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Abstract
Parametric high-dimensional regression requires regularization terms to get inter-
pretable models. The respective estimators correspond to regularized M-functionals 
which are naturally highly nonlinear. Their Gâteaux derivative, i.e., their influence 
curve linearizes the asymptotic bias of the estimator, but only up to a remainder 
term which is not guaranteed to tend (sufficiently fast) to zero uniformly on suitable 
tangent sets without profound arguments. We fill this gap by studying, in a unified 
framework, under which conditions the M-functionals corresponding to convex pen-
alties as regularization are compactly differentiable, so that the estimators admit an 
asymptotically linear expansion. This key ingredient allows influence curves to rea-
sonably enter model diagnosis and enable a fast, valid update formula, just requiring 
an evaluation of the corresponding influence curve at new data points. Moreover, 
this paves the way for optimally-robust estimators, bounding the influence curves in 
a suitable way.

Keywords  Asymptotic linear expansion · Regularized M-estimators · Influence 
curves

1  Introduction

In the mid nineties, Robert Tibshirani succeeded in combining two important para-
digms of fitting linear regression models, namely variable selection and shrinkage of 
the coefficients, in one single optimization problem, calling it the Lasso (least abso-
lute shrinkage and selection operator, Tibshirani 1994). While already being superior 
to the former state-of-the-art procedures of Ridge regression and subset selection in 
terms of interpretability of the model and prediction accuracy (Tibshirani 1994), its 
popularity grew when (Efron et al. 2004) embedded the Lasso into the framework of 
forward stagewise regression and provided the LARS algorithm which turned out to 
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be more efficient than the implementations of Tibshirani and Osborne et al. (2000). A 
very competitive algorithm has been developed by (Friedman et al. 2007), relying on 
the fact that despite the Lasso for multiple regression does not have a closed form solu-
tion, a simple Lasso just concerning one single predictor has. Therefore, they apply the 
so-called ”shooting” algorithm to the Lasso and other suitable problems, which means 
that one repeatedly cycles through the variables, keeping all others fixed to their values 
of the previous iteration and fits the partial residual, i.e., a coordinate-wise optimization 
is done.

Evidently, the Lasso estimator is not robust since contamination of the data both 
in the responses as well as in the regressors can severely distort it. More precisely, let 
y = f (x) + � be the underlying regression model where (x, y) ∼ F for a distribution F 
on (X × Y,�(X × Y)) for the space X ⊂ ℝ

p , p ∈ ℕ , of regressors and the space Y ⊂ ℝ 
of responses, the Borel sigma algebra �(X × Y) on X × Y and some error term � ∼ F� 
with mean zero and variance �2 ∈ (0,∞) . Regarding the distribution F as ”ideal distri-
bution”, we assume that the true distribution of (x, y) stems from a convex contamina-
tion neighborhood that contains all distributions Ft ∶= (1 − t)F + tH where H is an 
arbitrary distribution on X × Y and t ∈ [0, 1] is the so-called contamination radius (see, 
e.g., Rieder 1994).

Robust statistics provides a diagnostic tool that quantifies the impact of contamina-
tion on the estimator. First, one of the most important contributions of robust statistics 
is the identification of estimators with functionals (Huber and Ronchetti 2009; Hampel 
et al. 2011; Rieder 1994; Maronna et al. 2006), so we write the estimation procedure 
as the statistical functional T ∶ F → � for the space F  of all distributions on X × Y 
and the parameter space 𝛩 ⊂ ℝ

p . The idea is to linearize this functional in a first-order 
expansion

which essentially goes back to Von Mises (1947), but it also has been studied, for 
example, in (Reeds 1976), (Clarke 1983) and (Rieder 1994). The term T ′ is a func-
tional derivative, in fact, usually a Gâteaux derivative that we specify in detail in 
Sect.  2. This derivative has been identified in Hampel (1974) with the so-called 
influence curve, i.e., we have

for some stochastic remainder term rem.
Those influence curves play a major role in robust statistics since they quantify the 

infinitesimal influence of a single observation on the estimator. This is easily seen once 
we face real data where we have the empirical distribution function F̂n , n being the 
number of observations. Then, Eq. (1) becomes

T(Ft) − T(F) ≈ T �(F)(Ft − F)

(1)T(Ft) = T(F) + ∫ IC((x, y),T ,F)d(Ft − F)((x, y)) + rem
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for observations (xi, yi) , a remainder term of order n−1∕2 and where ∫ ICdF = 0 was 
used, one of the regularity conditions that are specified in Sect. 2. An estimator that 
allows for such an expansion in terms of influence curves is referred to as asymptoti-
cally linear estimator (ALE). The concept of influence curves is well-known, but its 
success is based on the much deeper theoretical fact that standard M-estimators as 
well as for example MD- and R-estimators are ALEs (see, e.g., Fernholz 1983).

The Gâteaux derivatives of certain penalized M-functionals have already been 
computed ( Öllerer et al. 2015; Avella-Medina 2017). We note that (Avella-Medin 
2017) already mentioned that a linearization of the estimators in the sense of an 
asymptotically linear expansion is necessary and pointed out that the remainder term 
in this linearization has to be controlled uniformly under suitable tangent sets, which 
in our statistical functional setting take the form of distributional neighborhoods. 
(Avella-Medina 2017) require this uniformity to cover bounded tangent sets which 
amounts to Fréchet differentiability ( Averbukh and Smolyanov 1967) of the under-
lying statistical functional. However, (Avella-Medina 2017) restricted theirselves to 
contributing influence curves of regularized M-estimators. Note that an argumenta-
tion as in (Avella-Medina 2017) has not been done in the other references. (Bühl-
mann and Hothorn 2007) identified their functional gradient boosting algorithm 
with iteratively evaluating Gâteaux derivatives at the current model. There already 
exist results where the asymptotic linearity of penalized M-estimators has been 
shown (LeDell et al. 2015; Van de Geer 2016) and even remarkable results concern-
ing penalized M-estimators in the nonconvex setting (Loh 2017), but to the best of 
our knowledge, in particular, a general unified theory for the asymptotic linearity of 
penalized M-estimators has not been provided by the aforementioned results so far.

It should be noted that even without this uniformity, the influence function has 
its merits, as it will provide an approximation in at least some directions, the prob-
lem being that it is not warranted that these directions cover the empirical process 
F̂n − F . Since the standard theory of ALEs does not apply for estimators based on 
non-differentiable target functions like the Lasso, these influence curves lack of a 
sound theoretical foundation. This a is major issue since simply computing the influ-
ence curves provide no guarantee that the remainder term in Eq. (2) is of order n−1∕2 . 
But if this property does not hold, computing the asymptotic bias, i.e., T(F̂n) − T(F) , 
via influence curves can be highly misleading. The reason is that Gâteaux deriva-
tives only allow for uniformly vanishing remainders locally on finite sets which does 
not suffice for the application of a functional delta method (since the chain rule is 
not applicable, cf. Rieder 1994, Thm. 1.2.9) which is an indispensable tool for deriv-
ing the asymptotically linear expansion. In fact, we need at least the stronger notion 
of differentiability in Hadamard sense, which warrants uniformity on compact sets 
of tangents, therefore also called compact differentiability. Once this uniformity 
on compact tangent sets is settled, we obtain, now on a valid base, the influence 

(2)
T(F̂n) − T(F) =∫ IC((x, y),T ,F)d(F̂n − F)(x, y) + rem

=
1

n

∑
i

IC((xi, yi), T ,F) + rem
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function as Gâteaux derivative. This gap is closed by our contribution, allowing 
all advantages like detecting regions where the input data have a high impact on 
the estimator by influence curves or a fast update construction when new instances 
appear, even for estimators like the Lasso. On top of that, the validity of the asymp-
totic linear expansion leads to asymptotic normality, including the corresponding 
simple confidence regions.

Robustness is actually often understood as the property that the estimator has a 
bounded influence curve. The is also called B-robustness (see, e.g., Hampel et  al. 
2011). In literature, robustness results by proving the boundedness of influence 
curves have already been established in the special case of regularized kernel-based 
regression problems, see (Christmann and Steinwart 2004). Since they require Fré-
chet-differentiability of the loss function which is not true, for example, for the �−
insensitive loss, (Christmann and Van Messem 2008) introduced Bouligand influ-
ences curves to prove the robustness of support vector regression estimators. The 
asymptotic normality of kernel-based regression methods has been shown in (Hable 
2012) who also used the framework of compact differentiability of the correspond-
ing functional. Once we face a robustness problem which frequently occurs for high-
dimensional real data, a sophisticated strategy to robustify the estimator is to suit-
ably bound the influence curve by solving constrained optimization problems (see, 
for example, Rieder 1994; Kohl 2005) which requires that the original estimator can 
be expressed in terms of influence curves. So, our contributions also pave the way 
for extending this principle to the case of regularized estimators.

Therefore, the main questions that we answer in this work are: Can we make 
assumptions under which regularized M-estimators are asymptotically linear? And 
if we can, is it possible to embed well-known regularized M-estimators like the 
Lasso into this framework?

The rest of this article is organized as follows. In Sect. 2, the general definition of 
R−differentiability and relevant tools from robust statistics are revisited. In Sect. 3, 
results concerning asymptotic linearity are recapitulated which will be essential for 
the rest of this main section. Then, we transfer the results for M-estimators to the 
case of regularized M-estimators with convex penalties. Subsection 3.3 is the main 
theoretical part where we show under which conditions the asymptotic linearity is 
valid. For non-differentiable penalty terms, we will heavily rely on an approximation 
lemma of ( Avella-Medina 2017). We also consider an extension of our results to 
ranking problems. Section 4 is devoted to concrete examples. In Sect. 5, we discuss 
how to deal with data-driven penalty parameters and in Sect. 6, we outline several 
benefits of our results in practice.

2 � Preliminaries

This section compiles the concepts needed for the main section. We recur to the 
abstract definition of R−differentiability of maps between normed vector spaces. 
The second part contains the most important definitions of quantitative robust sta-
tistics like the influence curve and ALEs. For the ease of notation, we formulate 
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them in a more general than the regression setting, so we w.l.o.g. do not consider 
regressor-response pairs (x, y) in this section but only observations x.

2.1 � Functional derivatives

We start compiling necessary notions on functional derivatives already defined in 
the 1970s in the statistical context. For the exposition, we largely follow (Rieder 
1994), respectively,( Averbukh and Smolyanov 1967).

Definition 1  Let X, Y be normed real vector spaces. A map T ∶ X → Y  is R−differ-
entiable in x ∈ X if there exists dRT(x) ∈ L(X, Y) , i.e., the space of all continuous 
linear maps from X to Y, and s0 > 0 such that for all directions h ∈ X it holds that

where the remainder term � satisfies the following conditions: i) �(0) = 0 , ii) 
� ∈ R(X, Y) where R(X, Y) is a real vector space with R(X, Y) ∩ L(X, Y) = {0} , so it 
can be identified with

Then, the continuous linear map (w.r.t. h per definition) dRT(x) is referred to as the 
R− derivative of T at x.

Note that the definition of R(X, Y) above does not require any uniformity of the 
remainder term along a set of directions. However, this uniformity will be indispen-
sable for the results in this paper. The following definition taken from (Rieder 1994, 
Sec. 1) is helpful to distinguish between different types of R−differentiation.

Definition 2  Let X, Y, T be as in Def. 1. Let S be a covering of X. Define the remain-
der class

By Def. 2, it is clear that RS−differentiability can be seen as a linear approxima-
tion of some functional T such that the remainder term converges uniformly on all 
sets S ∈ S . In the following, we define three special concepts of RS−differentiabil-
ity (cf. Rieder 1994). We say that the functional T is Gâteaux or weakly differenti-
able resp. Hadamard or compactly differentiable resp. Fréchet or boundedly differ-
entiable if the covering S of X consists of finite resp. compact resp. bounded sets. 
Trivially, bounded differentiability implies compact differentiability which implies 
Gâteaux differentiability. The derivatives coincide in this case. Moreover, continu-
ous Gâteaux differentiability implies bounded differentiability.

For the application of an infinite-dimensional delta method ( Rieder 1994, Thm. 
1.3.3), it is necessary to investigate whether the chain rule holds for functional 

T(x + sh) = T(x) + dRT(x)sh + �(sh) ∀|s| ≤ s0,

{
� ∶ X → Y

|||| limt→0

(||�(th)||
t

)
= �(0) = 0

}
.

RS(X, Y) ∶=

{
� ∶ X → Y

|||| limt→0

(
sup
h∈S

(||�(th)||
t

))
= �(0) = 0 ∀S ∈ S

}
.
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derivatives. The following theorem, cf. ( Rieder 1994, Prop. 1.2.6+Thm. 1.2.9) or 
(Averbukh and Smolyanov 1967, Thm. 1.6), shows that for linear maps as approxi-
mations, the chain rule holds if and only if at least Hadamard differentiability holds.

Theorem  1  (Chain rule) Let X, Y, Z be normed real vector spaces and let 
T ∶ X → Y  , U ∶ Y → Z . If T and U are compactly differentiable, then the chain 
rule holds, i.e., dH(U◦T)(x) = dHU(T(x))◦dHT(x) where dH denotes the Hadamard 
derivative. Conversely, if the chain rule holds, the maps are already compactly 
differentiable.

The chain rule does not hold for Gâteaux differentiable maps in general. Counter-
examples can be found in Averbukh and Smolyanov (1967) or Fréchet (1937). Thus, 
regarding the abovely mentioned concepts of functional derivatives, one can state 
that compact differentiability is the weakest form of R−differentiability such that 
the chain rule holds.

Of course, there exist examples where Hadamard-differentiability fails. One 
typical example is L-statistics where the underlying distribution has an unbounded 
support as pointed out in Van der Vaart (2000). Then, compact differentiability is 
impossible w.r.t. || ⋅ ||∞ . Such functionals are written in the form (cf. Beutner and 
Zähle 2010) Tg(F) ∶= − ∫ xdg(F(x)) , so it is required that g has a compact support 
in (0, 1) to ensure compact differentiability. It is shown in Beutner and Zähle (2016) 
that if the support of g contains at least one of the boundary points of [0, 1], even 
the negative expectation value (where g is the identity map) is not compactly dif-
ferentiable. The functional Tg covers relevant statistical functionals like the value 
at risk or the average value at risk as pointed out in (Beutner and Zähle 2010). In 
fact, (Krätschmer et  al. 2012) stated that tail-dependent functionals are in general 
not compactly differentiable w.r.t. uniform norms.

2.2 � Basic concepts of quantitative robustness

Every real data analysis requires model assumptions. However, these assumptions 
are in general not fulfilled, hence the real data differ from data that would have been 
generated by the theoretical (ideal) model. Therefore, fitting models by using the 
real data can be seen as if one analyzes a contaminated data set which affects the 
quality of the fitted model. It is not desirable to exclude potential ”outliers” from 
the data set (cf.  Hampel et al. 2011) but to find strategies that downweight them, 
like iteratively reweighted least squares (IRWLS), see, e.g., (Huber and Ronchetti 
2009). In the introduction, we already implicitly defined the influence function as 
first-order derivative of the corresponding statistical functional. We now give a pre-
cise definition of the influence function (cf. Hampel 1974).

Definition 3  Let X be a normed function space and let � be a normed real vector 
space. Let T ∶ X → � be a statistical functional. The influence function or influ-
ence curve of T at x for a probability measure P on X is defined as the derivative
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where �x denotes the Dirac measure at x.

So, the influence curve is just a special Gâteaux derivative with h ∶= �x − P . The 
influence curve can be seen as an estimate for the infinitesimal influence of a sin-
gle observation on the estimator. If the influence curve is unbounded, then a single 
observation can have an infinite impact on the resulting estimator which is of course 
not desirable. For robustness properties, it is necessary that the influence curve is at 
least bounded. In that case, the estimator is sometimes called B-robust (see Hampel 
et al. 2011 or Van der Vaart 2000).

The robustification of an estimator can be done by robustifying its influence func-
tion. Minimax results for optimal-robust influence curves have been established in 
several works (Rieder 1994, Rieder et al. 2008; Hampel et al. 2011; Fraiman et al. 
2001). However, for guaranteeing optimality of these approaches, it is crucial that 
the estimator is asymptotically linear ( Rieder 1994, Def. 4.2.16) and that the model 
is smooth enough, i.e., that it is L2−differentiable (see LeCam 1970), see Def. 5.

Definition 4  Let (�n,An) be a measurable space and let Sn ∶ (�n,An) → (ℝp,𝔹p) 
be an estimator based on observations x1, ..., xn . Let P ∶= {P� | � ∈ �} be a para-
metric distribution family on (�,A) for some parameter space 𝛩 ⊂ ℝ

p . Then, the 
sequence (Sn)n is asymptotically linear at P�0

 if there exists an influence curve 
��0

∈ �2(�0) such that the expansion

holds. The family �2(�0) of influence curves is defined by the set of all maps ��0 that 
satisfy the conditions

i) ��0 ∈ L
p

2
(P�0

) , ii) ��0
[��0] = 0 , iii) ��0

[��0�
T
�0
] = Ip, 

where Ip denotes the identity matrix of dimension p × p and ��0
 is the L2−derivative 

at P�0
.

The notation (Sn)n emphasizes that the number n of observations grows where Sn 
is the estimator based on n instances. In Def. 4, condition i) is vital for integrability 
and for the application of the central limit theorem to conclude that Sn is asymptoti-
cally normal, i.e.,

Condition ii) ensures unbiasedness of the asymptotically linear estimator. The third 
condition leads to uniform unbiasedness (w.r.t. �0 ), more precisely, if ��0

 satisfies i) 
and ii), ( Rieder 1994, Lemma 4.2.18) shows that the condition iii) is equivalent to

IC(x, T ,P) ∶= lim
t→0

(
T((1 − t)P + t�x) − T(P)

t

)
= �t

[
T((1 − t)P + t�x)

]||||t=0

Sn = �0 +
1

n

n∑
i=1

��0
(xi) + oPn

�0

(n−1∕2)

√
n(Sn − �0)◦P

n
�0
=

�
1√
n

n�
i=1

��0
(xi) + oPn

�0

(n0)

�
◦Pn

�0

w
⟶ Np(0,��0

[��0
�T
�0
]).
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for all tn → t where tn , t ∈ ℝ
p , so the asymptotic normality granted by the central 

limit theorem will hold locally uniformly over compacts.
An extension of this concept arises if one wants to estimate a transformed param-

eter �(�) leading to so-called ”partial” influence curves (see Def. 6) in the terminol-
ogy of ( Rieder 1994, Def. 4.2.10), (Rieder et al. 2008). One essentially replaces the 
space �2(�0) with �D

2
(�0) = {D�0

��0
| ��0

∈ �2(P�0
)} for D�0

= ��0� (Rieder 1994, 
Rem. 4.2.11 e)), so the asymptotically linear expansion of transformed estimators in 
terms of partial influence curves clearly mimicks the traditional delta-method.

Asymptotic linearity has been proven, for example, for asymptotically normal 
M, R and MD estimators (Rieder 1994, Rem. 4.2.17), so especially for maximum 
likelihood estimators, quantiles or least squares estimators.

3 � Compact differentiability of regularized M‑functionals

This is the main part of this paper. We will recapitulate the results on asymptotic lin-
earity of unpenalized M-functionals that will be transferred to the regularized case 
thereafter.

3.1 � Asymptotic linearity of M‑estimators

Throughout this subsection, let FX be a distribution on (ℝp,𝔹p) and let 
X1, ...,Xn

i.i.d.
∼ FX . For some 𝛩 ⊂ ℝ

p (p finite), denote by Cp(�) the space of all con-
tinuous ℝp−valued functions on � w.r.t. the supremum norm. A general assumption 
throughout this paper will be

(A0) The parametric model P = {P� | � ∈ �} is L2−differentiable and if �� is an 
influence curve, it belongs to the set �2(�).

Let L ∶ X × � → [0,∞) be a loss function and let � = ��L . Define the function

and call its empirical counterpart Zn . The next two assumptions are
(A1) The parameter space 𝛩 ⊂ ℝ

p is nonempty, compact and equals the topologi-
cal closure of its interior.

(A2) The function � satisfies 
�(x, ⋅) ∈ Cp(�) FX(dx) − a.e., �� ∶= �(⋅, �) ∈ L

p

2
(FX) ∀� ∈ �.

Cor. 1 below ( Rieder 1994, Cor. 1.4.5) makes use of the main result from ( Jain 
and Marcus 1975, Thm. 1) which requires

(A3) There exists a pseudo-distance d on � such that d(�, �0) → 0 as � converges 
to �0 and such that the metric integral ∫ 1

0

√
H(�)d� for the metric entropy H on (�, d) 

is finite

√
n(Sn − �0)(P

n

�0+tn∕
√
n
)

w
⟶ Np(t,��0

[��0
�T
�0
])

� ∶ � → ℝ
p, �(�) ∶= ∫ �(x, �)dFX(x) = 𝔼FX

[�(X, �)]
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(A4) There exists M ∈ L2(FX) such that 
||�(x, �) − �(x, �)|| ≤ d(� , �)M(x) ∀� , � ∈ � FX(dx)−a.e.. 
and of the following theorem ( Rieder 1994, Thm. 1.4.2).

Theorem  2  (Compact differentiability of M-estimators) Assume (A1), (A2) and 
additionally:

(A5) There exists a zero �0 ∈ �◦ of � and � ∈ Cp(�) . Moreover, � is locally home-
omorphic at �0 with bounded and invertible derivative d�(�0).

Then, there exists a neighborhood V ⊂ Cp(𝛩) of � and a functional T ∶ V → � 
satisfying f (T(f )) = 0 ∀f ∈ V  . T is compactly differentiable at � with derivative 
given by dHT(�) = −(d�(�0))

−1
◦��0

 , where ��0
 is the evaluation functional at �0.

Corollary 1  Under the assumptions (A0)-(A5), the sequence (Sn)n ∶= (T◦Zn)n of 
M-estimators has the asymptotic linear expansion

where the influence function is given by ��(x) ∶= −(d�(�0))
−1�(x, �0) . If the Sn is 

measurable, then asymptotic normality holds, i.e., 
√
n(Sn − �0)◦F

n
X

w
⟶ N(0,ACAT ) 

where A ∶= (d�(�0))
−1 and C ∶= �FX

[��0
�T
�0
].

Remark 1  Note that this result can also be shown by working with bracketing num-
bers which leads to slightly different assumptions (Van der Vaart 2000, Thm. 5.21).

In the corollary, we denote the stochastic Landau symbol w.r.t. the inner n−fold 
product measure of FX by o(Fn

X
)∗
 . Inner probabilities are invoked to safeguard against 

potential nonmeasurability issues of the Z-functions Zn , see (Rieder 1994). The 
notation o(Fn

X
)∗
(n0) actually means o(Fn

X
)∗
(1) but the argument n0 should highlight that 

n is the growing quantity in the approximation.

Remark 2  (Fréchet differentiability) The proof uses an infinite-dimensional ver-
sion of the delta method, see, e.g., (Van der Vaart and Wellner 2013), ( Rieder 1994, 
Thm. 1.3.3), that requires the chain rule. By Thm. 1, the functionals have to be at 
least compactly differentiable. Since the chain rule holds for Fréchet differentiable 
maps, one may ask if the gap between compactly and Fréchet differentiable statisti-
cal functionals is considerable. The following two examples give an answer.

Example 1  We refer to (Rieder 1994, Thm. 1.5.1) who shows that for distribu-
tion functions F that are continuous in some neighborhood U around a = F−1(�) , 
the location �−quantile is compactly but not boundedly differentiable along 
C(U) ∩ 𝔻(ℝ) , provided that f (a) > 0 , where 𝔻(ℝ) denotes the Skorohod space, i.e., 
the space of all real-valued càdlàg functions.

√
n(Sn − �0) =

1√
n

n�
i=1

��(xi) + o(Fn
X
)∗
(n0)
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Example 2  Another example is given by the functional T(F,G) ∶= ∫ FdG for dis-
tribution functions F, G. It is shown that this functional is compactly differentiable 
with Hadamard-derivative

and the empirical version corresponding to the Wilcoxon statistic is compactly dif-
ferentiable as well (cf. Gill et al. 1989; Van der Vaart and Wellner 2013). This fact 
has been used to prove asymptotic linearity of the area under the curve (AUC) and 
the cross-validated AUC as it has been done in (LeDell et al. 2015). However, (Well-
ner 1992) showed that T is not Fréchet differentiable if one considers the || ⋅ ||∞−
norm. The given counter example relies on the fact that in the case of Fréchet differ-
entiability, the Fréchet derivative dFT  coincides with the Hadamard derivative dHT  , 
so dHT  would be the only candidate for dFT  , but dHT  does not supply the o−term in 
the first-order expansion in every case.

So, we can summarize that it is reasonable to show the asymptotic linearity by 
the milder requirement of compact differentiability.

3.2 � The regression context

Fitting a model based on a training set by minimizing some loss function without 
any restriction generally leads to overfitting, especially in the case of high-dimen-
sional data. This issue has been investigated in (Vapnik 1998) who introduced the 
structural risk minimization principle which performs the optimization on structures 
that have finite Vapnik-Chervonenkis dimension. In practice, this idea manifests 
itself when penalizing the loss function by a regularization term.

In the regression context, we have a regressor matrix with rows xi ∈ X ⊂ ℝ
p and 

a response vector with components yi ∈ Y ⊂ ℝ . We assume a model yi = f (xi) + �i 
where (xi, yi) ∼ F i.i.d. for a distribution F on (X × Y,�(X × Y)) for the Borel sigma 
algebra �(X × Y) on X × Y and some error terms �i ∼ F� i.i.d. with mean zero and 
variance �2 ∈ (0,∞) . The function f may be any measurable function mapping from 
X  into Y . In this work, we assume that f is an element of the parametric function 
class F𝜃 ∶= {f𝜃(x) = x𝜃 | 𝜃 ∈ 𝛩 ⊂ ℝ

p}.

Remark 3  (Intercept) Note that unless specified otherwise, the first column of the 
regressor matrix may only consist of ones, which means that the first component of 
the parameter is the intercept.

We try to recover the true map f� by estimating � . This is done by defining a loss 
function L ∶ (X × Y) × � → [0,∞) . For practical applications, we will assume that 
L((x, y), f�) ∶= L(f�(x), y) = 0 if f�(x) = y as it was done in Christmann et al. (2009). 
The penalty term J� ∶ � → [0,∞) that should enforce sparseness of the solution has 
to satisfy the following conditions:

dHT(x, y) = ∫ xdG − ∫ ydF,
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(A6) The penalty term J� with regularization parameter 𝜆 > 0 is non-negative and 
convex with J�(0p) = 0 (for 0p = (0, ..., 0) ∈ ℝ

p).
The assumption that a regularization term must be non-negative is natural. On the 

other hand, since it penalizes the model complexity, the assumption that J�(0p) = 0 is 
reasonable since the parameter � = 0p leads to an empty model which would not make 
sense to penalize. The convexity assumption is needed for practical applications to pre-
vent the solution from overfitting and, of course, to guarantee the existence of a unique 
solution in combination with a convex loss function.

Then, we try to solve

by solving the empirical counterpart of the corresponding Z-equation

provided that ��L = � exists and that integration and differentiation can be inter-
changed. If the penalty term is not of a particular interest, we suppress the super-
script and just write Zn or �.

As for L2−differentiability of parametric regression models, we refer to (Rieder 
1994, Thm. 2.4.7) for random design and to ( Rieder 1994, Thm. 2.4.2) for fixed design 
of the regressor matrix.

3.3 � Asymptotic linearity of regularized M‑estimators

For clarity, we write down the following counterpart of Cor. 1 to illustrate that we 
regard the loss function and the penalty term separately, where the latter will be the one 
that is more likely to cause problems.

Corollary 2  Assume (A0), (A1) and (A3). Let the assumptions (A2) and (A4) be true 
for the score function �((x, y), �) + J�

�
(�) ∶ ℝ

p ×ℝ × � → ℝ
p and let (A5) be true 

for ��(�) provided that the derivative exists. Then, the asymptotic linear expansion 
in Cor. 1 holds with

Clearly, for example, for the l1−penalty term, the derivative J′
�
 would not be reason-

able. Before showing how to remedy this issue, we justify the compactness assumption 
of the parameter space by coercivity arguments.

(3)R(�) ∶= �F[L((x, y), f�)] + J�(�) = ∫X×Y

L((x, y), f�)dF(x, y) + J�(�) = min
�∈�

!

��(�) ∶= ∫X×Y

�((x, y), �)dF(x, y) + J�
�
(�)

!
= 0,

�(x, y) = −

(
dH

(
∫ �((x, y), �)dF(x, y) + J�

�
(�)

)||||�=�0

)−1[
�((x, y), �) + J�

�
(�)

||||�=�0

]
.
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3.3.1 � Compactness assumption of the parameter space

Lemma 1  Let X  , Y , � be real vector spaces. Let L ∶ X × Y × � → [0,∞) be a 
continuous loss function and let J� ∶ � → [0,∞) be a convex penalty function 
where J� ≢ 0 . Let F be a distribution on (X × Y,�(X × Y)) . Then, the risk function 
�F[L((X, Y), �)] + J�(�) is coercive w.r.t. � , so the parameter space can be restricted 
to a compact.

Proof  By convexity, the penalty terms always must satisfy lim||�||→∞(J�(�)) = ∞ ; 
otherwise, it would have to be constantly zero which we excluded by assumption. 
The coercivity is inherited from the penalty term since the loss function is convex 
and by linearity of the integral, its expectation is as well, so the risk is coercive w.r.t. 
� . In fact, we get R(�) → ∞ for ||�|| → ∞ , so we are allowed to restrict the param-
eter space to a compact due to Lemma 4. 	�  ◻

This reasoning is of course not new and has been already done to show the exist-
ence of solutions for the Huberized lasso ( Lambert-Lacroix and Zwald 2011), for 
regularized kernel methods in Vito et al. (2004) or in (De los Reyes et al. 2016) 
for regularized functionals in the context of image restoration.

It is easy to see that the usual penalty terms like the l1− , l2− or elastic net 
penalty are coercive (Aravkin et al. 2013, Cor. 8). On the other hand, non-convex 
penalties do not have to be coercive, for example, the SCAD penalty (cf.  Fan and 
Li 2001) is constant outside a neighborhood of zero whose width depends on the 
penalty parameter.

In fact, since we are now allowed to assume compactness of the parameter 
space, we face another potential issue. The compactness assumption leads to the 
problem that the M-estimator 𝜃̂n may be located at the boundary of � . We invoke 
the idea of one-step estimators from Van der Vaart (2000) to make the connection 
with machine learning algorithms.

Having a 
√
n−consistent preliminary solution 𝜃n of the estimating equation 

Zn(�) = 0 , then an application of the Newton-Raphson algorithm leads to an 
improved one-step solution

Z′
n,0

 is a regular matrix and converges in probability to a regular matrix Z′
0
 . The fol-

lowing theorem can be found in (Van der Vaart 2000, Thm. 5.45).

Theorem 3  Let the notation be as above. Let the condition that for every constant M 
it holds that

𝜃̂n ∶= 𝜃n − (Z�
n,0
(𝜃n))

−1Zn(𝜃n).

(4)sup√
n��𝜃−𝜃0��<M

�
��√n(Zn(𝜃) − Zn(𝜃0)) − Z�

0

√
n(𝜃 − 𝜃0)��

�
P

⟶ 0
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be satisfied for a regular matrix Z′
0
 . If it holds additionally that 

√
n(Zn(�0)) con-

verges to some limit, then the one-step estimator 𝜃̂n is already 
√
n−consistent.

Lemma 2  Let all the notation be as above. Under (A2), (A5) and the additional 
assumptions

(A7) The learning procedure is 
√
n−consistent,

(A8a) The function Zn is twice differentiable w.r.t. �,

the one-step estimator is not located at the boundary of the parameter space.

Proof  Since condition (4) is weaker than differentiability of Zn at � , this part is 
already satisfied by (A8a). The only condition of Thm. 3 that remains to be proven is 
the convergence of 

√
n(Zn(�0)) to some limit Z. But since we already know by (A7) 

that the learning algorithm is 
√
n−consistent, hence 

√
n(𝜃0 − 𝜃̂n) converges in prob-

ability. An application of the delta method which is possible under (A8a) provides 
that 

√
n(Zn(𝜃0) − Zn(𝜃̂n)) has a limiting distribution (which is the Dirac measure at 

zero) and we note that by definition, it holds that Zn(𝜃̂n) = 0 , so the convergence of √
nZn(�0) has been established and Thm. 3 applies. 	�  ◻

We admit that it is not common to assume learning rates as we did in assumption 
(A7), but it is more convenient just to assume consistency. Since functions that are 
too complex may not be able to be approximated with a predetermined rate, this 
assumption results in the class of approximable functions getting strictly smaller.

3.3.2 � Twice differentiable Z‑function

We state the following intermediate result:

Theorem 4  Under the conditions (A0), (A1), (A6), (A7), (A8a) and

(A2’) ��(⋅, �) ∈ L
p

2
(F) ∀� ∈ �,

(A5’) ��(�0) = 0 for a �0 ∈ �◦ and �� are locally homeomorphic at �0 with 
bounded and invertible derivative d��(�0),

the sequence (S�
n
)n ∶= (T◦Z�

n
)n of regularized M-estimators is asymptotically linear.

Proof  As a byproduct of (A1), we immediately get (A3). This is true since ℝp is 
a normed space, hence the pseudo-distance is just the standard euclidean norm on 
ℝ

p and by boundedness of � and since p is finite, we can conclude that the met-
ric integral is finite. Even more general, the metric integral is finite provided that 
d(�, �0) = ||� − �0||�2 for some � ∈ (0,∞) (Rieder 1994, Rem. 1.4.6.b)).
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From twice differentiability of �� , the first part of (A2) is trivially satisfied and 
the derivative � of L is continuous w.r.t. � . By (A6), (A7), (A8a) and Lemma 2, the 
assumption that we can restrict the parameter space � to a compact set is justifiable. 
Using this compactness of � , we deduce that there exists an M(x) ∈ L2(FX) such 
that ||�(x, �) − �(x, �)|| ≤ M(x)d(�, �) , so we conclude that (A4) holds.

Thus, Cor. 1 is applicable and we get the desired result. 	�  ◻

3.3.3 � Twice continuously differentiable loss function, non‑differentiable penalty 
term

If the penalty term is non-differentiable, like the Lasso loss, then we invoke an 
approximation result of (Avella-Medina 2017) which uses a maximum theorem of 
(Berge 1963). This result is exactly what we need in the presence of non-differen-
tiable regularization terms since despite that we cannot assume differentiability, we 
can at least assume continuity. The following lemma is a combination of ( Avella-
Medina 2017, Lemma 2) and (Avella-Medina 2017, Prop. 1).

Lemma 3  (Approximating influence curves) Assume that the parameter space 
𝛩 ⊂ ℝ

p is compact and that the loss function is twice continuously differentiable 
w.r.t. � . If there exists a sequence (Jm

�
)m with Jm

�
∈ C∞(�) that converges to J� in the 

Sobolev space W2,2(�) , i.e.,

then limm(Tm) = T  where Tm denotes the M-functional that intends to find the zero 
of the Z-equation corresponding to Rm where Rm denotes the risk function where J� 
is replaced by Jm

�
 , cf. Eq. 3. If �m

�
 denotes the influence curve corresponding to the 

functional Tm , the limiting influence curve equals the one for the functional T. Both 
the limiting behaviour of Tm and �m

�
 do not depend on the particular choice of the 

approximating sequence Jm
�

.

Theorem 5  Assume that there exists a sequence (Jm
�
)m with Jm

�
∈ C∞(�) of regulari-

zation functions that converge to J� in the Sobolev space W2,2(�) . Under the condi-
tions (A0), (A1), (A2’), (A5’), (A6), (A7) and

(A8b) the loss function L is convex and twice continuously differentiable w.r.t. �,

the sequence (S�
n
)n of regularized M-estimators is asymptotically linear.

Proof  From Thm. 4, we can conclude that the estimator has an asymptotic linear 
expansion and that it is asymptotically normal if the respective assumptions col-
lected there are satisfied. But since this is just an asymptotic property up to a remain-
der term of order n−1∕2 , it suffices to approximate J� by Jm

�
 such that the difference in 

||Jm
�
− J�||W2,2 =

(∑
|�|≤2��

|��(Jm
�
(�) − J�(�))|2d�

)1∕2

⟶ 0,
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the respective influence functions is negligible, i.e., the difference is already of order 
n−1∕2 . Note that by continuity of the Gâteaux derivative w.r.t. the direction and by 
Lemma 3, it holds that limm(IC(x, Tm,P)) = IC(x, T ,P).

Finally, we can conclude that we can work with infinitely differentiable penalty 
terms satisfying the conditions of the previous subsection but that this results in the 
same asymptotic linear expansion as if we used the true non-differentiable penalty 
term. Thus, we only need the existence of an approximating sequence of penalty 
terms. 	�  ◻

Remark 4  (Öllerer et  al. 2015,  Lemma 5.4) showed for the Lasso and a concrete 
hyperbolic tangent approximation of the penalty term that the influence function of 
the approximating estimator derived by (Öllerer et  al. 2015, Prop. 4.1) converges 
to the influence function of the Lasso. So, (Avella-Medina 2017) generalized their 
result with Lemma 3 for any losses and penalties satisfying the given conditions.

Note again that the main difficulty for non-differentiable regularization terms is 
the translation of M- to Z-equations. The approximation result elegantly avoids a 
tedious case-by-case study under which conditions an M-estimator w.r.t. a certain 
regularized loss function can be written as Z-estimator and provides a universal 
result.

3.4 � Extension to ranking

So far, we concentrated on regression problems where a data set (x1, y1), ..., (xn, yn) 
is given with the goal to compute a model f𝜃̂ such that the yi are fitted by f𝜃̂(xi) . 
Ranking problems are different since they only intend to recover the true order-
ing of the responses which clearly does not require an exact recovery of the 
response values themselves. In the ranking setting, we assume the same underly-
ing model as in the first part of this section, with the only difference that we have 
to invoke a joint distribution Fr ∶ (X × Y) × (X × Y) on the measurable space 
((X × Y) × (X × Y),�((X × Y) × (X × Y))) where the notation Fr is introduced to 
distinguish it from the joint distribution in the previous part of this section.

In contrast to prediction problems, it is not the goal to recover the true values of the 
yi but just to predict their true order which implies that loss functions that are based 
on the residuals yi − f𝜃̂(xi) are not appropriate. Therefore, the ranking model can be 
fitted by minimizing a ranking loss function Lr ∶ (X × Y) × (X × Y) × � → [0,∞) 
which quantifies a ranking loss, that is a loss suffered from a misranking of a pair of 
instances, see Clémençon et al. (2008). Defining a penalty term and the ranking risk 
analogously to the risk R in Eq. 3, the corresponding Z-equation resulting from the 
problem to minimize the regularized risk is

where �r = ��L
r is the score function, hence the first term of Zr,�

n
 is the empirical 

counterpart of the expected score.

Zr,�
n
(�) ∶=

1

n(n − 1)

∑∑
i≠j

�r(((xi, yi), (xj, yj)), �) + J�
�
(�)

!
= 0
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We can easily adapt our results to the ranking setting and conclude compact differ-
entiability of regularized ranking functionals and asymptotic linearity of the sequence 
(Sr,�

n
)n ∶= (T◦Zr,�

n
)n of regularized ranking M-estimators.

Theorem 6  Define

Then, under the conditions (A0), (A1), (A5), (A6), (A7), (A8a) and

((A2r)’) �r(⋅, �) + J�
�
(�) ∈ L

p

2
(Fr) ∀� ∈ �,

the sequence (Sr,�
n
)n ∶= (T◦Zr,�

n
)n of regularized ranking M-estimators is asymptoti-

cally linear.

Proof  This directly follows from Thm. 4 since the optimization is done w.r.t. � , 
whereas the dimension of the space of the other arguments of � is not explicitly used 
in the proof. 	�  ◻

Similarly, an analogue to Thm. 5 holds for the ranking setting.

Remark 5  It is important to emphasize that ranking loss functions like the hard rank-
ing loss (Clémençon et al. 2008, Sec. 2) and related losses are not continuous and 
not convex, so they fail the assumptions of these theorems (however, the hard rank-
ing loss is bounded, so combining it with a suitable regularity term again leads to 
a coercive target function). Examples for which the regularity conditions hold are 
smooth convex surrogates of those ranking losses, see (Clémençon et al. 2013) for 
an overview.

4 � Examples for asymptotically linear estimators in machine learning

The conditions for asymptotic linearity of the regularized M-estimators in the previous 
section are quite general. The goal of this section is to provide examples for machine 
learning algorithms to which the derived results can be applied and to specify the 
required conditions for each procedure.

4.1 � Lasso

Lasso regression (cf. (Bühlmann and Van De Geer 2011)) is an l1−penalized least 
squares regression, i.e.,

�r,� ∶ � → ℝ
p, �r,�(�) ∶= ∫ �r(((x, y), (x�, y�)), �)dFr(((x, y), (x�, y�))) + J�

�
(�).

𝛽 lasso = argmin𝛽∈𝛩

(
1

n
||Y − X𝛽||2

2
+ 𝜆||𝛽||1

)
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where we denote the regressor matrix by X ∈ ℝ
n×p and the response vector by 

Y ∈ ℝ
n . The lasso regression results in a shrinkage of the coefficients and in sparsity 

of the fitted model. The score function for the non-regularized loss is given by

We invoke the approximation of the non-differentiable penalty term. There exists an 
example of such a smooth penalty term converging to the absolute value in Avella-
Medina (2017).

Theorem 7  Assume (A0), (A1) and

((A2Lasso)’) the ideal distribution F has finite fourth moments,

(A5’) the true solution �0 lies in the interior of � and the derivative d��(�0) is 
invertible,

(A7Lasso ) ���0��1 = o(
√
n∕ ln(p)) and that the regularization parameter in depend-

ence of n is chosen in the range of �n = o(
√
ln(p)∕n).

Then, the sequence (SLasso
n

)n ∶= (T◦ZLasso
n

)n of Lasso estimators is asymptotically 
linear.

Proof  We need to verify the conditions of Thm. 5. Consider a smooth approxima-
tion Jm

�
 of the absolute value in the sense of the Sobolev space W2,2 , as given in 

Öllerer et al. (2015) or Avella-Medina (2017), respectively. Then, we set

and thus

and the (component-wise) convergence of the Hessian holds as well due to the prop-
erties of W2,2 . For this idea, we refer to ( Öllerer et al. 2015, Lemma 5.4). The loss 
function and the approximating penalty term are smooth, hence (A8b) is satisfied 
and Lemma 3 is applicable.

The target function is coercive w.r.t. � (see Lemma 4). This holds because as 
||�|| → ∞ , the penalty will tend to infinity and so does the target function. Note 
that this does not hold for the loss function itself since ||�|| → ∞ can result in a 
small loss. One may argue that even in the penalized case, it can happen that 
||(x, y, �)|| → ∞ without resulting in the target function growing as well. If, for 
example, y = 0 and ||x|| is large, then y = x� for � = 0p . But in this case, we do not 
lose anything if we restrict the parameter space. Furthermore, we can write the opti-
mization problem in the form

(5)�(⋅, �) =
2

n
XT (Y − X�).

J̃m
𝜆
(𝛽) ∶=

∑
i

Jm
𝜆
(𝛽i) ⟶

∑
i

|𝛽i| = ||𝛽||1,

∇𝛽 J̃
m
𝜆
(𝛽) = (𝜕𝛽1 J̃

m
𝜆
(𝛽), ..., 𝜕𝛽p J̃

m
𝜆
(𝛽)) ⟶ (sign(𝛽1), ..., sign(𝛽p)) = ∇𝛽||𝛽||1
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for some constant c� depending on � . So, we have a convex optimization problem 
with a continuous, strictly convex and coercive target function, so by Werner (2006), 
there definitely exists a solution �0 of �� and the local homeomorphicity around the 
solution follows.

Combining ((A2Lasso)’) with Eq. (5), we derive that the score function is square-
integrable w.r.t. the distribution F. Then, (A2’) is satisfied and by boundedness of 
the integral by the previous assumption and by compactness of the parameter space, 
this derivative is bounded.

The Lasso is generally inconsistent, but under (A7Lasso ), it follows from Bühl-
mann and Van De Geer (2011) that the Lasso is 

√
n−consistent in this case. Note 

that despite we solve a convex optimization problem assuming that the true solution 
is already located in the interior of � , that does not suffice to guarantee that the com-
puted solution does not lie on the boundary of the parameter space. Finally, Thm. 5 
applies and the assertion is proven. 	� ◻

4.2 � Elastic net

The elastic net (cf. Zou and Hastie 2005) can be regarded as a compromise 
between Lasso and Ridge regression. Given two penalty parameters �1, �2 , the 
elastic net solution is given by

and by defining � ∶=
�2

�1+�2
 , this can be rewritten as a convex combination of l1− and 

l2− penalties, i.e.,

where (1 − �)||�||1 + �||�||2
2
 is referred to as the elastic net penalty.

Corollary 3  Under the assumptions of Thm. 7, the sequence (SorthEN
n

)n ∶= (T◦ZorthEN
n

)n 
of elastic net estimators with orthonormal design is asymptotically linear.

Proof  Note that for orthonormal design, the EN solution is just a rescaled Lasso 
solution with factor 1

1+�2
 . In this case, we can simply rescale the influence function 

derived in Öllerer et al. (2015), proving the result. 	�  ◻

Corollary 4  Under the assumptions of Thm. 7, the sequence (SEN
n
)n ∶= (T◦ZEN

n
)n of 

elastic net estimators is asymptotically linear.

min(||Y − X�||2
2
∕n) s.t. ||�||1 ≤ c�

𝛽EN = argmin𝛽

(
1

n
||Y − X𝛽||2

2
+ 𝜆1||𝛽1||1 + 𝜆2||𝛽||22

)

𝛽EN = argmin𝛽

(
1

n
||Y − X𝛽||2

2
+ (1 − 𝛼)||𝛽1||1 + 𝛼||𝛽||2

2

)
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Proof  It is shown in Zou and Hastie (2005) that the elastic net can be rewritten as a 
special Lasso with the augmented data

and the penalty � ∶=
�1√
1+�2

 . If 𝛽Lasso is the respective Lasso solution, the elastic net 
solution is a rescaling with factor 1

1+�2
 as before. 	�  ◻

Using these results and the idea of Öllerer et al. (2015), the respective influence 
curve of the elastic net can be computed by just adapting the influence curve for the 
Lasso computed in Öllerer et al. (2015) and Thm. 7.

4.3 � Adaptive Lasso

The adaptive Lasso (cf. Zou 2006) is a two-stage estimator that first computes the 
standard Lasso estimator (or any 

√
n−consistent estimator), denoted by 𝛽 init , and 

then in a second step, one minimizes

Borrowing the consistency requirements for the adaptive Lasso from Zou (2006), we 
have the following result.

Theorem 8  Assume (A0), (A1) and

((A2Lasso)’) the ideal distribution F has finite fourth moments,

(A5’) the true solution �0 lies in the interior of � and the derivative d��(�0) is 
invertible,

(A7ALasso ) The regularization parameter in dependence of n satisfies �n = o(
√
n) 

and �nn(�−1)∕2 → ∞ for 𝛾 > 0.

Then, the sequence (Sadaptn )n ∶= (T◦Z
adapt
n )n of adaptive Lasso estimators is asymp-

totically linear and the influence curve of the j− th component of 𝛽adapt is given by

where we denote by 𝛽Lasso(𝜆) the Lasso estimator using the penalty parameter �.

X∗ ∶=
1√

1 + �2

�
X√
�2Ip

�
, y∗ ∶=

�
y

0p

�

1

n
||Y − X𝛽||2

2
+ 𝜆

∑
j

|𝛽j|
|𝛽 init

j
| .

IC((x0, y0), 𝛽
adapt

j
(𝜆),P𝛽0) =

⎧⎪⎨⎪⎩

0, 𝛽 init
j

(𝜆) = 0

0, 𝛽
adapt

j
(𝜆) = 0

IC((x0, y0), 𝛽
Lasso
j

(𝜆∕�𝛽 init
j

(𝜆)�)), otherwise

.
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Proof  Obviously, if 𝛽 init
j

= 0 , we immediately know that 𝛽adapt
j

= 0 . Hence, if we 
have the initial solution, we can rewrite the adaptive Lasso optimization problem as

where Ŝinit(𝜆) ∶= {j | 𝛽 init
j

≠ 0} . Then, this optimization problem is just a Lasso opti-
mization problem with a weighted penalty term which can be approximated coordi-
nate-wisely in the spirit of Avella-Medina (2017).

The corresponding influence function has implicitly been derived in (Avella-
Medina 2017). Note that by our method, we would only derive |Ŝinit(𝜆)| compo-
nents of the influence function. However, it was proven in (Öllerer et al. 2015) that 
the components of the influence function corresponding to the coefficients that are 
excluded from the model are zero, i.e., if the Lasso in the first step already sets some 
coefficients to zero, the final coefficients will be zero, so we can just plug in zeroes 
into the respective components of the influence function, providing the usual asymp-
totic linear expansion.

Since the first step does not compute the final non-zero coefficients but just regu-
larizing weights, its influence implicitly arises in this expansion as a factor, leading 
to the stated result. 	�  ◻

Remark 6  (Partial influence curves) Note that the influence curves derived in Thm. 
8 correspond to the concept of ”partial” influence functions (see Def. 6). This is true 
since in the proof of Thm. 8, we are implicitly using the smooth transformation 
𝛽 ↦ 𝛽Ŝinit

𝜆

 to derive the components of the influence curve corresponding to the coef-
ficients that not already have been excluded from the model in the initialization step. 
In other words (after suitable renumeration of the columns), we get the matrix 
D𝛽Ŝinit (𝜆)

∶= (diag(1, ŝinit), 0p−ŝinit ) ∈ ℝ
ŝinit×p where ŝinit ∶= |Ŝinit(𝜆)|.

4.4 � Relations to other work

Van de Geer 2016 derived a result on asymptotic linearity of the de-sparsified 
graphical Lasso estimator. Note that according to Banerjee et  al. (2008) (see also 
Friedman et al. 2008), the loss function that is optimized in the case of the standard 
graphical Lasso is convex and with the convex penalty, we are still in the case of 
convex optimization problems. However, the main difference between this work and 
our theory is that the estimator is matrix-valued and not vector-valued since it is a 
covariance and no regression estimator.

Van de Geer (2016) defines asymptotic linearity in the case of matrix-val-
ued estimators M̂n in the sense that the difference M̂n −M0 is linear, up to some 
remainder term where M0 is the truth. Our framework required that the remainder 
term is of order n−1∕2 which is generalized in Van de Geer (2016) to the condi-
tion that the infinity norm of the remainder term is of order n−1∕2 . Since influence 

𝛽
adapt

Ŝinit
𝜆

= argmin𝛽Ŝinit (𝜆)

⎛⎜⎜⎝
1

n

n�
i=1

�
j∈Ŝinit(𝜆)

(yi − xT
ij
𝛽j)

2 + 𝜆
�

j∈Ŝinit(𝜆)

�𝛽j�
�𝛽 init

j
�
⎞⎟⎟⎠
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curves for such estimators are very complicated, Van de Geer (2016) use regular-
ity arguments to derive their results in order to avoid this issue.

Note that in an extended understanding of sparsity, one indeed could use esti-
mators like the graphical Lasso to derive regression estimators. Since the linear 
regression estimator is given by Cov(X,X)−1Cov(X, Y) , one may use the graphical 
Lasso or related methods to derive estimators which are ”sparse” in the sense that 
many cells of the covariance matrices are set to zero. However, this would not 
lead to sparse regression estimators as in our sense.

Van de Geer (2014) show that the oracle requirements of the Lasso that con-
cern the penalty term actually only use the facts that the l1−penalty is weakly 
decomposable, i.e., ||�||1 = ||�S||1 + ||�Sc ||1 for S ⊂ {1, ..., p} , and that it satisfies 
the triangle inequality and the dual norm equality. They therefore suggest other 
penalty terms that satisfy these conditions. As long as the penalty term is suffi-
ciently regular or a sufficiently regular approximation exists, we can transfer our 
results on asymptotic linearity of the corresponding estimator to the respective 
case.

Remark 7  So far, our results cover the case of convex penalty terms. However, we 
do not explicitly need this requirement except for justifying the assumption that the 
solution lies in a suitable compact so that the parameter space can be reduced to this 
compact. We decided to formulate the theoretical results for this special case since 
the most popular regularized M-estimators like the Lasso (which additionally has a 
convex loss function) can be embedded into this framework, as we have shown in 
Thm’s 7 and 8. For the robustness problems arising when optimizing convex target 
functions, see Sect. 6.

However, sophisticated results from Loh and Wainwright (2015), Lee (2015) 
or Negahban et  al. (2012) on local optima and consistency results for regularized 
M-estimators in the nonconvex setting can be combined with our work since our 
theorems require the assumption of the existence of a suitable solution and consist-
ency. It would be beyond the scope of this work to gather all existing results that 
provide the correctness of several of our assumptions in the theorems, so we restrict 
ourselves to the presented results.

Remark 8  (Asymptotic normality) Note that the additional assumption of meas-
urability of the sequences of estimators provides asymptotic normality of the esti-
mating sequence due to Cor. 1. Of course, we are not the first ones with results on 
asymptotic normality. See, for example, (Loh 2017, Cor. 1) showing under which 
conditions regularized M-estimators of a very general form, including the Lasso, are 
asymptotically normal.

Remark 9  We point out that the asymptotic normality that is established by the 
asymptotic linear expansion does not contradict the statements in Pötscher and Leeb 
(2009) and Pötscher and Schneider (2009) who derive that there does not exist a 
uniformly consistent estimator for the distribution of the Lasso resp. the adaptive 
Lasso estimator. However, our assumption (A7Lasso ) resp. (A7ALasso ) allows for the 
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application of (Pötscher and Leeb 2009, Thm. 5) resp. (Pötscher and Schneider 
2009, Thm. 4) that provides the asymptotic distribution of the Lasso resp. the adap-
tive Lasso estimator and shows that the convergence holds with rate n−1∕2 , i.e., the 
error is already captured by our remainder term of order n−1∕2 in the asymptotic 
linear expansion. Since our assumptions correspond to the case e = 0 in Pötscher 
and Leeb (2009) resp. m = 0 in Pötscher and Schneider (2009), the results on non-
uniformity from (Pötscher and Leeb 2009, Thm. 13) resp. (Pötscher and Schneider 
2009, Thm. 12) are not valid.

5 � Data‑driven penalty parameters

It is common that asymptotic results for regularized methods allow for the case that 
the regularization parameter is data-driven which manifests itself in a sequence (�n)n 
of regulariztion parameters. The same is true for Boosting where the amount of regu-
larization does not depend on a penalty parameter but implicitly on the number of itera-
tions such that a diverging sequence of iterations is the analogue to a sequence (�n)n 
with �n → 0 for n → ∞.

To keep the asymptotic results valid uniformly for n → ∞ , results for Lasso methods 
as in Bühlmann and Van De Geer (2011) or Zou (2006) and for boosting methods as, 
for example, in Bühlmann (2006) require penalty parameters which fall into a suitable 
range in dependence of n or numbers of iterations that grow sufficiently slowly w.r.t. n.

As for our results, we would need a suitable degree of approximation, i.e., a suitable 
sequence (mn)n , leading to a sequence of regularization terms of the form (Jmn

�n
)n , to get 

similar statements.
In fact, we already used sequences (mn)n implicitly when proving Thm. 5. Our argu-

ment was to set mn sufficiently large to get a degree of approximation that leads to an 
error term which is already absorbed by the remainder term.

If we are concerned about sequences of penalty terms, we essentially need to have a 
sequence (mn)n which again grows sufficiently fast to keep the error term small enough. 
Since we assumed that J� is approximable by a sequence of smooth penalty terms Jm

�
 

and since � usually just enters as a factor, a diminishing sequence of regularization 
terms still keeps the approximability valid since for smaller penalty parameters, the reg-
ularization term gets ”less wiggly”, so we assume that for fixed n, one would generally 
need a smaller number m for a smaller � than for a large �.

A general approximation to the best of our knowledge is out of reach, however, for a 
given penalty term with a given approximation sequence, one could derive conditions 
for the sequence (mn)n according to the sequence of regularization terms. In particular, 
this holds for the Lasso and the Adaptive Lasso.
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6 � Practical implications

An easily seen advantage of asymptotically linear estimators is the opportunity to 
perform fast updates once new observations are available. Clearly, once an initial 
estimator is available, one just has to evaluate the influence curve in the observa-
tions to construct a new estimator. In general, estimators of the kind

are known as one-step estimators (see, p.e. Rieder 1994 for more details). If model 
selection already has been done, the influence curves just need to be localized to the 
respective components, leading to partial influence curves as detailed out in Werner 
(2019). The practical use of such one-step estimators has been shown extensively in 
Kohl (2005).

We provide the solid theoretical foundation that allows the influence curves 
that already have been computed, for example, by Öllerer et al. (2015) or Avella-
Medina (2017), to enter model diagnosis which was not evident before since the 
asymptotically linear expansion in terms of influence curves was not proven. 
First, the asymptotic normality provides asymptotic covariances that allow stand-
ard confidence intervals for the estimators. Moreover, the influence curves indi-
cate which observations would have a high impact on the estimator. These model 
diagnostic tools are especially important when facing black box algorithms to 
compute the regularized M-estimators.

The motivating learning algorithms, i.e., the Lasso or the adaptive Lasso, have 
a disadvantage which becomes problematic on real data. Due to the convex loss 
function, the corresponding estimators are not robust which indicates that out-
liers, both in the regressor matrix and in the response vector, can significantly 
distort them. It has been shown in (Alfons et al. 2013, Thm. 1) that the so-called 
breakdown point of the Lasso is n−1 , so even a single outlier in the response vec-
tor suffices to let the estimator become unreliable. This obviously also holds for 
the adaptive Lasso or the elastic net.

There already exist robust variants of the Lasso like the Huberized Lasso, orig-
inally introduced in Rosset and Zhu (2007) and studied in Chen et al. (2010b) and 
Chen et al. (2010a) which replaces the quadratic loss by the Huber loss. However, 
Chang et  al. (2018) showed that despite the Huberized Lasso is robust against 
outliers in the response vector, it is not robust against outliers in the regressor 
matrix. Chang et  al. (2018) themselves suggest the Tukey Lasso which is actu-
ally a robust variant of the adaptive Lasso where in the first step, a robust MM-
estimator (see Maronna et al. (2006)) is computed which is used for the adaptive 
penalty in the second step where the penalized biweight function (Maronna et al. 
2006, Sec. 2.2.4) is minimized. This estimator is also robust against outliers in 
the regressor matrix.

More formally, one can consider outliers as ”contamination” of the assumed 
model, the so-called ”ideal model”, see Rieder (1994) for more details. This issue is 
especially relevant for high-dimensional data since every cell in the regressor matrix 

S1
n
∶= 𝜃̂n +

1

n

n∑
i=1

𝜓𝜃̂n
(xi)
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can potentially be contaminated which makes it very probable that a data matrix has 
contaminated cells which has been pointed out in Alqallaf et al. (2009).

These issues can be handled by using suitable loss functions, especially those 
whose derivatives ��L(x, �) = �(x, �) tend to zero for large |x|, so-called ”redescend-
ers” (see Maronna et  al. 2006). However, it is even more sophisticated to robus-
tify the influence curves themselves which requires that the original non-robust 
estimator can be expressed in terms of influence curves, so which directly uses our 
results about asymptotic linearity. The robustification of the influence curve is done 
by solving a specified optimization problem like minimizing the supremal absolute 
value of the influence curve, minimizing the covariance of the influence curve sub-
ject to a bias bound or minimizing the maximal MSE. These problems are known as 
MBRE, OBRE and OMSE problem, respectively, and have been studied in detail in 
Rieder (1994) and Kohl (2005) for different contamination models.

It is important to point out that just replacing the original loss function by a 
”robust counterpart” does not provide any optimality statements which indeed hold 
for estimators based on optimally robust influence curves which use the original loss 
function and suitably bound the corresponding influence curve. As consequence, we 
can directly work with the influence curves derived, for example, by Öllerer et al. 
(2015). Although we did not provide a construction principle for the sequence (mn)n 
in the previous section, thanks to the approximation principle of the penalty term we 
can directly use the influence function corresponding to J∞

�n
 for a given �n.

It would be desirable to extend those results to the case of high-dimensional regu-
larized regression or estimation. The first step has been done with the theory on 
asymptotic linearity of the regularized M-estimators in this work. The next step for 
future work is to develop an algorithm that computes robust variants of the influence 
curves corresponding to regularized M-estimators for regression.

7 � Conclusion

We studied under which conditions a regularized M-estimator allows for an asymp-
totically linear expansion. We provided a general theory for the asymptotically linear 
expansion of such estimators and gave concrete examples of machine learning algo-
rithms which our theory covers. Of course, from the asymptotic linear expansion, 
the asymptotic normality can be directly derived which allows for standard confi-
dence intervals for the estimators.

Influence curves for a wide range of estimators have already been computed in 
the literature as the Gâteaux derivative of the corresponding statistical functional, 
but this does not guarantee that the remainder term in the asymptotically linear 
expansion vanishes over suitable (i.e., compact) tangent sets. We closed this gap by 
proving the compact differentiability of the regularized M-functionals, leading to the 
desired uniformity and therefore to the validity of the influence curves.

However, we concentrated on linear regression models in this work. An extension 
to other areas of machine learning will be a subject of future work.
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Miscellaneous

The L2−differentiability originally comes from LeCam (1970).

Definition 5  Let P ∶= {P� | � ∈ �} be a family of probability measures on some 
measurable space (�,A) and let � be a subset of ℝp . Then, P is L2−differentiable 
at �0 if there exists ��0

∈ L
p

2
(P�0

) such that

for ||h|| → 0 . In this case, the function ��0
 is the L2−derivative and 

I�0 ∶= ��0
[��0

�T
�0
] is the Fisher information of P at �0.

Note that the L2−differentiability is a special case of the wider concept of Lr−
differentiability (cf. Rieder and Ruckdeschel 2001). The L2−differentiability holds 
for many distribution families, including normal location and scale families, Poisson 
families, gamma families, and even for ARMA, ARCH and GPD families (Rieder 
et  al. 2008, Pupashenko et  al. 2015). A standard example of a distribution family 
that is not L2−differentiable is the model P ∶= {U([0, �]) | � ∈ �}.

The following definition of partial influence curves and the corresponding asymp-
totically linear expansion in terms of such partial influence curves is borrowed from 
(Rieder 1994, Def. 4.2.10) and Rieder et al. (2008).

Definition 6  Let (�n,An) be a measurable space and let Sn ∶ (�n,An) → (ℝq,𝔹q) be 
an estimator for the transformed quantity of interest �(�) . Assume that � ∶ � → ℝ

q 
is differentiable at �0 ∈ � where 𝛩 ⊂ ℝ

p and q ≤ p . Denote the Jacobian by 
��0� =∶ D�0

∈ ℝ
q×p . Then, the set of partial influence curves is defined by

The sequence (Sn)n is asymptotically linear at P�0
 if there exists a partial influence 

curve ��0 ∈ �D
2
(�0) such that the expansion

is valid.

For the following lemma, we refer to Evgrafov and Patriksson (2003) and Levitin 
and Tichatschke (1998).

Lemma 4  Let f ∶ X × Y × � → ℝ be continuous, where X ⊂ ℝ
n , Y ⊂ ℝ

m , 
𝛩 ⊂ ℝ

k . Define �(x, y) ∶= argmin�(f (x, y, �)) . If f is coercive w.r.t. � , i.e., the sets 
{� ∈ � | f (x, y, �) ≤ c} are bounded for all c ∈ ℝ for every x ∈ X  , y ∈ Y , then 
min𝜃(f (x, y, 𝜃)) > −∞ and �(x, y) is nonempty and compact for any x, y.

||||
||||
√

dP�0+h
−
√

dP�0

(
1 +

1

2
hT��0

)||||
||||L2

= o(||h||)

�D
2
(�0) ∶= {��0 ∈ L

q

2
(P�0

) | ��0
[��0 ] = 0, ��0

[��0�
T
�0
] = D�0

}.

Sn = �(�0) +
1

n

n∑
i=1

��0 (xi) + oPn
�0

(n−1∕2)
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