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Abstract
Wasserstein geometry and information geometry are two important structures 
to be introduced in a manifold of probability distributions. Wasserstein geometry 
is defined by using the transportation cost between two distributions, so it reflects 
the metric of the base manifold on which the distributions are defined. Informa-
tion geometry is defined to be invariant under reversible transformations of the base 
space. Both have their own merits for applications. In this study, we analyze statisti-
cal inference based on the Wasserstein geometry in the case that the base space is 
one-dimensional. By using the location-scale model, we further derive the W-esti-
mator that explicitly minimizes the transportation cost from the empirical distri-
bution to a statistical model and study its asymptotic behaviors. We show that the 
W-estimator is consistent and explicitly give its asymptotic distribution by using the 
functional delta method. The W-estimator is Fisher efficient in the Gaussian case.

Keywords  Information geometry · Location-scale model · Optimal transport · 
Wasserstein distance

1  Introduction

Wasserstein geometry defines a divergence between two probability distributions 
p(x) and q(x), x ∈ X by using the cost of transportation from p to q. Hence, it reflects 
the metric of the underlying manifold X on which the probability distributions are 
defined. Information geometry, on the hand, studies an invariant structures wherein 
the geometry does not change under transformations of X which may change the dis-
tance within X. So information geometry is constructed independently of the metric 
of X.

Both geometries have their own histories (see, e.g., Villani 2003, 2009; Amari 
2016). Information geometry has been successful in elucidating statistical inference, 
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where the Fisher information metric plays a fundamental role. It has successfully 
been applied to, not only statistics, but also machine learning, signal processing, 
systems theory, physics and many other fields (Amari 2016). Wasserstein geometry 
has been a useful tool in geometry, where the Ricci flow has played an important 
role (Villani 2009; Li and Montúfar 2020). Recently, it has found a widened scope 
of applications in computer vision, deep learning, etc. (e.g., Fronger et  al. 2015; 
Arjovsky et  al. 2017; Montavon et  al. 2015; Peyré and Cuturi 2019). There have 
been attempts to connect the two geometries (see Amari et  al. 2018, 2019; Wang 
and Li 2020 for examples), and Li and Zhao (2019) has proposed a unified theory 
connecting them.

It is natural to consider statistical inference from the Wasserstein geometry point 
of view (Li and Zhao 2019) and compare its results with information-geometrical 
inference based on the likelihood. The present article studies the statistical infer-
ence based on the Wasserstein geometry from a point of view different from that of 
Li and Zhao (2019). Given a number of independent observations from a probabil-
ity distribution belonging to a statistical model with a finite number of parameters, 
we define the W-estimator that minimizes the transportation cost from the empiri-
cal distribution p̂(x) derived from observed data to the statistical model. This is the 
approach taken in many studies (see, e.g., Bernton et al. 2019; Bassetti et al. 2006). 
In contrast, the information geometry estimator is the one that minimizes the Kull-
back–Leibler divergence from the empirical distribution to the model, and it is the 
maximum likelihood estimator. Note that Matsuda and Strawderman (2021) investi-
gated predictive density estimation under the Wasserstein loss.

We use a one-dimensional (1D) base space X = R
1 and define the transportation 

cost equal to the square of the Euclidean distance between two points in R1 . We give 
an equation for the W-estimator �̂ for a statistical model S = {p(x,�)} , where p(x,�) 
is the probability density of x parametrized by a vector parameter � . We then focus 
on the location-scale model to obtain explicit solutions of the W-estimator. We ana-
lyze its behavior, proving that it is consistent and furthermore derives its asymptotic 
distribution. The W-estimator is not Fisher efficient except for the Gaussian case, but 
it minimizes the W-divergence, which is the transportation cost between the empiri-
cal distribution and the model. We may say that it is W-efficient in this sense.

The present W-estimator is different from the estimator of Li and Zhao (2019), 
which is based on the Wasserstein score function. While their fundamental theory 
is a new paradigm connecting information geometry and Wasserstein geometry, 
their estimator does not minimize the W-divergence from the empirical one to the 
model. It is an interesting problem to compare these two frameworks of Wasserstein 
statistics.

The present paper is organized as follows. In Sect. 2, we introduce the W-estimator 
for a general parametric statistical model in the 1D-case. We show that the W-estimator 
uses only a linear function of the observations. In Sect. 3, we then focus on the location-
scale model. We give an explicit form of the W-estimator. In Sect. 4, we analyze the 
asymptotic behavior of the W-estimator, proving that it is Fisher efficient in the Gauss-
ian case. We study the geometry of the location-scale model in Sect. 5, showing that it 
is Euclidean (Li and Zhao 2019), although it is a curved submanifold in the function 
space of W-geometry (Takatsu 2011). Finally, we prove that the maximum likelihood 
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estimator asymptotically minimizes the transportation cost from the true distribution to 
the estimated one.

2 � W‑estimator

First, we show the optimal transportation cost of sending p(x) to q(x), x ∈ R
1 when the 

transportation cost from x to y is (x − y)2 , where x, y ∈ R
1 . Let P(x) and Q(x) be the 

cumulative distribution functions of p and q, respectively, defined by

Then, it is known (Santambrogio 2015; Peyré and Cuturi 2019) that the optimal 
transportation plan is to send mass of p(x) at x to x′ in a way that satisfies

See Fig. 1. Thus, the total cost sending p to q is

where P−1 and Q−1 are the inverse functions of P and Q, respectively.
We consider a regular statistical model

parametrized by a vector parameter � , where p(x,�) is a probability density function 
of a random variable x ∈ R

1 with respect to the Lebesgue measure of R1 . Let

P(x) = ∫
x

−∞

p(y)dy, Q(x) = ∫
x

−∞

q(y)dy.

P(x) = Q
(
x�
)
.

(1)C(p, q) = ∫
1

0

|||
P−1(u) − Q−1(u)

|||

2

du,

S = {p(x,�)},

D =
{
x1,… , xn

}

( )Q x

( )P x

x

1

u

Fig. 1   Optimal transportation plan from p to q 
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be n independent samples from p(x,�) . We denote the empirical distribution by

where � is the Dirac delta function. We rearrange x1,⋯ , xn in the increasing order,

which are order statistics.
The optimal transportation plan from p̂(x) to p(x,�) is explicitly solved when x is 

one-dimensional, x ∈ R
1 . The optimal plan is to transport mass at x to those points 

x’ satisfying

where P̂(x) and P(x,�) are the (right-continuous) cumulative distribution functions 
of p̂(x) and p(x,�) , respectively:

and P̂(x−) = limy→x−0 P̂(y) . The total cost C of optimally transporting p̂(x) to p(x,�) 
is given by

where P̂−1 and P−1 are inverse functions of P̂ and P, respectively. Note that

Let z0(�), z1(�),… , zn(�) be the points of the equi-probability partition of the distri-
bution p(x,�) such that

where z0(�) = −∞ and zn(�) = ∞ . In terms of the cumulative distribution, zi(�) can 
be written as

and

See Fig. 2.
The optimal transportation cost is rewritten as

p̂(x) =
1

n

∑

i

𝛿
(
x − xi

)
,

x(1) ≤ x(2) ≤ ⋯ ≤ x(n),

P̂(x−) ≤ P(x�,�) ≤ P̂(x),

P̂(x) = ∫
x

−∞

p̂(y)dy, P(x,�) = ∫
x

−∞

p(y,�)dy,

C(�) = ∫
1

0

|||
P̂−1(u) − P−1(u,�)

|||

2

du,

P̂−1(u) = inf{y ∣ P(y) ≥ u}.

(2)∫
zi(�)

zi−1(�)

p(x,�)dx =
1

n
,

P
(
zi(�),�

)
=

i

n

zi(�) = P−1
(
i

n
,�

)
.
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where we have used (2) and put

By using the mean and variance of p(x,�),

C(�) =
∑

i
∫

zi(�)

zi−1(�)

(x(i) − y)2p(y,�)dy =
1

n

∑

i

x2
(i)
− 2

∑

i

ki(�)x(i) + S(�),

(3)

ki(�) = ∫
zi(�)

zi−1(�)

yp(y,�)dy,

S(�) =
∑

i
∫

zi(�)

zi−1(�)

y2p(y,�)dy = ∫
∞

−∞

y2p(y,�)dy.

�(�) = ∫
∞

−∞

yp(y,�)dy,

�2(�) = ∫
∞

−∞

y2p(y,�)dy − �(�)2,

x

( )P x

iu
n

( )p x

x
1z0z 2z iz nz

u

Fig. 2   Equi-partition points z0, z1,… , z
n
 of p(x)
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we have

The W-estimator �̂ is the minimizer of C(�) . Differentiating C(�) with respect to � 
and putting it equal to 0, we obtain the estimating equation as follows.

Theorem 1  The W-estimator �̂ satisfies

It is interesting to see that the estimating equation is linear in n observations 
x(1),… , x(n) for any statistical model. This is quite different from the maximum 
likelihood estimator or Bayes estimator.

Here, we will give a rough sketch showing that the W-estimator is consistent; 
that is, it converges to the true �0 as n tends to infinity (see Bassetti et al. 2006). 
More detailed discussions are given for the location-scale model in the next sec-
tion. As n tends to infinity, the order statistic x(i) converges to the ith partition 
point zi(�0) , when the true parameter is �0 . From (3), we see that

as n → ∞ , so we have

Moreover, as n tends to infinity,

Therefore, � = �0 is the solution of (4), showing the consistency of the estimator.
Remark    Bassetti et al. (2006) investigated existence, measurability and con-

sistency of the W-estimator for general models and Bernton et al. (2019) extended 
this result to mis-specified models. Montavon et al. (2015) studied W-estimators 
for Boltzmann machines. In this study, we focus on the one-dimensional models, 
for which Theorem 1 gives a closed-form solution of the W-estimator.

3 � W‑estimator in location‑scale model

Now, we focus on location-scale models. Let f(z) be a standard probability den-
sity function, satisfying

S(�) = �(�)2 + �2(�).

(4)
�

��

∑

i

ki(�)x(i) =
1

2

�

��
S(�).

ki(�) ≈
1

n
zi(�)

∑

i

ki(�)x(i) ≈
1

n

∑

i

zi(�)zi(�0).

S(�) = ∫
∞

−∞

z2p(z,�)dz ≈
1

n

∑

i

z2
i
(�).
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that is, its mean is 0 and the variance is 1. The location-scale model p(x,�) is writ-
ten as

where � = (�, �) is a parameter for specifying the distribution.
We define the equi-probability partition points zi for the standard f(z) as

where F is the cumulative distribution function

We use the following transformation of the location and scale,

The equi-probability partition points yi = yi(�) of p(x,�) are given by

The cost of the optimal transport from the empirical distribution p̂(x) to p(x,�) is 
then written as

By differentiating (6), we obtain

∫
∞

−∞

f (z)dz = 1,

∫
∞

−∞

zf (z)dz = 0,

∫
∞

−∞

z2f (z)dz = 1,

(5)p(x,�) =
1

�
f
(x − �

�

)
,

zi = F−1
(
i

n

)
,

F(z) = ∫
z

−∞

f (x)dx.

z =
x − �

�
,

x = �z + �.

yi = �zi + �.

(6)

C(�, �) =
∑

i
∫

yi

yi−1

(
x(i) − x

)2
p(x,�, �)dx

= �2 + �2 +
1

n

∑

i

x2
(i)
− 2

∑

i

x(i) ∫
zi

zi−1

(�z + �)f (z)dz.

1

2

�

��
C = � −

1

n

∑

i

x(i),

1

2

�

��
C = � −

∑

i

kix(i),
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where

which does not depend on � or � and depends only on the shape of f. By putting the 
derivatives equal to 0, we obtain the following theorem.

Theorem 2  The W-estimator of a location-scale model is given by

Remark   The W-estimator of the location parameter � is the arithmetic mean of 
the observed data irrespective of the form of f. The W-estimator of the scale param-
eter � is also a linear function of the observed data x(1),… , x(n) , but it depends on f 
through ki.

4 � Asymptotic distribution of W‑estimator

Here, we derive the asymptotic distribution of the W-estimator in location-scale 
models. Our derivation is based on the fact that the W-estimator has the form of 
L-statistics (van der Vaart 1998), which is a linear combination of order statistics.

Theorem 3  The asymptotic distribution of the W-estimator ( 𝜇̂, 𝜎̂) in (8) (9) is

where

are the fourth and third moments of f(z), respectively.

Proof  Without loss of generality, we focus on the case � = 0 and � = 1 . Let

where F is the distribution function of f. Note that �(F) = (0, 1).
Then, the W-estimator in (8) (9) is expressed as

(7)ki = ∫
zi

zi−1

zf (z)dz,

(8)𝜇̂ =
1

n

∑

i

x(i),

(9)𝜎̂ =
∑

i

kix(i).

(10)
√
n

�
𝜇̂ − 𝜇

𝜎̂ − 𝜎

�

⇒ N

��
0

0

�

,

�
𝜎2 1

2
m3𝜎

2

1

2
m3𝜎

2 1

4
(m4 − 1)𝜎2

��

,

m4 = ∫
∞

−∞

z4f (z)dz, m3 = ∫
∞

−∞

z3f (z)dz,

�(F̃) =

(

∫
1

0

F̃−1(u)du,∫
1

0

F−1(u)F̃−1(u)du

)

,
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where Fn is the empirical distribution of x1,… , xn , because

To derive the asymptotic distribution of �(Fn) , we use the functional delta method 
(van der Vaart 1998). From Donsker’s theorem (Theorem  19.3 of van der Vaart 
1998),

where � is the standard Brownian bridge. Namely, �F is the mean zero Gaussian 
process on (−∞,∞) with covariance given by

where s ∧ t = min(s, t) . Let u = F(x) and xt = (F + tH)−1(u) for sufficiently small t. 
Then, from x0 = x,

which yields

Thus, by putting u = F(x),

Similarly,

Therefore, � is Hadamard differentiable with derivative given by

Thus, from Theorem 20.8 of van der Vaart (1998),

(𝜇̂, 𝜎̂) = 𝜙(Fn),

ki = ∫
i∕n

(i−1)∕n

F−1(u)du.

√
n(Fn − F) ⇒ �F = �◦F,

E[�F(x)�F(y)] = F(x) ∧ F(y) − F(x)F(y),

u = F(xt) + tH(xt) = F(x) + f (x)(xt − x) + tH(x) + O(t2),

xt = x − t
H(x)

f (x)
+ O(t2).

∫
1

0

(F + tH)−1(u)du = ∫
1

0

(

F−1(u) − t
H(F−1(u))

f (F−1(u))

)

du + O(t2)

= ∫
∞

−∞

xf (x)dx − t ∫
∞

−∞

H(x)dx + O(t2).

∫
1

0

F−1(u)(F + tH)−1(u)du = ∫
∞

−∞

x2f (x)dx − t ∫
∞

−∞

xH(x)dx + O(t2).

��
F
(H) = lim

t→0

�(F + tH) − �(F)

t
=

(

−∫
∞

−∞

H(x)dx,−∫
∞

−∞

xH(x)dx

)

.

√
n(�(Fn) − �(F)) ⇒ ��

F
(�F) ∼ N(0,Σ),
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where

By using

and the symmetry of the integrand of Σ11 , we have

Therefore, letting X and Y be independent samples from f(z),

A similar calculation yields

Σ11 =∫
∞

−∞ ∫
∞

−∞

(F(x) ∧ F(y) − F(x)F(y))dxdy,

Σ12 =Σ21 = ∫
∞

−∞ ∫
∞

−∞

x(F(x) ∧ F(y) − F(x)F(y))dxdy,

Σ22 =∫
∞

−∞ ∫
∞

−∞

xy(F(x) ∧ F(y) − F(x)F(y))dxdy.

∫
y

−∞

F(x)dx =
[
(x − y)F(x)

]x=y
x=−∞

− ∫
y

−∞

(x − y)f (x)dx

= −∫
y

−∞

(x − y)f (x)dx,

∫
∞

x

(y − x)(1 − F(y))dy =

[
(y − x)2

2
(1 − F(y))

]y=∞

y=x

− ∫
∞

x

(y − x)2

2
(−f (y))dy

= ∫
∞

x

(y − x)2

2
f (y)dy,

Σ11 = 2∫
∞

−∞ ∫
y

−∞

F(x)(1 − F(y))dxdy

= 2∫
∞

−∞

(1 − F(y))∫
y

−∞

F(x)dxdy

= −2∫
∞

−∞

(1 − F(y))∫
y

−∞

(x − y)f (x)dxdy

= 2∫
∞

−∞

f (x)∫
∞

x

(y − x)(1 − F(y))dydx

= 2∫
∞

−∞

f (x)∫
∞

x

(y − x)2

2
f (y)dydx

= ∫
∞

−∞ ∫
∞

x

(x − y)2f (x)f (y)dydx

=
1

2 ∫
∞

−∞ ∫
∞

−∞

(x − y)2f (x)f (y)dydx.

Σ11 =
1

2
E[(X − Y)2] = m2.
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Hence, we obtain (10). 	�  ◻

In particular, the W-estimator is Fisher efficient for the Gaussian model, but it is not 
efficient for other models.

Corollary 1  For the Gaussian model, the asymptotic distribution of the W-estimator 
(𝜇̂, 𝜎̂) is

which attains the Cramer–Rao bound.

Proof  For the Gaussian model, we have m4 = 3 and m3 = 0 . 	�  ◻

Figure  3 plots the ratio of the mean square error E[(𝜇̂ − 𝜇)2 + (𝜎̂ − 𝜎)2] of the 
W-estimator to that of the MLE for the Gaussian model with respect to n. The ratio 
converges to one as n goes to infinity, which shows that the W-estimator has statistical 
efficiency.

Figure 4 compares the mean square error of the W-estimator and MLE for the uni-
form model

Σ12 = Σ21 = E
[
1

3
X3 −

1

2
X2Y +

1

6
Y3

]
=

1

2
m3,

Σ22 = E

[
(X2 − Y2)2

8

]

=
1

4
(m4 − 1).

√
n

�
𝜇̂ − 𝜇

𝜎̂ − 𝜎

�

→ N

��
0

0

�

,

�
𝜎2 0

0
1

2
𝜎2

��

,

f (z) =

�
1

2
√
3
(−

√
3 ≤ z ≤ √

3)

0 ( otherwise)
.

Fig. 3   Ratio of mean square 
error of W-estimator to that of 
MLE for the Gaussian model

2 3 4 5 6

1.000

1.002

1.004

1.006

1.008

log10 n

M
SE

ra
ti
o
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In this case, the convergence rate of MLE is faster than n−1∕2 , whereas the W-estima-
tor is only 

√
n-consistent.

5 � Riemannian structure of W‑divergence

Consider the manifold M = {p(x)} of probability distributions which are absolutely 
continuous with respect to the Lebesgue measure and have finite second moments. 
It is known that M has a Riemannian structure due to the Wasserstein distance or the 
cost function. For two distributions p(x) and q(x), their optimal transportation cost, 
that is, the divergence between them, is given by (1).

We calculate the optimal transportation cost between two nearby distributions 
p(x) and p(x) + �p(x) , where �p(x) is infinitesimally small. We have

where

This equation is derived from

which comes from the differentiation of the identity

We thus have

(P + �P)−1(u) = P−1(u) −
�P{x(u)}

P�{x(u)}
,

x(u) = P−1(u).

d

du
F−1(u) =

1

f {x(u)}
,

F−1{F(x)} = x.

2 3 4 5 6

−10

−5

0

log10 n

lo
g 1

0
M
SE

W -estimator
MLE

Fig. 4   Mean square error of W-estimator and MLE for the uniform model
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which is a quadratic form of �p(x) . This gives a Riemannian metric to M.
The location-scale model S is a finite-dimensional submanifold embedded in M. For 

the location-scale model (5), we have

The Riemannian metric tensor GW =
(
gW
ij

)
 is derived from

See also Li and Zhao (2019).

Theorem 4  The location-scale model is a Euclidean space, irrespective of f,

Proof  We need to calculate (11). We have

Integration gives

Hence, we have

	�  ◻

It is surprising that G =
(
gij
)
 is the identity matrix for the location-scale model, 

so S is a Euclidean space. See also Li and Zhao (2019). It is flat by itself, but S is a 
curved submanifold in M (Takatsu 2011), like a cylinder embedded in R3.

When n is large, the cost decreases on the order of 1/n. The W-estimator is the 
projection of p̂(x) to S in the tangent space of M. Let �̂

′
 be another consistent estima-

tor. Accordingly, we have the Pythagorean relation

and the difference of the cost between the two estimators is

(11)C(p, p + �p) = ∫
∞

−∞

1

p(x)

(

∫
x

−∞

�p(y)dy

)2

dx

�p(y) =
�

��
p(y,�)d� +

�

��
p(y,�)d�.

C(p, p + �p) =
∑

gW
ij
(�)d�id�j.

gW
ij
= �ij.

�p(x,�) = −
1

�2
f �
(x − �

�

)
d� −

1

�3

{
�f

(x − �

�

)
+ (x − �)f �

(x − �

�

)}
d�.

∫
x

−∞

�p(y,�)dy = −p(x,�)d� −
1

�
(x − �)p(x,�)d�.

C(�,� + d�) = d�2 + d�2.

C
(
p̂, p

�̂
�

)
= C

(
p̂, p

�̂

)
+ C

(
p
�̂
, p

�̂
�

)
,

C
(
p
�̂
, p

�̂
�

)
=

1

n

||
|
�̂ − �̂

�||
|

2

.
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Li and Zhao (2019) studied the properties of a W-estimator given by the W score 
function. They gave the W-efficiency and W-Cramer–Rao inequality. However, their 
W-estimator does not minimize the transportation cost.

6 � Maximum likelihood estimator and W‑divergence

It is an interesting problem to study the estimator that minimizes the transportation cost 
from the true distribution to the estimated one. Let �̂ be a consistent estimator and let 
e = �̂ − �0 be the estimation error vector, where �0 is the true parameter. We want to 
study the minimizer of C(p

�0
, p

�̂
) . Since the W-metric g is the identity matrix for the 

location scale model, for the covariance V = E[(�̂ − �0)(�̂ − �0)
⊤] of the estimation 

error, we have

Therefore, the covariance is minimized when the expectations of the sum of the 
squares of the location error and scale error are at a minimum in the location scale 
case. Furthermore, we have a more general result.

Theorem  5  The transportation cost is asymptotically minimized by the maximum 
likelihood estimator for a general statistical model.

Proof  The error covariance V satisfies the Cramer–Rao inequality

in the sense of the matrix positive-definiteness, where GF is the Fisher information 
matrix. The minimum is attained asymptotically by the MLE. On the other hand, 
when A ⪰ B for two positive-definite matrices A and B,

Since the transportation cost is asymptotically written as

it is minimized for the maximum likelihood estimator that asymptotically attains 
V = G−1

F
∕n . 	�  ◻

It would be interesting to analyze the transportation cost of the W-estimator in 
general.

C = trV .

V ⪰
1

n
G−1

F

tr(GWA) ≥ tr(GWB).

C = tr(GWV) ≥ 1

n
tr(GWG−1

F
),
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7 � Discussion

There are three estimators, the MLE, W-score estimator and W-estimator. They have 
their own optimal properties and related behaviors. The MLE minimizes the KL diver-
gence from the empirical distribution to the estimated distribution in the model. It 
minimizes the KL divergence and the W-divergence (transportation cost) from the true 
distribution to the estimated model at the same time. The W-estimator minimizes the 
transportation cost from the empirical distribution to the estimated distribution. How-
ever, it does not necessarily minimize the cost from the true distribution to the esti-
mated one. The W-score estimator minimizes the integrated W-score function which 
is not the transportation cost. Further studies should be conducted on the merits and 
demerits of these estimators and their applicability to various problems.
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