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To save some space in the paper of the above title, the proofs of all the three Lemmas and one
Theorem in the manuscript and some additional simulation results are presented in this supple-
mentary file. The equations in this supplementary file are labeled as (A.1), (A.2), and so on; while

we use labels like (1), (2), and so on, to refer to the equations in the manuscript.

Appendix A: Proof of Lemma 1

From the definition of g,(6;t, s), we have

gn(0;t,8) =V (t, t;s,8) + 2 Z V(t,t + k/n;s, s) cos(20km),
k=1

where 7, = [n(1 —t)] is the greatest integer less than or equal to n(1 —¢). Next we will show that
g(0;t,8) = limy 00 gn(0;t, s) is well-defined for all (t,s) € [0,1] x Q. When ¢ = 1, it is clear that
gn(0;1,8) = V(1,1;s,s) for all n. So, g(0;1,s) = lim,,00 gn(0;1,8) = V(1,1; s, s) is well-defined
for all s. Next we consider the case when (¢,s) € [0,1) x . For any 6§ € [—0.5,0.5], and two

integers n1 < mg, when n; is large enough, we have log(n;) < ni(1 —t). Then, it can be checked

that
Tny
‘9”2(97 t, S) - gnl(evta S)‘ < 22 |V(t7t + k/n27 S, S) - V(tat + k/nlﬂ S, 3)‘
k=1
Tny Tng
+2 Z \V(t,t+k/ni1;s,8)| +2 Z [V (t,t+ k/ng2;s,s),
k=T, +1 k=7ny +1

where 7,,, = [log(n1)]. Since {eg(t;, s)} is a strong mixing sequence, by the Davydov’s inequality,
we have

Cov(eo(ti, 8), c0(tr, 8))] < 12C2C /% exp(—Cy |k — i[(6 — 2)/6),



for all ¢, k and s, where C., Cp, C; and 0 are defined in Lemma 1. Thus, V(t,t + 7/n;s,s) =
O(exp(—C7(0 —2)/6)), for all (t,s) and 7. Then, we have
Ty

1912 (051, 8) = gny (03 8,8)| <2 V(£ + k/nas s, 8) = V(1 t + k/nas s, )]
k=1

+ O(exp(—C17n, (0 — 2)/6)) + O(exp(—C1Tn, (6 — 2)/9))
=O0((n2 — )7, /(min2)) + O(exp(=Ci7y, (8 — 2)/9)),
=0(log(n1)* /n1) + O(exp(—C log(n1)(8 — 2)/6))
=O(log(n1)* /n1 + exp(—C1 log(n1)(d — 2)/9))

Note that log(n1)?/n1 — 0 and exp(—C1 log(n1)(6—2)/d) — 0 asny — oco. Thus, {g,(0;t,8),n > 1}
is a Cauchy sequence. So, by the Cauchy convergence criterion, we know g, (0;t, s) is convergent.
Thus, g(0;t, s) is well-defined. For any 6,6 € [—0.5,0.5] and € > 0, there exists a postive integer
n, when n > n, we have [g(0;t,s) — gn(0;t,s)| < € and |g(¢';t,s) — gn(0';t,8)| < €. It follows that,

when n > n,
19(0:t,8) — g(0';t,8)| < |gn(B;t,8) — gn(0'5t,s)| + 2¢

<4r|6 — 0| Y K|V (t,t+k/n;s,8)| + 2€
k=1

<487 C2PCP %10 — 01 kexp(—Crk(2 — 6)/6) + 2¢
k=1

<Cyl0 — 0| + 2e,

where Cp = 487?052/50(()672)/5 Y pey kexp(—C1k(2—0)/6). Since € > 0 is arbitrary, we have g(0;t, s)

is Lipchitz-1 continuous with respect to 6.

Next, we show that g(6;t,s) > 0, for all § € [—0.5,0.5] and (¢, s), under the conditions in
Lemma 1. If this is not true, then there exist 6y € [—0.5,0.5] and (to, sp) € [0,1] x © such that
9(0o; to, so) < 0. Consider the M x M Toeplitz matrix Mp, where the (7, j)-th element of My is
V(to,to + 7/n;80,80) and 7 = |i — j|. For the matrix My, Grenander and Szegd (1958) proved
that its smallest eigenvalue would decrease with M and converge to inf{g(0;to, so), 0 € [—0.5,0.5]}.
Thus, when M is large, we have \g < g(6o; to, S0)/2, where )\ is the smallest eigenvalue of Mp. The
corresponding standardized eigenvector is denoted as axy which has the property that :I:g:no = 1.
Let 1 < iy < n be the closest integer to n x tg. Then, |t;, — to| < 1/n, where t;, = ig/n. Consider

the covariance matrix of {eo(t,, S0), - - -,€0(tiy+r—1, S0)}, denoted as M7.. Because the covariance



function is assumed to be twice differentiable, it can be shown that all elements of M7} — My are of
the order O(M /n) uniformly. So, the largest eigenvalue of M — My is of the order O(M?/n), and
we can find some constant Cq; > 0 such that Cyjq1 M?2/nly; — (M} — Mry) is positive-semidefinite,
where Iy is a M x M identity matrix. It follows that =l [C11M?/nly — (M} — Mr)|zg =
Cy1M?/n — ang*cho + Ao > 0. Hence, we have C;yM?/n > —\g for all n. On the other hand,
when n is large enough, C11M?/n < —g(6o;to,s0)/2 < —Ag. Thus, we have a contradiction.
Therefore, we must have g(6;t,s) > 0, for all # € [-0.5,0.5] and (¢, s). The result in Lemma 1 has

then been proved.

Appendix B: Proof of Lemma 2

For simplicity of expression, we use y;; and €;; to denote y(t;, s;;) and e(t;, si;), respectively.

At a given point (¢, s) € [0,1] x Q, from (4), we have

Mt,s) = el (XTDpX) ' X" DgY

=el (XT'DrX) ' XT"DgA + el (X' DX) ' X" Dge (A1)
=11 + Ily,
where A = E(Y) and € = (€11, -+ ,E1lmy» -+ Enm, ) - For II1, by the Taylor’s expansion, it can be
shown that
I = el (XTDX) ' XTDg(XB+ R) = A(t, s) + 113, (A.2)

where B = ()\(t, S), 8)\(15, s)/@t, 6)\(75, S)/@S)T, R = (1”11, oy Timyy - ,’l"nmn)T, Tij = ((tl — t), (Sij —
s)T) H(t, si;)((ti — 1), (85— s)1)T, H is the Hessian matrix of A(¢, s), and ti; €10,1], 8}; € Q, for
j=1,...,myi=1,...,n. From (A.1) and (A.2), we have X(t,s) = A(t,s) + Iy + II3. For Iy, it
can be checked that
I, = el (XTDEX) ' XTDge

= el (D(m,n)XTDX)'D(m,n) X! Dge (A.3)

=€ A ( )B(tv 8)7
where D(m,n) = (nhy omh? of(s s))7Y A(t,s) = D(n,m)XTDgX is a 4 x 4 matrix and B(t, s) =

D(n, m)XT Dge is a vector of size 4. Next, we focus on the first element of the vector B(t, s), i.e.,

Bi(t,s) := (nhio)~ ZKl ((t; —t)/heo)ei(s) (A.4)



where e;(s) = {mhZf(s)}! > ity Ka(dp(sij, 8)/hso)eij. We will show below that Bi(t,s) =
Op(a(n,m)) uniformly for (¢,s) € [0, 1] x Q, where a(n,m) = {log(n)Q/(nh?’O)}l/Q.

First, note that the spatial location of interest €2 is bounded, then it is clear that [0, 1] x £ can
be covered by N = O({a(n,m)ho}~?) regions {R;,l = 1,...,N}, where R; = {(t,8) : |t — | <
a(n,m)hyp, dg(s,s;) < a(n,m)hio} and {(¢/,s7),l=1,... , N} are the centroids of the N regions.
Since both kernel functions K;(z) and Ks(x) are Lipschitz-1 continuous, let 0 < Lx < oo be their
Lipschitz constant. Because it is assumed that ho/hso = O(1), we can find some constant Cy > 0
such that hyg < Cihsg. Define Cx = sup,cp{Ki(z), K2(z)}. Then, for any (¢,s) € R; and a

sufficiently large n, we have

ti —t dE(Sij,S) ti —t}k dE(Sij,Szk)
K Ky| ——— |- K Ky | ————=
‘ ! < ht,0 ) 2 < hs,o ! hi,0 2 hs,0

ti — tF di(sij, s}
<CgLihiy{|t —t| + Cudg(s,s{) }1 <| - il < 2L1> I <E(Z]sl) < 2L2> ,
’ t,0 5,0

(A.5)

where [—Lq, L1] and [—Le, Lo| are the compact supports for Kj(x) and Ka(x), respectively. Define
Ki(z) = 1/(2L)I(|z| < 2L,) and Ky(x) = 1/(4xL2)I(|z| < 2Ls). Then, by (A.5), there exists a

constant C5 > 0 such that

tl' —1 dE(Sij,S) ti —t? dE(SZ‘j,ST)
K Koy| ——— |- K Ky | ————=
‘ ! ( hto > ? ( hs.0 "\ Ao 2 hs,0

~ (ti—t\ ~ [dg(sij,s;
§C5a(m,n)K1( h Z)KQ <E(ZJOSZ)>

)

Define
By (t,8) ={nmhyohlof ()} Y Y Ki((ti —t)/hio)
i=1 j=1
x Ka(dp(sij, 8)/hso)leij]-
Since K1(-) and Ko(-) satisfy the assumptions about the kernel function in Lemma 2, it can be
checked that
E(By(t,8)) < CH°(1+ O(hZ( + 1/(nhsy))) < o0,



where § and C. are defined in Lemma 2. Based on the result in (A.6), it can be shown that

sup ‘Bl(t, s) — E{B(t, s)}{
(t,S)ERl

<|Bi(t],s7) — E{Bi(t], s7)}| + Csa(n,m) [Bi(1], sf) + E{B1 (1], 5)}]
<[Bi(t]. s7) = E{Bu(t},s])}| + Csa(n,m)[[Bu(#}. 57) — E{Bu(t],s])}] (A7)
+2Csa(n, m)E{B1(t],s])}
<[Bu(tf, s7) — E{B1(t],s{)}| + C5[[Bu(t], s7) — E{Bu (], s7)}]
+ 2Csa(n,m)T,
where the final inequality is obtained because a(n,m) < 1 and T > E(B1(t, s)) when n, m and T

are large enough. By (A.7), it can be shown that

Pr <( )sup |B1(t,s) — E{Bi(t,s)}| > (2 + 4C5)Ta(n,m)>

€[0,1]x2
<N max Pr(|Bi(t},s}) — E{B1i(t},s})}| > 2Ta(n,m)) (A.8)
1<IKN
+ N max Pr (|f31(t7, st) — B{Bi(t},s1)}] > 2Ta(n,m)) .
1<IKN

For the two parts on the right-hand side of (A.8), we can use similar arguments to find their upper
bounds, because both (K1 (), Ka(z)) and (K1(z), K2(z)) satisfy the assumptions about the kernel

functions given in Lemma 2.
Second, for any (¢,s) € [0,1] x Q, by the fact that E{B(¢,s)} = 0, we have

Pr(|Bi(t, s) — E{Bi1(t,s)}| > 2Ta(n,m)) = Pr(|Bi(t, s)| > 2Ta(n,m)). (A.9)

Next, we replace €;(s) in By (¢, s) by its truncated version &;(s)I(|e;(s)| < ¢n), and evaluate the
error caused by this truncation, where @, = {n/log(n)?}'/? and e;(s) is defined in (A.4). Based
on the assumption that Ele(t, s)|° < C. for some § > 5, it can be checked that E(|e;(s)[°) < Oy,

for some constant ©y > 0. Define

TR(t, s) ZK& ((ti =) /heo)ei(s)I(lei(s)] > on),

TLht 0

then we have

E(|TR(¢,s)]) < nht() ZKl i — )/ heo)E{|ei(s)|I(|ei(s)] > ¢n)}
(A.10)

o ZKI(( i —1)/hio)ent = O(p,").



By the Markov’s inequality, it is clear that |TR(t,s) — E(TR(t, s))| = Op(p,*), for any (¢,s) €
[0,1] x €.

Let &i(t, s) = €i(s)I(lei(s)] < on)K1((ti—t)/he o), Zi(t,s) = &i(t, s)—E{e;(t,s)} and Bi(t,s) =
Bi(t,s) — TR(t, s). It can be checked that Bj(t,s) — E{Bj(t,s)} = (nhio) > 1L, Zi(t,s), for
(t,s) €10,1] x Q. Given any possible values of {s;;,i =1,...,n,j =1,...,m;}, we have | Z;(t,s)| <
2CKk ¢y, and for any positive integer L < n, it can be checked that

L
E[ZZi(t, s)? | Sg} < ©1LD(s)?,

i=1
for some constant ©1 > 0, where S, is the o-algebra generated by the spatial locations & =
{811, 8nm, }, D(s) = maxi<ic, Di(s), and Dj(s) = (mh3f(s))"' Y1 Ka(dr(sij, 8)/hso)-

Let the strong mixing coefficient of {g;;} be define as

a* (k) = sup sup{|P(AB) — P(A)P(B)|: A€ F{,B € F}\.;.},
n>1,1<i<n—k A,B

where ]-",lj; is the o-algebra generated by {ex;, ko < k < k1,1 = 1,...,my}. Since {eo(t;, sij)}
are independent of {e1(t;, s55)}, {€1(ti, sij)} are independent at different times and/or locations,
and e;; = eo(ts, si5) + €1(ti, 8i5), from Theorem 5.2 in Bradley (2005), it can be checked that
a*(k) < a(k). Note that {s;;,j =1,...,m;,i = 1,...,n} are independent of the random errors
{e11,...,€nm, }. So, for given {s;;,i =1,...,n,j = 1,...,m;}, {Zi(t,s) : i =1,...,n} is a strong
mixing sequence with the strong mixing coefficient {a(k),k =0,1,...}, and a(k) < o*(k) < a(k),
for k > 1. Let L, be an integer closest to {T"/%log(n)}/(10Ck). Then, we have nhyoa(n, m)T >
8Ck Ly, when n is large. By Theorem 2.1 in Liebscher (1996), for 1 <1 < N, it can be shown
that

Pr([Bi(t,s7) — E(Bi(t, 87))| > a(n,m)T | S5)

T?log(n) 40nCyCk o C1T"?1og(n) (A.11)
xp | — 21— eV
6401 D(s)2 + T3/2 T1/2log(n) 10Ck ’

<4 exp <—

when log(n) > 1. Note that the second term on the right-hand side of (A.11) is independent of the

choice of {s;5,i=1,...,n,7 =1,...,m;}. Let Crax = maxi<i<, mi/m and Cpin = minj<;<, m;/m,



then, by the Bernstein’s inequality, we have
Pr([Bi(t;,s;) — E(Bi(t], 57))| > a(n,m)T)

T2 log(n) "

40nC CiT'/?1og(n)
1/2 _ K _ Lt 08\
+ 4Pr (D(s) > CaxT’ ) + T1/2 log(n) P ( 10Ck

T?log(n)

2 1/2
<4 exp ( 616:C2 T+ T3/2> + O (n exp(—mhsyoC’minCmax(T /2 _ 1)))

4nC _ CiT"?log(n)
T'/21og(n) P 10Ck

In addition, from (A.10), by the Markov’s inequality, we have

Pr (|TR(t], s]) — E{TR(t], s])}| > a(n,m)T) = O ({a(n,m)Tgofb}fl) .

Therefore, by combining (A.12) with (A.13), when T is large enough, we have

Pr(|B1(t}, 57) — E(Bu(#], 87))| > 2a(n,m)T) = O ({a(n,m)T} ")

+0 (n*T1/2/65> +0 (n exp(—mhioC’minC'mM(TI/2 - 1)))

ClTl/Q
+0 | ne —log(n .
( Xp{ g(n) 100,

By (A.8) and (A.14), it can be shown that, when 7 is large enough,

Pr < sup  |Bi(t,s) — E(Bi(t,s))] > (2+ 4C’5)Ta(n,m)>
(t,8)€[0,1]x2

<0 ({a(n,m)*hi T} ") + 0 (a(n,m)*Bh;gn*Tl/Q/%)

—i—O( a(n,m) 3h 0nexp{ —mh? OCmmC’maX(Tl/Q )})
1/2
+0 (a(n,m)_?’ht’g’n exp {—10g(n) Gl }) =o(1).

20C K

(A.12)

(A.13)

(A.14)

(A.15)

Note that E(B;(t,s)) = 0. So, by (A.15), we have B1(¢,s) = Op(a(n,m)), which is uniformly true

for all (¢, s) € [0,1] x Q. The vector of the remaining elements of B(¢, s) can be proved in a similarly

way to be of the order H10,(a(n,m)), where H = diag{h¢ 0, hso, hso} and 1 = (1,1,1)T

we have
Bs)— | ) )
H10y(a(n,m))

which are uniformly true for all (¢,s) € [0,1] x Q.

. Thus,



Next, we will study the properties of A(t,s). To this end, let b(n,m) = h%,o + hio +
{log(n)?/(nh )}'/2, b (n,m) = b(n, m)+{10g(m)/(mh§ o)}%, and pa (K) = diag{pa1(K), paa(K), paa(K)},
where po1(K) = [22K1(z)dx, poe(K) = [uiKs(dp(u,0))du and u = (u1,u2)”. Then, it can be
shown by similar arguments to those for deriving (A.5)-(A.15) that

a+ Op(b*(n,m)) 1THO,(b*(n,m))
H10,((n,m)  C(1+ 0,5 (n,m)))

Al(t,s) =

where a € [Chin, Cmax|, and all elements of the 3 x 3 matrix C are in the same order of the

corresponding elements of H?us(K). By combining the above results, we have
I, = el A(t,s) " 'B(t,s) = Op(a(n,m)), (A.16)

which is uniformly true for all (¢, s) € [0,1] x Q. For II3 defined in (A.2), in a similar way that we
study the property of B(t, s), it can be checked that

I3 =0y (kg + hiy) (A.17)

which is uniformly true for all (¢,s) € [0, 1] x Q. By combining the results in (A.1), (A.2), (A.16)
and (A.17), the result (12) in Lemma 2 has been proved.

Appendix C: Proof of Lemma 3

First, we derive the convergence property of 5%(t,s) in (13). For simplicity, denote &;; =
E(ts, s5) = y(ti, 845) — X(ti, 8;j). From Lemma 2, we know that |e;; —&;;| is bounded by a term of the
order Oy (b(n,m)) uniformly for all i and j, where b(n,m) = hi, + h?y + {log(n) /(nh%o)}lﬂ. Let
Go(t, 5) = Dln,m) Sy S (i, ), Galt, s) = Dln,m) Sy S, wi (5, /)%, and Galt,s) =
D(n,m) 35y > 70 wi(i NG €;;, where D(n,m) is defined in the proof of Lemma 2. Then, it is clear
that 52(t,s) = Ga(t,s)/Go(t, s). For the difference between Ga(t, s) and Gy (t,s), we have

Golt,8) — Ca(t,9)] <2D(nm) 305 (i el —

i=1 j=1
m) > > wi(i, §)(Eij — i)
i=1 j=1
Since |e;; — €45 is uniformly bounded by a term of the order O, (b(n, m)) and it can be easily checked
that D(n,m) > 1 > wi(i, 7)|ei;]/Go(t, 8) is uniformly bounded by Op(1) for all (¢, s), we have

sup  |(Galt, s) — Gi(t,8))/Go(t. 8)| = Op(b(n,m)). (A.18)
t€[0,1],s€Q



Let
G1 (t, S)/Go(t, S) = Gg(t, S)/Go(t, S) + G4(t, S)/Go(t, S) = A1 + Ag, (A]_g)

where G3(t,8) = D(n,m) > 0L >0 wi(i, j)o 2(ti, s;) and Gy(t,s) = Gi(t,s) — Gs(t,s). For the
random errors {£(t,s)}, from the condition that Pr(|(t,s)| > k) < Cak? exp(—C3k), we have

E(le(t,s)’) <> KPr(|e(t, s)| > k — 1) <022k5+19exp{ C3(k —1)} < oo,
k=1 k=1

where § > 0 is any constant. So, we can find a constant C. s > 0 such that E(|5ij|5) < C.s, for
all i and j, when § is pre-specified. It follows that E(|e;;|!Y) < C:19. By some similar arguments
to those in the proof of Lemma 2, it can be checked that |A; — o2(t,s)| = Op(hgl + hil), and
Ay = Op(hil + hil + {log(n)2/(nhf71)}1/2), which are uniformly true for all (¢, s). Therefore, from
(A.18) and (A.19), the result in (13) is true.

Next, we derive the property of V(t,t’ ;8,8') given in (14) of Lemma 3. To this end, let
D*(n,m) = {n*hi m*hg, f(s)f(s")}
Qo(t,t,;S,S/) :D*(n’m)z Z w2(iaja k,l)a
4.3 (kD#(i,)

Ql(ta t/;S,S/) = D*(na m)z Z w2(iajak)l)5ij€kl7 and
4.5 (kD)F#(0,5)

Qa(t,t's5,8) =D (n,m) > > wai, f, k, 1)E;em.

63 (k,D)F(i.5)

Then it is clear that V(t,t’;s,s’) = Q2(t,t';8,8)/Qo(t,t';s,8'). Similar to the arguments for
deriving (A.18) above, it can be checked that

’(QQ(tv t/; S, S,) - Ql(t7 t,; S, Sl))/QO(tv t/; S, Sl)' = Op(b(n? m))v (A2O)
which is uniformly true for all ¢, ¢/, s and s’. Let

Ql(t7 t/; S, S/)/Qo(ta t,; S, S/) = {Q3(t7 t/; S, S,) + Q4(t7 t,; S, Sl)}/QO(ta t/; S, S,)
A+ A

(A.21)

where Qs(t,t';s,8") = D*(n,m) >0 Z(k’l#(i’j) wa (%, 4, k, )V (ti, tr; Sij, Skr), and Qa(t,t';s,8") =
Q1(t,t';8,8")—Qs(t,t';s,8"). For the first part Af, since the covariance function V' is twice contin-

uously differentiable, it can be checked that [A} — V (t,t';s,8")| = Op(hi; + hZ,) uniformly. Next,



we will show that Q4(t,t';s,8") = Op({log(n)Q/(nhil)}l/Q) uniformly. To this end, denote

m; Mg

Vi (s, 8) s={m?hl f(9) F(s)} ) 0D Ko(du(sig, 8)/han)

=1 1=1
x Ko(dg(sk1, 8)/hs1)(€ijer — V (ti, th; Sij, Ski))

and

Q5(ta t,a S, S/) = {nht,l}_l Z Kl((tz - t)/ht,l)Xl(tlv S, S,),
=1

where X;(t';8,8") = {nhi1} 1 >0 Ki((te — t')/ht,1)Y;. (8, 8"). It can shown that

n

Qs(t.5 8, 8) — Qult, 55, 8)| = Oy (0 ymnd 1} ) | 303 Kal(ts — 0)/hen)

i=1 j—=1
x K1((t; — ') /he 1) Ka(dp(sij, 8)/hs1) Ka(dp (i, ') /hs1) (€5 — 02 (i, 8i5))

=0, (nhmmhil) ,

(A.22)

which is uniformly true for all ¢,¢',s, and s’. Thus, to prove the result that Q4(¢,t’;s,s’) =
Op({log(n)Q/(nh%,l)}l/Q), it suffices to show that Os(t,t';s,s") = Op({log(n)Q/(nhf,l)}1/2). Since
Q5(t,t';s,8") is a weighted average of X;(t'; s,s’), it is enough to show that

Xi(t'; 8,8") = Op({log(n)*/(nh3 ) }'/?)
uniformly for all 7 and ¢/, s and s’, which is shown below.

For X;(t'; s, s") defined before, we will use some similar arguments to those for deriving (A.5)-
(A.15) to find an uniform bound for it. To this end, we first divide the space [0,1] x Q2 into
N* = O({a*(n,m)hy1}7°) regions {R;,l = 1,...N*}, where a*(n,m) = {log(n)2/(nh?71)}1/2. Let
(tf,u},v)) be the centroid of the region R, for [ =1,... N*. Then, by the similar arguments those

in (A.5)-(A.8), we can find some constants Cs > 0 and C7 > 0 such that

Pr| sup sup |X;(t;s,s) — E{X;(t';s,s")}| > C¢Ta*(n,m)
t'el0,1] 5,8'€Q

(A.23)
<C7N™ max Pr(1Xi(6;uy, vf) — E{Xi(t]3 4y, vp)}| 2 2Ta”(n,m)).

For any t', s and s', because E(X;(t';s,s’)) = 0, we have

Pr(|Xi(t;s,8') — E(Xi(t';s,8")| > 2Ta*(n,m)) = Pr (|X;(t';s,s')| > 2Ta*(n,m)).  (A.24)
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Let X7 (t;5,8) = {1/(nhu1) ey Ka((tx — )/hea) Vi (s, 8)I(V7(5,8)] < on), where g, is
defined in the proof of Lemma 2. Since E(|e(t, 8)|'*) < C. 14, it can be checked that E|Y} (s, s')|” <

Cg, for some constant Cs > 0. By the Markov’s inequality, it follows that
Pr (| TR} (¢ 5,5) — E(TR} (t'5,8))| < a*(n,m)T) = O({a" (n,m)TS} "), (A.25)

where TR (t';s,8') = X;(t';s,8') — X/(t/;s,8'). For X/(t';s,s'), similar to the arguments in
deriving (A.11)-(A.12), it can be checked that
Pr (X7 006) = B (50,62 0" um)T) =0 (T P logoyca))
+0 (n exp(=T"/? log(n)/Cm)) +0 (n exp(—mhil(Tl/Q - 1))) , ‘
where Cy, C1p > 0 are some constants. By combining the results in (A.25) and (A.26) and the fact
that F(X;(t';s,s’)) =0, we have
Pr (Xl 5,8) > 2a*(m,m)T) = O ({a* (n,m)T8} 1) + O exp(~T"/2 10g(n) /C))

(A.27)
+0 (n exp(—T"/? log(n)/C1o)> + 0O (n exp(—mhil(Tl/2 - 1)) )

By (A.23), (A.24) and (A.27), we have

Pr| sup sup |X;(t;s,s') — E{X;(t';s,s)}| > C¢Ta*(n,m)
t'e€l0,1] s,5'€Q

<0 ({ht,la*<n, Tn)}*5[{a*(n7 m)gogT}*l + exp(_Tl/Z log(n)/09]> (A.28)

+0 ({ht,la*(n,m)}_5 [” eXP(*Tl/2 log(n)/C1o0) + G‘XP{*(TI/2 - 1)mh2,1}}> )

which is uniformly true for 1 <+¢ < n. It follows that

Pr| max sup sup |X;(t;s,s’) — E{X;(t';s,8')}| > C¢Ta*(n,m)
1<isnielo,1] s,8'€Q
(A.29)

<n 1IgiannP]r (tzl[g)l] Ssslllgg | Xi(t';s,8) — B{X;(t';s,8")}| > CGTa*(n,m)> =o0(1).
Since E{X;(t';s,s')} = 0, from (A.29), we have X;(t';s,s') = Op(a*(n,m)) uniformly for all
i,t,s and s'. So, Qs(t,t';s,8") = Op({log(n)Q/(nhgl)}lﬂ) uniformly for all ¢,¢',s and s’. Sim-
ilarly, it can be checked that [Q4(t,t';s,8") — Q5(t,t';8,8")| = Op(a*(n,m)) uniformly. Thus,
we have Q4(t,t';s,s’) = Op(a*(n,m)) uniformly. In addition, it can be shown that Crn +
Op(a*(n,m) + hiy + h2;) < Qo(t,t';8,8") < Cax + Op(a*(n,m) + h7; + h2 ;) uniformly. There-
fore, we have A5 = Qu(t,t';s,5")/Qo(t,t';s,8") = Op(a*(n,m)), where Crin = minj<i<, mi/m
and Chpax = maxj<i<pm;/m. By combining this result with (A.20)-(A.21) and the result that
A} =V (t,t';s,8) + Op(hi, + h2,), the result in (14) can then be proved.
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Appendix D: Proof of Theorem 1

For any (t,s) € [0,1] x Q, let T be the number of elements in the set {i,|t; —t| < hyo}. We
can change the order of {i,7 = 1,...,n} to obtain a new sequence {l;,i = 1,...,n} such that the
first T elements in {l;} are {7, |[t; —t| < lyo} and [} < --- < Iy. Let X, = (Xy;1, ... 7Xlr,sz)T and

Y, = (y(ty,, s1,1)s - - Y(tiys Slr,sz»T- Then, it can be checked that

~ ~ -1 ~
Ats) = el (XISLX,) XISLY,,

where e; = (1,0,0,0)", £ = D} (L Ey 1) ' D2, I, = diag{I(jti, ~t| < he2)I(dE (s, 8) <

hs,2)a o 71(’tl'r - t‘ S ht,2)I(dE(SlT,mlT P S) S h5,2)}7 DK,Z/ - diag{/wO(lL ]-)a ce. 711)0([’1‘, mlr)})
wo (%, j) is defined in (3), and iY,V is the estimated covariance matrix of Y,. Let A, = E(Y,) and

€, = Y, — A,. By the Taylor’s expansion, it can be shown that

At 8) =ef (X E3, X)) T XY S Y,
=el (XS, X)) XIS + el (XS, X)) XIS ey A0
el (XIER, %) XIS X8, + ] (KIS X) XIS R
+el (XIER, X)) XIS e, = AT+ A+ AY
where R = (P11, ., T, ), 7ij = ((t, — 1), (81,5 — )T VM, 81 (4, — ), (51,5 — )T, By =
(A(t, s),0A(t, 8)/0t, OX(t,5)/s)", H is the Hessian matrix of A(t, s), t}; € [0,1] and s}; € Q, for

’ iy
i=1,...,Tand j = 1,...,my,. For A7*, it is clear that A]* = A(¢,s). Next, we will show that
A = 0,({1/(nhi2)}'/?), and it can be shown similarly that A* = Op(h%z + h§72). From Lemma

3, we have
V(t,t;s,8) = V(t,t;s,8) = Op(hig + hg + {log(n)?/(nhi )}/
+hiy + b2, + {log(n)?/(nhi )}'/?)

uniformly for all (¢, s) and (¢, s"). Define ||A||lmax = maxi<; j<n |aij|, where A = (a;;) isa N x N

matrix. Then it can be shown that

1=y — Zv|lmax = Op((hZg + h2g + {log(n)?/(nh?,)}1/?

+hiy + k2 + {log(n)?/(nhiy)}'/?)),

where Xy is the covariance matrix of Y, Y = (y(t1, 811), - - -, ¥(tn, Snm, )’ , and ﬁy is the estimated

covariance matrix computed from v(t,t' ;8,8'). In the paragraph immediately before Expression
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(7) in Section 2.2, we defined the projection of f]y to the set of all symmetric positive definite

matrices to be f)y. For this matrix, because Xv is positive definite, we have
12y = Zyllmax =0p((h7o + hi o + {log(n)?/(nhi )}/
+hiy +hi g+ {log(n)?/(nhi)}'/?)).

Note that iY,V is a submatrix of f]y, we have ENIY,V =Xy, (140p(1)), where Xy, is the covariance

matrix of Y,. Then it can be checked that
A3 = (14 0,(1))113, (A.31)

where TI; = 7 (XI5 X,) XTIl e, 71 = DY (I,3y,1,) ' D}/, For the matrix Sy,
the (21'_:11 my, + J, 21127:11 my,, + [)-th element is V (t,, s, j;t1,,81,0), for 1 < ik <Y, 1 <5 <
my, and 1 < I < my,. Thus, we have ||I,(Zy, — EQ’V)I,,HmaX = O((ht2 + hs2)), where the

(o muy, + 4, Sojy mu,, +1)th element of X%, is V(t,t +|i — k| /n; s, s) if (i, ) # (k,1), and the

i

(i mi, + J, S my, + j)-th element is o%(¢, s). Hence, we have
I3 = (1 4 0p(1))115", (A.32)
where 11§ = ef (X/W, X,)'XIW,e,, W, = D}/2(I, 5%, L)' D}/2.

Let mg = Craxm, denote 33 ; = 3; ® X, where Cax = maxi<i<n m;/m, Xy = (0¢(i1,12)) is
a T x T matrix with oy(i1,i2) = V(t,t+ i1 —i2|/n; s, 8), s = (05(j1,72)) is a mg X mp matrix with
os(j1,j1) = 02(t,8)/V(t,t;s,8) and 0,(j1,j2) = 1 when j; # ja, and ® is the Kronecker product.
It is clear that 33 is a principal submatrix of 3% ;. By the assumption that g(6;¢,s) > 0, for all
6 € [-0.5,0.5], we can find two constants w; g > 0 and wy; > 0 such that wy g < g(0;t,s) < wy 1, for
6 € [—0.5,0.5]. By Lemma 1 in Xiao and Wu (2012), we have wp < Amin(2¢) < Amax(Zt) < we 1,
where A\pin(+) and Apax(-) denote the smallest and largest eigenvalues of a matrix. On the other
hand, it is clear that X; = 117 + (02(¢,8)/V (¢, t; 8, 8) — 1)I, where I is a mg x mg identity matrix
and 1 = (1,...,1)T. Here, we focus on the cases when Var(e1(t, s)) > 0. If Var(e(t, s)) = 0, we can
consider the generalized inverse matrix and prove the theorem similarly. When Var(eq(t, s)) > 0,
we have Apin(3s) > wsp, for some constant wsg > 0. Since Xy = Xt ® X, it is clear that
)\min(EQO) > wrp X wsp > 0. Notice that 2?{,1/ is a principal submatrix of the positive definite

matrix 33, ), it can be checked that Apin(E3 ) > Amin(B3 ) = wi,0 X ws 0.
Let A(t,s) = XYW, X, and B(t,s) = X)W ,&,. Then, we have
s = el A(t,s)'B(t, s). (A.33)
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For B(t,s), we first consider its first element Bi(¢,s). Obviously, we have E(Bi(t,s)) = 0.
For the variance of Bi(t,s), note that E(Bj(t,s)|S,) = 0, where S, is the o-field gencrated
by 8 = {s11,---,Sum, }, and Var(Bi(t,s)) = Var(E(Bi(t,s)[S,)) + E(Var(Bi(t,s)|S,)). So,
to find Var(By(t,s)), we only need to find Var(Bi(t,s)|S,). Let 1, = (1,...,1)T and m(S) =
maxi<;<n M;i(S), where m;(S) is the number of elements in {s;j,dg(sij,s) < hs2,7 = 1,...,m;}.
Then, we have
Var(Bi(t,5)|S,) = 11W, 2y , W, 1, < Clam(S)17 W21,
< C1CEm(S)1T D (1,5% ,1,) > D)%, (A.34)
< {wt,ows,o}_QClgC%{m(S)IZDKly = m(S)zO(nhug),
for some constant Cj5 > 0. For E(m(S)?), note that nexp(—mhgg) = O(1). So, by the Bernstein’s

inequality, we have

E(m(S)?/(mh35)?) = E[( max mi(8))*/(mh?5)*]

1<i<n
oo
— , 2 2 \2
_E[fg?anmZ(S) kz (k+1)Pr( 112?<}§Lm1(8) /(mhg4)° > k)
<O(1) +ny_(k+1) max Pr(mi(S)/(mh3,) > Vk) (A.35)
k=1 -

<O(1) 4+ 2n Z(k‘ +1) exp(fmhggcmin(\/é — Chax))
k=1

0 , )
) X kzzél (k+1) exp( mhy < Chnin(VE — Ciax) )) < 00.

From (A.34) and (A.35), we have Var(Bi(t, s)) = O(nht’2m2hg72). Since E(By(t,s)) = 0, we have
Bi(t, s) = Op({nhy2}/>mh?,). Similarly, it can be shown that

nng _1/
B(t, )/ (nhyamh?y) = ( Ik} O ) (A.36)
H1{nh; 5} ?0,(1)
and
-
At 5)) (nhyamh?) = (Cff ) 1T Ho) ) (A37)
H1o,(1) H?Cy(1+ 0y(1))

where H = diag{hs 2, hs2, hs2}, 1 = (1,1,1)7, 0 < C; < oo is a constant, and Cs is a matrix
with every element being a positive number. From (A.31)-(A.33), (A.36) and (A.37), we have
A = 3" = Op({nhi2}~"/?). By some similar arguments, we have A}* = Op(hiy + hZ,). By
combining these results with (A.30) and the fact that AT* = A(t, s), the result in (15) of Theorem

1 has been proved.
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Appendix D: Additional simulation results about computation time

In Figure S.1, we investigate the effect of (m,n) on the proposed method Step2 and the setup

is described in Section 4 of the main paper.
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Figure S.1: Average computation times (in seconds) of the proposed method Step2 in cases when

(¢t7 ¢s> - (0'67 3)'

References

Bradley, R.C. (2005), “Basic properties of strong mixing conditions. A survey and some open

questions,” Probability Surveys, 2, 107-144.

Grenander, U., and Szego, G. (1958), Toeplitz forms and their applications, Oakland: University

of California Press.

15



Liebscher, E. (1996), “Strong convergence of sums of a-mixing random variables with applications

to density estimation,” Stochastic Processes and Their Applications, 65, 69—80.

Xiao, H., and Wu, W.B. (2012), “Covariance matrix estimation for stationary time series,” The

Annals of Statistics, 40, 466—493.

16



