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Abstract
We consider the situation of a univariate nonparametric regression where either the 
Gaussian error or the predictor follows a stationary strong mixing stochastic pro-
cess and the other term follows an independent and identically distributed sequence. 
Also, we estimate the regression function by expanding it in a wavelet basis and 
applying a hard threshold to the coefficients. Since the observations of the predic-
tor are unequally distant from each other, we work with wavelets warped by the 
density of the predictor variable. This choice enables us to retain some theoretical 
and computational properties of wavelets. We propose a unique estimator and show 
that some of its properties are the same for both model specifications. Specifically, 
in both cases the coefficients are unbiased and their variances decay at the same 
rate. Also the risk of the estimator, measured by the mean integrated square error is 
almost minimax and its maxiset remains unaltered. Simulations and an application 
illustrate the similarities and differences of the proposed estimator in both situations.

Keywords  Nonparametric regression · Wavelet · Stationary process · �-mixing, 
Warped wavelets

1  Introduction

Nonparametric regression has received much attention in recent years and there is 
a huge literature on the subject. In the case of time series, which is our case, see 
Härdle et al. (1997) for a review. Other bibliographic references are Härdle (1990), 
Ruppert et al. (2003), Tsybakov (2009), Silverman (1986) and Wasserman (2006).
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Usually methods include local polynomials, splines, kernels, orthogonal polyno-
mials (like Chebyshev) and more recently wavelets. The seminal works on nonpara-
metric regression via wavelets are Donoho and Johnstone (1994, 1995) and Donoho 
et al. (1995).

Most of the cases consider the situation of a regular design and independent and 
identically distributed (IID) normally distributed errors. The case of irregular fixed 
design and still IID normally distributed errors was considered by Cai and Brown 
(1998), while the case of irregular fixed design and stationary Gaussian errors was 
considered by Porto (2008). The case of uniform design and IID errors was treated 
by Cai and Brown (1999), and the case of correlated errors was considered by Porto 
et al. (2016). The case of general design was considered by Kerkyacharian and Pic-
ard (2004) and Porto et al. (2012) for the cases of IID errors and correlated errors, 
respectively. See also Hall and Turlach (1997), Antoniadis et al. (1997), Antoniadis 
and Fan (2001) and Delouille et al. (2001).

In this paper, we consider the situation of a univariate nonparametric regression 
where either the error or the predictor follows a stationary strong mixing stochastic 
process and the other term follows an IID sequence. This set up typically includes 
regression models where both the response and predictor variables are time series. 
Applications of these model specifications can be found, for instance, in signal pro-
cessing, econometrics and finance. We leave the situation where both the error and 
the predictor are stationary strong mixing for a future research because we believe 
this would require substantially more mathematical derivations.

Strong-mixing stochastic processes that are well-known in applications include 
m-dependent processes, Gaussian processes with continuous and positive spectral 
densities, and first-order autoregressive processes with innovation random variables 
following, for instance, a normal, exponential, or uniform distribution. However, in 
this study, we restrict the error term of the regression model to be normally distrib-
uted and possible extensions may be published elsewhere.

Also, we estimate the regression function by expanding it in a wavelet basis and 
applying a hard threshold to the coefficients. Since the observations of the predictor 
are unequally distant from each other, we work with wavelets warped by the density 
of the predictor variable. This choice enables us to retain some theoretical and com-
putational properties of wavelets.

We use the estimator proposed in    Kerkyacharian and Picard (2004) and show 
that some of its properties are the same for both model specifications. Specifically, 
in both cases the coefficients are unbiased and their variances decay at the same 
rate. Also the risk of the estimator, measured by the mean integrated square error is 
almost minimax and its maxiset remains unaltered.

There are many works where either the error or the predictor follows a specific 
dependence condition. See the references in  Chesneau (2013), for instance. How-
ever, a few of them consider both specifications in a unified way. The works we 
consider closer to ours are the papers by  Baraud et  al. (2001), Chesneau (2013), 
Chesneau (2014, Sect.  4.3), Li (2016), and Krebs (2018). The first uses �-mixing 
conditions and penalized least-squares estimator, while the others use �-mixing con-
ditions and wavelet threshold estimators, except the last paper which uses a trun-
cated least squares wavelet (and some others) estimator. Since �-mixing implies �
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-mixing Bradley (2005), the first paper covers a narrower range of dependence con-
ditions. All these papers evaluate the risk of the estimator by the mean integrated 
square error and assume the mixing conditions for the vector formed by the pre-
dictor and the predicted variables, which is equivalent to assume them for the vec-
tor formed by the predictor and the error term  (Baraud et  al. 2001, comments in 
Sect. 2). This assumption includes cases where both the error and the predictor may 
be �-mixing and independent.

We also consider �-mixing and wavelet thresholding, but contribute to the lit-
erature by requiring a somewhat weaker condition on the mixing coefficient, deal-
ing only with Gaussian errors, and considering a wider range of risk functions. The 
price we pay is not to consider both the error and the predictor �-mixing.

The paper is organized as follows. After this introduction, Sect. 2 briefly exposes 
some necessary background concepts and definitions. In the sequence, Sect. 3 speci-
fies the proposed model and the estimation method together with the assumptions 
needed to achive the desired theoretical results. In this section we also present a sim-
ple parametric model in order to give some intuition on the results. Next, in Sect. 4, 
we present the theoretical results. Simulations and an application, respectively, given 
in Sects. 5 and 6, illustrate the similarities and differences of the proposed estimator 
in both situations in practice. In Sect. 7 we collect some conclusions. Supplementary 
Material contain the proofs and additional simulation and application results.

2 � Background

2.1 � Wavelets and warped wavelets

Wavelets are functions localized in time and scale, which makes them ideal to ana-
lyze functions with discontinuities and fractal structure.

Consider an orthonormal wavelet basis generated from dilation and translation 
of a “father” wavelet � (or scaling function) and a “ mother” wavelet � . Let N ∈ ℕ , 
where ℕ denotes the set of the natural numbers. We assume that both functions are 
compactly supported in [0,  N] and [(1 − N)∕2, (1 + N)∕2] respectively, ∫ N

0
� = 1 , 

∫ N

0
� = 0 and � has r ∈ ℕ vanishing moments. Let j, k ∈ ℤ , where ℤ denotes the set 

of the integer numbers, and let

so that �j,k has support [2−j((1 − N)∕2 + k), 2−j((1 + N)∕2 + k)] . For x ∈ [a, b] , with 
a, b ∈ ℝ , where ℝ denotes the set of real numbers, let

denote the periodized wavelets, which we use henceforth, but with the superscript 
“p” suppressed, since it is a standard way of handling boundary conditions even if 
the signal is not regarded as periodic   (see e.g. Ogden (1997), for details). Denote 

�j,k(x) = 2j∕2�(2jx − k) and �j,k(x) = 2j∕2�(2jx − k)

�
p

j,k
(x) =

∞∑
l=−∞

�j,k(x − l) and �
p

j,k
(x) =

∞∑
l=−∞

�j,k(x − l)
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the scaling function �0,k by �−1,k , such that the collection formed by {�j,k , j ≥ −1 , 
k = 0,… , 2j − 1} , constitutes an orthonormal basis of L2[a, b] , the space of square-
integrable functions in [a, b] (see e.g. Härdle et al. (1998), for details). Hereafter, we 
will only work in the set of real numbers, otherwise stated.

Denote the inner product by ⟨⋅, ⋅⟩ . For a given square-integrable function f on [a, b], 
let

The function f can be expanded into a wavelet series as

This expansion decomposes f into components with different resolutions. The coef-
ficients �−1,k at the coarsest level capture the gross structure of the function f. The 
detail coefficients �j,k , when j ≥ 0 , represent finer and finer structures in f as the 
resolution level j increases.

When x results from a random variable with distribution G(⋅) , we may use it to warp 
the wavelet basis, which results in a non-orthogonal warped wavelet basis Kerkyachar-
ian and Picard (2004). Provided that f◦G−1 ∈ L2[a, b] , we can expand the function f, 
in a mean square sense, as

with

where g is the density associated to the distribution G, i.e., the derivative of G. 
Using a simple change of variables y = G(x) at (1) and (2), we can write

with

Thus, �j,k is also the coefficient of the function f (G−1(⋅)) in the initial wavelet basis.

�j,k =
⟨
f ,�j,k

⟩
= ∫

b

a

f (x)�j,k(x) dx.

f (x) =

∞∑
j=−1

2j−1∑
k=0

�j,k�j,k(x).

(1)f (x) =

∞∑
j=−1

2j−1∑
k=0

�j,k�j,k(G(x)),

(2)�j,k = ∫
b

a

�j,k(G(x))f (x)g(x) dx,

(3)f (G−1(y)) =

∞∑
j=−1

2j−1∑
k=0

�j,k�j,k(y),

(4)�j,k = ∫
1

0

�j,k(y)f (G
−1(y)) dy.
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2.2 � Besov and weighted Besov spaces

Until now, we have only mentioned L2[a, b] , the space of functions that are 
square-integrable. This space can be generalized to Lp[a, b] , 0 < p ≤ ∞ , 
the space of functions where (∫ b

a
|f (x)|p)1∕p dx < ∞ , for 0 < p < ∞ , and 

ess supx∈[a,b] |f (x)| < ∞ , for p = ∞ . Further generalizations result in other known 
function spaces, such as Hölder, Sobolev, and Besov spaces. Besov spaces is the 
most general since it includes the previous spaces  (see e.g.  Triebel (1992), for 
details).

For the definition of Besov spaces, let �hf (x) = f (x + h) − f (x) and 
�N+1
h

f (x) = �h�
N
h
f (x) , N ∈ ℕ . Also let the modulus of continuity �N be given as

for 0 < p < ∞ , with the usual modification for p = ∞ , and let us define the follow-
ing (regular) Besov space:

The parameter s can be related to the number of derivatives of f, while p and q 
captures a number of smoothness features, including spatially inhomogeneous 
behaviors.

Now, when x results from a random variable with distribution G(⋅) , 
we may define the weigthed Besov spaces. In order to do this, let 
�h(G)f (x) = f (G−1(G(x) + h)) − f (x) and �N+1

h
(G)f (x) = �h(G)�

N
h
(G)f (x) , N ∈ ℕ . 

Also let the modulus of continuity 𝜌̃N(t, f ,G, p) be given as the right-hand side 
of  (5), but with �N

h
(G) instead of �N

h
 . Thus, the weighted Besov space BG

s,p,q
 is 

defined as in (6), but with 𝜌̃N(t, f ,G, p) in the place of �N(t, f , p).
Note that a weighted Besov space reduces to a regular Besov space when G is 

the uniform distribution. Besov spaces are convenient for us because they can be 
expressed in terms of wavelet coefficients. To see this, we first need the following 
definition Kerkyacharian and Picard (2004).

Definition 1  If B is the set of all intervals of ℝ and if f is a measurable function, 
then, for any interval I ⊂ B , the Hardy-Littlewood maximal function associated to 
f is

Thus, f ∗(x) is the maximum average value that f can have on intervals that con-
tain the point x.

For a fixed interval I and any 1 < p < ∞ , a weight function � ≥ 0 gives the 
bound

(5)�N(t, f , p) = sup
|h|≤t

(
�

b

a

|�N
h
f (x)|p dx

)1∕p

,

(6)Bs,p,q =

{
f ∶

(
∫

1

0

(
𝜌N(t, f , p)

ts

)q
dt

t

)1∕q

< ∞

}
.

f ∗(x) = sup
I∈B,x∈I

(
1

|I| ∫I

|f (u)| du
)
.
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where C is a constant independent of f, if and only if it satisfies the condition of 
the Theorem  2 of  Muckenhoupt (1972). Let a, b ≥ 0 and p − 1 = p∕q , such that 
1∕p + 1∕q = 1 . Since � ≥ 0 and p > 1 , then a ≤ b ⇒ a1∕p ≤ b1∕p , and we can 
rewrite his Theorem 2 as the following definition.

Definition 2  For 1 < p < ∞ , 1∕p + 1∕q = 1 and for any interval I ⊂ ℝ , a measurable 
function � ≥ 0 is a Muckenhoupt weight (or belongs to the Muckenhoupt class Ap ) 
if there exists a constant 0 < C < ∞ , that depends on p and � but is independent of 
I, such that

For p = 1 , � ≥ 0 belongs to the Muckenhoupt class A1 if there exists 0 < C < ∞ 
such that �∗(x) ≤ C�(x) , almost everywhere, where �∗ is the Hardy-Littlewood 
maximal function. For p = ∞ , define

The Muckenhoupt classes form an increasing family as p increases as well. For 
p = 1 , Theorem  5 of  Muckenhoupt (1972) would require �(x) = 0 or �(x) = ∞ , 
almost everywhere. Then, the definition for the class A1 is modified to a limiting case, 
as above García-Cuerva and Rubio de Francia (1985). With this definition, it is easy 
to see that if � is bounded from above and below, it belongs to A1 and, thus, to any 
Ap , p > 1 . For p = ∞ , Theorem  3 of  Muckenhoupt (1972) shows that 𝜔(x) > 0 or 
�(x) = 0 , both for almost every x in I. In some sense, the Muckenhoupt class identifies 
how far � is from a uniform weight that assign value similar to its inverse at each inter-
val Kerkyacharian and Picard (2004).

In the case when �(x) = [g(G−1(x))]−1 is a Muckenhoupt weight that belongs 
to the class Ap([a, b]) , for some 1 ≤ p ≤ ∞ , we can define a weighted Besov space 
Bs,p,q(�) ≡ BG

s,p,q
 . Additionally, if the wavelet function � is compactly supported on 

[0, N] with r > N vanishing moments then, by the Corollary 1 in Kerkyacharian and 
Picard (2004), for f written using warped wavelets, as in (1) and (2), we have that

implies that

�I

(f ∗(x))p�(x) dx ≤ C �I

|f (x)|p�(x) dx,

(
1

|I| �I

�(x) dx

)1∕p(
1

|I| �I

�(x)−q∕p dx

)1∕q

≤ C.

A∞ =
⋃
p≥1

Ap.

(
∫

1

0

(
𝜌̃N(t, f ,G, p)

ts

)q
dt

t

)1∕q

< ∞
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where Ij,k = [k∕2j, (k + 1)∕2j] , with the usual modification if q = ∞.
Note that, when g is bounded from above and below, then �(x) ∈ A∞ . When G is 

the uniform distribution and g is its density, this result reduces to the regular Besov 
space and the reverse implication is also valid.

3 � Model specification and estimation

Consider a situation when we observe data (X1, Y1),… , (Xn, Yn) , n = 2J , J ∈ ℕ , and 
we formulate the model

i = 1, 2,… , n.
In this formulation, the function f is unknown but square integrable on its sup-

port [a, b], with a, b ∈ ℝ . The random variables Xi , i = 1, 2,… , n , have all the same 
known (or unknown) density g, which is compactly supported on the same inter-
val [a, b] as the function f. The respective distribution function G(x) = ∫ x

a
g(u) du 

is continuous and strictly monotone from [a, b] to [0, 1]. Its inverse G−1(x) is also 
continuous and strictly monotone. These conditions on the distribution function and 
its inverse imply that G(G−1(x)) = x and G−1(G(x)) = x , for almost every x ∈ [a, b].

The error terms �i are independent of Xt and normally distributed, with mean zero 
and variance 𝜎2 < ∞ , for i, t = 1, 2,… , n.

As a tool, we first consider a compactly supported orthonormal wavelet basis 
{�j,k, j ≥ −1, k = 1, 2,… , 2j−1} , where �−1,k denotes the scaling function. Now we 
warp the wavelet basis using the distribution function G, such that we can expand 
the function f as given by (1) and (2).

The setting exposed so far is very general and specific assumptions follow.
Explicit structures of dependence for the variables Xi and �i are given by the fol-

lowing assumption.

Assumption 1  Either {Xi, i ∈ ℤ} or {�i, i ∈ ℤ} is a stationary strong mixing pro-
cess, while the other is an IID  sequence. Also, given p > 1 , there exists c > p , 
c ∈ 2ℕ = {0, 2, 4, 6,…} , and 𝛿 > 0 , such that

where �X,h is the strong mixing coefficient of {Xi, i ∈ ℤ} , when this is the case. 
In the other case, when {�i, i ∈ ℤ} is the stationary strong mixing process, �X,h is 
replaced by ��,h.

⎛
⎜⎜⎜⎝

∞�
j=−1

⎡
⎢⎢⎢⎣
2js2j∕2

⎛
⎜⎜⎝

2j−1�
k=1

�𝛽j,k�p𝜔(Ij,k)
⎞⎟⎟⎠

1∕p⎤
⎥⎥⎥⎦

q⎞
⎟⎟⎟⎠

1∕q

< ∞,

(7)Yi = f (Xi) + �i,

∞∑
h=1

(h + 1)c−2(𝛼X,h)
𝛿∕(c+𝛿) < ∞,
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An example of a process satisfying the Assumption 1 is the first order autoregres-
sive process given by �i = ��i−1 + ui , where ui are IID normally distributed random 
variables with zero mean and variance �2 , for i ∈ ℤ and � ∈ (0, 1) . This statement is 
made precise in the Appendix.

In order to keep some properties of the initial wavelet basis into the warped wave-
let basis, we need the following assumption.

Assumption 2  The function �(x) = [g(G−1(x))]−1 is a Muckenhoupt weight and 
belongs to the class Ap([a, b]) , for some p > 1 . In particular, if 0 < g < M < ∞ , then 
�(x) ∈ A∞.

In this situation, we estimate the wavelet coefficients �j,k by 𝛽j,k , as

In practice we rarely know the function G and we use its empirical estimate 
Ĝ(x) = n−1

∑n

i=1
I(Xi ≤ x) , where I is the indicator function. In order to avoid tech-

nicalities, our theoretical results consider mainly G. However, we present some very 
basic theoretical results using Ĝ and evaluate its use through simulations and find 
the results are consistent with theory.

Finally, we estimate f by the following hard thresholded (thus, nonlinear) estima-
tor f̂  due to Kerkyacharian and Picard (2004):

for some 𝜅 > 0 , where 2J1 ≤ Cmin{n1, n2},

for some 𝛿,C > 0 . In the definition of n2 , p is the index of the norm used in the 
risk function, as given in the next section. Hereafter, C denotes a constant that does 
not depends on n. Note that for all 𝛿 > 0 , if p ≥ 2 , then n1 < n2 . This is also true 
if 1 < p < 2 and � ≥ 1 . Thus, we should worry only if 1 < p < 2 and 0 < 𝛿 < 1 , in 
which case n2 can be smaller than n1.

3.1 � Risk and maxiset

Given the estimators 𝛽j,k and f̂  , respectively, in (8) and (9), we are interested in some 
of its properties. For the former, we may find its expected value, its variance and 
covariace as well as other statistics. For the latter, we may use its risk and maxiset, 
which have been widely used in nonparametric regression for study and comparison 
of estimators. In what follows, we briefly review these statistics.

(8)𝛽j,k =
1

n

n∑
i=1

𝜓j,k(G(Xi))Yi.

(9)f̂ (x) =

J1∑
j=−1

2j−1∑
k=0

𝛽j,kI

(
|𝛽j,k| ≥ 𝜅

√
log n

n

)
𝜓j,k(G(x)),

n1 =

√
n

log n
and n2 =

(
n(3p−2)∕p

log n

)(p+�)∕(p+�−2)

,
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First, note that the estimator f̂  in (9) depends on the sample size n and we expect 
that some of its properties depend on n as well. However, for a given sample, the 
approximation of f̂  to f can be quantified by a loss function L(f , f̂ ) , such as the Lp 
norm of the error given by

where the integrated square error is a particular case when p = 2.
Since the data are generated by a probabilistic model, this quantity varies from 

sample to sample and then we may use the associated risk function

where the mean integrated square error is a particular case when p = 2.
An estimator f̂  is called minimax if it has the smallest possible maximum risk, in 

a given class of estimators, and thus, can be considered conservative. Sometimes the 
minimax risk can not be obtained but only its rate of decay. Nevertheless, given a 
rate of decay an and a constant C > 0 , the quality of the estimator may also be evalu-
ated by the associated maxiset

Comparison of estimators based on maxisets can be considered less pessimistic than 
minimax comparisons since it uses only the rate of decay of the risk. Subproducts of 
maxisets are upper and lower bounds for minimax comparisons and we can deduce 
rates of convergence over other classes of functions just by proving their inclusion in 
the maxiset. However, while minimax risks can be evaluated for a given sample size, 
the notion of maxisets is of a pure asymptotic nature.

4 � Theoretical results

In this section we present some results on the proposed estimator discussed at the 
previous section, in the cases when {�i, i ∈ ℤ} is stationary strong mixing and 
{Xi, i ∈ ℤ} is IID, and vice-versa.

We begin with a prologue on a simple parametric model to give us some intui-
tion, and then we discuss the nonparametric case.

4.1 � Appraisal of a parametric case

Consider the model in (7) and the Assumption 1, but with the following simpli-
fications. Let f (Xi) = �Xi , where the parameter � is unknown, and let a, b ≠ 0 . 

Lp(f , f̂ ) = ‖f − f̂‖p
p
= ∫

b

a

�f (x) − f̂ (x)�p dx,

R(f , f̂ ) = E
�
Lp(f , f̂ )

�
= E‖f − f̂‖p

p
,

Max (f̂ , Lp, an)(C) =

�
f ∶ sup

n

R(f , f̂ )a−1
n

< C

�

=

�
f ∶ sup

n

E‖f − f̂‖p
p
a−1
n

< C

�
.
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Also, does not consider the specific condition on the strong mixing coefficient 
(the summation of Assumption 1) as well as the Assumption 2 as a whole.

In this simpler parametric case, we estimate the coefficient � by the least 
squares estimator 𝛽  given as

such that E(𝛽 − 𝛽) = 0 and Var (𝛽 − 𝛽) = Var
�∑n

i=1
Xi𝜖i(

∑n

t=1
X2
t
)−1

�
.

A little algebra shows that

When {Xi, i ∈ ℤ} is IID and {�i, i ∈ ℤ} is stationary strong mixing, this variance is 
equal to

When the opposite occurs, {Xi, i ∈ ℤ} is ergodic Bradley (2005), which is a property 
of a stationary sequence Davidson (1994, Sect. 13.4), and we have

Since the density g is compactly supported in the interval [a, b], let m = min(|a|, |b|) 
and M = max(|a|, |b|) , such that we have the respective upper bounds from  (11) 
and (12):

Mixing conditions would impact mostly the second term of  (10), but the bound-
edness condition on g, together with the interplay of IID  conditions, turn results 
much more workable: when strong mixing brings difficulties, IID  (or zero mean) 
conditions alleviate them. Were both processes mixing, more assumptions would be 
needed to achieve similar results with substantially more mathematical derivations.

𝛽 =

∑n

i=1
XiYi∑n

t=1
X2
t

=

∑n

i=1
Xi(𝛽Xi + 𝜖i)∑n

t=1
X2
t

,

(10)

Var (𝛽 − 𝛽) = 𝜎2

n�
i=1

E

�
X2
i

(
∑n

t=1
X2
t )

2

�
+

n�
i=1

n�

j = 1

j ≠ i

E

�
XiXj

(
∑n

t=1
X2
t )

2

�
E(𝜖i𝜖j).

(11)
�2nE

�
X2
1

(
∑n

t=1
X2
t )

2

�
+

�
E

�
X1

(
∑n

t=1
X2
t )

2

��2 n�
i=1

n�

j = 1

j ≠ i

E(�i�j).

(12)Var (𝛽 − 𝛽) = 𝜎2nE

�
X2
1

(
∑n

t=1
X2
t )

2

�
.

Var (𝛽 − 𝛽) ≤ 𝜎2n
M2

n2m4
+
(

M

n2m4

)2

n2𝜎2 = O(n−1);

Var (𝛽 − 𝛽) ≤ 𝜎2n
M2

n2m4
= O(n−1).
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4.2 � The nonparametric case

In the nonparametric case, for a specific strong mixing condition and loss func-
tion, the estimator has the same risk and maxiset in both cases, in part due to the 
interplay between IID and strong mixing conditions, as illustrated with the para-
metric case.

Now, in the model  (7), we consider the whole Assumptions  1 and  2 for the 
nonparametric case. Most of the results presented remains the same for both situ-
ations. Proofs are given in the Supplementary Material.

Some basic results about the estimators are given in the following proposition.

Proposition 1  Consider the model (7) and the Assumption 1. Then, for any funcion 
f ∈ Bs,p,q(�) the estimator 𝛽j,k given by (8) and (9) satisfies:

1.	 E(𝛽j,k) = 𝛽j,k;
2.	 Var (𝛽j,k) = O(n−1);
3.	 Cov (𝛽j,k, 𝛽j�,k� ) = O(n−1),

for any −1 ≤ j, j� ≤ J1 , k, k� = 0, 1,… , 2j − 1 , j ≠ j′ , k ≠ k′ , p, q, r ≥ 1 , and 
1∕p + 1∕q + q∕r = 1 . Also 2J1 ≤ Cmin{n1, n2} , where n1 and n2 are given just 
after Eq. (9).

Note that the expected value and the order of decay of the variance and covari-
ance of the estimator are the same in both cases considered. Specifically, when 
{�i, i ∈ ℤ} is stationary strong mixing and {Xi, i ∈ ℤ} is IID, we have that

and

Since

and

an upper bound on the constants for the difference

Var (𝛽j,k) = n−1
(
∫

1

0

f 2(G−1(y))𝜓2
j,k
(y) dy − 𝛽2

j,k
+ 𝜎2

)

Cov (𝛽j,k, 𝛽j�,k� ) =n
−1

(
∫

1

0

f 2(G−1(y))𝜓j,k(y)𝜓j�,k� (y) dy − 𝛽j,k𝛽j�,k�

+ 𝜎2 ∫
b

a

𝜓j,k(G(x))𝜓j�,k� (G(x))g(x) dx

)
.

� Var (𝛽j,k)� ≤ n−1
�‖f‖2

∞
+ 𝜎2

�
2j‖𝜓‖2

∞

� Cov (𝛽j,k, 𝛽j�,k� )� ≤ n−1
�‖f‖2

∞
+ 𝜎2

�
2(j+j

�)∕2‖𝜓‖2
∞
,
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is given by

In the other case, when {Xi, i ∈ ℤ} is stationary strong mixing and {�i, i ∈ ℤ} is IID, 
we have that

where C(f , j, p, q,�) = 8||f ||∞2(j∕2)[(p−2)∕p+(q−2)∕q]||�||(p−2)∕p+(q−2)∕q∞  , and

where Wi,j,k = �j,k(G(Xi))f (Xi) , �W,h is the strong mixing coefficient of {Wi,j,k, i ∈ ℤ} , 
and

As in the previous case, an upper bound on the the difference between the constants 
for the variances and the covariance is given by

In a similar context  Chesneau (2013) obtained the same result for the expected 
value of the wavelet coefficients, but no results are presented for their variance and 
covariance.

Additional basic results about the estimators, considering a class of losses and 
probability bounds are given in the following proposition.

Proposition 2  Consider the model (7) and the Assumptions 1 and 2. Then, the esti-
mator 𝛽j,k given by (8) and (9) satisfies:

1.	 E
(|𝛽j,k − 𝛽j,k|2p

)
= O

((
log n

n

)p)
;

√
| Var (𝛽j,k)|| Var (𝛽j�,k� )| − | Cov (𝛽j,k, 𝛽j�,k� )|

�‖f‖2
∞
+ �2

�
2j∕2

�
2j∕2 − 2j

�∕2
�‖�‖2

∞
.

| Var (𝛽j,k)| ≤ n−1
(
||f ||2

∞
+ 𝜎2 − 𝛽2

j,k
+ 𝛼

1∕r

W,0
C(f , j, p, q,𝜓)

)
,

� Cov (𝛽j,k, 𝛽j�,k� )� ≤n−1𝛼1∕r

W,0
C(f , j, p, q,𝜓)

+ n−1𝜎22(j+j
�)∕2‖𝜓‖2

∞

+ n−2C(f , j, j�, p, q,𝜓)

n�
t=1

n�

s = 1

s ≠ t

𝛼
1∕r

W,�s−t�,

C(f , j, j�, p, q,�) = 8||f ||2
∞
2j(p−2)∕(2p)+j

�(q−2)∕(2q)||�||(p−2)∕p+(q−2)∕q
∞

.

‖f‖2
∞
+ �2

�
1 − 2(j+j

�)∕2‖�‖2
∞

�
− n−2C(f , j, j�, p, q,�)

n�
t=1

n�

s = 1

s ≠ t

�
1∕r

W,�s−t�.
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2.	 P

(
|𝛽j,k − 𝛽j,k| ≥ 𝜅

√
log n

n

)
= min

{
O
((

log n

n

)p)
,O

((
log n

n

)2
)}

 ,  w h e n 

{�i, i ∈ ℤ} is stationary strong mixing and {Xi, i ∈ ℤ} is IID;

3.	 P

�
�𝛽j,k − 𝛽j,k� ≥ 𝜅

�
log n

n

�
= O(n−B∕‖𝜓‖∞) , when {Xi, i ∈ ℤ} is stationary strong 

mixing and {�i, i ∈ ℤ} is IID;

for some B > 0 , 𝜅 > 0 , any p > 1 , −1 ≤ j ≤ J1 , and k = 0, 1,… , 2j − 1 . Also 
2J1 ≤ Cmin{n1, n2} , where n1 and n2 are given just after Eq. (9).

The rate of decay of the losses are the same for each case considered, but the 
upper bound on the probability decays differently when {Xi, i ∈ ℤ} is stationary 
strong mixing and {�i, i ∈ ℤ} is IID than in the other way around.

We now present some theoretical results using Ĝ , instead of G, as more usual 
in practice. For technical reasons, we do like in Kerkyacharian and Picard (2004) 
and assume we have a random vector (X�

1
,X�

2
,… ,X�

n
) that is independent but iden-

tically distributed as (X1,X2,… ,Xn).

Proposition 3  Consider the model (7) and the Assumption 1. Then, for any funcion 
f ∈ Bs,p,q(�) the estimator 𝛽@

j,k
 given by

where Ĝ(x) = n−1
∑n

i=1
I(X�

i
≤ x) , and (X�

1
,X�

2
,… ,X�

n
) is independent, but has the 

same (joint) distribution of the random vector (X1,X2,… ,Xn) , satisfies:

1.	 E(𝛽@
j,k
) = 𝛽j,k + O(n−1∕2);

2.	 Var (𝛽@
j,k
) = O(n−1);

3.	 Cov (𝛽@
j,k
, 𝛽j�,k� ) = O(n−1),

for any −1 ≤ j, j� ≤ J1 , k, k� = 0, 1,… , 2j − 1 , j ≠ j′ , k ≠ k′ , p, q, r ≥ 1 , and 
1∕p + 1∕q + q∕r = 1 . Also 2J1 ≤ Cmin{n1, n2} , where n1 and n2 are given just 
after Eq. (9).

Our main interest lies in properties of f̂  , the estimator of the function f. Thus 
we present a first result in the following theorem.

Theorem 1  Consider the model (7) and Assumptions 1 and 2. Let Ij,k be an interval 
in the real line indexed by j and k, p > 1 , 0 < q < p , and

where �{(j, k)} = ‖�j,k(G(⋅))‖pp . Then, for the estimator f̂  , given by  (9), its associ-
ated maxiset can be written as

𝛽@
j,k

=
1

n

n∑
i=1

𝜓j,k(Ĝ(Xi))Yi,

lq,∞(𝜈) = {f (x) =

∞∑
j=−1

2j−1∑
k=0

𝛽j,k𝜓j,k(G(x)) ∶ sup
t>0

tq𝜈{(j, k) ∶ |𝛽j,k| > t} < ∞},
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when �{(j, k)} = 2jp∕2�(Ij,k) , where � is a Muckenhoupt weight.

This theorem says that the maxiset in both cases considered are the same. The 
second result states that the risk of the estimator, measured by the mean integrated 
square error, as well as by some other Lp error, is almost minimax in both cases.

Theorem  2  Consider the model  (7) and Assumptions  1 and  2. Let p > 1 , � ≥ p , 
and s ≥ 1∕2 . Then, for any funcion f ∈ Bs,�,∞(�) , the risk of the estimator f̂  , given 
by (9) is given by

This theorem in fact is a restatement of Theorem  2 in  Kerkyacharian and Pic-
ard (2004) and its proof follows exactly the same steps of the original theorem, but 
using our Propostion 2 and our Theorem 1, under Assumptions 1 and 2.

The order of decay of the risk is proven to be almost minimax when Xi = i∕n 
and the errors are IID Donoho and Johnstone (1994, 1995). When p = 2 , this rate 
of decay is the same obtained by Chesneau (2013) in a one-dimensional case and 
regular Besov spaces. Results in Baraud et al. (2001) are minimax but they consider 
�-mixing dependence and a penalized least-squares estimator, being different from 
our framework. This rate of decay is also found by Chesneau (2014, Sect. 4.3), with 
the clear advantage that both the error and the predictor may be �-mixing and the 
error term may follow distributions other than the Gaussian. However, the density 
of the predictor may not vanish, i.e., there must be no parts of the domain of the 
unknown function with very few observations. Similar rates are found by Li (2016), 
and Krebs (2018). However, while these papers show results only for the expected 
mean integrated square error, we allow a wider range of risk functions.

Theorems 1 and 2 state that it does not matter if either {Xi, i ∈ ℤ} is strong mix-
ing and {�i, i ∈ ℤ} is IID  or vice-versa, the maxiset and risk of the estimator f̂  
remain the same.

Max

�
f̂ , Lp,

�
log n

n

�(p−q)∕2
�
(∞)

= lq,∞(𝜈) ∩

⎧
⎪⎨⎪⎩
f (x) =

∞�
j=−1

2j−1�
k=0

𝛽j,k𝜓j,k(G(x)) ∶

sup
l≥0

������

∞�
j=−1

2j−1�
k=0

𝛽j,k𝜓j,k(G(x))

������

p

p

2l(p−q) < ∞

⎫
⎪⎬⎪⎭
,

E‖f − f̂‖p
p
= E

�
∫

b

a

�f (x) − f̂ (x)�p dx
�

= O

��
log n

n

�sp∕(1+2s)
�
.
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5 � Simulations

In this section we perform some simulations in order to evaluate the effect of the 
sample size n, the level of noise and choice of the wavelet on the estimators. We 
have used the package Wavethresh Nason (2016) in environment R R Core Team 
(2018).

We simulated data (X1, Y1),… , (Xn, Yn) , for sample sizes n = 128 , 256, 512, 1024 
and 2048, from model (7), in the following two situations: 

1.	 when the error {�i, i = 1,… , n} is stationary strong mixing and the predictor 
{Xi, i = 1,… , n} is IID;

2.	 when the predictor {Xi, i = 1,… , n} is stationary strong mixing and the error 
{�i, i = 1,… , n} is IID.

In the first situation, we simulated:

for � = 0.2 and 0.7, where Xi had a known density g, ut had standard normal density, 
and both variables were IID and independent from each other, for i, t = 1,… , n.

In the second situation, we simulated:

for � = 0.2 and 0.7, where ui had a known density h (implying a known density g 
for Xi ), �t had standard normal density, and both variables were IID and independent 
from each other, for i, t = 1,… , n.

We considered the following three functions f(x), 0 ≤ x ≤ 1 , representing differ-
ent degrees of variability. 

1.	 Sine: f (x) = 0.2 + 0.6 sin(�x).
2.	 Heavisine: f (x) = 4 sin(4�x) − sgn (x − 0.3) − sgn (0.72 − x).
3.	 Doppler: f (x) =

√
x(1 − x) sin (2�(1 + �)∕(x + �)) , with � = 0.05.

The last two functions were studied by  Donoho and Johnstone (1994), but we 
rescaled them so that 0.2 ≤ f (x) ≤ 0.8 , for every 0 ≤ x ≤ 1 , in the simulations.

We used the following two densities h(z), both for 0 ≤ z ≤ b′ . 

1.	 Uniform: h(z) = 1∕C1.
2.	 Sine: h(z) = (1 + 0.2 sin(4�z))∕C2.

Examples of these functions sampled at n = 2048 points from an stationary �-mix-
ing predictor with autocorrelation coefficient equal to 0.2, SNR = 7 and Sine density, 
estimated using the Symmlet9 wavelets are shown in Fig. 1.

In the first situation, we used b� = C1 = C2 = 1 and g ≡ h . By Theorems  1 
and 2 in Andrews (1983), specially its Remark 3, the error {�i, i ∈ ℤ} is a station-
ary strong mixing process with an appropriate coefficient, satisfying Assumption 1. 

(13)Yi = f (Xi) + �iand�i = ��i−1 + ui,

(14)Yi = f (Xi) + �i and Xi = �Xi−1 + ui,



1218	 L. M. Gómez et al.

1 3

It is straightforward to see that Assumption  2, as well as the other conditions of 
model (7), are met for a = 0 and b = 1.

In the second situation, when � = 0.2 , we used b� = C1 = 0.8 and 
C2 = 0.8287914 ; when � = 0.7 , we used b� = C1 = 0.3 and C2 = 0.3287914 . Note 
that, since Xi =

∑∞

j=0
�jui−j and 0 ≤ ui ≤ b′ , the process {Xi, i ∈ ℤ} is stationary and 

bounded in the interval [a, b], where a = 0 and b = 1 . By the same previous theo-
rems in Andrews (1983), this process is (stationary) strong mixing with an appro-
priate coefficient, satisfying Assumption  1. Since the density g is different from 
the density h, we argue that Assumption 2 is met as follows. Each variable Xi is an 
infinite sum of independent but not identically distributed random variables �jui−j . 
When ui has an uniform density h, its mean and variance are finite, and its third cen-
tral moment is zero, such that the Lyapunov condition is met for Xi . By the respec-
tive Central Limit Theorem, Xi has an asymptotic normal distribution. This distribu-
tion G, with density g, is asymptotically continuous, strictly monotonic, positive and 
bounded in [0, 1], which is sufficient to satisfy Assumption 2.

In this second situation, the samples Xi were obtained as follows: from x0 = 0 we 
randomly generated a value ui , from the known density h, by the acceptance-rejec-
tion method. Then, we set xi = �xi−1 + ui , for i = 1, 2,… , 3000 . Afterwards, the 
last n values were chosen, n = 128 , 256, 512, 1024 and 2048. The respective values 
yi were computed without the random error. Finally the random errors were added 
to the each respective value yi . In the first situation, the samples were similarly 
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0.5
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X

f(X
)
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Fig. 1   Examples for the simulation study of the Heavisine, Doppler and Sine functions, respectively from 
the top, sampled at n = 2048 points following a Sine density, and stationary strong mixing predictor 
given by an autocorrelation coefficient equal to 0.2, using the Symmlet9 wavelets, and signal-to-noise 
ratio SNR = 7 . Dotted line is the true noiseless function. Points are the estimated values from noisy data 
at predictor values



1219

1 3

Nonparametric regression with warped wavelets and strong…

obtained, but with the obvious modifications. Note that the design points and the 
errors are drawn anew in each simulation run.

For the estimator (9), we used the Daubechies’ least-asymmetric wavelets with 
nine vanishing moments (Symmlet9) and coiflets with three vanishing moments 
(Coiflet3), with symmetric boundary conditions in both situations, and empirical 
distribution Ĝ(x) . As in Chesneau and Willer (2007), we chose the constant � = 1 
and considered two levels of signal-to-noise ratio (SNR), SNR = 1 and SNR = 7 , 
where

and f̄ = n−1
∑n

i=1
f (xi) . In the estimator (9), thresholds were applied for levels j ≥ 0 , 

and J1 was the greatest integer such that 2J1 ≤ √
n∕ log n . In practice, SNR is almost 

not in control and our target here is to understand the behavior of the estimator under 
situations with low and high noise, as found in applications, and check if the main 
expected theoretical results still hold.

The quality of the estimator was assessed by the root mean square error (RMSE), 
which can be seen as an estimator of the square root of the L2-risk, computed as the 
average value of 200 respective replications of

5.1 � Simulations results

The main conclusion from our simulation study, which we detail in this section, is 
that the results are very similar in both situations: (i) when the error {�i, i = 1,… , n} 
is stationary strong mixing and the predictor {Xi, i = 1,… , n} is IID; (ii) when the 
predictor {Xi, i = 1,… , n} is stationary strong mixing and the error {�i, i = 1,… , n} 
is IID.

Using the root mean square error (RMSE), the simulations corroborate our main 
theorem.

The main results when the error {�i, i = 1,… , n} is stationary strong mixing and 
the predictor {Xi, i = 1,… , n} is IID, are presented in the following Table 1.

Looking at Table 1, we see that the root mean square error (RMSE) decreases as 
the sample size increases, as predicted by the theory presented. As usual, results are 
better when the signal to noise ratio (SNR) is high than when SNR is low. Results 
for Symmlet9 are similar to those for Coiflet3 independent of the pair function-den-
sity and the SNR value.

In the other situation, when the predictor {Xi, i = 1,… , n} is stationary strong 
mixing and the error {�i, i = 1,… , n} is IID, the results are presented in the follow-
ing Table 2.

SNR =
(n − 1)−1

∑n

i=1
(f (xi) − f̄ )2

𝜎2
,

√√√√1

n

n∑
i=1

(
f (xi) − f̂ (xi)

)2
.
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Looking at Table 2, we see that the root mean square error (RMSE) decreases 
as the sample size increases, as predicted by the theory presented. As usual, 
results are better when the signal to noise ratio (SNR) is high than when SNR 

Table 1   Average of 200 root 
mean square error (RMSE) 
for the simulation study, with 
Y
i
= f (X

i
) + �

i
 , �

i
= 0.7�

i−1 + u
i
 , 

i.e., �
i
 is stationary �-mixing, 

for each pair function-density, 
sample size n, signal-to-noise 
ratio (SNR) and wavelets 
Symmlet9 and Coiflet3

n SNR = 1 SNR = 7

Symmlet9 Coiflet3 Symmlet9 Coiflet3

Sine-Uniform
 128 0.0749 0.0701 0.0340 0.0340
 256 0.0530 0.0490 0.0243 0.0223
 512 0.0428 0.0407 0.0174 0.0160
 1024 0.0316 0.0298 0.0126 0.0116
 2048 0.0275 0.0268 0.0103 0.0099

Sine-Sine
 128 0.0732 0.0693 0.0337 0.0337
 256 0.0535 0.0490 0.0244 0.0223
 512 0.0444 0.0419 0.0171 0.0163
 1024 0.0311 0.0295 0.0121 0.0114
 2048 0.0275 0.0266 0.0101 0.0099

Heavisine-Uniform
 128 0.0783 0.0773 0.0434 0.0468
 256 0.0586 0.0552 0.0365 0.0342
 512 0.0446 0.0425 0.0232 0.0226
 1024 0.0342 0.0323 0.0194 0.0185
 2048 0.0284 0.0278 0.0143 0.0140

Heavisine-Sine
 128 0.0773 0.0768 0.0438 0.0492
 256 0.0605 0.0582 0.0392 0.0384
 512 0.0454 0.0430 0.0229 0.0224
 1024 0.0331 0.0320 0.0186 0.0185
 2048 0.0280 0.0272 0.0140 0.0138

Doppler-Uniform
 128 0.1342 0.1304 0.1172 0.1167
 256 0.1217 0.1260 0.1119 0.1194
 512 0.0918 0.0936 0.0829 0.0858
 1024 0.0858 0.0915 0.0812 0.0886
 2048 0.0629 0.0645 0.0574 0.0604

Doppler-Sine
 128 0.1331 0.1303 0.1176 0.1176
 256 0.1224 0.1241 0.1137 0.1170
 512 0.1023 0.0987 0.0935 0.0910
 1024 0.0978 0.0932 0.0940 0.0894
 2048 0.0643 0.0654 0.0594 0.0620
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is low. Results for Symmlet9 are similar to those for Coiflet3 independent of the 
pair function-density and the SNR value.

Similar results are shown in the Supplementary Material, for the case when the 
autocorrelation is weaker than in the previous simulations.

Table 2   Average of 200 
root mean square error 
(RMSE) for the simulation 
study, with Y

i
= f (X

i
) + �

i
 , 

X
i
= 0.7X

i−1 + u
i
 , i.e., X

i
 is 

stationary �-mixing, for each 
pair function-density, sample 
size n, signal-to-noise ratio 
(SNR) and wavelets Symmlet9 
and Coiflet3

n SNR = 1 SNR = 7

Symmlet9 Coiflet3 Symmlet9 Coiflet3

Sine-Uniform
 128 0.0235 0.0238 0.0186 0.0205
 256 0.0172 0.0168 0.0138 0.0137
 512 0.0128 0.0123 0.0091 0.0089
 1024 0.0095 0.0104 0.0063 0.0079
 2048 0.0078 0.0081 0.0043 0.0052

Sine-Sine
 128 0.0225 0.0232 0.0180 0.0197
 256 0.0166 0.0169 0.0131 0.0136
 512 0.0120 0.0119 0.0090 0.0089
 1024 0.0091 0.0099 0.0062 0.0079
 2048 0.0074 0.0079 0.0042 0.0051

Heavisine-Uniform
 128 0.0658 0.0656 0.0362 0.0429
 256 0.0510 0.0461 0.0345 0.0301
 512 0.0408 0.0387 0.0219 0.0218
 1024 0.0304 0.0298 0.0179 0.0181
 2048 0.0271 0.0269 0.0149 0.0157

Heavisine-Sine
 128 0.0641 0.0642 0.0359 0.0429
 256 0.0511 0.0460 0.0327 0.0294
 512 0.0401 0.0380 0.0213 0.0202
 1024 0.0298 0.0285 0.0167 0.0168
 2048 0.0263 0.0266 0.0136 0.0154

Doppler-Uniform
 128 0.0961 0.0928 0.0689 0.0700
 256 0.0789 0.0754 0.0677 0.0625
 512 0.0593 0.0591 0.0429 0.0462
 1024 0.0505 0.0557 0.0419 0.0484
 2048 0.0422 0.0401 0.0327 0.0306

Doppler-Sine
 128 0.0945 0.0926 0.0682 0.0704
 256 0.0802 0.0753 0.0654 0.0628
 512 0.0588 0.0588 0.0439 0.0452
 1024 0.0506 0.0542 0.0405 0.0469
 2048 0.0414 0.0407 0.0325 0.0313
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In both cases, and both situations, independent of the pair function-density, the 
estimates of the square root of the L2-risk are very close and the biggest differ-
ence are driven by the sample size and the SNR.

Results other than the average, but still using the root mean square error 
(RMSE), are not much different from those previously reported. An example, 
for the Heavisine function sampled at points following a Sine density, and sta-
tionary strong mixing conditions given by an autocorrelation coefficient equal to 
0.7, using the Symmlet9 wavelets, can be seen at Fig.  2. Similar to the previ-
ous results, we can see that the box-plots of root mean square errors (RMSE) 
get smaller as the sample size increases, and are a little narrower when SNR is 
high. We can also see that this behavior happens for both situations: when either 
the predictor or the error is stationary strong mixing. In the example shown, the 
results when the error is stationary strong mixing are a little better than when the 
predictor is stationary strong mixing. In other cases, the opposite can be true.

Comparing the results of the simulation studies, we conclude that they 
are qualitatively the same. When either the predictor or the error stationary is 
strong mixing, the root mean square error (RMSE) decreases as the sample size 
increases, as predicted by the theory.

a1 a2 b1 b2 c1 c2 d1 d2 e1 e2

0.0
2

0.0
8

a1 a2 b1 b2 c1 c2 d1 d2 e1 e2

0.0
1

0.0
4

0.0
7

Fig. 2   Box-plots of 200 replications of the root mean square error (RMSE) for the simulation study of a 
Heavisine function sampled at points following a Sine density, and stationary strong mixing conditions 
given by an autocorrelation coefficient equal to 0.7, using the Symmlet9 wavelets, for two levels of sig-
nal-to-noise ratio (top row: SNR = 1 ; bottom row: SNR = 7 ) and five sample sizes (n: a = 128 , b = 256 , 
c = 512 , d = 1024 , e = 2048 ) when (1) predictor is stationary strong mixing and the error is IID; (2) 
error is stationary strong mixing and the predictor is IID
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6 � Application

A cryptocurrency is a digital cash that prevents double-spending by using a cryp-
tographic ledger instead of a trusted institution like a bank or a financial institu-
tion. The first cryptocurrency invented was the Bitcoin Nakamoto (2008), but the 
website coinmarketcap.com records around 1500 cryptocurrencies traded 
on 10 thousand markets around the world. Unlike the usual foreign exchange mar-
ket, trades occur continuously every day through the Internet using webpages or 
mobile applications, with very low cost and accessible for small investors. Then, 
cryptocurrencies are priced by traders like any other risky financial asset.

The Capital Asset Pricing Model (CAPM) is a financial pricing model inde-
pendently proposed by Treynor (1961), Treynor (1962), Sharpe (1964),  Lintner 
(1965), Mossin (1966), that describes a pricing relation for all risky assets. An 
introduction to the model can be found, for instance, in Van der Wijst (2013).

For the fitting of the CAPM we would need market returns such as those from 
a market index like CRIX  Härdle and Trimborn (2015); Trimborn and Härdle 
(2016). However, one could argue that CRIX is very young and heavily weighted 
towards the Bitcoin.

A more general and empirically better model can be achieved through the 
Arbitrage Pricing Theory (APT) that, coming from a very different background 
and resting on different assumptions  Ross (1976), postulate multifactor mod-
els. The price of this generality is paid in terms of uncertainty because, while 
CAPM’s only common factor is the expected return on the market portfolio, APT 
does not specify what or how many factors to use. An intermediate treatment of 
these topics can be found, for instance, in Danthine and Donaldson (2014).

The fitting of multifactor models to cryptocurrencies is difficult because the 
driving factors are unknown for most of the currencies. Factors related to the 
market of cryptocurrencies seem to matter, while usual financial market fac-
tors like SP500 index  Sovbetov (2018), traditional assets  Lee et  al. (2018), or 
foreign exchange currencies  Baumöhl (2019) have weak or no correlation with 
cryptocurrencies.

Despite this weak correlation, we tried to investigate the presence of any non-
linear patter. We then obtain one factor from the first principal component of the 
returns of gold and the exchange rates between the United States Dollar and the 
Euro, the Japanese Yen and the British Pound. We call this factor the principal 
market factor (Prin 1).

Additionally, we consider a general nonlinear model that can be written as

where the function f can be known or unknown, and Ri,t and Rm,t are the respective 
returns of the asset i and of the principal market factor, at time t. The error term �i,t 
has zero mean and determines the idiosyncratic (diversifiable, unsystematic) risk of 
asset i.

When f is unknown, we may estimate it from nonparametric tech-
niques as done by  Péter Erdös and Ormos (2011) and  Gómez-González and 

(15)Ri,t = f (Rm,t) + �i,t,
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Sanabria-Buenaventura (2014), for instance. This may be specially true with the 
recent advent of cryptocurrencies.

Thus we fit models (15) to a set of cryptocurrecies, with unknown f, as a bench-
mark model that possibly give insights for some nonlinear parametric models.

In order to build Prin 1, we used data from the Federal Reserve Economic Data 
(FRED), obtained through the website https://​fred.​stlou​isfed.​org/​series/​CODE, by 
replacing CODE by GOLDAMGBD228NLBM, DEXUSEU, DEXJPUS and DEXUSUK 
for the series of gold, Euro, the Japanese Yen and the British Pound, respectively.

We got data of log returns for six cryptocurrencies as listed in Table 3.
Log returns were calculated from daily closing prices, from the respective time 

periods at Table  3, sampled at each seven days, so that we had six cryptocurren-
cies with 64 7-days log returns. Three other cryptocurrencies are similar to those six 
and were not selected for this study. The other 11 cryptocurrencies were not studied 
because their sample sizes were smaller than 64 points.

For each cryptocurrency, we calculated 7-days log returns of Prin 1 during the 
respective time period. The behavior of Prin 1 log returns differ accordingly to their 
periods. Plots of the log returns time series are shown in Fig.  3 for each studied 
cryptocurrency together with the correspondent Prin 1 log returns.

Dependences in the time series of log returns were considered when autocorrelo-
grams and partial autocorrelograms showed lags different from zero at the 5% level 
of significance.

Correspondent Prin 1 log returns of Bitcoin, Ethereum, Ripple and NEM have 
autocorrelograms with only the first lag different from zero at the 5% level of signifi-
cance and the residuals of the fitted functions are white noise. In the case of Stellar, 
the correspondent Prin 1 log returns are white noise but the autocorrelogram of the 
residuals of the fitted function show a 13th significant lag. Finally, for Thether, the 
correspondent Prin  1 log returns and the residuals of the fitted function are both 
white noise.

Then, for all these cases we considered that Assumption  1 was satisfied, with 
Thether acting as an special case.

Estimates of the functions f, using model (15) for each of the six cryptocurren-
cies’ log return (Y) as a function of CRIX log return (X), are shown in Fig. 4.

Table 3   Six cryptocurrencies and their approximate market capitalization in the end of March 2018 in 
billions of United States dollars

Sample size n corresponds to 7-days log returns during the respective period, in year-month-day format

Number Symbol Name Market Cap n Period

1 BTC Bitcoin 126.6 64 2016-06-29−2018-03-09
2 ETH Ethereum 41.0 64 2016-07-19−2018-03-28
3 XRP Ripple 21.9 64 2016-07-19−2018-03-28
8 XLM Stellar 4.4 64 2016-07-13−2018-03-22
14 XEM NEM 2.4 64 2016-07-19−2018-03-28
15 USDT Tether 2.3 64 2016-07-13−2018-03-22
Total 142.6

https://fred.stlouisfed.org/series/CODE
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Fig. 3   Time series of 7-days log returns of Prin 1 and six studied cryptocurrencies. They are plotted in 
pairs, over the matching period of Prin 1 and each studied cryptocurrency
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Fig. 4   Estimates of the functions f (full curves), using model (15) for the six cryptocurrencies log return 
(Y) as a function of Prin 1 log return (X). Pairs of observations X and Y are plotted as gray circles
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Estimation was done using the package Wavethresh Nason (2016) in environment 
R R Core Team (2018). We considered Daubechies’ least asymmetric orthonormal 
compactly supported wavelets with nine vanishing moments, symmetric boundary 
conditions, and empirical distribution Ĝ(x) . The estimator (9) was exactly the same 
used in the simulations. Residuals from model fitting are clearly not normal by Sha-
piro-Wilk tests. Normal quantile-quantile plots show the financial stylized fact of 
heavy tails.

In Fig. 4, we may discard the fitted functions at their extremities and consider only 
the part where data are not sparse, roughly corresponding to the range [−0.03, 0.02].

In this range, returns of Bitcoin and Ethereum are weak, but present some small 
nonlinear behaviors as a function of the returns of Prin 1. However, the log returns 
of NEM are pretty linear of those of Prin 1. Finally, log returns of Ripple, Stellar 
and Thether are not correlated with the returns of Prin 1.

7 � Conclusion

The interest of this paper was to obtain convergence rates for the risk of estima-
tors in nonparametric regression models, when either the error or the predictor is a 
stationary �-mixing process. Since the design is irregular, warped wavelets Kerky-
acharian and Picard (2004) are used instead of usual wavelets, which are appropriate 
for equally spaced designs. Results were obtained under several assumptions on the 
process of the error and of the predictor, the regularity of the function f to be esti-
mated and on the density of the design. The errors were assumed normal, since our 
theoretical results rely on some specific properties. However, we believe the results 
may hold for a wider class of densities by using a more general assumption like 
Assumption H1 in  Chesneau (2013). An apparently theoretically harder improve-
ment would be to consider both the error and the predictor stationary strong mixing. 
We leave these improvements for future research.

Through simulations we assessed the behavior of the proposed estimators for 
finite samples. The study shows that we can expect to obtain good results in practice 
even for a moderate sample size.

When the procedures using warped wavelets were applied to real data, we 
obtained good results, as expected from the simulation study. In the application, we 
used the results of these paper to apply the same estimation procedure to models that 
show stationary strong mixing conditions sometimes in the error term and, other 
times, in the predictor component. The warped wavelet estimators seem good at the 
non sparse range of the data and show some nonlinearities for some cases.

Supplementary Information  The online version of this article (https://​doi.​org/​10.​1007/​s10463-​021-​
00789-0) contains supplementary material, which is available to authorized users.
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