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Abstract
In this paper, we develop an efficient nonparametric estimation theory for continu-
ous time regression models with non-Gaussian Lévy noises in the case when the 
unknown functions belong to Sobolev ellipses. Using the Pinsker’s approach, we 
provide a sharp lower bound for the normalized asymptotic mean square accuracy. 
However, the main result obtained by Pinsker for the Gaussian white noise model is 
not correct without additional conditions for the ellipse coefficients. We find such 
constructive sufficient conditions under which we develop efficient estimation meth-
ods. We show that the obtained conditions hold for the ellipse coefficients of an 
exponential form. For exponential coefficients, the sharp lower bound is calculated 
in explicit form. Finally, we apply this result to signals number detection problems 
in multi-pass connection channels and we obtain an almost parametric convergence 
rate that is natural for this case, which significantly improves the rate with respect to 
power-form coefficients.

Keywords  Regression model · Lévy process · Asymptotic efficiency · Weighted 
least squares estimates · Pinsker constant · Quadratic risk

This work was supported by RSF, Grant no 20-61-47043.

 *	 Evgeny Pchelintsev 
	 evgen-pch@yandex.ru

1	 International Laboratory of Statistics of Stochastic Processes and Quantitative Finance, Tomsk 
State University, 36 prosp. Lenina, 634050 Tomsk, Russia

2	 Laboratoire de Mathématiques Raphael Salem, Université de Rouen, Avenue de l’Université, 
BP.12, 76801 Saint‑Etienne‑du‑Rouvray, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-021-00790-7&domain=pdf


114	 E. Pchelintsev et al.

1 3

1  Introduction

1.1 � Problem

In this paper, we consider the estimation problem for the nonparametric regression 
model in continuous time:

where S(t) ∈ L2[0, 1] is an unknown function, the noise 
(
�t
)
0⩽t⩽1

 is a Lévy process 
defined in Sect.  2, and 𝜀 > 0 is a noise intensity. The problem is to estimate the 
unknown function S in the model (1) on the basis of observations (yt)0≤t≤1 as � → 0 . 
Such models are widely used in statistical radio-physics to estimate the unknown 
signal S in connection channels in the case when ratio “signal/noise” tends to infin-
ity (see, for example, Ibragimov and Khasminskii 1981; Kassam 1988; Kutoyants 
1994 and the references therein). The main goal of this paper is to develop efficient 
estimation methods on the basis of the approach proposed by Pinsker (1981), i.e. 
we study the efficient estimation in the minimax sense for the unknown functions S 
from the Sobolev ellipse defined as

where (aj)j∈ℕ is non-negative coefficients, (�j)j∈ℕ is Fourier coefficients for the func-
tion S, and the radius � > 0 is some fixed constant. In this paper, we use the quad-
ratic risk

where �S(⋅) = ��
S
(⋅) is the expectation over the distribution �S = ��

S
 of the process 

(1) corresponding to the function S .
Our goal is to minimize the maximal value of this risk for sufficient small param-

eter � , i.e.

where �� is the class of all possible estimators for the function S, i.e. any functions 
measurable with respect to �{yt , 0 ≤ t ≤ 1}.

1.2 � Motivations

In the particular case, when (�t)0≤t≤1 is the Brownian motion, this estimation problem 
is very popular in the statistics of random processes (see, for example, Pinsker 1981; 
Kutoyants 1984; Tsybakov 2009 and the references therein) for the both parametric 

(1)dyt = S(t)dt + �d�t , 0 ≤ t ≤ 1 ,

(2)� =

{
S ∈ L2[0, 1] ∶

∞∑

j=1

aj�
2
j
⩽ �

}
,

(3)R(Ŝ, S) ∶= �S‖Ŝ − S‖2 and ‖S‖2 = ∫
1

0

S2(t)dt ,

(4)inf
Ŝ∈��

sup
S∈�

R(Ŝ, S) as � → 0 ,
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and nonparametric settings. Moreover, for the nonparametric Gaussian models (1), 
adaptive efficient methods have been proposed for different estimation problems 
(see, for example, Lepski 1990; Lepski and Spokoiny 1997; Tsybakov 1998 and the 
references therein). As to the non-Gaussian models, firstly for a parametric setting 
such problems were studied in Pchelintsev (2013), Konev et al. (2014) for the noises 
defined through the compound Poisson processes. For the non-Gaussian semima-
rtingale nonparametric models (1), general adaptive efficient nonparametric esti-
mation methods were developed for the risks (3) by Konev and Pergamenshchikov 
(2009a; b; 2012; 2015). Later, non-Gaussian models defined through stochastic dif-
ferential equations were used in very important practical applications such as, for 
example, signal processing problems (Pchelintsev and Pergamenshchikov (2018; 
2019); Pchelintsev et al. 2018; Beltaief et al. 2020), the analysis of neuron systems 
(Hodara et  al. 2018). For non-Gaussian Lévy models, improved nonparametric 
estimation methods were suggested by Pchelintsev et al. (2018; 2019). Usually, to 
provide efficiency properties for the mean square accuracy (3), one uses the lower 
bounds methods based on the Bayesian risk approach developed by Pinsker for the 
nonparametric problems (see also Pinsker 1981; Nemirovskii 2000; Tsybakov 2009 
and the references therein).

However, in all these papers efficiency properties are established only for power 
coefficients aj in (2), i.e. aj = O (j�) for some 𝛼 > 0 . As it is turned out, this is 
very limited in various applications. For example, in the signals number detection 
problem in multi-pass connexion channels (Sect. 6), the efficient estimation for the 
ellipse with the power coefficients provides only power convergence rate �2� for 
some 0 < 𝛽 < 1 . But, in this case, the unknown signal S has some special parametric 
form with unknown parameter dimension. It is intuitively clear that the optimal con-
vergence rate should be almost parametric, i.e. ≈ �2 . To obtain such rate, one needs 
to use the ellipse with the coefficients of some exponential form. In this paper, we 
develop efficient estimation procedures for such functional classes.

1.3 � Main investments

To study efficiency properties, firstly, one obtains a lower bound for the risk (3), and 
then one needs to find an estimator whose risk matches this bound. As to a lower 
bound, Pinsker (1981) proposed a very nice method based on the Bayesian approach 
for the general functional class (2) for the model (1) with the Wiener noise process 
� = (�t)0≤t≤1 . The idea is to replace the nonparametric model with parametric one 
of large dimension and to estimate from below the supremum of the risk in (4) by 
a Bayesian risk with some prior distribution on the ellipse (2). To chose the prior 
distribution, Pinsker used the key idea of Hájek – Le Cam method based on the 
normal approximation, i.e. the local asymptotic normality (LAN) property (see, for 
example, Ibragimov and Khasminskii 1981; Le Cam 1990). Indeed, according to 
this approach to obtain a sharp lower bound for the maximal risk (4), one has to 
chose a prior distribution which asymptotically maximises its Bayesian risk. As it 
is known, such distribution has a Gaussian form. By this reason, the prior distribu-
tion is chosen as Gaussian in the main part. The problem is to plunge this prior 
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distribution into the ellipse. To this end, Pinsker proposed to truncate the Gaussian 
distribution. Unfortunately, without additional conditions on the coefficients of the 
ellipse (aj)j∈ℕ , it is impossible to correctly pass to the truncated distribution (see 
Remark 3 below). To correct the proof of the main theorem in Pinsker (1981), we 
assume the conditions �1 ) and �2 ) in Sect. 2. Moreover, for the models with jumps, 
we cannot use this method; in this case to implement the Bayesian approach, we 
have to develop a special conditional Baysian risks tool with respect to the jumps of 
the process (�t)0≤t≤1 in the model (1). It should be noted that similar lower bounds 
can be obtained through the Van Trees methods (see, for example, in Beltaief et al. 
2020), but this method is useful only for the coefficients aj of a power form. In this 
paper, first we find the constructive sufficient conditions on the ellipse coefficients 
(aj)j∈ℕ under which we show the efficiency property for the weighted least squares 
estimates offered in Beltaief et al. (2020) for the non-Gaussian Lévy models (1) and 
for arbitrary basis functions in L2[0, 1] . Then, we apply the obtained estimators to 
signals number detection problems in multi-pass connection channels, and finally, 
for this problem we get almost parametric convergence rate, i.e. �2| ln �|� for 𝜈 > 1.

1.4 � Organization of the paper

In Sect. 2, we describe the main conditions for the model (1). In Sect. 3, we con-
struct the estimation procedures. In Sect.  4, we announce the main results. In 
Sect. 5, we consider the efficient estimation problems for the functional class (2) in 
two cases: power coefficients and exponential coefficients. In Sect. 6, we apply the 
constructed procedures to signal processing problems. In Sects. 7 and 8, we define 
the prior distribution and study its main properties. Section 9 gives the proofs of the 
main theorems. In Appendix, we prove the necessary auxiliary results.

2 � Main conditions

First we precise the noise process in (1). Similar to Beltaief et al. (2020), Pchelintsev 
et al. (2019), we assume that (�t)0≤t≤1 is the Lévy process defined as

where (Wt)0≤t≤ 1 is a standard Brownian motion, “*” denotes the stochastic integral 
with respect to the compensated jump measure (see, for example, in Liptser and 
Shiryaev (1989) for details), �(ds dx) is a jump measure with deterministic compen-
sator �̃(ds dx) = ds�(dx) , �(⋅) is the unknown Lévy measure, i.e. some non-nega-
tive measure on ℝ∗ = ℝ⧵{0} for which we assume that

where �(g(x)) = ∫
ℝ∗

g(z)�(dz) . As to the threshold � , we assume that it is a func-
tion of � , i.e. � = �� such that � → 0 as � → 0.

(5)�t = Wt + zt and zt = x �{|x|≤�} ∗ (� − �̃)t ,

(6)𝛱(x2) < ∞ ,
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Remark 1  The assumption that in the model (1), the jumps are small, is not restric-
tion, since we can remove the large jumps through the transformation proposed in 
Beltaief et al. (2020), i.e. we replace the observation model with

The sum in this transformation is finite for every 𝜚 > 0 , since this is cádlág process. 
Therefore, in the practice implementation when we have only the discrete observa-
tions (ytj ) this transformation is defined through the replacing the jumps with the 
increments ytj − ytj−1.

Now, we need to precise that we consider the process (1) on the probability space 
(�,F,�) , where � is the trajectory space, i.e. the Skorokhod space generated by the 
[0, 1] → ℝ functions, F  is the cylindric field and � is the distribution of the noise pro-
cess (5). Moreover, we denote by �S the distribution of the process (1) corresponding to 
the unknown function S.

To study an asymptotical estimation accuracy, we need the following condition for 
the coefficients (aj)j≥1 in (2).

�1) The sequence (aj)j⩾1 is non-decreasing, i.e. aj ⩾ aj−1 , and aj → ∞ as j → ∞.
Moreover, for h > 0 we set

Additionally, we will suppose that the coefficients (aj)j⩾1 satisfy the following 
conditions.

�2) There exists 0 < 𝛿0 < 1 such that for any 0 < 𝛿 ⩽ 𝛿0 ,

3 � Estimation procedures

First, we fix some orthonormal basis (�j)j⩾1 in L2[0, 1] with �1 ≡ 1 . The main idea 
of a nonparametric estimation in L2[0, 1] is to use the Fourier representation for the 
unknown function S, i.e.

where the Fourier coefficients (�j)j⩾1 defined as

ỹt = yt −
∑

0≤s≤t
�ys �{|�ys|≥�} .

(7)Nh = max
{
j ⩾ 1 ∶ aj ⩽ h

}
.

Nh − N�h −
1√
aNh

Nh�

j=N�h+1

√
aj → ∞ , as h → ∞ .

(8)S(t) =

∞∑

j=1

�j�j(t) ,

(9)�j = (S,�j) = ∫
1

0

S(t)�j(t)dt .
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In this problem, there are two questions: how to estimate the coefficients (�j)j⩾1 and 
how much terms one needs to use in the sum  (8). To estimate the Fourier coeffi-
cients in (9), we use least squares estimates

which in view of (1) can be represented as

As it is shown in Pinsker (1981) efficient estimates for the unknown function S have 
the following form

where � = (�j)j⩾1 is a weight sequence, 0 ⩽ �j ⩽ 1 , and beginning with some finite 
number all components are equal to zero. Now, we need to find the optimal estima-
tor among all estimates of the form (12), i.e. we need to find � = (�j)j⩾1 which mini-
mize the risk (3). To this end, we set

and, define the optimal number of nonzero terms in the sum (12)

From the condition �1) it follows that n∗ < ∞ . So, for 1 ≤ j ≤ n∗ , we put

Using the Lagrange optimization method, one can show the following result.

Lemma 1  (Kuks and Olman 1971; Pinsker 1981) Under the condition �1)

and

(10)�̂j = ∫
1

0

�j(t)dyt

(11)�̂j = �j + ��j and �j = ∫
1

0

�j(t)d�t .

(12)Ŝ� =

∞∑

j=1

�j�̂j�j ,

(13)�∗,� = inf
�
sup
S∈�

R(Ŝ� , S) ,

(14)n∗ = n∗(�, �) = max

�
l ⩾ 1 ∶

√
al

l�

j=1

√
aj −

l�

j=1

aj ⩽ �−2 �

�
.

(15)�∗
j
= �

�
�

√
aj

− 1

�1∕2

with � =
�−2� +

∑n∗
j=1

aj
∑n∗

j=1

√
aj

.

(16)�∗,� = �2
n∗�

j=1

(�∗
j
)2

(�∗
j
)2 + �2

= n∗�
2 −

�2
�∑n∗

j=1

√
aj

�2

�−2� +
∑n∗

j=1
aj

(17)n∗ = N�2 ,
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where n∗ , � and N�2 are given in (14), (15) and (7), respectively.

Remark 2  As already it is mentioned before, this lemma is shown through the 
Lagrange method. The coefficient � is the optimal Lagrange coefficient for the con-
dition optimization problem (13) for which the optimal function S belongs to func-
tional class � . Note also that the right side of the equality  (16) is the well-known 
Pinsker constant.

4 � Main results

Now, to study the efficiency properties, we remind that �� is the set of all possible 
estimators S̃ for S, i.e. any �{yt , 0 ≤ t ≤ 1} measurable functions.

Theorem 1  Assume that for the model (1) the conditions �1)–�2) hold. Then,

where �∗,� is given in (16).

Remark 3  In Pinsker (1981), author tried to show this theorem for general functional 
class (2). Unfortunately, without the condition �2) , the proof proposed by Pinsker 
is not correct, (see Remark 10 below). May be one can show this theorem by the 
another way, using the Van Trees inequality (see, for example, Pchelintsev et  al. 
2019), but methodologically the Pinsker idea is very nice and we would like keep 
this proof in the general efficient statistical theory.

Further, we show that the lower bound obtained in Theorem  1 is sharp, i.e. there 
exists an estimator for which the inequality (18) is matched in the equality. We 
define the Pinsker estimate as

where the coefficient � = �� is defined in (15) and 0 ≤ t ≤ 1.

Theorem 2  The risk for the estimate (19) is bounded from above as

Theorems 1 and  2 imply the efficiency property for the weighted least squares 
estimate (19).

Theorem 3  Under conditions �1) and �2) , the estimate (19) is efficient, i.e.

(18)lim
�→0

inf
S̃∈��

supS∈� R(S̃, S)

�∗,�

≥ 1 ,

(19)Ŝ(t) =

n∗�

j=1

�j�̂j�j(t) and �j = 1 −

√
aj

�
,

(20)lim
�→0

supS∈� R(Ŝ, S)

�∗,�

⩽ 1 .
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and

Remark 4  We provide the efficiency property (21) in Theorem  3 for the estimate 
(19) constructed through arbitrary basis (�j)j≥1 in L2[0, 1].

5 � Examples

In this section, we consider two main examples of the functional class (2) for which 
the conditions �1) and �2) hold true.

5.1 � Power coefficients

First, we consider the functional set (2) with the coefficients

with fixed constants �∗ > 0 and 𝛼 > 0.

Remark 5  If in (22) the coefficients aj = �2kj2k for some fixed integer k ≥ 1 , then 
the ellipse (2) defined through the trigonometric basis in L2[0, 1] coincides with the 
Sobolev class Wk,� , i.e. the set of k times differentiable functions in L2[0, 1] with 
bounded in the norm of k-th derivative by � . This is the usual setting for the efficient 
nonparametric estimation in L2[0, 1] (see, for example, in Tsybakov 2009 p.137).

We define

and

Theorem 4  Let the coefficients in the class (2) are defined as in (22). Then, the esti-
mator (23) is efficient, i.e. it satisfies the property (21) and

lim
�→0

supS∈� R(Ŝ, S)

�∗,�

= 1

(21)lim
�→0

inf
S̃∈��

supS∈� R(S̃, S)

supS∈� R(Ŝ, S)
= 1 .

(22)aj = �∗j
�

(23)Ŝ(t) =

n∗∑

j=1

�j�̂j�j(t) , �j = 1 −

(
j

n∗

)�∕2

n∗ = max

{
l ⩾ 1 ∶ l�∕2

l∑

j=1

j�∕2 −

l∑

j=1

j� ⩽ �−2 �∕�∗

}
.
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where

Remark 6  For the “Gaussian white noise” model (1), i.e. when �t = Wt , the proof of 
Theorem 4 is very clearly written in Tsybakov (2009) (Theorem 3.1, p.138).

5.2 � Exponential coefficients

Now, we consider the functional set (2) with the coefficients

with fixed constants 0 < 𝛼 < 1 and 𝜅 > 0 . This coefficients will be used for the sig-
nals processing problems in Sect. 6. In this case, we put

and

Theorem 5  Let the coefficients in the class (2) are defined as in (25). Then, the esti-
mator (26) is efficient, i.e. it satisfies the property (21) and

with � = 1∕�.

Remark 7  First of all note that the efficiency property (27) is the new result even for 
the “Gaussian white noise” model. We recall that for the model (1), the optimal con-
vergence rate for parametric problems is �2 , here we obtained �2| ln �|� , i.e. almost 
parametric convergence rate up to the logarithmic coefficient. The same effect was 
found in Pinsker (1981) (the example 2). However, the given proof in this paper for 
this example is not correct.

Remark 8  In Theorems 4 and 5, we use the efficient estimators in simplified asymp-
totic forms (23) and (26) obtained through the representations (7) and (17) by 
replacing in (19) the parameter � ≈

√
an∗ .

(24)lim
�→0

�−
2�

�+1 sup
S∈�

R(Ŝ, S) = �∗(�) ,

�∗(�) =

(
(1 + �)�

�∗

) 1

�+1 ( �

� + 2

) �

�+1
.

(25)aj = e2�j
�

(26)Ŝ(t) =

n∗∑

j=1

�j�̂j�j(t) , �j = 1 − e−�(n
�
∗
−j� )

n∗ = max

{
l ⩾ 1 ∶ e�l

�

l∑

j=1

e�j
�

−

l∑

j=1

e2�j
�

⩽ �−2 �

}
.

(27)lim
�→0

�−2| ln �|−� sup
S∈�

R(Ŝ, S) = �−�
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Remark 9  We obtained the efficiency properties (24) and (27) using the 𝛼 > 0 , 𝜅 > 0 
and the radius � > 0 in (23) and (26). To provide the same efficiency properties 
without using these parameters, one needs to use the adaptive model selection pro-
cedures developed for such model in Konev and Pergamenshchikov (2009a), Konev 
and Pergamenshchikov (2009b).

6 � Signals detection in multi‑path channels

Now, we apply the estimation procedure (25) to the signals number estimation prob-
lem in the multi-path connection channels considered in Beltaief et al. (2020). This 
problem is to estimate the summarized signal in the multi-path channel observed on 
the time interval [0, 1]:

where the energetic parameters (�j)j≥1 , and the number of signals q are unknown, 
and the (�j)j≥1 are known orthonormal signals, i.e.

One needs to estimate q when ratio “signal/noise” goes to infinity, i.e. � → 0 . If in 
the model (28) the noise is the Wiener process, i.e. �t = Wt , then the logarithm of 
the likelihood ratio can be represented as

and

Therefore, maximum over q gives us the trivial solution and cannot be used as an 
estimator for the number q, i.e. the parametric estimation approach does not work 
in this case. By these reasons, we propose to study the estimation problem for q for 
the process (28) in a nonparametric setting (1). Moreover, we consider this problem 
with non-Gaussian Lévy noises.

It is clear, that for any 1 ≤ q < ∞ the function S =
∑q

j=1
�j�j(t) belongs to the func-

tional class (2) with the coefficients aj = e2�j
� for any 𝜅 > 0 and 0 < 𝛼 < 1 . Therefore, 

using Theorem 5, we obtain that the estimator (26) has the almost parametric conver-
gence rate, i.e. �2| ln �|� for 𝜈 > 1 which can be close to 1. Thus, we improve the 

(28)dyt =

(
q∑

j=1

�j�j(t)

)
dt + �d�t ,

�
1

0

�i(t)�j(t) dt = �{i≠j} .

lnL� =
1

�2

q∑

j=1

(
�j ∫

1

0

�j(t)dyt −
1

2

q∑

j=1

�2
j

)

max
�j

ln L� =
1

2�2

q∑

j=1

(

∫
1

0

�j(t)dyt

)2

.
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detection quality of the signals number q with respect to the method proposed in Belt-
aief et al. (2020) based on the Sobolev functional class with the power coefficients.

7 � Prior distribution

In this section, we introduce the prior distribution proposed in Pinsker (1981). For 
some fixed q > 1 we set

with h = �2q2∕(1 + q)2 and � = q−2 . Since � → ∞ as � → 0 , we obtain through the 
condition �2 ) and the equality (17), that

as � → 0 . From here and (15) one has

and

Also, we can deduce that

Now, on the space (ℝn0 ,B(ℝn0 )) , we denote by Q1 the distribution of the n0 inde-
pendent random variables uniformly distributed on the intervals 

[
−�j , �j

]
 with 

�j = (�∗
j
)2 , i.e. for any � ∈ B(ℝn0 )

Moreover, on the space (ℝd,B(ℝd)) , we denote by Q2 the distribution of the d inde-
pendent (0, �∗

j
) Gaussian variables, with �∗

j
= ��j and 0 < 𝜓 < 1 , i.e.

Finally, on the space (ℝd∗ ,B(ℝd∗ )) , we denote by Q3 distribution of d∗ independent 
random variables with values in the set {−�j , �j} , i.e. for � ∈ B(ℝd∗ )

(29)n0 = N�h and n1 = Nh ,

(30)d = n1 − n0 → ∞ and d∗ = n∗ − n1 → ∞

min
1⩽j⩽n0

(𝜃∗
j
)2 ⩾ 𝜀2q , max

n1+1⩽j⩽n∗
(𝜃∗

j
)2 < q−1𝜀2

(31)q−1𝜀2 ≤ min
n0+1⩽j⩽n1

(𝜃∗
j
)2 ≤ max

n0+1⩽j⩽n1
(𝜃∗

j
)2 < q𝜀2 .

(32)q−2 <
aj

ak
⩽ q2 for n0 < j, k ≤ n1 .

(33)Q1(� ) = ∫�

n0∏

j=1

1

2�j
�[−�j , �j](xj)dx1 …dxn0 .

(34)Q2(� ) = ∫�

d∏

j=1

e
−

x2
j

2�∗
j

√
2��∗

j

dx1 …dxd , � ∈ B(ℝd) .
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where �∗ = {−�1 , �1} ×⋯ × {−�d∗ , �d∗} . Using these distributions, we introduce 
the probabilities Q∗ and Q on the space (ℝn∗ ,B(ℝn∗ )) such that for any �1 ∈ B(ℝn0 ) , 
�2 ∈ B(ℝd) and �3 ∈ B(ℝd∗ )

and

where Q2(�2|B) = Q2(�2 ∩ B)∕Q2(B) and

Now, on the space (𝛺 ×ℝn∗ ,F⊗ B(ℝn∗ )) , we define two measures �∗ and �̃ for any 
�1 ∈ F  and �2 ∈ B(ℝn∗ ) as

and

where Sx =
∑n∗

j=1
xj�j and Z is the �-field generated by the jump component in noise 

process (5), i.e Z = �{zt , 0 ≤ t ≤ 1} . One can check directly that for any 
𝛤 ∈ F⊗ B(ℝn∗ )

On the space (𝛺 ×ℝn∗ ,F⊗ B(ℝn∗ )) , we set

where (�j)1≤j≤n∗ is coordinate random variables on ℝn∗ , i.e. �j(x) = xj for 
x = (x1,… , xn∗ ) ∈ ℝn∗ . It should be noted that under the probabilities �∗ and �̃ , the 
random variables �j are independent Gaussian with the parameters (�j, 1) , where 
�j = ∫ 1

0
�j(s)dzs . In the sequel, we need the following � - fields

where �j = ��j for j > n∗.

(35)Q3(� ) =
1

2d∗

∑

x∈�∗

�{x∈� } ,

(36)Q∗(�1 × �2 × �3) = Q1(�1)Q2(�2)Q3(�3)

(37)Q(�1 × �2 × �3) = Q1(�1)Q2(�2|B)Q3(�3) ,

B =

{
y ∈ ℝd ∶

d∑

j=1

an0+jy
2
j
⩽ �1

}
, �1 =

n1∑

j=n0+1

aj(�
∗
j
)2 .

(38)�∗(�1 × �2) = ∫�2

�Sx
(�1|Z)Q∗(dx)

(39)�̃(�1 × �2) = ∫�2

�Sx
(�1|Z)Q(dx) ,

(40)�̃(� ) = �∗(� |B∗) and B∗ = � ×ℝ
n0 × B ×ℝ

d∗ .

(41)�j = �j + ��j for 1 ⩽ j ⩽ n∗ ,

(42)G1 = �{�n0+1,… , �n1} and G2 = �{�j , j ≥ 1} ,
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8 � Properties of the prior distribution

We set the following normalizing coefficient

Lemma 2  Under the condition �2) , the following limit equality holds

Proof  First, note that

and taking into account � ⩾
√
an∗  , we get

Using here the condition �2) and the definitions in (29), we have the property (44). 
Hence, Lemma 2. 	�  ◻

Proposition 1  Let the conditions �1)–�2) hold. Then,

where �̃ is the expectation with respect to the probability measure �̃.

Proof  First, note that in view of the Doob–Dynkin Lemma, there exist ℝd
→ ℝ 

functions Fj such that

where the random vector �∗ = (�k)�n0+1≤k≤n1 is defined in (41). Note that � j is the 
optimal G1-measurable estimate for �j , i.e.

where L(G1) denotes all G1-measurable random variables.

(43)�1,� =

n1∑

j=n0+1

(�∗
j
)2�2

(�∗
j
)2 + �2

.

(44)lim
�→0

�1,�

�2
= +∞ .

(45)
�1,�

�2
=

n1�

j=n0+1

(�∗
j
)2

(�∗
j
)2 + �2

= n1 − n0 −
1

�

n1�

j=n0+1

√
aj ,

�1,�

�2
⩾ n1 − n0 −

1√
an1

n1�

j=n0

√
aj .

(46)lim
�→0

∑n1
j=n0+1

�̃
�
�j − �̃(�j�G1)

�2

�1,�

≥ � ,

(47)� j = �̃(�j|G1) = �̃ (�j|�∗) = Fj(�
∗) ,

inf
�∈L(G1)

�̃(�j − �)2 = �̃(�j − � j)
2 ,
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By the Jensen inequality and (37) we get

In view of (34), under the probability �∗ , the random variables (�j)n0+1≤j≤n1 are inde-
pendent Gaussian. Therefore,

Lemma 4 implies

Moreover, taking into account that �∗(�j|�n0+1,… , �n1 ) = �∗(�j|�j) and using the 
properties of the conditional expectations, we obtain

It is clear that

where the set B∗ is defined in (40). For any bounded ℝ2d
→ ℝ function H

where �∗ = (�j)n0+1≤j≤n1 , H(x) = �∗ H(x, x + ��∗) = �̃H(x, x + ��∗) , x ∈ ℝd and 
�∗ = (�j)n0+1≤j≤n1 . So, from the the property (40), it follows that

Therefore, using the form (47), we get

(48)
n1∑

j=n0+1

aj�
2

j
≤ �̃

(
n1∑

j=n0+1

aj�
2
j
|G1

)
≤ �1 �̃ − a.s.

n1∑

j=n0+1

�∗
(
�j − �∗(�j|�j)

)2
= �

n1∑

j=n0+1

(�∗
j
)2�2

(�∗
j
)2� + �2

[2mm] ⩾ �

n1∑

j=n0+1

(�∗
j
)2�2

(�∗
j
)2 + �2

= ��1,� .

(49)
n1∑

j=n0+1

�∗(�j − � j)
2
⩾

n1∑

j=n0+1

�∗
(
�j − �∗ (�j|�j)

)2
⩾ ��1,� .

(50)

n1∑

j=n0+1

�∗(�j − � j)
2 =�∗(B∗)

n1∑

j=n0+1

�∗
(
(�j − � j)

2 ∣ B∗
)

+ �∗
(
(B∗)�

) n1∑

j=n0+1

�∗
(
(�j − � j)

2 ∣ (B∗)�
)
,

�∗ (H(�∗, �∗) ∣ B∗) = �∗
(
H(�∗) ∣ B∗

)
,

�∗ (H(�∗, �∗) ∣ B∗) = �̃H(�∗) = �̃H(�∗, �∗) .
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Now, from (49) and (50) one has

Remind, that B∗ = � ×ℝn0 × B ×ℝd∗ , (B∗)c = � ×ℝn0 × Bc ×ℝd∗ and B is defined 
in (37). Therefore, �∗(B∗) = Q2(B) , �∗((B∗)c) = Q2(B

c) and to prove the lower 
bound (46) it suffices to show

and

For this first note, that the property (48) yields

Note here that, using the definition (41) one can check directly that the distributions 
of the vector �∗ under the probabilities �̃ and �∗ are equivalent. Therefore, taking 
into account the representation (47) we can write that

So, if 
∑n1

j=n0+1
aj𝜁

2
j
> �1 , then through the inequalities (32) we get

and using here the bound (53) we can estimate this sum from below as

�∗

(
n1∑

j=n0+1

(�j − � j)
2 ∣ B∗

)
=

n1∑

j=n0+1

�̃(�j − � j)
2 .

n1�

j=n0+1

�̃(�j − � j)
2 ≥ ��1,�

�∗(B∗)
−

�∗((B∗)c)
∑n1

j=n0+1
�∗

�
(�j − � j)

2 ∣ (B∗)c
�

�∗(B∗)
.

(51)lim
�→0

Q2(B
c)

∑n1
j=n0+1

�∗
�
(�j − � j)

2�(B∗)c
�

�1,�

= 0

(52)lim
�→0

Q2(B
c) = 0 .

n1∑

j=n0+1

�
2

j
⩽ a−1

n0

n1∑

j=n0+1

aj�
2

j
⩽ a−1

n0
�1 , �̃ − a.s.

(53)
n1∑

j=n0+1

�
2

j
≤ a−1

n0
�1 , �∗ − a.s.

n1∑

j=n0+1

�2
j
⩾ a−1

n1

n1∑

j=n0+1

aj�
2
j
⩾ a−1

n1
�1 ⩾ a−1

n0
q−2�1

n1∑

j=n0+1

�2
j
≥ q−2

n1∑

j=n0+1

�
2

j
, �∗ − a.s.
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Therefore,

and to prove the limit (51) it suffices to check that

To this end, note that

where �� = �∗
∑n1

j=n0+1
�2
j
 and �� =

∑n1
j=n0+1

�2
j
∕�� − 1 . Now we show the limit 

equality (52) and

By the Chebyshev inequality we obtain

where 𝜁j = 𝜁2
j
− �∗𝜁2

j
 . Similarly, for any 𝜖 > 0 we get

Since

then

The properties (31) and (32) imply

n1∑

j=n0+1

�∗
(
(�j − � j)

2|(B∗)c
) ≤ 2(1 + q2)

n1∑

j=n0+1

�∗
(
�2
j
∣ (B∗)c

)

(54)lim
�→0

Q2(B
c)

∑n1
j=n0+1

�∗
�
�2
j
�(B∗)c

�

�1,�

= 0 .

(55)Q2(B
c)

n1∑

j=n0+1

�∗
(
�2
j
|(B∗)c

)
= ��Q2(B

c) − ��Q2(B)�
∗
(
�� ∣ B∗

)
,

(56)�∗ − lim
�→0

�� = 0 .

Q2(B
c) ≤ �∗

�∑n1
j=n0+1

aj 𝜁j

�2

�
�1 −

∑n1
j=n0+1

aj �
∗𝜁2

j

�2
,

(57)�∗
�
�𝛥𝜀� > 𝜖

� ≤ �∗
�∑n1

j=n0+1
𝜁j

�2

𝜖2𝜐2
𝜀

.

(58)�∗𝜁2
j
= 𝜓(𝜃∗

j
)2 and �∗𝜁2

j
= 2𝜓2(𝜃∗

j
)4 ,

Q2(B
c) ⩽

2𝜓2
∑n1

j=n0+1
a2
j
(𝜃∗

j
)4

(1 − 𝜓)2�2
1

⩽
2𝜓2 maxn0<j≤n1 aj (𝜃∗j )2

(1 − 𝜓)2�1
.

q−1an0+1𝜀
2 < aj(𝜃

∗
j
)2 < q3an0+1𝜀

2 .
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Therefore, taking into account that

we have

Lemma 2 implies directly the property (52). Next, from (58) and (57), we find

Using here the inequalities (31) and again Lemma 2, we obtain

as � → 0 . Furthermore, note that on the set B, using the bounds (32), we can esti-
mate �� from above as

Therefore, the dominated convergence theorem together with the properties (52) and 
(56) yields

Moreover, using the inequalities (31), we can estimate the term �� in (55) as

Thus, we come to the limit property (54) which implies the bound (46). 	�  ◻

Remark 10  From the representation (45), it follows that if the condition �2) doesn’t 
hold (as, for example, for aj = ej ), then

n1∑

j=n0+1

(�∗
j
)2 ⩾

n1∑

j=n0+1

(�∗
j
)2�2

(�∗
j
)2 + �2

= �1,� ,

maxn0<j≤n1 aj (𝜃∗j )2

�1
=

maxn0<j≤n1 aj (𝜃∗j )2∑n1
k=n0+1

ak𝜃
∗2
k

≤ 𝜀2q3
∑n1

k=n0+1
𝜃∗2
k

=
𝜀2q3

�1,𝜀

.

�∗
�
�𝛥𝜀� > 𝜖

� ≤ 2
∑n1

j=n0+1
(𝜃∗

j
)4

𝜖2
�∑n1

j=n0+1
(𝜃∗

j
)2
�2

≤ 2maxn0<j≤n1 (𝜃∗j )2

𝜖2
�∑n1

j=n0+1
(𝜃∗

j
)2
� .

(59)
maxn0<j≤n1(𝜃∗j )2∑n1

j=n0+1
(𝜃∗

j
)2

⩽
q𝜀2

∑n1
j=n0+1

(𝜃∗
j
)2

⩽
q𝜀2

�1,𝜀

→ 0 ,

���� ≤ 1 +

∑n1
j=n0+1

�2
j

�
∑n1

j=n0+1
(�∗

j
)2

≤ 1 +
�1

� an0+1
∑n1

j=n0+1
(�∗

j
)2

≤ 1 +
q2

�
.

lim
�→0

�∗
(
�� ∣ B

)
= 0 .

�� = �(1 + q)

n1∑

j=n0+1

(�∗
j
)2

1

1 + q

[2mm] ≤ �

n1∑

j=n0+1

(�∗
j
)2

�2

�2 + (�∗
j
)2
(1 + q) = �(1 + q)�1,� .
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i.e. the upper bound in (59) doesn’t go to 0 and, therefore, the lower bound (46) 
doesn’t hold, and as a consequence, Theorem 2 and the example 2 in Pinsker (1981) 
do not hold true. This means that the condition �2) is crucial for this proof.

9 � Proofs

9.1 � Proof of Theorem 1

Lemma  3 implies that the field �{yt , 0 ≤ t ≤ 1} coincides with the field 
G = �

{
�̂j , j ≥ 1

}
 . Thus, any estimator from �� can be represented as

where the coefficients �̃j = ∫ 1

0
S̃(t)�j(t) dt are measurable with respect to the �-field 

G . This implies that there exist ℝℕ
→ ℝ functions �j such that

We will use the natural extension of the measure Q defined in Sect. 7 on the space 
(ℝℕ,B(ℝℕ)) as the distribution of the random variables � = (�j)j≥1 with �j = 0 for 
j ≥ n∗ . It is clear that

 i.e. Q(� ∈ �) = 1 . Using this property, we can estimate from below the maximum 
value of the risk (3) as

lim
𝜀→0

�1,𝜀

𝜀2
< ∞ ,

S̃(t) =

∞∑

j=1

�̃j �j(t) ,

�̃j = �j(�̂) and �̂ = (�̂j)j≥1 .

n∗∑

j=1

�2
j
aj =

n0∑

j=1

�2
j
aj +

n1∑

j=n0+1

�2
j
aj +

n∗∑

j=n1+1

�2
j
aj

≤
n0∑

j=1

(�∗
j
)2aj + �1 +

n∗∑

j=n1+1

�2
j
aj = �,

(60)

sup
S∈�

R(S̃, S) = sup
S∈�

∞∑

j=1

�S(�̃j − �j)
2 ≥

n∗∑

j=1
��

�Sx
(�̃j − �j)

2 Q(dx)

= �

n∗∑

j=1
��

�Sx

(
(�̃j − �j)

2|Z
)
Q(dx)

= �

n∗∑

j=1

�̃(�j − �j)
2 ,



131

1 3

Efficient estimation for non‑Gaussian regression

where the random variables �j are measurable with respect to the �-field G2 defined 
in (42). Note that �̃(�j − �j)

2 ≥ �̃
(
�̃(�j|G2) − �j

)2

 . To clarify the lower bound in 
(60), we show that

In view of Lemmas 5 and 6, for any � > 0 there exists q0 such that for any q ≥ q0

and

By the definition of the prior distribution in Sect.  7, the conditional expectation 
�̃(�j|G2) = �̃(�j|�j) for any 1 ≤ j ≤ n0 and n0 + 1 ≤ j ≤ n1 . Then, choosing here 
� = 1 − �2 with the parameter � defined in (37), we get

where

Moreover, taking into account that for n0 + 1 ≤ j ≤ n1 , the conditional expectations 
�̃(�j|G2) = �̃(�j|G1) , we obtain through Proposition 1, that for sufficiently small �

and, therefore,

Taking here lim�→1 lim�→0 , we get (61). Then, the using this bound in (60) with the 
help of the Fatou Lemma implies the lower bound (18).�  □

(61)lim
�→0

∑n∗
j=1

�̃(�j − �̃(�j�G2))
2

�∗,�

⩾ 1 .

inf
1≤j≤n0 �̃

(
�j − �̃(�j|�j)

)2 ≥ (1 − �)�2

inf
n0+1≤j≤n1 �̃

(
�j − �̃(�j|�j)

)2 ≥ (1 − �)(�∗
j
)2 .

n0∑

j=1

�̃(�j − �(�j|G2))
2 +

n∗∑

j=n1+1

�̃(�j − �̃(�j|G2))
2 ≥ �2�2,� ,

�2,� = �2
n0∑

j=1

(�∗
j
)2

(�∗
j
)2 + �2

+ �2
n∗∑

j=n1+1

(�∗
j
)2

(�∗
j
)2 + �2

.

n1∑

j=n0+1

�̃(�j − �̃(�j|G2))
2
⩾ �2�1,�

n∗∑

j=1

�̃(�j − �(�j|G2))
2 ≥ �2(�1,� + �2,�) = �2�∗,� .
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9.2 � Proof of Theorem 2

For the noise sequence in (11), one can calculate the variance

The condition (6) through the uniform integrability property implies

Moreover, from (19), we get

The using here the condition �1 ) and the property (17) yields

Then, the term (16) can be represented as

and

Therefore, the property (62) implies the upper bound (20).�  □

9.3 �  Proof of Theorem 4

It is clear that the condition �1) holds. To check the condition �2) , we denote

In this case Nh =
[
h̃1∕�

]
 , where [x] denotes the integer part of the number x and 

h̃ = h∕�∗ . Therefore, asymptotically as h → ∞ , we obtain

� �2
j
= �2 = �2(1 +�(x2�{|x|≤�})) .

(62)lim
�→0

�(x2�{|x|≤�}) = 0 .

(63)�S‖Ŝ − S‖2 =
n∗�

j=1

(1 − �j)
2�2

j
+

∞�

j=n∗+1

�2
j
+ �2

n∗�

j=1

�2
j
.

n∗∑

j=1

(1 − �j)
2�2

j
+

∞∑

j=n∗+1

�2
j
⩽

1

�2

n∗∑

j=1

aj�
2
j
+

1

an∗+1

∞∑

j=n∗+1

�2
j
aj

≤ �max

(
1

�2
,

1

an∗+1

)
=

�

�2
.

�∗,� =
�

�2
+ �2

n∗∑

j=1

�2
j
= �2

n∗∑

j=1

�j ,

�S‖Ŝ − S‖2 ≤ �∗,�

�
1 +�(x2�{�x�≤�})

�
.

(64)�h = Nh − N�h −
1√
aNh

Nh�

j=N�h+1

√
aj .
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where

This implies �2) . Moreover, in view of (14) and (16), we can get that

where

and �∗(�) is given in (24). Now, in view of (63) we obtain

The properties (62) and (65) imply the equality (24), and through the lower bound 
(18), we come to Theorem 4. � □

9.4 � Proof of Theorem 5

It is clear that the condition �1) holds. To check the condition �2 ), we note that, in this 
case,

For any 0 < 𝛿 < 1 , the term (64) can be represented as

where d = Nh − N�h and

Taking into account that 𝜈 > 1 , we can obtain that

One has d∕Nh → 0 as h → ∞ . Moreover, asymptotically as h → ∞

�h =
(
�
(
�

1

�

)
+ o (1)

)
h̃1∕� ,

�(z) = 1 − z −
2 − 2z𝛼∕2+1

2 + 𝛼
> 0 for 0 ⩽ z < 1 .

(65)lim
�→0

�
2

1+� n∗ = �� and lim
�→0

�−
2�

�+1 �∗,� = �∗(�) ,

�� =

(
�(� + 1)(� + 2)

�∗�

) 1

�+1

�S‖Ŝ − S‖2 ≤ �

a∗n
�
∗

+ �2

n∗�

j=1

�
1 −

�
j

n∗

��∕2
�2

.

Nh = [�0 (ln h)
�] , � = �−1 and �0 = (2�)−� .

(66)�h = d
(
1 − Th

)
,

Th =
1

d

Nh∑

j=N�h+1

exp
{
−�(N�

h
− j�)

}
.

(67)lim
h→∞

d

(ln h)�−1
= ��0�1 and �1 = − ln � .
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where g(x) = 1 − (1 − x)� . For 0 < x ≤ d∕Nh this function can be written as

Using here that g(x) ≥ �x for 0 ≤ x ≤ 1 , we get

From (67) we find directly that

Therefore, we have for any 0 < 𝛿 < 1

From here and (66) we obtain the condition �2) . Now, we study the asymptotic 
properties of n∗ . To this end, one notes that from (14) we find that

where

It is clear that �n ≤ n , and we can estimate it from below as

where �n = [n1−�] . From the representation (68) we can obtain that

Th =
1 + o (1)

d

d∑

l=1

exp

{
−�N�

h
g

(
l

Nh

)}
,

(68)g(x) =
�

(1 − �x)1−�
x and 0 ≤ � ≤ 1 .

Th ≤ 1

d

d∑

l=1

exp

{
−��

l

N1−�
h

}
.

lim
h→∞

d

N1−�
h

=
��1
2�

.

lim
h→∞

Th ≤ lim
d→∞

1

d

d∑

l=1

exp

{
−
𝛿1l

4d

}
= �

1

0

e
−

𝛿1
4
zdz < 1 .

(69)an∗𝜌n∗ ≤ 𝜀−2� and an∗+1𝜌n∗+1 > 𝜀−2� ,

�n =

n−1∑

j=1

√
aj

an

(
1 −

√
aj

an

)
.

�n =

n−1∑

l=1

e−�n
�g(l∕n)

(
1 − e−�n

�g(l∕n)
) ≥

�n∑

l=1

e−�n
�g(l∕n)

(
1 − e−�n

�g(l∕n)
)
,

𝛼x ≤ g(x) ≤ 2𝛼x for 0 < x < 1 −
1

21∕(1−𝛼)
.
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Therefore,

i.e.

This implies, that for sufficiently large n

Using this in (69), we obtain that

From (14) and (16) it follows that

To provide the property (27) it suffices to show that

Indeed, for any 0 < 𝛿 < 1

Therefore, for any 0 < 𝛿 < 1

and making tend � → 1 , we get the equality (70), which implies

�n ≥
�n∑

l=1

e−2��xl (1 − e−��xl ) and xl =
l

n1−�
,

lim
n→+∞

𝜌n
mn

≥ �
1

0

e−2𝛼𝜅x(1 − e−𝛼𝜅x)dx > 0 .

𝜌n > 𝜌∗ n
1−𝛼 and 𝜌∗ =

1

2 ∫
1

0

e−2𝛼𝜅x(1 − e−𝛼𝜅x)dx .

lim
�→0

n∗

| ln �|� = �−� .

n∗�
2 ≥ �∗,� = n∗�

2 −
�2
�∑n∗

j=1

√
aj

�2

�−2� +
∑n∗

j=1
aj

≥ n∗�
2 − �2

n∗�

j=1

�
aj

an∗

.

(70)lim
n→∞

1

n

n∑

j=1

√
aj

an
= 0 .

n∑

j=1

√
aj

an
≤ (1 − �)n + 1 +

[�n]∑

j=1

√
aj

an
≤ (1 − �)n + 1 + ne−�(1−�)

�n� .

lim
n→n

1

n

n∑

j=1

√
aj

an
≤ 1 − �

(71)lim
�→0

�∗,�

n∗�
2
= 1 .
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Moreover, from (63), we have

In this case an∕an+1 → 1 as n → ∞ , and in view of the (17), �∕√an∗ → 1 as � → 0 . 
Therefore, taking into account the properties (62), (70) and (71), and through the 
lower bound (18) we obtain Theorem 5.�  □

10 � Conclusion

In conclusion, we would like to emphasize that in this paper we find the sufficient 
conditions �1) and �2) which provide the efficient property for the least squares 
estimate (19). Moreover, we calculated the asymptotic sharp lower bound called 
the Pinsker constant for the quadratic risk for the exponential ellipse coefficients in 
(2). It should be emphasized here, that for the “signal plus Gaussian white noise” 
model, Pinsker considered the exponential coefficients also (see, example 2 in Pin-
sker 1981). Unfortunately, for this example, the condition �2 ) doesn’t hold true, and 
therefore, the efficiency property in this case doesn’t hold true as well. In this paper, 
we corrected the exponential form for the ellipse coefficients in (25). For this case, 
we show in Theorem  5 that the weighted least squares estimate (26) is efficient. 
Then, using this result, we obtained an improved almost parametric minimax con-
vergence rate for the problem of determining the number of signals in a multi-pass 
connection channel, which allows us to very quickly provide efficient nonparametric 
statistical inference in signal processing problems.

Auxiliary results

Proof of Lemma 1

First, note that the mean square error (13) can be represented as

Recall that

�S‖Ŝ − S‖2 ≤ �

an∗

+ �2

n∗�

j=1

�
1 − 2

√
aj

√
an∗

+
aj

an∗

�

= �2n∗ − �2

�
2 −

�2�

�2
√
an∗

�
n∗�

j=1

√
aj

√
an∗

.

�∗,� = inf
�

sup
S∈Wk

�

R(Ŝ� , S) = inf
�
sup
�∈�

∞∑

j=1

��

(
�j�̂j − �j

)2

.

inf
�
sup
�∈�

∞∑

j=1

��

(
�j�̂j − �j

)2

⩾ sup
�∈�

inf
�

∞∑

j=1

��

(
�j�̂j − �j

)2

.
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In view of (10) and ���j = 0 , one has

and

Furthermore, using (73) and  (72), we can rewrite

and, therefore,

Note that �j from   (73) cannot be used in   (12), because they depend of unknown 
parameters, and the estimate Ŝ� (t) cannot be calculated. By the Lagrange method, 
we obtain that

where (x)+ = max(0, x) and the Lagrange coefficient � is the solution of the follow-
ing equation

If the condition �1) holds, then the function f (�) is continuous increasing function 
with f (0) = 0 and lim�→∞ f (�) = ∞ , and we can deduce that this equation has an 
unique solution

where � = N�2 is defined in (7). This implies that

(72)��

(
�j�̂j − �j

)2

= (1 − �j)
2�2

j
+ �j�

2 ,

(73)inf
�j
��

(
�j�̂j − �j

)2

=
�2
j
�2

�2
j
+ �2

with �j =
�2
j

�2
j
+ �2

.

�∗,� ⩽ sup
�∈�

∞∑

j=1

�2
j
�2

�2
j
+ �2

,

�∗,� = sup
�∈�

∞∑

j=1

�2
j
�2

�2
j
+ �2

.

sup
�∈�

∞�

j=1

�2�2
j

�2
j
+ �2

=

∞�

j=1

�2(�∗
j
)2

(�∗
j
)2 + �2

and (�∗
j
)2 = �2

�
�

√
aj

− 1

�

+

,

f (�) = �−2� with f (�) =

∞�

j=1

aj

�
�

√
aj

− 1

�

+

.

(74)� =
�−2� +

∑�

j=1
aj

∑�

j=1

√
aj

,

√
a� ⩽ 𝜇 and

√
a�+1 > 𝜇 .
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Setting g(n) =
√
an

∑n

j=1

√
aj −

∑n

j=1
aj and using the definition (74), we obtain that

Therefore, in view of the definition (14), we find

Hence, Lemma 1.�  □

Representation for the �‑field generated by (�
t
)
0≤t≤1.

Lemma 3  Let (�k)k≥1 be arbitrary orthonormal basis in L2[0, 1] with �1 ≡ 1 . Then,

where �k = ∫ 1

0
�k(t)d�t.

Proof  Let ( Trj)j≥1 be the trigonometric basis in L2[0, 1] . Taking into account that 
any trajectory of the process � belongs to L2[0, 1] , we can represent it as

Using here the Ito formula, we obtain that

Note now that the functions T̃r j can be represented as

In view of �1 = ∫ 1

0
�1(s)d�s , we can rewrite the coefficients �j as

So, the coefficients �j are measurable with respect to the �-field �{�k , k ≥ 1} , and 
therefore, the Brownian motion is measurable with respect to this �-field also, 
i.e. 𝜎{𝜉t , 0 ≤ t ≤ 1} ⊆ 𝜎{𝜉k , k ≥ 1} . The inverse inclusion is obvious. Hence, 
Lemma 3. 	�  ◻

g(�) ⩽ 𝜀−2� and
√
a�+1

��

j=1

√
aj −

��

j=1

aj = g(� + 1) > 𝜀−2� .

� = max
{
n ⩾ 1 ∶ g(n) ⩽ �−2�

}
= n∗ .

�{�t , 0 ≤ t ≤ 1} = �{�k , k ≥ 1} ,

�t =

∞∑

j=1

�j Trj(t) and �j = ∫
1

0

�s Trj(s)ds .

�j = �1 T̃r j(1) − ∫
1

0

T̃r j(s)d�s and T̃r j(s)ds = ∫
t

0

Trj(s)ds .

T̃r j(s) =

∞∑

l=1

�j,l�l(s) and �j,l = ∫
1

0

T̃r j(u)�l(u)du .

�j = �1 T̃r j(1) −

∞∑

l=1

�j,l �l .
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Conditional distribution tool

Lemma 4  Let � and � be independent Gaussian random variables with the param-
eters (0, �2) and (�, �2) , respectively, and let � = � + � . Then,

Proof  Note that � is Gaussian random variable with the parameters (�, �2 + �2) . By 
the definition of the conditional expectation

and �� |�(x|y) is the corresponding conditional distribution density

where

This implies that

Hence Lemma 4. 	� ◻

Lemma 5  Let � and � be two independent random variables such that � is uniformly 
distributed on (−�, �) for some 𝜃 > 0 and � is Gaussian with the parameters (�, �2) , 
and let � = � + � . Then,

where L = �∕�.

Proof  First, note that

where �(𝜂) = �(𝜉|𝜂) and 𝜉 = 𝜉 − 𝜈 . It is clear that

�(� − �(� |�))2 = �2�2

�2 + �2
.

� (� |� = y) = ∫
ℝ

x �� |�(x|y)d x

p� |�(x|y) =
1√
2��2

1

exp

(
−

1

2�2
1

(x −�(y))2

)
,

�2
1
=

�2�2

�2 + �2
and �(y) =

(y − �)�2

�2 + �2
.

�(� |�) = �(�) and �(� − �(� |�))2 = �2�2

�2 + �2
.

lim
L→∞

sup
�∈ℝ

|||||

�(� − �(� |�))2
�2

− 1
|||||
= 0 ,

�(� − �(� |�))2 = �(� − �(�|�))2 = �2 − ��2(�) ,
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where �𝜂|𝜉(z|x) , �𝜉 and �� are the corresponding distribution densities. Since the ran-
dom variables � and 𝜉 are independent and � is uniform on the interval (−�, �) , then

Here �𝜉(x) = 𝜎−1𝜙(x∕𝜎) , where � is the (0, 1)-Gaussian density. Now, we have

where

For |z̃| < (1 − 𝜖)𝜃 with � = 1∕
√
L , the indicator �� → 1 as L → ∞ and, therefore, 

m(z)∕� → 0 . Let now �L = m2(�)∕�2 = (�(�|�))2 and � = �̃∕� ∼ N(0, 1) . Then,

where �̃ = � − � . By the Jensen inequality �2
L
≤ �

(
�
4
∣ �

)
 , and, therefore,

i.e. (�L)L≥1 is uniformly integrable. Since the random variables 𝜌L�⟨��𝜂�<(1−𝜖)𝜃⟩ → 0 
as L → ∞ almost sure, then �𝜌L�⟨��𝜂�<(1−𝜖)𝜃⟩ → 0 as L → ∞ . Moreover, taking into 
account that ��(z) ≤ 1∕2� , we get

Further, we have

Hence, Lemma 5. 	�  ◻

Lemma 6  Let � and � be two independent random variables, such that 
�(� = −�) = �(� = �) = 1∕2 for some 𝜃 > 0 and � is Gaussian with the parameters 
(�, �2) , and let � = � + � . Then

m(z) =
∫ +∞

−∞
x�𝜂�𝜉(z�x)�𝜉(x)dx

�𝜂(z)
=

∫ +∞

−∞
x �⟨�z−x−𝜈�⩽𝜃⟩�𝜉(x)dx

2𝜃�𝜂(z)
,

�𝜂(z) = �
+∞

−∞

�𝜁 (z − x)�𝜉(x)dx =
1

2𝜃 �
+∞

−∞

�⟨�z−x−𝜈�≤𝜃⟩�𝜉(x)dx .

m(z) = �
∫ +∞

−∞
y�� (y)�(y)dy

∫ +∞

−∞
�� (y)�(y)dy

,

𝛤 =

{
y ∶

||||
y −

z̃

𝜎

||||
≤ L

}
and z̃ = z − 𝜈 .

�𝜌L = �𝜌L�⟨��𝜂�<(1−𝜖)𝜃⟩ + �𝜌L�⟨(1−𝜖)𝜃⩽��𝜂�⩽(1+𝜖)𝜃⟩ + �𝜌L�⟨��𝜂�>(1+𝜖)𝜃⟩ ,

��2
L
≤ ��

(
�
4
∣ �

)
= � �

4
= 3 ,

�
�
(1 − �)� ≤ ��̃� ≤ (1 + �)�)

�
⩽ 2� =

2√
L
→ 0 as L → ∞ .

�
�
��𝜂� > (1 + 𝜖)𝜃

� ≤ �(�𝜉� >
√
L) → 0 as L → ∞ .



141

1 3

Efficient estimation for non‑Gaussian regression

where L = �∕�.

Proof  First, note that in this case

where �̃ = (� − �)∕� and � is the (0, 1)-Gaussian density. It is clear that |�L(x)| ≤ 1 
and

Therefore,

Taking into account here that � �̃2 ≤ 2L2 + 2 and passing to the limit as 
limM→∞ limL→0 , we obtain (75). Hence, Lemma 6. 	�  ◻
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