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To save some space in the paper of the above title, the proofs of all the three Lemmas and one

Theorem in the manuscript and some additional simulation results are presented in this supple-

mentary file. The equations in this supplementary file are labeled as (A.1), (A.2), and so on; while

we use labels like (1), (2), and so on, to refer to the equations in the manuscript.

Appendix A: Proof of Lemma 1

From the definition of gn(θ; t, s), we have

gn(θ; t, s) = V (t, t; s, s) + 2

τn∑
k=1

V (t, t+ k/n; s, s) cos(2θkπ),

where τn = bn(1− t)c is the greatest integer less than or equal to n(1− t). Next we will show that

g(θ; t, s) = limn→∞ gn(θ; t, s) is well-defined for all (t, s) ∈ [0, 1] × Ω. When t = 1, it is clear that

gn(θ; 1, s) = V (1, 1; s, s) for all n. So, g(θ; 1, s) = limn→∞ gn(θ; 1, s) = V (1, 1; s, s) is well-defined

for all s. Next we consider the case when (t, s) ∈ [0, 1) × Ω. For any θ ∈ [−0.5, 0.5], and two

integers n1 ≤ n2, when n1 is large enough, we have log(n1) ≤ n1(1 − t). Then, it can be checked

that

|gn2(θ; t, s)− gn1(θ; t, s)| ≤ 2

τ̃n1∑
k=1

|V (t, t+ k/n2; s, s)− V (t, t+ k/n1; s, s)|

+ 2

τn1∑
k=τ̃n1+1

|V (t, t+ k/n1; s, s)|+ 2

τn2∑
k=τ̃n1+1

|V (t, t+ k/n2; s, s)|,

where τ̃n1 = blog(n1)c. Since {ε0(ti, s)} is a strong mixing sequence, by the Davydov’s inequality,

we have

|Cov(ε0(ti, s), ε0(tk, s))| ≤ 12C2/δ
ε C

(δ−2)/δ
0 exp(−C1|k − i|(δ − 2)/δ),
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for all i, k and s, where Cε, C0, C1 and δ are defined in Lemma 1. Thus, V (t, t + τ/n; s, s) =

O(exp(−C1τ(δ − 2)/δ)), for all (t, s) and τ . Then, we have

|gn2(θ; t, s)− gn1(θ; t, s)| ≤ 2

τ̃n1∑
k=1

|V (t, t+ k/n2; s, s)− V (t, t+ k/n1; s, s)|

+O(exp(−C1τ̃n1(δ − 2)/δ)) +O(exp(−C1τ̃n1(δ − 2)/δ))

=O((n2 − n1)τ̃2
n1
/(n1n2)) +O(exp(−C1τ̃n1(δ − 2)/δ)),

=O(log(n1)2/n1) +O(exp(−C1 log(n1)(δ − 2)/δ))

=O(log(n1)2/n1 + exp(−C1 log(n1)(δ − 2)/δ))

Note that log(n1)2/n1 → 0 and exp(−C1 log(n1)(δ−2)/δ)→ 0 as n1 →∞. Thus, {gn(θ; t, s), n ≥ 1}

is a Cauchy sequence. So, by the Cauchy convergence criterion, we know gn(θ; t, s) is convergent.

Thus, g(θ; t, s) is well-defined. For any θ, θ′ ∈ [−0.5, 0.5] and ε > 0, there exists a postive integer

ñ, when n ≥ ñ, we have |g(θ; t, s)− gn(θ; t, s)| < ε and |g(θ′; t, s)− gn(θ′; t, s)| < ε. It follows that,

when n ≥ ñ,

|g(θ; t, s)− g(θ′; t, s)| ≤ |gn(θ; t, s)− gn(θ′; t, s)|+ 2ε

≤4π|θ − θ′|
τn∑
k=1

k|V (t, t+ k/n; s, s)|+ 2ε

≤48πC2/δ
ε C

(δ−2)/δ
0 |θ − θ′|

τn∑
k=1

k exp(−C1k(2− δ)/δ) + 2ε

≤Cθ|θ − θ′|+ 2ε,

where Cθ = 48πC
2/δ
ε C

(δ−2)/δ
0

∑∞
k=1 k exp(−C1k(2−δ)/δ). Since ε > 0 is arbitrary, we have g(θ; t, s)

is Lipchitz-1 continuous with respect to θ.

Next, we show that g(θ; t, s) ≥ 0, for all θ ∈ [−0.5, 0.5] and (t, s), under the conditions in

Lemma 1. If this is not true, then there exist θ0 ∈ [−0.5, 0.5] and (t0, s0) ∈ [0, 1] × Ω such that

g(θ0; t0, s0) < 0. Consider the M ×M Toeplitz matrix MT , where the (i, j)-th element of MT is

V (t0, t0 + τ/n; s0, s0) and τ = |i − j|. For the matrix MT , Grenander and Szegö (1958) proved

that its smallest eigenvalue would decrease with M and converge to inf{g(θ; t0, s0), θ ∈ [−0.5, 0.5]}.

Thus, when M is large, we have λ0 < g(θ0; t0, s0)/2, where λ0 is the smallest eigenvalue of MT . The

corresponding standardized eigenvector is denoted as x0 which has the property that xT0 x0 = 1.

Let 1 ≤ i0 ≤ n be the closest integer to n× t0. Then, |ti0 − t0| ≤ 1/n, where ti0 = i0/n. Consider

the covariance matrix of {ε0(ti0 , s0), . . . , ε0(ti0+M−1, s0)}, denoted as M∗
T . Because the covariance
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function is assumed to be twice differentiable, it can be shown that all elements of M∗
T −MT are of

the order O(M/n) uniformly. So, the largest eigenvalue of M∗
T −MT is of the order O(M2/n), and

we can find some constant C11 > 0 such that C11M
2/nIM − (M∗

T −MT ) is positive-semidefinite,

where IM is a M × M identity matrix. It follows that xT0 [C11M
2/nIM − (M∗

T − MT )]x0 =

C11M
2/n − xT0 M∗

Tx0 + λ0 ≥ 0. Hence, we have C11M
2/n ≥ −λ0 for all n. On the other hand,

when n is large enough, C11M
2/n < −g(θ0; t0, s0)/2 < −λ0. Thus, we have a contradiction.

Therefore, we must have g(θ; t, s) ≥ 0, for all θ ∈ [−0.5, 0.5] and (t, s). The result in Lemma 1 has

then been proved.

Appendix B: Proof of Lemma 2

For simplicity of expression, we use yij and εij to denote y(ti, sij) and ε(ti, sij), respectively.

At a given point (t, s) ∈ [0, 1]× Ω, from (4), we have

λ̃(t, s) = eT1 (XTDKX)−1XTDKY

= eT1 (XTDKX)−1XTDKλ+ eT1 (XTDKX)−1XTDKε

= Π1 + Π2,

(A.1)

where λ = E(Y) and ε = (ε11, . . . , ε1m1 , . . . , εnmn)T . For Π1, by the Taylor’s expansion, it can be

shown that

Π1 = eT1 (XTDKX)−1XTDK(Xβ + R) = λ(t, s) + Π3, (A.2)

where β = (λ(t, s), ∂λ(t, s)/∂t, ∂λ(t, s)/∂s)T , R = (r11, . . . , r1m1 , . . . , rnmn)T , rij = ((ti− t), (sij −

s)T ) H(t′ij , s
′
ij)((ti− t), (sij − s)T )T , H is the Hessian matrix of λ(t, s), and t′ij ∈ [0, 1], s′ij ∈ Ω, for

j = 1, . . . ,mi, i = 1, . . . , n. From (A.1) and (A.2), we have λ̃(t, s) = λ(t, s) + Π2 + Π3. For Π2, it

can be checked that

Π2 = eT1 (XTDKX)−1XTDKε

= eT1 (D(m,n)XTDKX)−1D(m,n)XTDKε

= eT1 A−1(t, s)B(t, s),

(A.3)

where D(m,n) = (nht,0mh
2
s,0f(s))−1, A(t, s) = D(n,m)XTDKX is a 4 × 4 matrix and B(t, s) =

D(n,m)XTDKε is a vector of size 4. Next, we focus on the first element of the vector B(t, s), i.e.,

B1(t, s) := (nht,0)−1
n∑
i=1

K1((ti − t)/ht,0)εi(s), (A.4)
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where εi(s) = {mh2
s,0f(s)}−1

∑mi
j=1K2(dE(sij , s)/hs,0)εij . We will show below that B1(t, s) =

Op(a(n,m)) uniformly for (t, s) ∈ [0, 1]× Ω, where a(n,m) = {log(n)2/(nh2
t,0)}1/2.

First, note that the spatial location of interest Ω is bounded, then it is clear that [0, 1]×Ω can

be covered by Ñ = O({a(n,m)ht,0}−3) regions {Rl, l = 1, ..., Ñ}, where Rl = {(t, s) : |t − t∗l | ≤

a(n,m)ht,0, dE(s, s∗l ) ≤ a(n,m)ht,0} and {(t∗l , s∗l ), l = 1, . . . , Ñ} are the centroids of the Ñ regions.

Since both kernel functions K1(x) and K2(x) are Lipschitz-1 continuous, let 0 < LK <∞ be their

Lipschitz constant. Because it is assumed that ht,0/hs,0 = O(1), we can find some constant C4 > 0

such that ht,0 ≤ C4hs,0. Define CK = supx∈R{K1(x),K2(x)}. Then, for any (t, s) ∈ Rl and a

sufficiently large n, we have∣∣∣∣K1

(
ti − t
ht,0

)
K2

(
dE(sij , s)

hs,0

)
− K1

(
ti − t∗l
ht,0

)
K2

(
dE(sij , s

∗
l )

hs,0

)∣∣∣∣
≤CKLKh−1

t,0

{
|t− t∗l |+ C4dE(s, s∗l )

}
I

(
|ti − t∗l |
ht,0

≤ 2L1

)
I

(
dE(sij , s

∗
l )

hs,0
≤ 2L2

)
,

(A.5)

where [−L1, L1] and [−L2, L2] are the compact supports for K1(x) and K2(x), respectively. Define

K̃1(x) = 1/(2L1)I(|x| ≤ 2L1) and K̃2(x) = 1/(4πL2
2)I(|x| ≤ 2L2). Then, by (A.5), there exists a

constant C5 > 0 such that∣∣∣∣K1

(
ti − t
ht,0

)
K2

(
dE(sij , s)

hs,0

)
− K1

(
ti − t∗l
ht,0

)
K2

(
dE(sij , s

∗
l )

hs,0

)∣∣∣∣
≤C5a(m,n)K̃1

(
ti − t∗l
ht,0

)
K̃2

(
dE(sij , s

∗
l )

hs,0

)
.

(A.6)

Define

B̃1(t, s) ={nmht,0h2
s,0f(s)}−1

n∑
i=1

mi∑
j=1

K̃1((ti − t)/ht,0)

× K̃2(dE(sij , s)/hs,0)|εij |.

Since K̃1(·) and K̃2(·) satisfy the assumptions about the kernel function in Lemma 2, it can be

checked that

E(B̃1(t, s)) ≤ C1/δ
ε (1 +O(h2

s,0 + 1/(nht,0))) <∞,
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where δ and Cε are defined in Lemma 2. Based on the result in (A.6), it can be shown that

sup
(t,s)∈Rl

∣∣B1(t, s)− E{B1(t, s)}
∣∣

≤
∣∣B1(t∗l , s

∗
l )− E{B1(t∗l , s

∗
l )}
∣∣+ C5a(n,m)

[
B̃1(t∗l , s

∗
l ) + E{B̃1(t∗l , s

∗
l )}
]

≤
∣∣B1(t∗l , s

∗
l )− E{B1(t∗l , s

∗
l )}
∣∣+ C5a(n,m)

[
|B̃1(t∗l , s

∗
l )− E{B̃1(t∗l , s

∗
l )}|

]
+ 2C5a(n,m)E{B̃1(t∗l , s

∗
l )}

≤
∣∣B1(t∗l , s

∗
l )− E{B1(t∗l , s

∗
l )}
∣∣+ C5

[
|B̃1(t∗l , s

∗
l )− E{B̃1(t∗l , s

∗
l )}|

]
+ 2C5a(n,m)T,

(A.7)

where the final inequality is obtained because a(n,m) < 1 and T > E(B̃1(t, s)) when n, m and T

are large enough. By (A.7), it can be shown that

Pr

(
sup

(t,s)∈[0,1]×Ω
|B1(t, s)− E{B1(t, s)}| > (2 + 4C5)Ta(n,m)

)
≤Ñ max

1≤l≤Ñ
Pr (|B1(t∗l , s

∗
l )− E{B1(t∗l , s

∗
l )}| > 2Ta(n,m))

+ Ñ max
1≤l≤Ñ

Pr
(
|B̃1(t∗l , s

∗
l )− E{B̃1(t∗l , s

∗
l )}| > 2Ta(n,m)

)
.

(A.8)

For the two parts on the right-hand side of (A.8), we can use similar arguments to find their upper

bounds, because both (K1(x),K2(x)) and (K̃1(x), K̃2(x)) satisfy the assumptions about the kernel

functions given in Lemma 2.

Second, for any (t, s) ∈ [0, 1]× Ω, by the fact that E{B1(t, s)} = 0, we have

Pr
(
|B1(t, s)− E{B1(t, s)}| > 2Ta(n,m)

)
= Pr

(
|B1(t, s)| > 2Ta(n,m)

)
. (A.9)

Next, we replace εi(s) in B1(t, s) by its truncated version εi(s)I(|εi(s)| ≤ ϕn), and evaluate the

error caused by this truncation, where ϕn = {n/ log(n)2}1/2 and εi(s) is defined in (A.4). Based

on the assumption that E|ε(t, s)|δ ≤ Cε for some δ > 5, it can be checked that E
(
|εi(s)|5

)
≤ Θ0,

for some constant Θ0 > 0. Define

TR(t, s) =
1

nht,0

n∑
i=1

K1((ti − t)/ht,0)εi(s)I(|εi(s)| > ϕn),

then we have

E(|TR(t, s)|) ≤ 1

nht,0

n∑
i=1

K1((ti − t)/ht,0)E{|εi(s)|I(|εi(s)| > ϕn)}

≤ Θ0

nht,0

n∑
i=1

K1((ti − t)/ht,0)ϕ−4
n = O(ϕ−4

n ).

(A.10)
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By the Markov’s inequality, it is clear that |TR(t, s) − E(TR(t, s))| = Op(ϕ
−4
n ), for any (t, s) ∈

[0, 1]× Ω.

Let ε̃i(t, s) = εi(s)I(|εi(s)| ≤ ϕn)K1((ti−t)/ht,0), Zi(t, s) = ε̃i(t, s)−E{ε̃i(t, s)} and B∗1(t, s) =

B1(t, s) − TR(t, s). It can be checked that B∗1(t, s) − E{B∗1(t, s)} = (nht,0)−1
∑n

i=1 Zi(t, s), for

(t, s) ∈ [0, 1]×Ω. Given any possible values of {sij , i = 1, . . . , n, j = 1, . . . ,mi}, we have |Zi(t, s)| ≤

2CKϕn, and for any positive integer L ≤ n, it can be checked that

E
[ L∑
i=1

Zi(t, s)
2 | Sσ

]
≤ Θ1LD(s)2,

for some constant Θ1 > 0, where Sσ is the σ-algebra generated by the spatial locations S =

{s11, . . . , snmn}, D(s) = max1≤i≤nDi(s), and Di(s) = (mh2
s,0f(s))−1

∑mi
j=1K2(dE(sij , s)/hs,0).

Let the strong mixing coefficient of {εij} be define as

α∗(k) = sup
n≥1,1≤i≤n−k

sup
A,B
{|P (AB)− P (A)P (B)| : A ∈ F i1, B ∈ Fni+k},

where Fk1
k0

is the σ-algebra generated by {εkl, k0 ≤ k ≤ k1, l = 1, . . . ,mk}. Since {ε0(ti, sij)}

are independent of {ε1(ti, sij)}, {ε1(ti, sij)} are independent at different times and/or locations,

and εij = ε0(ti, sij) + ε1(ti, sij), from Theorem 5.2 in Bradley (2005), it can be checked that

α∗(k) ≤ α(k). Note that {sij , j = 1, . . . ,mi, i = 1, . . . , n} are independent of the random errors

{ε11, . . . , εnmn}. So, for given {sij , i = 1, . . . , n, j = 1, ...,mi}, {Zi(t, s) : i = 1, . . . , n} is a strong

mixing sequence with the strong mixing coefficient {α̃(k), k = 0, 1, . . .}, and α̃(k) ≤ α∗(k) ≤ α(k),

for k ≥ 1. Let Ln be an integer closest to {T 1/2 log(n)}/(10CK). Then, we have nht,0a(n,m)T >

8CKLnϕn when n is large. By Theorem 2.1 in Liebscher (1996), for 1 ≤ l ≤ Ñ , it can be shown

that

Pr (|B∗1(t∗l , s
∗
l )− E(B∗1(t∗l , s

∗
l ))| > a(n,m)T | Sσ)

≤4 exp

(
− T 2 log(n)

64Θ1D(s)2 + T 3/2

)
+

40nC0CK
T 1/2 log(n)

exp

(
−C1T

1/2 log(n)

10CK

)
,

(A.11)

when log(n) > 1. Note that the second term on the right-hand side of (A.11) is independent of the

choice of {sij , i = 1, . . . , n, j = 1, ...,mi}. Let Cmax = max1≤i≤nmi/m and Cmin = min1≤i≤nmi/m,
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then, by the Bernstein’s inequality, we have

Pr (|B∗1(t∗l , s
∗
l )− E(B∗1(t∗l , s

∗
l ))| > a(n,m)T )

≤E
{

4 exp

(
− T 2 log(n)

64Θ1D(s)2 + T 3/2

)
I(D(s) ≤ CmaxT

1/2)

}
+ 4Pr

(
D(s) > CmaxT

1/2
)

+
40nCK

T 1/2 log(n)
exp

(
−C1T

1/2 log(n)

10CK

)

≤4 exp

(
− T 2 log(n)

64Θ1C2
maxT + T 3/2

)
+O

(
n exp(−mh2

s,0CminCmax(T 1/2 − 1))
)

+
40nCK

T 1/2 log(n)
exp

(
−C1T

1/2 log(n)

10CK

)
.

(A.12)

In addition, from (A.10), by the Markov’s inequality, we have

Pr (|TR(t∗l , s
∗
l )− E{TR(t∗l , s

∗
l )}| > a(n,m)T ) = O

(
{a(n,m)Tϕ4

n}−1
)
. (A.13)

Therefore, by combining (A.12) with (A.13), when T is large enough, we have

Pr (|B1(t∗l , s
∗
l )− E(B1(t∗l , s

∗
l ))| > 2a(n,m)T ) = O

(
{a(n,m)Tϕ4

n}−1
)

+O
(
n−T

1/2/65
)

+O
(
n exp(−mh2

s,0CminCmax(T 1/2 − 1))
)

+O

(
n exp

{
− log(n)

C1T
1/2

10CK

})
.

(A.14)

By (A.8) and (A.14), it can be shown that, when T is large enough,

Pr

(
sup

(t,s)∈[0,1]×Ω
|B1(t, s)− E(B1(t, s))| > (2 + 4C5)Ta(n,m)

)
≤O

(
{a(n,m)4h3

t,0Tϕ
4
n}−1

)
+O

(
a(n,m)−3h−3

t,0n
−T 1/2/65

)
+O

(
a(n,m)−3h−3

t,0n exp{−mh2
s,0CminCmax(T 1/2 − 1)}

)
+O

(
a(n,m)−3h−3

t,0n exp

{
− log(n)

C1T
1/2

20CK

})
= o(1).

(A.15)

Note that E(B1(t, s)) = 0. So, by (A.15), we have B1(t, s) = Op(a(n,m)), which is uniformly true

for all (t, s) ∈ [0, 1]×Ω. The vector of the remaining elements of B(t, s) can be proved in a similarly

way to be of the order H1Op(a(n,m)), where H = diag{ht,0, hs,0, hs,0} and 1 = (1, 1, 1)T . Thus,

we have

B(t, s) =

 Op(a(n,m))

H1Op(a(n,m))

 ,

which are uniformly true for all (t, s) ∈ [0, 1]× Ω.
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Next, we will study the properties of A(t, s). To this end, let b(n,m) = h2
t,0 + h2

s,0 +

{log(n)2/(nh2
t,0)}1/2, b∗(n,m) = b(n,m)+{log(m)/(mh2

s,0)}1/2, and µ2(K) = diag{µ21(K), µ22(K), µ22(K)},

where µ21(K) =
∫
x2K1(x)dx, µ22(K) =

∫
u2

1K2(dE(u,0))du and u = (u1, u2)T . Then, it can be

shown by similar arguments to those for deriving (A.5)-(A.15) that

A(t, s) =

 a+OP (b∗(n,m)) 1THOp(b
∗(n,m))

H1Op(b
∗(n,m)) C(1 +Op(b

∗(n,m)))

 ,

where a ∈ [Cmin, Cmax], and all elements of the 3 × 3 matrix C are in the same order of the

corresponding elements of H2µ2(K). By combining the above results, we have

Π2 = eT1 A(t, s)−1B(t, s) = Op(a(n,m)), (A.16)

which is uniformly true for all (t, s) ∈ [0, 1]× Ω. For Π3 defined in (A.2), in a similar way that we

study the property of B(t, s), it can be checked that

Π3 = Op
(
h2
t,0 + h2

s,0

)
, (A.17)

which is uniformly true for all (t, s) ∈ [0, 1] × Ω. By combining the results in (A.1), (A.2), (A.16)

and (A.17), the result (12) in Lemma 2 has been proved.

Appendix C: Proof of Lemma 3

First, we derive the convergence property of σ̂2(t, s) in (13). For simplicity, denote ε̃ij =

ε̃(ti, sj) = y(ti, sij)− λ̃(ti, sij). From Lemma 2, we know that |εij− ε̃ij | is bounded by a term of the

order Op(b(n,m)) uniformly for all i and j, where b(n,m) = h2
t,0 + h2

s,0 + {log(n)2/(nh2
t,0)}1/2. Let

G0(t, s) = D(n,m)
∑n

i=1

∑mi
j=1w1(i, j), G1(t, s) = D(n,m)

∑n
i=1

∑mi
j=1w1(i, j)ε2

ij , and G2(t, s) =

D(n,m)
∑n

i=1

∑mi
j=1w1(i, j)ε̃2

ij , where D(n,m) is defined in the proof of Lemma 2. Then, it is clear

that σ̂2(t, s) = G2(t, s)/G0(t, s). For the difference between G2(t, s) and G1(t, s), we have

|G2(t, s)−G1(t, s)| ≤2D(n,m)
n∑
i=1

mi∑
j=1

w1(i, j)|εij ||ε̃ij − εij |

+D(n,m)

n∑
i=1

mi∑
j=1

w1(i, j)(ε̃ij − εij)2.

Since |εij− ε̃ij | is uniformly bounded by a term of the order Op(b(n,m)) and it can be easily checked

that D(n,m)
∑n

i=1

∑mi
j=1w1(i, j)|εij |/G0(t, s) is uniformly bounded by Op(1) for all (t, s), we have

sup
t∈[0,1],s∈Ω

|(G2(t, s)−G1(t, s))/G0(t, s)| = Op(b(n,m)). (A.18)
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Let

G1(t, s)/G0(t, s) = G3(t, s)/G0(t, s) +G4(t, s)/G0(t, s) = Λ1 + Λ2, (A.19)

where G3(t, s) = D(n,m)
∑n

i=1

∑mi
j=1w1(i, j)σ2(ti, sj) and G4(t, s) = G1(t, s) − G3(t, s). For the

random errors {ε(t, s)}, from the condition that Pr(|ε(t, s)| ≥ k) ≤ C2k
ϑ exp(−C3k), we have

E(|ε(t, s)|δ) ≤
∞∑
k=1

kδPr(|ε(t, s)| ≥ k − 1) ≤ C2

∞∑
k=1

kδ+ϑ exp{−C3(k − 1)} <∞,

where δ > 0 is any constant. So, we can find a constant Cε,δ > 0 such that E(|εij |δ) ≤ Cε,δ, for

all i and j, when δ is pre-specified. It follows that E(|εij |10) ≤ Cε,10. By some similar arguments

to those in the proof of Lemma 2, it can be checked that |Λ1 − σ2(t, s)| = Op(h
2
t,1 + h2

s,1), and

Λ2 = Op(h
2
t,1 + h2

s,1 + {log(n)2/(nh2
t,1)}1/2), which are uniformly true for all (t, s). Therefore, from

(A.18) and (A.19), the result in (13) is true.

Next, we derive the property of V̂ (t, t′; s, s′) given in (14) of Lemma 3. To this end, let

D∗(n,m) = {n2h2
t,1m

2h4
s,1f(s)f(s′)}−1,

Q0(t, t′; s, s′) = D∗(n,m)
∑
i,j

∑
(k,l)6=(i,j)

w2(i, j, k, l),

Q1(t, t′; s, s′) = D∗(n,m)
∑
i,j

∑
(k,l)6=(i,j)

w2(i, j, k, l)εijεkl, and

Q2(t, t′; s, s′) = D∗(n,m)
∑
i,j

∑
(k,l)6=(i,j)

w2(i, j, k, l)ε̃ij ε̃kl.

Then it is clear that V̂ (t, t′; s, s′) = Q2(t, t′; s, s′)/Q0(t, t′; s, s′). Similar to the arguments for

deriving (A.18) above, it can be checked that

∣∣(Q2(t, t′; s, s′)−Q1(t, t′; s, s′))/Q0(t, t′; s, s′)
∣∣ = Op(b(n,m)), (A.20)

which is uniformly true for all t, t′, s and s′. Let

Q1(t, t′; s, s′)/Q0(t, t′; s, s′) = {Q3(t, t′; s, s′) +Q4(t, t′; s, s′)}/Q0(t, t′; s, s′)

= Λ∗1 + Λ∗2,
(A.21)

where Q3(t, t′; s, s′) = D∗(n,m)
∑

i,j

∑
(k,l)6=(i,j)w2(i, j, k, l)V (ti, tk; sij , skl), and Q4(t, t′; s, s′) =

Q1(t, t′; s, s′)−Q3(t, t′; s, s′). For the first part Λ∗1, since the covariance function V is twice contin-

uously differentiable, it can be checked that |Λ∗1 − V (t, t′; s, s′)| = Op(h
2
t,1 + h2

s,1) uniformly. Next,
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we will show that Q4(t, t′; s, s′) = Op({log(n)2/(nh2
t,1)}1/2) uniformly. To this end, denote

Y ∗i,k(s, s
′) :={m2h4

s,1f(s)f(s′)}−1
mi∑
j=1

mk∑
l=1

K2(dE(sij , s)/hs,1)

×K2(dE(skl, s)/hs,1)(εijεkl − V (ti, tk; sij , skl))

and

Q5(t, t′; s, s′) := {nht,1}−1
n∑
i=1

K1((ti − t)/ht,1)Xi(t
′; s, s′),

where Xi(t
′; s, s′) = {nht,1}−1

∑n
k=1K1((tk − t′)/ht,1)Y ∗i,k(s, s

′). It can shown that

∣∣Q5(t, t′ ; s, s′)−Q4(t, t′; s, s′)
∣∣ = Op

(
{n2h2

t,1m
2h4
s,1}−1

) ∣∣∣ n∑
i=1

mi∑
j=1

K1((ti − t)/ht,1)

×K1((ti − t′)/ht,1)K2(dE(sij , s)/hs,1)K2(dE(sij , s
′)/hs,1)(ε2

ij − σ2(ti, sij))
∣∣∣

=Op
(
nht,1mh

2
s,1

)
,

(A.22)

which is uniformly true for all t, t′, s, and s′. Thus, to prove the result that Q4(t, t′; s, s′) =

Op({log(n)2/(nh2
t,1)}1/2), it suffices to show that O5(t, t′; s, s′) = Op({log(n)2/(nh2

t,1)}1/2). Since

Q5(t, t′; s, s′) is a weighted average of Xi(t
′; s, s′), it is enough to show that

Xi(t
′; s, s′) = Op({log(n)2/(nh2

t,1)}1/2)

uniformly for all i and t′, s and s′, which is shown below.

For Xi(t
′; s, s′) defined before, we will use some similar arguments to those for deriving (A.5)-

(A.15) to find an uniform bound for it. To this end, we first divide the space [0, 1] × Ω2 into

N∗ = O({a∗(n,m)ht,1}−5) regions {R∗l , l = 1, . . . N∗}, where a∗(n,m) = {log(n)2/(nh2
t,1)}1/2. Let

(t∗l ,u
∗
l ,v
∗
l ) be the centroid of the region R∗l , for l = 1, . . . N∗. Then, by the similar arguments those

in (A.5)-(A.8), we can find some constants C6 > 0 and C7 > 0 such that

Pr

(
sup
t′∈[0,1]

sup
s,s′∈Ω

|Xi(t
′; s, s′)− E{Xi(t

′; s, s′)}| ≥ C6Ta
∗(n,m)

)
≤C7N

∗ max
1≤l≤N∗

Pr (|Xi(t
∗
l ;u

∗
l ,v
∗
l )− E{Xi(t

∗
l ;u

∗
l ,v
∗
l )}| ≥ 2Ta∗(n,m)) .

(A.23)

For any t′, s and s′, because E(Xi(t
′; s, s′)) = 0, we have

Pr
(
|Xi(t

′; s, s′)− E(Xi(t
′; s, s′))| ≥ 2Ta∗(n,m)

)
= Pr

(
|Xi(t

′; s, s′)| ≥ 2Ta∗(n,m)
)
. (A.24)
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Let X∗i (t′; s, s′) = {1/(nht,1)
∑n

k=1K1((tk − t′)/ht,1)Y ∗i,k(s, s
′)I(|Y ∗i,k(s, s′)| ≤ ϕn), where ϕn is

defined in the proof of Lemma 2. Since E(|ε(t, s)|14) ≤ Cε,14, it can be checked that E|Y ∗i,k(s, s′)|7 ≤

C8, for some constant C8 > 0. By the Markov’s inequality, it follows that

Pr
(∣∣TR∗i (t

′; s, s′)− E(TR∗i (t
′; s, s′))

∣∣ ≤ a∗(n,m)T
)

= O({a∗(n,m)Tϕ6
n}−1), (A.25)

where TR∗i (t
′; s, s′) = Xi(t

′; s, s′) − X∗i (t′; s, s′). For X∗i (t′; s, s′), similar to the arguments in

deriving (A.11)-(A.12), it can be checked that

Pr
(
|X∗i (t′ ; s, s′)− E(X∗i (t′; s, s′))| ≥ a∗(n,m)T

)
= O

(
exp(−T 1/2 log(n)/C9)

)
+O

(
n exp(−T 1/2 log(n)/C10)

)
+O

(
n exp(−mh2

s,1(T 1/2 − 1))
)
,

(A.26)

where C9, C10 > 0 are some constants. By combining the results in (A.25) and (A.26) and the fact

that E(Xi(t
′; s, s′)) = 0, we have

Pr
(
|Xi(t

′; s, s′)| ≥ 2a∗(n,m)T ) = O
(
{a∗(n,m)Tϕ6

n}−1
)

+O
(

exp(−T 1/2 log(n)/C9)
)

+O
(
n exp(−T 1/2 log(n)/C10)

)
+O

(
n exp(−mh2

s,1(T 1/2 − 1)
)
.

(A.27)

By (A.23), (A.24) and (A.27), we have

Pr

(
sup
t′∈[0,1]

sup
s,s′∈Ω

|Xi(t
′; s, s′)− E{Xi(t

′; s, s′)}| ≥ C6Ta
∗(n,m)

)
≤O

(
{ht,1a∗(n,m)}−5[{a∗(n,m)ϕ6

nT}−1 + exp(−T 1/2 log(n)/C9]
)

+O
(
{ht,1a∗(n,m)}−5

[
n exp(−T 1/2 log(n)/C10) + exp{−(T 1/2 − 1)mh2

s,1}
])
,

(A.28)

which is uniformly true for 1 ≤ i ≤ n. It follows that

Pr

(
max

1≤i≤n
sup
t∈[0,1]

sup
s,s′∈Ω

|Xi(t
′; s, s′)− E{Xi(t

′; s, s′)}| ≥ C6Ta
∗(n,m)

)

≤n max
1≤i≤n

Pr

(
sup
t∈[0,1]

sup
s,s′∈Ω

|Xi(t
′; s, s′)− E{Xi(t

′; s, s′)}| ≥ C6Ta
∗(n,m)

)
= o(1).

(A.29)

Since E{Xi(t
′; s, s′)} = 0, from (A.29), we have Xi(t

′; s, s′) = Op(a
∗(n,m)) uniformly for all

i, t, s and s′. So, Q5(t, t′; s, s′) = Op({log(n)2/(nh2
t,1)}1/2) uniformly for all t, t′, s and s′. Sim-

ilarly, it can be checked that |Q4(t, t′; s, s′) − Q5(t, t′; s, s′)| = Op(a
∗(n,m)) uniformly. Thus,

we have Q4(t, t′; s, s′) = Op(a
∗(n,m)) uniformly. In addition, it can be shown that Cmin +

Op(a
∗(n,m) + h2

t,1 + h2
s,1) ≤ Q0(t, t′; s, s′) ≤ Cmax + Op(a

∗(n,m) + h2
t,1 + h2

s,1) uniformly. There-

fore, we have Λ∗2 = Q4(t, t′; s, s′)/Q0(t, t′; s, s′) = Op(a
∗(n,m)), where Cmin = min1≤i≤nmi/m

and Cmax = max1≤i≤nmi/m. By combining this result with (A.20)-(A.21) and the result that

Λ∗1 = V (t, t′; s, s′) +Op(h
2
t,1 + h2

s,1), the result in (14) can then be proved.
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Appendix D: Proof of Theorem 1

For any (t, s) ∈ [0, 1] × Ω, let Υ be the number of elements in the set {i, |ti − t| ≤ ht,2}. We

can change the order of {i, i = 1, . . . , n} to obtain a new sequence {li, i = 1, . . . , n} such that the

first Υ elements in {li} are {i, |ti− t| ≤ ht,2} and l1 < · · · < lΥ. Let Xν = (Xl11, . . . ,XlΥ,mlΥ
)T and

Yν = (y(tl1 , sl1,1), . . . , y(tlΥ , slΥ,mlΥ
))T . Then, it can be checked that

λ̂(t, s) = eT1

(
XT
ν Σ̃−1

K,νXν

)−1
XT
ν Σ̃−1

K,νYν ,

where e1 = (1, 0, 0, 0)T , Σ̃−1
K,ν = D

1/2
K,ν(IνΣ̃Y,νIν)−1D

1/2
K,ν , Iν = diag

{
I
(
|tl1−t| ≤ ht,2

)
I
(
dE(sl1,1, s) ≤

hs,2
)
, . . . , I

(
|tlΥ − t| ≤ ht,2

)
I
(
dE(slΥ,mlΥ

, s) ≤ hs,2
)}

, DK,ν = diag{w0(l1, 1), . . . , w0(lΥ,mlΥ)},

w0(i, j) is defined in (3), and Σ̃Y,ν is the estimated covariance matrix of Yν . Let λν = E(Yν) and

εν = Yν − λν . By the Taylor’s expansion, it can be shown that

λ̂(t, s) =eT1 (XT
ν Σ̃−1

K,νXν)−1XT
ν Σ̃−1

K,νYν

=eT1 (XT
ν Σ̃−1

K,νXν)−1XT
ν Σ̃−1

K,νλν + eT1 (XT
ν Σ̃−1

K,νXν)−1XT
ν Σ̃−1

K,νεν

=eT1 (XT
ν Σ̃−1

K,νXν)−1XT
ν Σ̃−1

K,νXνβν + eT1 (XT
ν Σ̃−1

K,νXν)−1XT
ν Σ̃−1

K,νR̃

+ eT1 (XT
ν Σ̃−1

K,νXν)−1XT
ν Σ̃−1

K,νεν = Λ∗∗1 + Λ∗∗2 + Λ∗∗3 ,

(A.30)

where R̃ = (r̃11, . . . , r̃Υ,mlΥ
), r̃ij = ((tli − t), (sli,j − s)T )H(t′′ij , s

′′
ij)((tli − t), (sli,j − s)T )T , βν =

(λ(t, s), ∂λ(t, s)/∂t, ∂λ(t, s)/∂s)T , H is the Hessian matrix of λ(t, s), t′′ij ∈ [0, 1] and s′′ij ∈ Ω, for

i = 1, . . . ,Υ and j = 1, . . . ,mli . For Λ∗∗1 , it is clear that Λ∗∗1 = λ(t, s). Next, we will show that

Λ∗∗3 = Op({1/(nht,2)}1/2), and it can be shown similarly that Λ∗∗2 = Op(h
2
t,2 + h2

s,2). From Lemma

3, we have

|V̂ (t, t′; s, s′)− V (t, t′; s, s′)| = Op
(
h2
t,0 + h2

s,0 + {log(n)2/(nh2
t,0)}1/2

+h2
t,1 + h2

s,1 + {log(n)2/(nh2
t,1)}1/2

)
uniformly for all (t, s) and (t′, s′). Define ||A||max = max1≤i,j≤N |aij |, where A = (aij) is a N ×N

matrix. Then it can be shown that

||Σ̂Y −ΣY||max = Op
(
(h2
t,0 + h2

s,0 + {log(n)2/(nh2
t,0)}1/2

+h2
t,1 + h2

s,1 + {log(n)2/(nh2
t,1)}1/2)

)
,

where ΣY is the covariance matrix of Y, Y = (y(t1, s11), . . . , y(tn, snmn))T , and Σ̂Y is the estimated

covariance matrix computed from V̂ (t, t′; s, s′). In the paragraph immediately before Expression

12



(7) in Section 2.2, we defined the projection of Σ̂Y to the set of all symmetric positive definite

matrices to be Σ̃Y. For this matrix, because ΣY is positive definite, we have

||Σ̃Y −ΣY||max =Op((h
2
t,0 + h2

s,0 + {log(n)2/(nh2
t,0)}1/2

+ h2
t,1 + h2

s,1 + {log(n)2/(nh2
t,1)}1/2)).

Note that Σ̃Y,ν is a submatrix of Σ̃Y, we have Σ̃Y,ν = ΣY,ν(1+op(1)), where ΣY,ν is the covariance

matrix of Yν . Then it can be checked that

Λ∗∗3 = (1 + op(1))Π∗3, (A.31)

where Π∗3 = eT1 (XT
ν Σ−1

K,νXν)−1XT
ν Σ−1

K,νεν , Σ−1
K,ν = D

1/2
K,ν(IνΣY,νIν)−1D

1/2
K,ν . For the matrix ΣY,ν ,

the (
∑i−1

i′=1mli′ + j,
∑k−1

k′=1mlk′ + l)-th element is V (tli , sli,j ; tlk , slk,l), for 1 ≤ i, k ≤ Υ, 1 ≤ j ≤

mli and 1 ≤ l ≤ mlk . Thus, we have ||Iν(ΣY,ν − Σ∗Y,ν)Iν ||max = O((ht,2 + hs,2)), where the

(
∑i−1

i′=1mli′ + j,
∑k−1

k′=1mlk′ + l)th element of Σ∗Y,ν is V (t, t+ |i− k|/n; s, s) if (i, j) 6= (k, l), and the

(
∑i−1

i′=1mli′ + j,
∑i−1

i′=1mli′ + j)-th element is σ2(t, s). Hence, we have

Π∗3 = (1 + op(1))Π∗∗3 , (A.32)

where Π∗∗3 = eT1 (XT
ν WνXν)−1XT

ν Wνεν , Wν = D
1/2
K,ν(IνΣ

∗
Y,νIν)−1D

1/2
K,ν .

Let m0 = Cmaxm, denote Σ∗Y,0 = Σt ⊗Σs, where Cmax = max1≤i≤nmi/m, Σt = (σt(i1, i2)) is

a Υ×Υ matrix with σt(i1, i2) = V (t, t+ |i1− i2|/n; s, s), Σs = (σs(j1, j2)) is a m0×m0 matrix with

σs(j1, j1) = σ2(t, s)/V (t, t; s, s) and σs(j1, j2) = 1 when j1 6= j2, and ⊗ is the Kronecker product.

It is clear that Σ∗Y,ν is a principal submatrix of Σ∗Y,0. By the assumption that g(θ; t, s) > 0, for all

θ ∈ [−0.5, 0.5], we can find two constants ωt,0 > 0 and ωt,1 > 0 such that ωt,0 ≤ g(θ; t, s) ≤ ωt,1, for

θ ∈ [−0.5, 0.5]. By Lemma 1 in Xiao and Wu (2012), we have ωt,0 ≤ λmin(Σt) ≤ λmax(Σt) ≤ ωt,1,

where λmin(·) and λmax(·) denote the smallest and largest eigenvalues of a matrix. On the other

hand, it is clear that Σs = 11T + (σ2(t, s)/V (t, t; s, s)− 1)I, where I is a m0 ×m0 identity matrix

and 1 = (1, . . . , 1)T . Here, we focus on the cases when Var(ε1(t, s)) > 0. If Var(ε1(t, s)) = 0, we can

consider the generalized inverse matrix and prove the theorem similarly. When Var(ε1(t, s)) > 0,

we have λmin(Σs) > ωs,0, for some constant ωs,0 > 0. Since Σ∗Y,0 = Σt ⊗ Σs, it is clear that

λmin(Σ∗Y,0) ≥ ωt,0 × ωs,0 > 0. Notice that Σ∗Y,ν is a principal submatrix of the positive definite

matrix Σ∗Y,0, it can be checked that λmin(Σ∗Y,ν) ≥ λmin(Σ∗Y,0) ≥ ωt,0 × ωs,0.

Let Ã(t, s) = XT
ν WνXν and B̃(t, s) = XT

ν Wνεν . Then, we have

Π∗∗3 = eT1 Ã(t, s)−1B̃(t, s). (A.33)
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For B̃(t, s), we first consider its first element B̃1(t, s). Obviously, we have E(B̃1(t, s)) = 0.

For the variance of B̃1(t, s), note that E(B̃1(t, s)|Sσ) = 0, where Sσ is the σ-field generated

by S = {s11, . . . , snmn}, and Var(B̃1(t, s)) = Var(E(B̃1(t, s)|Sσ)) + E(Var(B̃1(t, s)|Sσ)). So,

to find Var(B̃1(t, s)), we only need to find Var(B̃1(t, s)|Sσ). Let 1ν = (1, . . . , 1)T and m(S) =

max1≤i≤nmi(S), where mi(S) is the number of elements in {sij , dE(sij , s) ≤ hs,2, j = 1, . . . ,mi}.

Then, we have

Var(B̃1(t, s)|Sσ) = 1Tν WνΣY,νWν1ν ≤ C12m(S)1Tν W2
ν1ν

≤ C12C
2
Km(S)1TνD

1/2
K (IνΣ

∗
Y,νIν)−2D

1/2
K 1ν

≤ {ωt,0ωs,0}−2C12C
2
Km(S)1TνDK1ν = m(S)2O(nht,2),

(A.34)

for some constant C12 > 0. For E(m(S)2), note that n exp(−mh2
s,2) = O(1). So, by the Bernstein’s

inequality, we have

E(m(S)2/(mh2
s,2)2) = E[( max

1≤i≤n
mi(S))2/(mh2

s,2)2]

=E[ max
1≤i≤n

mi(S)2/(mh2
s,2)2] ≤

∞∑
k=0

(k + 1)Pr( max
1≤i≤n

mi(S)2/(mh2
s,2)2 ≥ k)

≤O(1) + n
∞∑
k=1

(k + 1) max
1≤i≤n

Pr(mi(S)/(mh2
s,2) ≥

√
k)

≤O(1) + 2n

∞∑
k=1

(k + 1) exp(−mh2
s,2Cmin(

√
k − Cmax))

≤O(1) +O(1)×
∞∑
k=4

(k + 1) exp
(
−mh2

s,2

(
Cmin(

√
k − Cmax)− 1

))
<∞.

(A.35)

From (A.34) and (A.35), we have Var(B̃1(t, s)) = O(nht,2m
2h4
s,2). Since E(B̃1(t, s)) = 0, we have

B̃1(t, s) = Op({nht,2}1/2mh2
s,2). Similarly, it can be shown that

B̃(t, s)/(nht,2mh
2
s,2) =

 {nht,2}−1/2Op(1)

H̃1{nht,2}−1/2Op(1)

 , (A.36)

and

Ã(t, s)/(nht,2mh
2
s,2) =

 C1 + op(1) 1T H̃op(1)

H̃1op(1) H̃2C2(1 + op(1))

 , (A.37)

where H̃ = diag{ht,2, hs,2, hs,2}, 1 = (1, 1, 1)T , 0 < C1 < ∞ is a constant, and C2 is a matrix

with every element being a positive number. From (A.31)-(A.33), (A.36) and (A.37), we have

Λ∗∗3 = Π∗∗3 = Op({nht,2}−1/2). By some similar arguments, we have Λ∗∗2 = Op(h
2
t,2 + h2

s,2). By

combining these results with (A.30) and the fact that Λ∗∗1 = λ(t, s), the result in (15) of Theorem

1 has been proved.
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Appendix D: Additional simulation results about computation time

In Figure S.1, we investigate the effect of (m,n) on the proposed method Step2 and the setup

is described in Section 4 of the main paper.
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Figure S.1: Average computation times (in seconds) of the proposed method Step2 in cases when

(φt, φs) = (0.6, 3).
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