by (Copas 
and Shi 2001) and also observed by (Ning et al. 2017) in maximizing the condi-
tional likelihood �c . To overcome this problem, (Ning et  al. 2017) proposed an 
expectation-maximization algorithm after recasting the bias sampling issue as a 
missing data problem. Their simulation studies indicate that the expectation-max-
imization algorithm usually produces stable estimates for � . Let �̃ = (�̃12, �̃�, 𝜏, 𝜃) 
be the conditional estimate of � calculated by (Ning et al. 2017) ’s expectation-
maximization algorithm. Since direct maximization with respect to �12 is very 
unstable, we propose to maximize our full log-likelihood �(N, �, �) by fixing 
�12 = �̃12.

For ease of exposition, we first re-express the profile empirical log-likelihood as

where

To avoid the non-definition problem in EL, we adopt (Owen 1990)’s calculation 
strategy and replace the log(⋅) function in h3 by

where cn is a pre-specified large number and is usually chosen to be n.
We propose to maximize �(N, �, �) via the following algorithm: 

Step 1  Calculate h̃1(𝛼) = maxN h1(N, 𝛼) , and h̃3(𝛼, �12) = min𝜆 h3(𝛼, �12, 𝜆).
Step 2  Let h23(𝛼, �) = h2(�) + h̃3(𝛼, �12) . Calculate h̃23(𝛼) = max� h23(𝛼, �).
Step 3  Let h123(𝛼) = h̃1(𝛼) + h̃23(𝛼) . Calculate max� h123(�) and the maximizer �̂�.
Step 4  Calculate N̂ = argmaxN h1(N, �̂) and �̂ = argmax� h23(�, �̂).

�(N, �, �) = h1(N, �) + h2(�) +min
�

h3(�12, �, �),

h1(N, �) = log

(
N

n

)
+ (N − n) log(1 − �),

h2(�) =

n∑
i=1

[
log{�(vi)} −

1

2
log(�2 + s2

i
) −

(�i − �)2

2(�2 + s2
i
)

]
,

h3(�, �12, �) = −

n∑
i=1

log[1 + �{�(�1 + �2∕si) − �}].

(12)log∗(z) =

{
log(z) z > 1∕cn
− log(cn) − 1.5 + 2zcn − 0.5z2c2

n
z ≤ 1∕cn

,
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As � is a 5-variate vector, we implement the optimizations with respect to � by 
the R command nlminb. All the other optimizations in the above algorithm are 
with respect to a scalar variable and can be quickly solved by the R command 
optimize.

3  Simulations

3.1  Simulation settings

We carry out simulations to investigate the finite-sample performance of the pro-
posed full likelihood method (Full Likelihood or FL) and compare it with the con-
ditional likelihood method (Conditional Likelihood or CL) implemented by (Ning 
et  al. 2017) ’s expectation-maximization algorithm. Consistent estimators are 
needed for �2

c
 and �c when we apply the conditional likelihood method to construct 

Wald-type intervals for N and � . Following (Ning et al. 2017) , we adopt the estima-
tion procedure by (Loui 1982) together with (Ning et al. 2017) ’s expectation-maxi-
mization algorithm to obtain consistent variance estimators for Ñ and �̃.

We generate study-specific variance s∗2
i

 from the square of a normal random vari-
able N(0.25, 0.5) and generate (�i, �i) ’s from a bivariate standard normal distribution 
with correlation �0 . Given N0 and �0 , we calculate �∗

i
 and Zi from models (1) and (2) 

with �0 in place of � . The (�∗
i
, s∗

i
) ’s with Zi > 0 constitute a simulated sample. We 

consider two choices of N0 , 50 and 100, and two choices of �12,0 , (−0.6, 0.8) and 
(−1, 0.6) . As �12,0 changes from (−0.6, 0.8) to (−1, 0.6) , the publishing rate decreases 
from 80% to 64%, publication bias getting more and more severe. To examine 
the effects of effect size, publication bias and heterogeneity on the performances 
of the full likelihood and conditional likelihood methods, we consider two scenar-
ios for (�0, �0, �0) : (1) �0 = 0.4 , �0 = 0.5 , �0 = 0.2, 0.8 , and (2) �0 = 0.2 , �0 = 0.2 , 
�0 = 0.5, 1.

For each parameter combination, we generate 1000 simulation samples and cal-
culate the full likelihood and conditional likelihood point estimates for N, � , and � 
based on each sample. The simulated bias (BIAS), standard deviation (SD) and root 
mean square error (RMSE) of these two type estimators are then obtained. We also 
calculate the simulated coverage probabilities of the proposed likelihood ratio con-
fidence intervals and the conditional-likelihood-based Wald confidence intervals for 
the three parameters at the 95% confidence level. These simulation results are given 
in Tables 1 and 2, corresponding to scenarios (1) and (2), respectively.

3.2  Simulation results

We first examine the results on point estimation. The full likelihood estimators of 
all the four parameters �, �, � and N have obviously smaller RMSEs than the con-
ditional likelihood estimators in almost all scenarios (58 out of 64). In the rest 8 
scenarios, although the full likelihood estimators do not win, their performances are 
nearly the same as the conditional likelihood estimators in terms of RMSE. These 
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observations indicate that the proposed full likelihood method has clear advantages 
over the traditional conditional likelihood method. Meanwhile the efficiency gain of 
the full likelihood estimators increases as the effect size � increases (from 0.2 to 0.4) 
or the publication bias becomes more severe (as � increases from 0.2 to 0.8). When 
estimating � , N and � , the full likelihood estimators usually have smaller absolute 

Table 1  Simulation results for scenario (1) with �0 = 0.5 and different choices of � . All numbers have 
been multiplied by 100

PAR parameter, SD standard deviation, BIAS bias, RMSE root mean square error, CP coverage probabil-
ity at 95% confidence level

�12,0 �0 N0 PAR Conditional likelihood Full likelihood

BIAS SD RMSE CP BIAS SD RMSE CP

(−0.6, 0.8) 0.2 50 � – 3.44 11.93 12.42 95.3 0.22 11.58 11.59 94.3
� – 1.81 14.23 14.34 89.9 – 0.96 8.88 8.93 94.0
� 21.09 47.95 52.38 100 – 2.02 52.49 52.53 92.0
N 23.11 428.47 429.09 89.8 – 44.31 428.66 430.95 93.4

100 � – 3.39 7.85 8.55 95.3 – 0.07 8.12 8.12 95.1
� – 2.36 16.02 16.19 90.3 – 0.91 6.14 6.20 94.5
� 20.51 37.87 43.06 100 – 0.85 36.25 36.26 93.6
N 28.56 609.81 610.48 90.0 – 38.71 609.98 611.21 94.3

0.8 50 � 3.08 13.64 13.98 93.5 – 0.35 11.69 11.70 92.4
� – 3.17 13.85 14.21 96.3 – 2.32 8.34 8.65 94.2
� – 15.37 57.47 59.49 100 – 8.49 49.56 50.37 96.3
N 207.55 438.85 485.45 87.1 138.78 439.21 460.62 95.6

100 � 2.01 8.93 9.15 95.1 – 0.48 8.99 9.01 93.4
� – 1.35 9.39 9.49 95.3 – 1.50 6.31 6.48 95.9
� – 12.00 40.66 42.40 100 – 4.34 35.83 36.09 94.8
N 464.97 650.34 799.46 91.3 396.54 650.59 761.92 94.0

(−1, 0.6) 0.2 50 � – 4.69 14.64 15.36 93.8 – 0.004 13.38 13.37 92.6
� – 1.02 13.79 13.82 92.3 – 2.40 9.33 9.64 94.1
� 13.91 49.36 51.28 100 2.11 42.98 43.03 93.5
N 99.71 769.12 775.55 89.9 18.24 770.62 770.84 92.8

100 � – 4.17 10.56 11.35 92.5 – 0.18 9.12 9.12 94.3
� 0.15 11.02 11.02 91.7 0.89 6.59 6.65 93.5
� 14.13 38.18 40.71 99.9 1.01 30.35 30.37 93.3
N 255.43 1003.34 1035.35 90.1 174.44 1004.56 1019.59 94.8

0.8 50 � – 16.75 15.38 22.74 92.0 – 0.98 13.77 13.81 91.5
� – 2.53 10.76 11.05 94.3 – 1.99 9.29 9.50 94.0
� 38.75 82.42 91.08 100 23.84 34.84 42.22 96.7
N 308.42 830.88 886.28 88.1 229.04 831.31 862.29 91.1

100 � – 8.75 11.80 14.69 92.3 – 1.25 8.85 8.94 92.7
� – 14.32 8.07 16.45 94.7 – 0.82 6.19 6.24 94.4
� – 3.94 68.64 68.76 100 – 2.72 28.50 28.64 95.2
N 549.06 1248.90 1364.27 92.7 469.78 1249.01 1334.43 93.3
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bias although their standard deviations are very close to those of the conditional 
likelihood estimators. In particular for � , the full likelihood estimator corrects most 
part of the conditional likelihood estimator’s bias. While when estimating � , the pro-
posed full likelihood estimator usually has smaller standard deviation, although the 
full likelihood and conditional likelihood estimators have very close biases. In all 

Table 2  Simulation results for scenario (2) with �0 = 0.2 and different choices of � . All numbers have 
been multiplied by 100

PAR parameter, SD standard deviation, BIAS bias, RMSE root mean square error, CP coverage probabil-
ity at 95% confidence level

�12,0 �0 N0 Conditional likelihood Full likelihood

PAR BIAS SD RMSE CP BIAS SD RMSE CP

(−0.6, 0.8) 0.5 50 � – 3.24 11.31 11.76 95.3 0.006 11.77 11.77 93.7
� 1.96 11.88 12.04 93.4 – 2.02 8.61 8.85 95.4
� 18.34 52.73 55.85 100 – 2.22 50.08 50.13 92.8
N 161.76 442.90 471.52 87.2 93.72 443.32 453.12 94.3

100 � – 3.87 7.81 8.71 94.7 0.29 8.06 8.06 94.3
� 0.27 8.82 8.82 91.8 – 0.39 6.23 6.25 94.8
� 18.54 30.77 35.93 100 – 2.51 35.50 35.59 92.6
N 284.71 596.57 661.03 87.3 217.02 596.78 635.01 95.0

1 50 � – 10.33 21.92 24.23 93.4 0.59 20.69 20.70 94.5
� 0.26 17.55 17.55 92.2 2.39 14.00 14.20 93.9
� 37.32 91.12 98.46 100 – 2.39 61.37 61.42 93.8
N 153.37 449.37 474.83 87.4 84.35 449.61 457.45 94.9

100 � – 2.05 12.59 12.76 97.7 0.006 10.44 10.44 94.6
� – 0.43 10.11 10.10 94.7 – 0.39 9.88 9.85 94.8
� 9.05 52.60 53.37 100 – 0.91 48.30 48.30 93.6
N 134.07 590.23 605.26 90.3 66.17 590.48 594.18 94.8

(−1, 0.6) 0.5 50 � – 4.52 14.65 15.33 91.7 – 0.42 12.87 12.88 93.7
� – 1.79 18.14 18.23 90.5 – 2.19 9.40 9.65 93.2
� 16.47 61.13 63.31 99.9 2.80 43.07 43.16 92.4
N 33.16 703.52 704.30 86.7 – 47.01 704.76 706.31 93.3

100 � – 5.66 12.09 13.35 92.6 1.07 8.65 8.72 95.2
� 1.54 11.32 11.42 91.9 – 0.96 6.11 6.18 95.5
� 18.41 48.78 52.14 99.7 2.42 35.34 35.43 91.9
N 292.59 1027.42 1068.27 89.7 210.83 1028.20 1049.59 95.0

1 50 � – 5.72 24.20 24.87 95.0 1.91 22.33 22.41 94.0
� – 0.58 18.19 18.20 93.1 – 2.37 14.80 14.91 94.6
� 15.83 74.37 76.04 100 – 3.42 55.56 55.66 93.9
N 46.74 685.31 686.90 89.6 – 33.69 686.24 687.01 94.7

100 � – 7.08 15.94 17.45 94.9 – 0.28 16.28 16.28 95.0
� 0.08 12.89 12.89 92.7 – 1.41 10.36 10.46 95.3
� 15.54 48.86 51.27 100 – 1.49 40.88 40.91 93.3
N 113.87 1041.61 1047.81 91.8 33.62 1042.29 1042.83 93.7
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cases, as N0 increases from 50 to 100, the values of BIAS, SD and RMSE decrease 
as expected when the parameters are � , � and � . When N is of interest, in almost 
all cases, the relative BIAS, relative SD and relative RMSEs of both estimators 
decrease as N0 increases.

For interval estimation, the proposed likelihood ratio interval or the full likeli-
hood interval for the four parameters almost always has more accurate and more reli-
able coverage probabilities than the conditional-likelihood-based Wald interval or 
the conditional likelihood interval. For example, in the cases of �12,0 = (−0.6, 0.8)⊤ , 
� = 0.4 , and �0 = 0.8 , the coverage probabilities of the conditional likelihood inter-
val for N are only 87.1% and 91.3% when the true value of N is 50 and 100, respec-
tively. By contrast, the corresponding numbers of the full likelihood interval are 
95.6% and 94.0%, respectively, which are much more desirable. The advantage of 
the full likelihood interval is more evident in the estimation of � . The coverage prob-
abilities of the full likelihood intervals varies from 92.1% to 95.3%, which are rea-
sonable. However, the coverage probabilities of the conditional likelihood interval 
for � are almost always 100%, indicating that this interval is too wide to be prac-
tically useful. In addition, the full likelihood interval exhibits more robust perfor-
mance than the conditional likelihood interval in terms of coverage probability as 
the simulation setting varies.

3.3  Comparison in QQ‑plots

To get more insights about the better performance of the full likelihood intervals 
over the conditional likelihood intervals, we consider the following four hypothesis 
testing problems: H01 ∶ � = �0 , H02 ∶ � = �0 , H30 ∶ � = �0 , and H04 ∶ N = N0 . We 
generate 1000 samples from the Copas-like model with �0 = 0.2, �0 = 1, �0 = 0.2 , 
�12,0 = (−0.6, 0.8) and N0 = 50 . For each of the four hypothesis testing problems, 
1000 likelihood ratio statistics and Wald test statistics were calculated. The qq-plots 
of the sign-roots of the 1000 likelihood ratio statistics and Wald test statistics versus 
the standard normal quantiles are displayed in Fig. 1.

Clearly, the qq-plots of the sign-roots of the likelihood ratio statistics are all quite 
close to the identity line for all the four hypothesis testing problems. This implies 
that N(0, 1) and �2

1
 are desirable approximates to the finite-sample distributions of 

the sign-root and itself of the likelihood ratio statistic. It also explains why the full 
likelihood intervals for the four parameters always have very nice coverage accuracy. 
By contrast, the qq-plots of the Wald test statistic are not that close to the identity 
line. The departure becomes larger and larger from H01 to H02 to H04 , which explains 
the poorer and poorer coverage probabilities (from 93.4% to 92.2% to 87.4%) of the 
conditional likelihood interval. For H03 , the Wald statistic has much larger lower 
quantiles and much smaller upper quantiles compared with the standard normal. 
This makes the coverage probability of the resulting conditional likelihood interval 
unacceptably large since its construction is based on the Wald statistic calibrated by 
the standard normal.

In summary, the limiting �2 distribution always approximates much better to the 
finite-sample distribution of the likelihood ratio statistic than the standard normal to 
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that of the Wald statistic. This makes the resulting full likelihood intervals always 
have more, sometimes far more, accurate coverage probabilities than the conditional 
likelihood intervals.

4  Premature birth data

For further comparison of the full likelihood and conditional likelihood methods, we 
apply them to a meta-analysis, in both of which � stands for log-odds ratio. The data 
for meta-analysis comes from (Copas and Jackson 2004). It consists of the results 
of 14 randomized clinical trials concerning the use of prophylactic corticosteroids 
in cases of premature birth. The treatment is administered to the mother in order to 
improve the chance of the infant’s survival if a birth is anticipated to be premature. 

Table 3  Meta-analysis results 
of the lung cancer data and the 
premature birth data

Est estimate value, CI, 95% confidence intervals, �log-odds ratio, � 
between-study heterogeneity

Conditional likelihood Full likelihood

Est CI Est CI

Premature birth data

� – 0.476 [– 0.662, – 0.289] – 0.476 [– 0.760, – 0.244]
exp(�) 0.621 [0.516,0.748] 0.621 [0.468,0.784]
� 0 [– 0.240, – 0.240] 0 [– 0.201, 0.484]
� – 0.977 [– 2.543, – 0.586] – 0.837 [– 1.000, – 0.025]
N 23 [7, 39] 16 [13, 20]

Fig. 1  QQ-plots of the Wald statistic (triangle) and the sign-root of the proposed likelihood ratio statis-
tic (circle) versus N(0, 1). The test statistics are calculated based on 1000 samples from the Copas-like 
selection model with N0 = 50 , �0 = 0.2 , �0 = 1 , �12,0 = (−0.6, 0.8) , and �0 = 0.2
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Table 3 reports the analysis results of the full likelihood and conditional likelihood 
methods.

The funnel plot of this data, shown in the right panel of Fig. 2, looks quite asym-
metric, indicating that publication bias does exist. This also coincides with the 
observation from our likelihood ratio confidence interval for � at the 95% level, 
[−1,−0.025] , which excludes 0. However the Wald confidence based on the con-
ditional likelihood is [−2.543, 0.586] , seemingly supporting � = 0 , which is clearly 
unreliable. In addition, both confidence intervals for � include zero, which provides 
certain evidence for the nonexistence of between-study heterogeneity.

The parameter � denotes the underlying log-odds ratio comparing the probability 
of death in the treated group with that for a parallel sample of controls. Both the full 
likelihood and conditional likelihood methods give the same point estimate, – 0.476, 
for � with similar intervals [– 0.760, – 0.244] and [– 0.662, – 0.289]. The log-odds 
ratio estimate – 0.476 implies that the use of prophylactic corticosteroids in cases 
of premature birth can reduce morality by as large as 28%. Hence our meta-analysis 
provides strong support for the use of prophylactic corticosteroids in cases of prema-
ture birth.

For point estimation of N, the full likelihood and conditional likelihood estimates 
are 23 and 16, respectively. However for interval estimation, again the lower bound 
(7) of the Wald interval is less than the number of observed studies (13), while that 
of the likelihood ratio interval is 13, which makes more sense.

In the presence of publication bias, the published studies, {(�i, si) ∶ i = 1, 2,… , n} , 
constitute a biased sample of all studies; the empirical distributions of s∗

i
 ’s and �∗

i
’s, 

Fig. 2  Funnel plot of the premature birth data
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respectively, are inconsistent estimators of the underlying population distributions, 
F(s) and G(t). Theoretically both the proposed full likelihood and the conditional 
likelihood methods can correct publication bias and consistently estimate F(s) and 
G(t). In Sect. 2, we have presented the MLEs F̂(s) and Ĝ(t) based on the full likeli-
hood method, and the inverse probability weighting estimators F̃(s) and G̃(t) based 
on the conditional likelihood method. Figure 3 displays the empirical distributions, 
the full likelihood and conditional likelihood estimators for both F(s) and G(t) based 
on the premature birth data. As publication bias very likely exists in this data, we 
observe that the full likelihood and conditional likelihood estimates are away from 
the empirical distribution.

5  Discussion

To correct publication bias in meta-analysis, we propose a full likelihood semi-
parametric approach under the Copas-like selection model of (Ning et  al. 2017) . 
We have demonstrated the advantages of the proposed full likelihood method over 
the commonly used conditional likelihood and Wald-type method by theoretical and 
numerical studies. We show that the full MLEs have smaller mean squared errors 
than the conditional-likelihood-based estimators. The full likelihood ratio confi-
dence intervals for the effect size and the total number of studies have more accurate 
coverage probabilities than the Wald intervals under the conditional likelihood.

Our full likelihood method is built on Copas’s selection model (2). It is therefore 
interesting to check whether this model is correct or to conduct a sensitivity analy-
sis on our method. (Almalik et al. 2020) have shown through simulations that the 
conditional likelihood method is not robust against misspecification of the selection 
mechanism. In particular, they found that the conditional likelihood method per-
forms well when model (2) is correct, and it performs poorly otherwise. Because 

Fig. 3  Display of empirical distribution, the FL distribution estimate (dashed line) and the CL distribu-
tion estimate (dotted line) for the premature birth data
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our full likelihood method is built on model (2) and integrates the conditional likeli-
hood, we believe that our method may also be somewhat sensitive to the misspeci-
fication of the selection mechanism. We may leave this issue as our future research 
topic.

A key issue in the implementation of our method is that the maximization of 
the full likelihood is numerically very difficult, as the data contain little informa-
tion about �1 and �2 . This problem exists also in the maximization of the condition 
likelihood as pointed out by (Ning et  al. 2017). To then end, we fix �1 and �2 to 
be their maximum conditional likelihood estimates that are calculated with (Ning 
et al. 2017)’s expectation-maximization algorithm. In doing so, the resulting param-
eter estimates are in essence different from the true maximum likelihood estimates. 
Similar to the conditional likelihood (see (Ning et  al. 2017)), the full likelihood 
function seems to be a very flat plateau around its maximum. This also implies that 
the replacement of the true MLEs �1 and �2 with their conditional MLEs does not 
lead much change in the full likelihood ratio test statistics with respect to parameters 
other than �1 and �2.

6  Supplementary material

The Supplementary Material contains detailed proofs for Lemma 1, Theorems 1 and 
2, and Proposition 1.
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