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1 Supplementary Material: Proof
1.1 Proof of Proposition 1
Proof of item 1
This is already proved in Kerkyacharian and Picard (2004, p.1059) but we
reproduce here for completeness. The proof is the same either the error or the

predictor follows a strong-mixing stochastic process and the other term follows
an IID sequence.
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This is a special case of item 3.

Proof of item 3

When either the error or the predictor follows a strong-mixing stochastic
process and the other term follows an IID sequence, we have that

Cov (Bj,ka Bj’,k/)

= Cov (nl Z ¢j7k(G(Xr))n, nil Z wj/,k'(G(Xs))Ys>
s=1

r=1

=02 Cov (11 (G(X,)) Y, 1y 1 (G(X,)Y)

r=1s=1

=n"* Zl > [COV (Ve (G(X0)) f(X0), ¥y i (G(X5)) f (X))

4 Clov (7.4 (C(X) F(X0) by (G(X))es)
+COV (w'k(G(XT))erij',k’( ( ))f(Xs))
)

+ Cov (¥ x(G( X)) er, Vjr 1 (G(Xs) es)

_n—QEn:Z [A+B+C+DJ.

r=1s=1

3

The terms B, C' and D have the same value when either the error is strong
mixing and the predictor is IID or vice-versa. To see this, we write

B = E (¢ k(G(X0)) [(Xr) 0 1 (G(X5))es)
— E (4 p(G(X:)) [(X7) E (g 1 (G(X5))es)
—E(%k(G( P (X )i (G(X5))) E(es)
E (5 k(G(X0)) f(Xr)) E (0 1 (G(X5))) E(es)-

Thus, B = 0 and, by symmetry, C' = 0. For the term D, we write

D=F (wj,k(G(Xr))er"/)j’ k’(G(Xs))ES)
— E (Y k(G(Xy))er) E (¢, (G(Xs))es)
= B (Y;e(G(X:) Yy (G(X5))) Eeres).
Ifr=s

Thus, |D| < 0220+30/2|p12,.
If r # s, D = 0 because, when the error is HD E(eres) = E(er)E(es) =
0; and when the predictor is IID, E(; x(G( f ¥ x(G(x))g(x)dx =

f()q;[}]k dy—o
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It remains to evaluate the value of the term A. We begin with the case of
dependent errors and IID predictors by writing

A = E ($jr(G(X0)) [ (Xr)0j0 1 (G(X)) (X))
- K (wj,k(G(Xr))f(Xr)) E (wj',k’ (G<Xs))f(Xs)) :
It is easy to see that A = 0 if r # s. However, if r = s,

A= E (Y;n(G(X0)0y 0 (G(X1)) (X))
— B (¢;(G(X1)) f(X1)) E (¢ 1 (G(X1)) f(X1))

/ PG () (95 () dy — BB

Thus, |A] < || f]|2,2972 ||y %
Since the only non-zero terms occur when r = s, and they are constant,
then

n Y M [A+B+C+D]=n"'[A+D]=0(n"").
r=1s=1

Now, for the case of dependent predictors and IID errors, we note that
the sequence {W, ;1 = ¥;x(G(X,))f(X,),r = 1,...,n} is a portion of an
a-mixing stochastic process.

Let the dependence coefficient between W ;. and Wiy, ;v 1 be given by
ayw,. Then, as given for instance by Theorem 3 of Chapter 1.2 in Doukhan
(1994), we can bound the term A as

1/r
|Cov (Wi e, Wi e )| < 8afl o (B(Woj i P))YP (E(W o ] 9)

for any p,q,7’ > 1 and 1/p+ 1/q+ 1/r' = 1. Calculating the expected values
we have that

E(Wy4l?) = E(s1(G(X) FX)P)
/ () (G ()P dy

<11k / s ()P dy

1
< A2 22l [ 10a o) dy
0
= [|f][5,2 =22 |y |52,
Similarly calculating E(|W; j: x/|?), we have the following bound:
Al = [Cov (¢ k (G(Xr)) f(Xr), g (G(X5)) f(X5)) |

= [Cov(Wijge, Wi jr 1)

< 8%%77« S‘||f|‘gogj(P*2)/(2p)+j'(Q*Q)/(&Z)||¢||((£*2)/P+(qf2)/q

1 ..
_avéqr 5‘ (fﬂj7j/7p7qaw)a



4 Luz M. Gémez et al.

where C(f,5,5/,p. 4, ) = 8]|||%,2/ =2/ )+ (=2 Co)|y| =2 rr(a=2)/a,

Since the a-mixing coefficient a4 is defined on a sub-c-algebra in-
duced by the definition W, ;1 = ¥, x(G(X,))f(X,), by Assumption 1, we
have that

N b+ 1) 2y =
h=1

for some ¢ € 2N =0,2,4,6,... and ' > 0, where C’ < co does not depend on
n.

Then
‘QZZ [A+ B+C+D]=n 2§:§:A+n—1
r=1s=1 r=1s

=1
S oyl C(f0d pa )| + 0D

r=1s=1

n2> C'C(f,4,5' v 0, )
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1.2 Proof of Proposition 2

Proof of item 1

The proof is almost the same either the error or the predictor follows a
strong-mixing stochastic process and the other term follows an IID sequence.
The only difference occurs because it uses the proof third item of Proposition 1,
which depends on the error or the predictor being IID or strong-mixing.

We begin by noting that
p)
Y W (GX)Yi — dii]

E(1Bjx — BixlP) (
p
=1 )
)

=F (n
=F (n_p EE:ZQUk
i=1
By the first item of Proposition 1, E(Z;,; ) = 0, for all ¢, j and k consid-
ered. Following the proof of the third item of Proposition 1, we also have that,
for all r # s, Cov (Zy,j iy Zs;j) = 0, and when r = s, Cov (Zy,j 1y Zrij k) < 00.
Then Z;,; , belongs to L[a, b] and is centered.
Let the dependence coefficient between Z; ; 1, and Z;;, ; 1 be given by az p,.
Since this coefficient is defined on a sub-o-algebra induced by the definition of

712w3k )Y —djk

n
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Zy ;. in terms of X, and €, by Assumption 1, given p > 1, there exists ¢ > p,
oo c— 6/(c+8
c€2N=0,2,4,6,... and 6 > 0, such that ) ,_,(h+1) 2a2<§l ) < o0.
We are going to use the following Lemma.

Lemma 1 Let X be a random variable with finite mean p and finite moment
of order p. Then E(|X —pu|P) < CE(]X|P), for some constant C' which depends
on p.

Proof. By the Holder inequality, E(|X — u|P) = [;° P(|X — p[P > y)dy is less
than or equal to

oo (oo} y
| P axp 1=y s = [ PAXP > g~y

= / P(IX|P > 2)2P~dz

—l=nl?
:/ P(IX|P > 2)2P~dz
0

= 2" E(X]P).

Thus, by applying Theorem 2 of Chapter 1.4 in Doukhan (1994), for p > 2,
and the previous lemma, we have that

n
E Zijk
=1

" n p/2
C s 5
= 5 max [E (| Zij6|PT0)] 777, Z (B (1Zi517*")) 2”1
i=1 =1
< ¢ ; E G(X:)Y;[P+0)] 7%
<= D E [k (G(X0)YilP+0)]

i=1

n p/2

D (B (|¢j,k(G(Xi))Yi|2+6))%

t=1

_ O{ [ (9 GOV (B (0 GGV ) 7 }

+

nP*l np/?

for some constant C' > 0 that does not depend on n.
By the result at line 19 of page 1086 in Kerkyacharian and Picard (2004),
this last expression is less than or equal to

c{(1+||f||gﬁ>v%2f<”¥‘“”xﬁs (L+]If0) 7y F 3%
npbP

—1 + ’)’I,p/Q } - C(A+B)
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For p > 2,

A< C(n/logn)P/? « 27((p+3)/2=0p/(p+8) < Cp3p/2=1 /(1og n)P/?
& 2 PHI=2p/Cw+9) < CpBr=2)/2 /(log n)P/?

A n(30=2)/p\ Trh2
srso(t )
logn
Similarly,

B < C(n/log n)p/2 & 21((p+8)/2=1)p/(p+9) < Cn® /(log n)p/2
& 2 PHo=2p/2P+9) < OnP /(log n)P/?

p+5 p+4
; n? \ P2 n(3p—2)/p\ pts-2
s <C <C|——— .
- (10gn> - ( logn )

Now, for 1 < p < 2, using the same previous arguments, we have that

ZZi;j,k
= 5 2 [P (Zagul )]

E (J;.(G (X)) Vi[P)] 7

IA
Ila
M

<

p+5 ﬁ
— [<1+||f||p+5>2ﬂ el

Similarly to the case when p > 2, this result is bounded from above by
C(n/logn)?/? if

1 (30—2)/p\ Tih2
logn ) ’

n 1/2 < n(3p_2)/p %
logn - logn

for all § > 0, when p > 2 and, when 1 < p < 2, this is also true for all § > 1.
This is not true only when 1 < p < 2 and 0 < § < 1. Thus,

?gC(

Note that

E(|dj 1, — djx|") < C(n/logn)?/?,

for all 2/t < C'min{ny,ns}, where

( n )1/2 (n(3p—2)/p> o
ny = y N =|-—F— .
logn logn

Proof of item 2
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The main steps of this proof are the same in Kerkyacharian and Picard
(2004), used to prove their result (65) at page 1086. However, since the er-
rors are dependent, we need to make the following adaptations at page 1087
in Kerkyacharian and Picard (2004).

First note that given data (X; = z1,...,X,, = x,), the random variable
n~ Y ¥ k(G(X;))e; is normally distributed with mean zero and

ar (n_l Z wj,k(G(wi))Q)
=1 § ,
(nl ij,k(G(ﬂfi))éi)

_Qszjjk x’” wjk( ( ))E(Erfs)

r=1s=1

‘QZZW (@)t (Gl5)) Cov(er, €.

r=1s=1

Now, let Z, = >0, ¥, 1(G(X,))¥;x(G(Xs))Cov(er, €5). We have that these
variables are bounded

|Z,| < 2||0| )%, Z|Cov € €s)] < M < o0,

s=1

because, by Assumption 1 and Theorem 3 of Chapter 1.2 in Doukhan (1994),

Z|coV |<Z8a”m (ler? )7 (e

for any p, g, m>1,1/p+1/¢+1/m =1, and we can choose p, ¢ and m such
that, by Assumption 1,

Z&v”m (Jer[P) /7 (E(Je,]9))

<3 (s + 12D (0 )Y (E (e ) (B (Jes]1)

o0

= (E(|€r‘p))l/l7 (E(‘Gslq))l/q Z(s +1)¢2 (aéys)é/(c+6) < o0,

s=1

Also we have,

E(Z:) =Y E (¥ u(G(X))1(G(X,))) Cov(er, ;) = E (3 1(G(X,))) 0* = 1.
s=1
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In the last step we used ¢ = 1, without loss of generality and to keep up
with Kerkyacharian and Picard (2004). Then we continue noting that Var(Z,) =
E(Z?) — 1 where, again using Assumption 1,

B(Z}) =E<¢?,k(G(XT))Z D 0ik(GX)) Y (G(Xm))

=1 m=1

x Cov(ey, €;)Cov(e,, €m))

= 1R(G(X0) + 97 1 (G(X,)) D021 (G(X1))Cov(er, &)

b n
= [ ¥} u(G(2))g(z)dz + ) Cov(e,, @)
‘ ok
< 2|94 + > Cov(er, e1)*.
o

Thus, Z, are random variables independent but not identically distributed.

Let

o
o, = sup Z Cov(e,, €)?

T =
I£r

and
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Now, using the Hoeffding’s inequality as given at item (i) of Corollary C.1
in Hérdle et al (1998), we have

\ /\

) r{ )
)

p( 2 (S B(Z2 —2n+naM/3)>

<9 7’7/2042
= 2P\ T (S B(22) + naM)
2 2
<2
- p( 2 (22| d[I%, +na*+naM>>
<9 2na?
= T2
< 2exp< ga 1ogn)

—2a2%/C,.
=2n / ,

if 27 < \/n/logn = ng, where C, = 4(|[¢||% + ox + |[¢]|2 Yoc | Cov(er, €5).

This is equivalent to result (66) in Kerkyacharian and Picard (2004) such
that we just need to follow the rest of the proof of their result (65).

Proof of item 3

The main steps of this proof are the same in Kerkyacharian and Picard
(2004), used to prove their result (65) at page 1086. But now, since the pre-
dictors are dependent, we need to make the following adaptations at page
1087 in Kerkyacharian and Picard (2004).

Bigk = Bjx =n"" Z%‘,k(G(Xz’)) (f(Xi) + &) — Bk
=07 D GX))F(X0) = B (150(G(X0)) £ (X0)

07 "k (G(XG))e
i=1
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Initially, observe that given X7 = x1,...,X,, = z,, the random variable
n 3" ¥ k(G(X;))e; is normally distributed with mean zero and variance

2

Var <n1 Z?ﬁj’k(G(Xi))ei) =F

n! ij,k(G(Xi))Ei

=72 Y B (k(G(X)e)

=n"? Z%z,k(G(Xi)E (¢7)
i=1

=n"20" ) 7L (G(X))).
1=1
We know that [, (G(X;))| < 27 [|v[|,, hence

Var <n ij,kmxz-))q) <n 'Y |yl 0.
i=1

Following Kerkyacharian and Picard (2004) at page 1087, hereafter we consider
o =1 and have

p ( n! Z%,k(G(Xi))ei
<r

Note that the sequence {ZZ’?,;C(G(XO)J =1,... ,n} is a-mixing, with ran-
dom variables bounded by 27[¢[|2, and E(47,(G(X;))) = 1. Then, if Con-
ditions (H1) and (Hz) of Corollary 1 in Doukhan and Louhichi (1999) are
satisfied, we can use it to find an adequate upper bound for the previous
probability.

By Lemma 6 in Doukhan and Louhichi (1999), we have that C,. , < 4M%q,.,
hence Condition (1) is satisfied with ¢, = a..

Kk [logn
> —
2 n )

k2logn
>« +eXp —m .

n

Z (07 (G(Xy)) — 1]

i=1
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Now we check that Condition (Hs2) is satisfied.

n—1
Myn=nY (r+1)"72Cpyq
r=0
n—1
<n Z(r + 1) %4Ma,
r=0
n—1
< 4nM1 Z(r + 1)‘1_2
r=0

< 4nM? Z(r + 1)(1—204£/(6+q)7
r=0

and by Assumption 1, > > ((r + l)q’gaf/(ﬂq) < L < co. Hence

|
M, , <4nMIL < glnMIL = A, L
q, 6q

for ¢ > 2, where A, = nL and 8 = 1/M = 1/(27 ||1/)||io) Taking a =
nlogny/A, and using Corollary 1 in Doukhan and Louhichi (1999), we have

that
( >— (Zw )—1 >n3/2logn\/>>
=1
< Aow <_B “é)
27 |l¥]|
2
< Aexp (—B logn) )
n |12,
logn
= Aexp < )
191l
— An~B/I¥l

for 29 < \/n/(logn) < n/(logn).

Now consider the other inequality,

P < n! ij,k(a(xi))f(xi) - E (¢j,k(G(Xi))f(Xi))| > g\/@> ,

Since Qijjk = Vjk(G(Xi))f(Xi) — E(¢;x(G(X:))f(X;)) is a-mixing, with
E(Q;jx) = 0, then we can use the Corollary 1 in Doukhan and Louhichi
(1999). We can use this corollary because, similarly to the previous paragraphs,
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the variable Q;.; 1 satisfies the Conditions (#1) and (H2) 8 = 1/M and =z =
nlogn. Therefore we have

= Kk [logn nlogn
P 1 4g — <A —B\|5
(n ;Q,j,k > 5 " > < exp< 2]||¢|go>
n(logn)?
< Aexp | —-By/—————
( Il
logn
= Aexp <—B >
[1%]loo
— An~B/I¥l
for 29 < \/n/(logn) < n/(logn).
1.3 Proof of Proposition 3
Proof of item 1
We have that
. . . 1/2 C
@ @ @ 2
B = Bial < BB — i) < (BUBR - i) < =,

where C'is a general positive constant, by Jensen’s inequality and Proposition 6
in Kerkyacharian and Picard (2004, p.1072), which is valid, as can be seen
from its proof, when either the error or the predictor follows a strong-mixing
stochastic process and the other term follows an IID sequence.

Proof of item 2

This is a special case of item 3.

Proof of item 3

Follow the proof of Proposition 1, item 3, using G instead of G and conclude
that B=C = 0.

For the term D, when r = s, since [, x(G(x))| < 27/?[|9)||o, we have that
|D| < 0220072 ||p|%,.

Now, when r # s and the error is IID, D = 0 because F(ercs) = E(e,)E(es) =
0. When the predictor is IID, take f =1 in model (7) such that

b
Bia= [ s G f@ygle) da = B (4,(G X)),
forr=1,...,n, and
E(B) =E (711 Z%}k(é(){i))(l + 6i)> =F (%,k(é(X))) :
Thus, D — 0 as n — oo because,

E (vin(G(x))) < B (18%)) < (B (185

2))1/2 < \%
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where C'is a general positive constant, by Jensen’s inequality and Proposition 6
in Kerkyacharian and Picard (2004, p.1072).

For the term A, when the errors are dependent and predictors are IID, if
r = s, we have that |A] < 2[|f[|2,20+7)/2||¢||2, and A = 0, if r # 5. Thus,

n*zii[A+B+C+D]:n ZA+D 2ZZD<n [A+D]+

r=1 s=1 r=1 r=1 s=1
sH#T

Finally, when the errors are IID and predictors are dependent, we still
have |A| < ol C(f,5,3"p,0,%) and n2 Y0 Y0 [A+ B+ C + D] <
O(n=1).

1.4 Proof of Theorem 1

When the error is strong mixing and the predictor is IID

As given in Section 3, the random variables X;, i = 1,2,...,n, have all the
same known density g, which is compactly supported on the interval [a, b]. The
respective distribution function G(x f g u) du is continuous and strictly
monotone from [a, b] to [0, 1]. Its inverse G~ (z ) is also continuous and strictly
monotone. These conditions on the distribution function and its inverse imply
that G(G~(z)) = z and G~}(G(z)) = z, almost sure for all z € [a,b]. Thus,
by Theorem 1 in Kerkyacharian and Picard (2004), the collection formed by
{; k(G()), 5 > =1,k =0,...,27—1} satisfies the shrinkage (or unconditional)
and the p-Temlyakov properties, as given by Properties 1 and 2 in Kerkyachar-
ian and Picard (2004).

By Theorem 5 in Kerkyacharian and Picard (2004) and Assumption 2,
we have that v{(j,k)} = [[v;r(G())IE = 297/24)(1; 1), where w is the used

Muckenhoupt weight. Since w belongs to L; and 27 logn/n is bounded, then

27 -1 log n p/2
ZQJP/QZ Jk)( o ) < 00,

j=—1 k=0

such that

. .. (logn p/2
supv{(j, k) : |[k| < N27} < o0,
n n

for —1 < j < J, where N is the support of 1.

The results from these previous paragraphs together with the results of
our Propostion 2, permit us to apply Theorem 4 in Kerkyacharian and Picard
(2004) to obtain Theorem 3, also in Kerkyacharian and Picard (2004), which
is the desired result.

When the predictor is strong mixing and the error is IID

The proof follows exactly the same steps of the previous case, since The-
orem 4 in Kerkyacharian and Picard (2004) is still valid when the predictor

=0(n

1).
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is strong mixing and the error is IID. To see this, suppose that ¢,, is a se-
quence of real numbers tending to zero and 7, is a set of pairs (j, k) such that
sup,, {Jn }t? < oc.

Take t,, = v/(logn)/n and write

p
EHf— pr <27 ' |E > (ﬁg Kkl (Wg k| > ) Bj, k) V;6(G(2))
: (k) €T »
p
+ D Bistik(G(@))
CASEXA )
Note that
p
E(| X (Bt (131> 52) - 50) w60
G )ET )
=FE > Bin—Biw) <|ﬁ; k| > K;)
(4,k)ETn
Kty ?
=3t (1851 < ) ) w306 (0) )
p

> ) 300

p

<F Z (Bj — B < 3,
(4,k)ETn
P

el Q@u< )@mmm<>>
(4,k)ETn p

=A+B
By the p-Temlyakov property, as given by Property 2 in Kerkyacharian

and Picard (2004), A < C(A; + Asz), where C > 0 is a general constant that
does not depend on n, and A; and As are respectively given by

2 A~
= Bin| (B = i > 2 (G

b
/’ > 18l < ) |5

(4,k)ETn

and

p/2

Lb > 1l > ) |3

(J,k)ETn

dG(x)

2 ~
o= Bi] 1(Bia] > SO Wk @@)E | dG@).
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Again by the p-Temlyakov property, we have that

b
A<c S B G| 1Bk - ik > S skl dGl)

& (G,k)ETn:|B) k| <Kt /2

Now applying the Cauchy-Schwartz inequality we have

/b
« p A Ky

= 5 (|80 = 8] (B = B > 5 I, )

< (P <‘Bg‘,k - ﬂj,k‘ > ?))1/2 (E (‘Bj,k: - »Bj,krp))l/z ¥k 2, -

such that, by the results of Proposition 2 and the definition of v{(j,k)}, we
have that

Bik = Bjk Bik — 6j,k‘ > H%) ikll?, dG(z)

‘ p

1(

p
A < 010 (B )Y 220k € T, 5 830] < w23

For As, similarly to what we did for A;, we obtain:

p
Ay < O(n~B/IWl<yo <(1°§”) ) 2P/20L(4, k) € Tn : |Bjk| > Ktn/2}.

Now we analyze the term B which, again by the p-Temlyakov property,
B < C(B; + Bg), where C' > 0 is a general constant that does not depend on
n, and B; and By are respectively given by:

p/2

b
/ R T T R L G el

(J,K)ETn:1Bj k| >Ktn /2

and

/ b S B

(4,K)ETn:|Bj,k|<Ktn/2

p/2

1 (Jfu] < 5 Gl | G

For p < 2,
, p/2
< [ S Bt G@PT ([Bis - fia 2 eta) | dG@)
@ (jvk)EJn:|ﬁj,k‘>"€tn/2
. p/2
<cer [ > BunG@)l| 46w

(j,k:)ejn:‘ﬁj,k|>ﬁtn/2
< CEP LI -
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In the first line it is used Jensen inequality, in line two we used the Cauchy-
Schwartz inequality result from A; and then it is applied the shrinkage prop-
erty, as given by Property 1 in Kerkyacharian and Picard (2004).

For p > 2, using Minkowski inequality,

p/2

B = Bia| = wtaf2) Wa(@@NP] Y aG(@)

By < /ab Z [E|ﬁj,k|pf<

(3,K)ETn:|Bj, k| >rKtn /2
b p/2
<ony / > 1Bjtsn(G@)[* p dG(x)

(4:k)ETn:1Bj k| >Ftn /2

b
<o / 3 1B (G(@))IP d G(x)

(J,k)ETn:|Bj k| >Ktn /2
<cerfly.

On the other hand,

p/2

[in(G))]*  dG(x)

b
B §/ Z |8).k
@\ Gk)ETn:|Bjk| <ritn /2
p
< KP > Bjx¥ik(G(z))

(3,k)ETn:|Bj,k| <ktn /2 »

<k |y > Bt n(G ()

k=0 ||(j,k)ETn:2" * Kty /2<|B; 1| <27 F+1kt,

P
[ P
o0
< KP ngwlﬁtn Z s 1 (G ()
k=0 (k) ETn 2 B ktn /2<| 85 k| <2 F+1kt,, )
_ 1/p]P
o0
S KP Z 27k+1l*’itn Z HU’],k(G(JC))Hp
o= (5:K)€Tn 2~ R ity /2<|B5, k| <27+ H kit

c )
_ _ —q/

< KP Yo ety {27 Rnt, T || FEY.

Lk=0

<O -

In line 1 it is used the shrinkage property, in line 3, the triangular inequality,
in line 4 again the shrinkage property, and in line 5 the p-Temlyakov property.
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Summarizing,

bls-s

P
3 < O(n~B/Wl<yo ((10571) ) PP2y{(G,k) € Tn - 1Bkl < Ktn/2}
P

000 2/191)0 ((BE2)) 2020 (50) € 5 801> et 2

p
FOE T+ OB AL, L+ | D Bratya(Gl))
(4:K)ETn p
<t A (I + 8 11+ v G k) € 7))
p
D BiwtirG@))|
(4:K)ETn »

where A is a constant that depends on p, ¢, k and C. Expressing p— ¢ in terms
of s, we have for the last term:

B - o] = e a (i, + e (11 + v (G € 7))
p

DD Biwtik(Gla)

GRIET »
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2 Supplementary Material: Simulations results

SNR=1 SNR="7

n Symmlet9  Coiflet3 Symmlet9  Coiflet3
Sine-Uniform

128 0.0669 0.0624 0.0306 0.0303

256 0.0487 0.0446 0.0221 0.0200

512 0.0404 0.0380 0.0161 0.0147

1024 0.0293 0.0271 0.0116 0.0107

2048 0.0264 0.0255 0.0098 0.0094

Sine-Sine

128 0.0667 0.0617 0.0313 0.0314

256 0.0482 0.0438 0.0228 0.0206

512 0.0411 0.0394 0.0161 0.0148

1024 0.0295 0.0277 0.0115 0.0108

2048 0.0258 0.0248 0.0098 0.0094

Heavisine-Uniform

128 0.0709 0.0703 0.0409 0.0451

256 0.0549 0.0511 0.0355 0.0328

512 0.0424 0.0401 0.0223 0.0216

1024 0.0322 0.0301 0.0190 0.0180

2048 0.0274 0.0266 0.0139 0.0137
Heavisine-Sine

128 0.0712 0.0709 0.0426 0.0474

256 0.0560 0.0534 0.0384 0.0384

512 0.0424 0.0407 0.0222 0.0216

1024 0.0316 0.0304 0.0183 0.0181

2048 0.0265 0.0257 0.0138 0.0135

Doppler-Uniform

128 0.1305 0.1260 0.1186 0.1158

256 0.1192 0.1242 0.1124 0.1186

512 0.0897 0.0923 0.0834 0.0860

1024 0.0852 0.0909 0.0815 0.0886

2048 0.0614 0.0645 0.0578 0.0601
Doppler-Sine

128 0.1301 0.1277 0.1156 0.1154

256 0.1211 0.1224 0.1143 0.1165

512 0.1006 0.0974 0.0936 0.0911

1024 0.0970 0.0920 0.0942 0.0898

2048 0.0631 0.0650 0.0591 0.0615

Table 1 Average of 200 root mean square error (RMSE) for the simulation study, with
Yi = f(Xi) + €, €6 = 0.2¢;,_1 +uy, i.e., € is a-mixing, for each pair function-density, sample
size n, signal-to-noise ratio (SNR) and wavelets Symmlet9 and Coiflet3.
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SNR=1 SNR="7

n Symmlet9  Coiflet3 Symmlet9  Coiflet3
Sine-Uniform

128 0.0507 0.0477 0.0258 0.0275

256 0.0365 0.0335 0.0195 0.0185

512 0.0296 0.0278 0.0133 0.0126

1024 0.0217 0.0206 0.0099 0.0094

2048 0.0193 0.0186 0.0077 0.0075

Sine-Sine

128 0.0478 0.0450 0.0251 0.0270

256 0.0358 0.0333 0.0191 0.0187

512 0.0291 0.0276 0.0132 0.0124

1024 0.0216 0.0205 0.0096 0.0094

2048 0.0188 0.0182 0.0075 0.0074

Heavisine-Uniform

128 0.0694 0.0652 0.0391 0.0369

256 0.0515 0.0488 0.0298 0.0306

512 0.0418 0.0400 0.0222 0.0219

1024 0.0316 0.0311 0.0185 0.0193

2048 0.0275 0.0267 0.0143 0.0143
Heavisine-Sine

128 0.0685 0.0636 0.0394 0.0372

256 0.0514 0.0490 0.0306 0.0310

512 0.0414 0.0400 0.0224 0.0221

1024 0.0318 0.0309 0.0185 0.0188

2048 0.0270 0.0263 0.0143 0.0143

Doppler-Uniform

128 0.1284 0.1257 0.1116 0.1145

256 0.1168 0.1230 0.1090 0.1179

512 0.0860 0.0839 0.0774 0.0761

1024 0.0778 0.0823 0.0725 0.0783

2048 0.0551 0.0520 0.0494 0.0462
Doppler-Sine

128 0.1353 0.1336 0.1196 0.1199

256 0.1252 0.1299 0.1173 0.1239

512 0.0868 0.0840 0.0788 0.0761

1024 0.0837 0.0762 0.0802 0.0723

2048 0.0526 0.0526 0.0465 0.0471

Table 2 Average of 200 root mean square error (RMSE) for the simulation study, with
Y = f(Xi) + e, Xi = 0.2X,_1 + u;, ie., X; is a-mixing, for each pair function-density,
sample size n, signal-to-noise ratio (SNR) and wavelets Symmlet9 and Coiflet3.

3 Supplementary Material: Example

Example of a process satisfying Assumption 1

We provide only one example of processes satisfying Assumption 1. The
autoregressive model used for the simulations is considered and we try to make
clear the precise effect of the parameters.

Consider the first order autoregressive process given by ¢; = 6e;—1 + uy,
where u; are IID normally distributed random variables with zero mean and
variance o2, for i € Z and 0 € (0,1).

Since the normal density of u; is bounded, by Remark 2 in Andrews (1983)
we have that the Condition K1 of Theorem 2 also in Andrews (1983) holds
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with ¢ = 1. Condition K2 of this theorem is well known for normal densities
and, thus, Condition S, of its Theorem 1 is satisfied. Since E(|u;|) < oo, for
all i € Z, we get v =1 at Theorem 1 in Andrews (1983) and

< 2(C 4+ 1)E(le;|)|0]" for h > ho;
Ceh = 1 for 1 < h < ho;

where C' is a general positive constant.
Using the expectation of a half-normal random variable, it is easy to see
that

E(le]) < Z 101 E(|ui—;|) = 1-6° 2/m,
§=0
such that Assumption 1 will be satisfied if

S
Z c 2|9|h5/ c+9) < oo,
h=1

for given p > 1 and some chosen vales ¢ and §, where ¢ > p, ¢ € 2N =
{0,2,4,6,...}, and 6 > 0.
For 1 < p < 2, it is enough to take ¢ = 2 and § = 1 because

[e s} e —1
Z(h+ 1)¢—2|9‘h5/(c+6) < Z |9|h/3 _ (1 _ |9|1/3)
h=1 h=0

For p > 2, we may use the following identity from, for instance, Mood et al

(1974, p.533):
-2 =3 () o

h=0

for -1<zxz<landteZ.
As an illustration, for 2 < p < 4, take c =4 and § =1, such that

Z h+1 c— 2|9|h6/ (c+96) < Z h+1 ‘alh/S
h=1 h=0

o Zncolh +2)(h + 1) (1/5)"
2

- 2; () oy
=2(1-101"7?) -~
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4 Supplementary Material: Application
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Fig. 1 Time series of 7-days log returns of the Euro and six studied cryptocurrencies. They
are plotted in pairs, over the matching period of the Euro and each studied cryptocurrency.
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Fig. 2 Estimates of the functions f (full curves), using model (15) for the six cryptocur-
rencies log return (Y) as a function of the Euro log return (X). Pairs of observations X and
Y are plotted as gray circles.
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Fig. 3 Time series of 7-days log returns of the Japanese Yen and six studied cryptocur-
rencies. They are plotted in pairs, over the matching period of the Japanese Yen and each
studied cryptocurrency.
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Fig. 5 Time series of 7-days log returns of the British Pound and six studied cryptocur-
rencies. They are plotted in pairs, over the matching period of the British Pound and each
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