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Abstract
Spatio-temporal data are common in practice. Existing methods for analyzing such 
data often employ parametric modelling with different sets of model assumptions. 
However, spatio-temporal data in practice often have complicated structures, includ-
ing complex spatial and temporal data variation, latent spatio-temporal data correla-
tion, and unknown data distribution. Because such data structures reflect the com-
plicated impact of confounding variables, such as weather, demographic variables, 
life styles, and other cultural and environmental factors, they are usually too compli-
cated to describe by parametric models. In this paper, we suggest a general model-
ling framework for estimating the mean and covariance functions of spatio-temporal 
data using a three-step local smoothing procedure. The suggested method can well 
accommodate the complicated structure of real spatio-temporal data. Under some 
regularity conditions, the consistency of the proposed estimators is established. Both 
simulation studies and a real-data application show that our proposed method could 
work well in practice.

Keywords Bandwidth selection · Consistency · Covariance estimation · Functional 
data analysis · Local smoothing · Spatio-temporal data

1 Introduction

A large amount of spatio-temporal data has become available to researchers in statis-
tics, epidemiology, geography, oceanography, environmental science, and more. The 
increasing computing power has made it possible for us to analyze these data with 
more and more realistic models. This paper aims to propose a general modelling 
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framework for estimating the mean and variance/covariance functions of spatio-tem-
poral data using a local smoothing procedure.

In the statistical literature, there have been many existing spatio-temporal model-
ling approaches. One such approach suggested by Stroud et  al. (2001) is for linear 
dynamic spatio-temporal modelling (DSTM), in which the mean response at each 
time point is assumed to be a locally weighted mixture of some pre-specified basis 
functions, the spatial surfaces at different time points are assumed to follow a linear 
evolution equation, and the spatial random noise is assumed to be a Gaussian noise 
process. Some generalized versions of DSTM have been developed to describe non-
linear evolution process (Wikle and Hooten 2010) or model high-dimensional multi-
variate spatio-temporal data (Bradley et al. 2015). More details about dynamical spa-
tio-temporal models can be found in the books Cressie and Wikle (2011) and Wikle 
et al. (2019). Another approach for modelling a spatio-temporal point process is based 
on the log-Gaussian Cox process (LGCP) framework (Møller et al. 1998), where the 
logarithm of the related spatio-temporal intensity function is assumed to follow a spa-
tio-temporal Gaussian process with a separable or nonseparable covariance structure, 
and conditional on the intensity function the original point process is assumed to be 
Poisson-distributed (e.g. Cressie and Huang 1999; Diggle et al. 2013). By using the 
idea of scale mixing, Fonseca and Steel (2011) suggested a method for modelling non-
Gaussian spatio-temporal data, based on the assumptions that the observed data follow 
a Gaussian process given some scale mixing variables and that the covariance struc-
ture has a specific parametric form. To analyze a sequence of large air quality datasets, 
Datta et al. (2016) developed a dynamic nearest-neighbor Gaussian process model to 
provide statistical inference by using data information from nearest neighbors. There 
are some other methods for estimating the spatio-temporal mean and/or covariance 
structure, including the linear regression modelling using temporal basis functions 
(cf., Lindström et al. 2015), the kernel smoothing methods with or without consider-
ing spatial data correlation (e.g. Kafadar 1996; Yang and Qiu 2018 and Yang and Qiu 
(2019)), the function estimation methods based on B-splines (e.g. Choi et al. 2013) or 
LASSO penalized least squares (e.g. Shand and Li 2017), the space-time ANOVA-
type methods (Heuvelink and Griffith 2010), and more.

The parametric model assumptions in some existing methods described above could 
be invalid or difficult to justify in certain applications. Consequently, their performance 
may not be reliable in such cases. The data covariance structure is not used or well 
accommodated when estimating the mean function in these or some other existing meth-
ods; thus, there is much room for us to improve their effectiveness. In this paper, we pro-
pose a general modelling framework for jointly estimating the mean and variance/covari-
ance functions of spatio-temporal data using a three-step local smoothing procedure. The 
proposed method does not impose restrictive assumptions on the spatio-temporal mean 
structure, the spatio-temporal covariance structure, and the data distribution. Because it 
is based on local smoothing, its computation is relatively fast. In the proposed method, 
the spatio-temporal covariance structure is estimated and accommodated properly when 
estimating the mean structure. To properly distinguish the mean and covariance struc-
ture in model estimation, a new spatio-temporal bandwidth selection procedure is also 
developed. All these features make the proposed method effective in analyzing spatio-
temporal data, which is confirmed by theoretical arguments and numerical studies.
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The rest of the article is organized as follows. The proposed nonparametric spatio-
temporal regression method is first described in detail in Sect. 2. Some of its theoreti-
cal properties are derived in Sect. 3. Its numerical performance is evaluated by some 
simulation studies in Sect. 4. A real-data application is discussed in Sect. 5, and we 
conclude with a discussion in Sect. 6. Some technical details, including the proofs of 
certain theoretical results, can be found in the supporting materials.

2  Local smoothing approach for estimation Spatio‑temporal mean 
and variance/covariance functions

Our proposed method is described in three parts. A nonparametric spatio-temporal 
regression model is discussed in Sect. 2.1, its three-step model estimation is discussed 
in Sect. 2.2, and a novel spatio-temporal bandwidth selection procedure is discussed in 
Sect. 2.3.

2.1  A nonparametric spatio‑temporal regression model

Assume that a response variable y is observed at n equally spaced time points 
{ti = i∕n, i = 1,… , n} in the time interval [0, 1], and at the ith time point it is observed 
at mi spatial locations {sij, j = 1,… ,mi} in a spatial region Ω ⊆ ℝ

2 , for i = 1,… , n . 
The observed data are assumed to follow the following nonparametric spatio-temporal 
regression model:

where �(ti, sij) is the mean of y(ti, sij) , and �(ti, sij) is the zero-mean random error. 
Under model (1), the variance/covariance structure of the spatio-temporal data can 
be described by

where t, t� ∈ [0, 1] , and s, s� ∈ Ω . In expressions (1) and (2), the mean �(t, s) and 
the variance/covariance �2(t, s) and V(t, t�;s, s�) are all formulated in terms of the 
rescaled times ti = i∕n ∈ [0, 1] , rather than i. This formulation is commonly used 
in the literature. See, e.g. Robinson (1989), Dahlaus (1997), and Vogt and Linton 
(2014). The rescaled time is necessary for studying asymptotic properties of the 
estimated mean and variance/covariance functions in the time domain. Otherwise, 
the distance between two consecutive observation times would not go to 0 when 
n increases, and thus the asymptotic properties in the time domain cannot be dis-
cussed properly. It should be pointed out that models (1) and (2) are flexible. They 
do not impose any parametric assumptions on the mean �(t, s) , the variance/covari-
ance �2(t, s) and V(t, t�;s, s�) , or the distribution of the response variable y(t, s) . They 
even allow the observation locations to be different at different time points. This last 
feature would make our proposed method applicable in more applications, compared 

(1)y(ti, sij) = �(ti, sij) + �(ti, sij), for j = 1,… ,mi, i = 1,… , n,

(2)

Cov
[
y(t, s), y(t�, s�)

]
= E

[
�(t, s)�(t�, s�)

]
=

{
�2(t, s), if t = t� and s = s

�,

V(t, t�;s, s�), otherwise ,
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to some existing methods that require the observation locations to be unchanged 
over time. For example, in infectious disease research, hospitals reporting daily dis-
ease incidence data may be different at different time points, which makes the spatial 
locations of observed daily disease incidence to be different.

2.2  Three‑step model estimation

Estimation of models (1) and (2) consists of the following three steps: (i) an initial 
estimate of the mean function �(t, s) is first obtained, (ii) the variance/covariance 
functions �2(t, s) and V(t, t�;s, s�) are then estimated accordingly, and (iii) the final 
estimate of �(t, s) is obtained after the estimated variance/covariance functions are 
accommodated in the mean estimation. Each of these three steps is described below 
in detail.

Let Y = (y(t1, s11),… , y(t1, s1m1
),… , y(tn, snmn

))T be the long vector of all 
observations. Then, for given (t, s) ∈ [0, 1] × Ω , �(t, s) can be estimated by the 
following weighted local linear kernel (WLLK) smoothing procedure (cf., Qiu 
2005, Chapter 2):

where X = (X11,… ,X1m1
,… ,Xnmn

)T is the design matrix with Xij = (1, ti − t, (sij − s)T )T , 
for j = 1,… ,mi and i = 1,… , n , � = (�0, �1, �2, �3)

T is the coefficient vec-
tor, Σ̂K = D

−1∕2

K
Σ̂�D

−1∕2

K
 , DK = diag {w0(1, 1),… ,w0(1,m1),… ,w0(n,mn)}

,w0(i, j) = K1((ti − t)∕ht,0)K2(dE(sij, s)∕hs,0) , ht,0, hs,0 > 0 are two bandwidths, K1(⋅) 
and K2(⋅) are two univariate kernel functions, dE(⋅, ⋅) is the Euclidean distance 
in ℝ2 , and Σ̂� is the estimated covariance matrix of Y . If the estimated covari-
ance function is denoted as V̂(t, t�;s, s�) , then V̂(ti, tk;sij, skl) can be used as the 
(
∑i−1

q=1
mq + j,

∑k−1

q=1
mq + l)-th element of Σ̂� , for any 1 ≤ i, k ≤ n , 1 ≤ j ≤ mi and 

1 ≤ l ≤ mk . Throughout this paper, the inverse of a matrix refers to the Moore–Pen-
rose generalized inverse. To obtain an initial estimate of �(t, s) , because V̂(t, t�;s, s�) 
has not been obtained yet, we can simply set Σ̂� to be the identity matrix, in which 
case the spatio-temporal observations are assumed to be independent of each other. 
Then, the initial estimate of �(t, s) is the solution of minimization problem (3) to �0 , 
and it has the following expression:

where e1 = (1, 0, 0, 0)T . In (3), the two kernel functions are usually chosen to have 
finite supports. Thus, �̃(t, s) in (4) is a weighted average of observations in a neigh-
borhood of (t, s) , the neighborhood size is controlled by the bandwidths ht,0 and hs,0 , 
and the weights are controlled by the kernel functions K1(⋅) and K2(⋅) . In this paper, 
all kernel functions are chosen to be the Epanechnikov kernel function because 
of its good theoretical properties (cf., Epanechnikov 1969). Namely, we choose 
K1(x) = K2(x) = 0.75(1 − x2)I(|x| ≤ 1) . Because K2(x) is used on a two-dimensional 

(3)min
�∈ℝ4

(Y − X�)T Σ̂−1
K
(Y − X�),

(4)�̃(t, s) = e
T
1

(
X
TDKX

)−1
X
TDKY,
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spatial region, its normalizing constant should be chosen differently from 0.75 to 
become a density kernel, but the normalizing constant does not need to be specified 
correctly because it will be cancelled out in the estimate �̃(t, s).

The initial estimate �̃(t, s) in (4) ignores the spatio-temporal data correlation by 
replacing the covariance matrix Σ̂� with the identity matrix. Similar to the theory of 
generalized estimation equation (Liang and Zeger 1986), it will be shown in Sect. 3 that 
this estimate is statistically consistent under some regularity conditions. To improve 
its efficiency, we need to estimate the variance/covariance functions �2(t, s) and 
V(t, t�;s, s�) . To this end, we define residuals �̃(ti, sij) = y(ti, sij) − �̃(ti, sij) . Then, the 
variance function �2(t, s) can be estimated by

where w1(i, j) = K1

(
(ti − t)∕ht,1

)
K2

(
dE(�ij, �)∕hs,1

)
 . The covariance function 

V(t, t�;s, s�) can be estimated by

where w2(i, j, k, l) = K1

(
(ti − t)∕ht,1

)
K1

(
(tk − t�)∕ht,1

)
K2

(
dE(sij, s)∕hs,1

)
K2

(
dE(skl, s

�)∕hs,1
)
 . In 

(6), V̂(t, t�;s, s�) is actually defined as a weighted sample covariance computed from 
pairs of the residuals in the neighborhoods of (t, s) and (t�, s�) , respectively, and the 
weights are determined by the kernel functions. In (5) and (6), the two bandwidths 
(ht,1, hs,1) could be chosen differently from the bandwidths (ht,0, hs,0) used in comput-
ing the initial mean estimate in (4). For the covariance structure, it is often reason-
able to assume that V(t, t�;s, s�) is close to 0 when the time lag between t and t′ is 
large. Therefore, to reduce computational burden in covariance estimation, we can 
simply set the estimated covariance to be 0 when |t − t�|n is larger than a properly 
chosen threshold value cn.

After the variance and covariance functions are estimated by (5) and (6), the 
covariance matrix Σ� of the observed data � can be computed from �̂2(t, s) and 
V̂(t, t�;s, s�) . However, the estimated covariance matrix Σ̂� may not be a positive defi-
nite matrix. To make it to be a symmetric positive definite matrix, we suggest using 
the modification approach proposed by Higham (1998) described briefly below. Let 
‖ ⋅ ‖F be the Frobenius matrix norm, defined to be the square root of the sum of 
squares of a matrix’s elements, P be the set of all symmetric positive definite matri-
ces with the same dimensions as those of Σ̂� . Then, the projection of Σ̂� on P in the 
Frobenius matrix norm is

It has been shown that Σ̃� = (Σ̂� + Σ̂�,�)∕2 (cf., Higham 1998), where Σ̂�,� is 
the symmetric polar factor of Σ̂� . The projection Σ̃� can be obtained by using the 

(5)�̂2(t, s) =

∑n

i=1

∑mi

j=1
�̃2(ti, sij)w1(i, j)

∑n

i=1

∑mi

j=1
w1(i, j)

,

(6)V̂(t, t�;s, s�) =

∑
i,j

∑
(k,l)≠(i,j) �̃(ti, sij)�̃(tk, skl)w2(i, j, k, l)
∑

i,j

∑
(k,l)≠(i,j) w2(i, j, k, l)

,

Σ̃� = argmin
P∈P

‖P − Σ̂�‖F.
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nearPD() command in R package matrix. Then, we suggest using Σ̃� to replace Σ̂� 
in (3). It can be checked that if Σ̂� is symmetric positive definite, then Σ̃� and Σ̂� are 
the same.

Finally, the estimate of �(t, s) can be obtained from (3) with Σ̂K being replaced 
by Σ̃K = D

−1∕2

K
Σ̃�D

−1∕2

K
 , where DK is defined immediately after (3). So, the final 

estimate of �(t, s) is defined to be

In (7), the bandwidths could be chosen to be different from (ht,0, hs,0) used in obtain-
ing the initial estimate �̃(t, s) in (4). The new bandwidths used in (7) are denoted as 
(ht,2, hs,2) . From (4)–(7), it is natural to consider the following iterative procedure: 
the estimates of the variance and covariance functions defined in (5)–(6) can be fur-
ther updated by replacing the initial mean estimate �̃(t, s) with the mean estimate 
�̂(t, s) in (7) when defining the residuals {�̃(ti, sij)} , then the mean estimate in (7) can 
be further updated by using the updated estimates of the variance and covariance 
functions, and so forth. However, by theoretical justification and numerical results 
in Sects. 3 and 4, it is found that no substantial performance gain can be obtained by 
using such an iterative procedure, but the computational burden of the iterative pro-
cedure would be heavy. For these reasons, we suggest using �̂(t, s) in (7) as the final 
estimate of �(t, s).

2.3  Selection of the bandwidths

The bandwidths ht,0 and hs,0 are used in obtaining the initial mean estimate �̃(t, s) . 
In the literature of univariate nonparametric estimation of regression functions 
from correlated data, it has been well discussed that the bandwidths selected by 
the conventional cross-validation (CV) procedure (e.g. the leave-one-out CV) 
would not perform well, because it cannot properly distinguish the data correla-
tion structure from the data mean function (cf., Altman 1990; Brabanter et  al. 
2011; Opsomer et al. 2001). To overcome this difficulty, Hal95 suggested a block 
bootstrap procedure for choosing the bandwidth in the univariate nonparametric 
regression setup when observed data are correlated. This block-bootstrap proce-
dure can be extended to multivariate cases for choosing the bandwidths (ht,0, hs,0) 
used in (4), which is described below. Let (ht,01, hs,01) and (ht,02, hs,02) be two sets 
of pre-specified values of (ht,0, hs,0) , with (ht,01, hs,01) chosen relatively small and 
(ht,02, hs,02) chosen relatively large. The corresponding initial estimates of �(t, s) 
are denoted as �̃1(t, s) and �̃2(t, s) , respectively. Let �̃ij,1 = y(ti, sij) − �̃1(ti, sij) be the 
residuals, �̄𝜀1⋅ = (

∑n

i=1

∑mi

j=1
�𝜀ij,1)∕(

∑n

i=1
mi) be the mean residual, and 

�𝜀ij,0 = �𝜀ij,1 − �̄𝜀1⋅ be the centralized residuals. Assume that b is a pre-specified 
block size, k1 is the largest integer that is less than or equal to n/b, and 
k2 = n − b × k1 . Then, our suggested block-bootstrap mean average squared error 
(BB-MASE) criterion for choosing the bandwidths (ht,0, hs,0) is described below. 

(7)�̂(t, s) = e
T
1

(
X
T Σ̃−1

K
X

)−1

X
T Σ̃−1

K
Y.
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1) Randomly choose a sequence of k1 + 1 integers from {1, 2, ..., n − b + 1} with 
replacement. The selected integers are denoted as {i1, i2,… , ik1+1} . Then, we 
define a sequence of n indices as {i1, i1+1,… , i1 + b − 1, i2, i2 + 1,… , i2+

b − 1,… , i
k1
, i
k1
+ 1,… , i

k1
+ b − 1, i

k1+1
, i
k1+1

+ 1,… , i
k1+1

+ k2 − 1} if k2 > 0 ; and 
{i1, i1 + 1,… , i1 + b − 1, i2, i2 + 1,… , i2 + b − 1,… , ik1 , ik1 + 1,… , ik1 + b − 1} 
if k2 = 0 . Let {li, i = 1, 2,… , n} denote this sequence of n indices. Define the 
block-bootstrap sample to be y∗(ti, slij) = �̃2(ti, slij) + �̃lij,0 , for i = 1,… , n and 
j = 1,… ,mli

 . For given bandwidths (ht,0, hs,0) , the initial estimate of �(t, s) com-
puted from the block-bootstrap sample is denoted as �̃∗(ti, slij) . Then, we define 
ASE (ht,0, hs,0) =

1

n

∑n

i=1

1

mli

∑mli

j=1
(�̃2(ti, slij) − �̃∗(ti, slij))

2.

2) Step 1) is then repeated for B times, and the average of the B values of 
ASE (ht,0, hs,0) is denoted as BB-MASE (ht,0, hs,0).

3) The bandwidths (ht,0, hs,0) are determined by minimizing BB-MASE (ht,0, hs,0).

Hall et al. (1995) showed theoretically that the block-bootstrap procedure, such as 
the one described above, should be robust to the two sets of pre-specified values 
of the bandwidths to choose, which has been illustrated by us through numerical 
simulations.

For choosing the bandwidths (ht,1, hs,1) that are used for estimating the variance 
and covariance functions in (5) and (6), we suggest a new method based on spa-
tio-temporal prediction, described below. First, define the cross-validation mean 
squared prediction error (CV-MSPE) by

where {ŷ−(ij)(i, sij), j = 1,… ,mi, i = 1,… , n} are the predicted values obtained 
by the kriging method (Cressie and Wikle 2011), described below. For each 
1 ≤ j ≤ mi and 1 ≤ i ≤ n , let V̂−(ij)(t, t

�;s, s�) be the estimated covariance function by 
(6) when the (i,  j)-th residual �̃(ti, sij) is omitted, �−(ij) be the vector with elements 
{�(tk, skl), l = 1,… ,mk, k = 1,… , n, (k, l) ≠ (i, j)} , �ij,−(ij) be the covariance matrix 
between �(ti, sij) and �−(ij) , and �−(ij),−(ij) be the covariance matrix of �−(ij) . Then, the 
predicted values {ŷ−(ij)(ti, sij), j = 1,… ,mi, i = 1,… , n} are defined by

where �̂ij,−(ij) and �̂−(ij),−(ij) are estimates of �ij,−(ij) and �−(ij),−(ij) , respec-
tively, computed from V̂−(ij)(t, t

�;s, s�) , and �̂−(ij) is a vector of the residuals 
{�̃(tk, skl), l = 1,… ,mk, k = 1,… , n, (k, l) ≠ (i, j)} arranged in the same order 
as those in �−(ij) . The bandwidths (ht,1, hs,1) can then be selected by minimizing 
CV-MSPE (ht,1, hs,1).

Note that �̂−(ij),−(ij) is a (
∑n

i=1
mi − 1) × (

∑n

i=1
mi − 1) matrix. When the total 

sample size 
∑n

i=1
mi is large, the computation and storage for the inverse matrix 

�̂
−1

−(ij),−(ij)
 could be demanding. To overcome this difficulty, we suggest using 

the observations in a local neighborhood of (ti, sij) only when computing the 

(8)CV-MSPE (ht,1, hs,1) =
1

n

n∑

i=1

[
1

mi

mi∑

j=1

{
y(ti, sij) − ŷ−(ij)(ti, sij)

}2

]
,

(9)ŷ−(ij)(ti, sij) = �̃(ti, sij) + �̂
T

ij,−(ij)
�̂
−1

−(ij),−(ij)
�̂−(ij),
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predicted value ŷ−(ij)(ti, sij) used in kriging procedure (8)–(9). More specifically, let 
Δij(�t, �s) = {(k, l) ∶ |tk − ti| ≤ �t, dE(skl, sij) ≤ �s, (k, l) ≠ (i, j)} be a set of indi-
ces around (i,  j). Then, when computing �̂ij,−(ij) and �̂−(ij),−(ij) used in (9), only those 
points (tk, skl) whose indices are included in Δij(�t, �s) are used. Also, �̂−(ij) in (9) needs 
to be replaced by the one that includes the residuals with indices in Δij(�t, �s) only. 
After this modification, the computation involved in calculating the predicted value 
ŷ−(ij)(ti, sij) can be greatly reduced, and the amount of computational reduction is 
controlled by the parameters �t and �s . Generally speaking, if their values are chosen 
smaller, then the computational reduction would be more substantial, but the result-
ing predicted value ŷ−(ij)(ti, sij) could be less accurate. Based on our extensive numeri-
cal studies, we suggest choosing �t and �s such that �t ≥ 5∕n and �s ≥ 3�(i, j) , where 
�(i, j) = min{dE(sij, sil), l = 1,… ,mi, l ≠ j}.

To determine the bandwidths (ht,2, hs,2) used in obtaining the final estimate �̂(t, s) in 
(7), we first notice that the mean of the residual mean squares (RMS) of �̂(t, s) is

where Σ�(�ij) is the �ij th column of the covariance matrix Σ� , and �ij =
∑i−1

k=1
mk + j . 

In (10), the first term on the right-hand side is not related to (ht,2, hs,2) , the second 
term is the mean square error (MSE) of �̂(t, s) that measures its performance, and 
the third term is due to data correlation. In our proposed bandwidth selection pro-
cedure, we suggest estimating the third term and then choosing the bandwidths by 
minimizing the sum of the RMS and the estimated third term (Note: the sum should 
be a good estimate of the sum of the first two terms on the right-hand side of (10)). 
More specifically, we first define a bias-corrected estimate of the MSE (BCE-MSE) 
of �̂(t, s) (note: the first term on the right-hand side of (10) has been ignored) to be

where Σ̃�(�ij) is the �ij th column of Σ̃� . Then, (ht,2, hs,2) are chosen to minimize 
BCE-MSE (ht,2, hs,2).

(10)

E( RMS) =E

[
1

n

n∑

i=1

{
1

mi

mi∑

j=1

(
y(ti, sij) − �̂(ti, sij)

)2
}]

=
1

n

n∑

i=1

1

mi

mi∑

j=1

�2(ti, sij) +
1

n

n∑

i=1

1

mi

mi∑

j=1

E
(
�(ti, sij) − �̂(ti, sij)

)2
−
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n
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i=1

1

mi

mi∑

j=1

e
T
1

(
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K
X
)−1

XT Σ̃−1
K
Σ�(�ij),

(11)

BCE-MSE (ht,2, hs,2) =
1

n

n∑

i=1

{
1

mi

mi∑

j=1

(
y(ti, sij) − �̂(ti, sij)

)2
}

+

2

n

n∑

i=1

1

mi

mi∑

j=1

e
T
1

(
XT Σ̃−1

K
X
)−1

XT Σ̃−1
K
Σ̃�(�ij),
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3  Statistical properties

In this section, we present some statistical properties of the estimates �̃(t, s) , 
�̂2(t, s) , V̂(t, t�;s, s�) and �̂(t, s) defined in (4)–(7). In the discussion, it is assumed 
that {mi, i = 1,… , n} are in the same order of m. It is further assumed that 
{sij, i = 1,… , n, j = 1,… ,mi} follow a distribution with the density f (s) , for s ∈ Ω , 
and at each time point ti , the corresponding spatial locations {sij, j = 1,… ,mi} are 
independent. Furthermore, {sij, i = 1,… , n, j = 1,… ,mi} are assumed to be inde-
pendent of the random errors {�(ti, sij), j = 1,… ,mi, i = 1,… , n} in model (1). All 
these assumptions on the spatial locations are denoted as (Assumption-SL).

For the random errors {�(ti, sij), i = 1,… , n, j = 1,… ,mi} , it is 
assumed that �(ti, sij) consists of two independent components, namely, 
�(ti, sij) = �0(ti, sij) + �1(ti, sij) , where �0(ti, sij) is from a spatially and temporally cor-
related random process and �1(ti, sij) is the pure measurement error (i.e. {�1(ti, sij)} 
are independent at different times and/or locations). Let the strong mixing coeffi-
cient of {�0(ti, sij)} in the time domain be defined as

where Fk1
k0

 is the �-algebra generated by {�0(tk, skl), k0 ≤ k ≤ k1, l = 1,… ,mk} . In 
addition, for any (t, s) = [0, 1] × Ω , define 
gn(�;t, s) = V(t, t;s, s) + 2

∑�n
k=1

V(t, t + k∕n;s, s) cos(2�k�) to be the spectral density 
function of the time series {�0(ti, s), i = 1,… , n} , where � ∈ [−1∕2, 1∕2] , 
�n = ⌊n(1 − t)⌋ is the greatest integer less than or equal to n(1 − t) , and V(t, t;s, s) is 
the variance function of �0(t, s) . Let g(�;t, s) = limn→∞ gn(�;t, s) . Next, we will show 
that g(�;t, s) is well-defined, and �̂(t, s) defined in (7) is a consistent estimator of 
�(t, s) under some regularity conditions.

Lemma 1 Assume that there exist two constants C0,C1 > 0 such that the strong mix-
ing coefficient �(k) satisfies the condition that �(k) ≤ C0 exp(−C1k) for every k, and 
there are some constants 𝛿 > 2 and 0 ≤ C𝜀 < ∞ such that E|�(t, s)|� ≤ C� , for all t 
and s . Then, for any (t, s) ∈ [0, 1] × Ω , g(�;t, s) is well-defined and nonnegative.

Lemma 2 In model (1), it is assumed that the design space Ω is a compact set in 
ℝ

2 , the observation locations {sij, i = 1,… , n, j = 1,… ,mi} satisfy the assump-
tions in (Assumption-SL), f (s) is twice continuously differentiable in Ω and it has 
a nonzero lower bound in Ω , the mean function �(t, s) is twice continuously differ-
entiable in [0, 1] × Ω , the strong mixing coefficient �(k) satisfies the condition that 
�(k) ≤ C0 exp(−C1k) , where C0,C1 > 0 are two constants, � defined in Lemma 1 
is larger than 5, the kernel functions K1(⋅) and K2(⋅) are bounded, symmetric, and 
Lipschitz-1 continuous density functions with finite supports, log(n)2∕(nh2

t,0
) = o(1) , 

log(n)∕(mh2
s,0
) = O(1) , hs,0 = o(1) and ht,0∕hs,0 = O(1) . Then, we have

�(k) = sup
n≥1,1≤i≤n−k

sup
A,B

{|P(AB) − P(A)P(B)| ∶ A ∈ F
i
1
,B ∈ F

n
i+k

},

(12)sup
(t,s)∈[0,1]×Ω

|||�̃(t, s) − �(t, s)
||| = Op

(
h2
t,0

+ h2
s,0

+ {log(n)2∕(nh2
t,0
)}1∕2

)
.



58 K. Yang, P. Qiu 

1 3

Lemma 3 Besides the conditions in Lemma 2, if we further assume that there are 
some positive constants C2,C3 and �∗ such that Pr (|�(t, s)| ≥ k) ≤ C2k

�∗ exp(−C3k) , 
for all t, s and any positive number k, the variance function �2(t, s) is twice con-
tinuously differentiable in [0, 1] × Ω , the covariance function V(t, t�;s, s�) is also 
twice continuously differentiable, log(n)2∕(nh2

t,1
) = o(1) , log(n)∕(mh2

s,1
) = O(1) , 

hs,1 = o(1) , and ht,1∕hs,1 = O(1) , then we have

and

Theorem  1 Besides the assumptions in Lemma 3, if we further assume that 
g(𝜃;t, s) > 0 , for all � ∈ [−1∕2, 1∕2] and (t, s) ∈ [0, 1] × Ω , 1∕(nht,2) = o(1) , 
log(n)∕(mh2

s,2
) = O(1) , ht,2 = o(1) , and hs,2 = o(1) , then we have

The proofs of Lemmas 1–3 and Theorem  1 are given in the supplementary 
materials. In Lemma 3, we assume that Pr (|�(t, s)| ≥ k) ≤ C2k

�∗ exp(−C3k) . This 
assumption is valid for many commonly used continuous distributions, including 
normal, exponential and Laplace distributions. In Theorem  1, it is assumed that 
g(𝜃;t, s) > 0 for all �, t , and s . It can be checked that this assumption is valid if the 
temporally correlated random fields {�0(ti, s), i = 1,… , n} are generated from some 
stationary time series models (e.g. the AR models), or some commonly used covari-
ance models, such as the Spherical, Matérn or Gaussian process models. See Choi 
et al. (2013) for some detailed discussions about these models. Furthermore, it can 
be checked that this assumption is also valid when {�0(ti, s), i = 1,… , n} follow the 
models mentioned above locally.

4  Numerical study

In this section, we present some simulation results about the numerical performance 
of the proposed method described in the previous sections. For simplicity, assume 
that the observation times are {ti = i∕n, i = 1,… , n} , the observation locations 
at each time point are equally spaced in Ω = [0, 1] × [0, 1] and they do not change 
over time, and the number of observation locations is m at each time point. In such 
cases, the observation locations are denoted as {sj, j = 1,… ,m} . In all simulation 

(13)
sup

(t,s)∈[0,1]×Ω

|||�̂
2(t, s) − �2(t, s)

||| = Op

(
h2
t,0

+ h2
s,0

+ {log(n)2∕(nh2
t,0
)}1∕2

+h2
t,1

+ h2
s,1

+ {log(n)2∕(nh2
t,1
)}1∕2

)
,

(14)

sup
t,t�∈[0,1]

sup
s,s�∈Ω

|||V̂(t, t
�;s, s�) − V(t, t�;s, s�)

||| = Op

(
h2
t,0

+ h2
s,0

+ {log(n)2∕(nh2
t,0
)}1∕2

+h2
t,1

+ h2
s,1

+ {log(n)2∕(nh2
t,1
)}1∕2

)
.

(15)|||�̂(t, s) − �(t, s)
||| = Op

(
h2
t,2

+ h2
s,2

+ {1∕(nht,2)}
1∕2

)
.



59

1 3

Local smoothing approach for analyzing spatio-temporal data

examples, (m, n) are chosen to be (36, 50) or (100, 100), and the mean function is 
chosen to be

where s = (sx, sy)
T . Let �(ti) =

(
�(ti, s1),… , �(ti, sm)

)T , then �(i) is generated from 
following AR(1) process:

where 
{
�(ti) = (�(ti, s1),… , �(ti, sm))

T , i = 1,… , n
}
 are temporally independent 

spatial processes and −1 < 𝜙t < 1 is a constant controlling the temporal data cor-
relation. For each (ti, sj) , �(ti, sj) is generated from the normal distribution N(0, �2) . 
At each observation time ti , the spatial covariance among the elements of �(ti) 
is described by Cov

(
�(ti, sj), �(ti, sl)

)
= �2�(dE(sj, sl)) , for any j and l, where 

�(d) = exp{−�sd} and 𝜙s > 0 is a constant to determine the magnitude of spatial 
correlation. In such cases, it can be checked that the covariance between �(ti, sj) and 
�(tk, sl) is V(ti, tk;sj, sl) = �2�

n|ti−tk|
t �(dE(sj, sl)) , for ti, tk ∈ [0, 1] . In the simulation 

examples, we choose � = 0.5 , �t = 0.3, 0.6 or 0.9, and �s = 1, 3 or 5. To determine 
the bandwidths (ht,0, hs,0) used for computing �̃(t, s) , the block-bootstrap procedure 
described in Sect. 2.3 is used, where we choose B = 100 , (ht,01, hs,01) = (0.05, 0.05) , 
and (ht,02, hs,02) = (0.3, 0.3) . The block size b is always chosen to be 5, except in 
cases when we study the effect of block size on the performance of �̂(t, s) below. 
The threshold value cn is chosen to be 20 when we compute the covariance function 
estimate.

First, we compare the proposed method with some representative existing meth-
ods: the DSTM and LGCP methods discussed in Sect. 1, the spatially weighted aver-
age (SWA) method suggested by Kafadar (1996), and the local linear kernel smooth-
ing (LLKS) method by Yang and Qiu (2018). The DSTM method has been discussed 
in detail in citeStr01 and can be accomplished using the R-package spBayes. In the 
LGCP method, it is assumed that y(ti, sij)N(ti, sij) follows the distribution 
Poisson(R(ti, sij)) , for each i and j, where N(ti, sij) denotes the population size at time 
ti in the design grid cell that contains sij , R(ti, sij) = CgN(ti, sij) exp[�(ti, sij)] , 
Cg = 1∕m is the area of each grid cell, and �(ti, sij) is from a spatio-temporal Gauss-
ian process with a variance parameter �2

�
 and a scale parameter �� . In the simulation 

studies, {N(ti, sij)} are fixed to be a constant 10,000. The parameters �2
�
 and �� can 

be estimated by the Bayesian inference, as discussed in Taylor et  al. (2015). This 
method can be accomplished using the R-package lgcp. The proposed initial mean 
estimate �̃(t, s) in (4) is denoted as Step1, and the proposed updated mean estimate 
�̂(t, s) in (7) is denoted as Step2. Intuitively, because the DSTM and LGCP methods 
require some parametric assumptions on their models and on the data distribution, it 
is expected that they cannot perform well when these assumptions are violated. The 
SWA method was developed for smoothing spatial geographical data, and thus it 
cannot use data information at neighboring time points when estimating the mean 
function at a given time point. For the LLKS method, although it provides a reliable 

�(t, s) = 2 + sin(�sx) sin(�sy) + sin(2�t),

�(ti) = �t�(ti−1) + (1 − �2
t
)1∕2�(ti),
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estimate for the spatio-temporal mean function, the covariance structure is not taken 
into consideration in its estimate and thus its efficiency has room for improvement. 
Based on these intuitions, we believe that our proposed method Step2 would per-
form favorably in comparison with its peers when estimating �(t, s) in cases when 
the mean and variance structures of the observed spatio-temporal data are complex. 
For Step1 and Step2, all their bandwidths are chosen by the procedures discussed in 
Sect.  2.3. The bandwidths used in the method LLKS are chosen according to the 
modified CV procedure described by Yang and Qiu (2018). For the other three com-
peting methods DSTM, LGCP and SWA, their tuning parameters are chosen to min-
imize the mean average squared errors (MASE) defined below. To evaluate the per-
formance of each method, the MASE criterion is defined as:

which is approximated by the average of 100 ASE values computed from 100 
repeated simulations. The results of MASE values of different methods in the above 
setup are presented in Table 1. From the table, it can be seen that i) the three meth-
ods LLKS, Step1 and Step2 have a better overall performance than the methods 

MASE = E

{
1

n

n∑

i=1

1

m

m∑

j=1

(�(ti, sj) − �̂(ti, sj))
2

}
,

Table 1  Estimated MASE values and their standard errors (in parentheses) for six spatio-temporal meth-
ods when the sample size (m, n) changes from (36,50) to (100,100) and the spatio-temporal data correla-
tion changes from relatively weak to relatively strong cases. ∗The standard error numbers in parentheses 
are in the scale of 1 × 10−3 . In each row, the smallest MASE value is in bold

(m, n) (�
t
,�

s
) DSTM LGCP SWA LLKS Step1 Step2

(36,50) (0.3,1) 0.218(3.40∗) 0.235(2.33) 0.237(3.41) 0.054(1.81) 0.050(1.73) 0.048(1.85)
(0.3,3) 0.175(1.73) 0.231(1.55) 0.215(1.78) 0.044(0.99) 0.044(0.96) 0.042(1.12)
(0.3,5) 0.152(1.13) 0.228(1.17) 0.200(1.20) 0.038(0.72) 0.037(0.67) 0.036(0.84)
(0.6,1) 0.238(4.55) 0.241(4.64) 0.239(4.52) 0.117(3.50) 0.086(3.01) 0.077(3.12)
(0.6,3) 0.202(2.40) 0.230(2.14) 0.216(2.36) 0.094(1.86) 0.076(1.69) 0.064(1.82)
(0.6,5) 0.185(1.62) 0.221(1.12) 0.201(1.57) 0.079(1.23) 0.068(1.15) 0.054(1.25)
(0.9,1) 0.246(8.54) 0.255(8.12) 0.238(8.50) 0.197(8.38) 0.184(8.13) 0.166(7.96)
(0.9,3) 0.237(4.97) 0.243(4.65) 0.217(4.86) 0.170(4.66) 0.156(4.58) 0.130(4.41)
(0.9,5) 0.230(3.61) 0.237(3.65) 0.201(3.38) 0.139(3.14) 0.135(3.15) 0.109(3.19)

(100,100) (0.3,1) 0.225(2.43) 0.233(1.78) 0.231(2.43) 0.041(1.10) 0.034(1.02) 0.030(1.03)
(0.3,3) 0.192(1.26) 0.225(1.12) 0.202(1.26) 0.034(0.56) 0.029(0.72) 0.026(0.81)
(0.3,5) 0.168(0.82) 0.208(0.67) 0.179(0.82) 0.026(0.34) 0.024(0.33) 0.022(0.47)
(0.6,1) 0.233(3.26) 0.239(2.78) 0.231(3.25) 0.095(2.32) 0.064(2.02) 0.047(1.94)
(0.6,3) 0.211(1.69) 0.224(1.74) 0.202(1.68) 0.071(1.12) 0.054(1.01) 0.039(1.11)
(0.6,5) 0.194(1.09) 0.203(0.91) 0.179(1.07) 0.060(0.70) 0.046(0.64) 0.033(0.78)
(0.9,1) 0.251(7.27) 0.244(6.21) 0.238(7.29) 0.194(7.04) 0.161(6.62) 0.129(6.25)
(0.9,3) 0.241(3.61) 0.238(3.20) 0.206(3.58) 0.169(3.43) 0.133(3.20) 0.102(3.21)
(0.9,5) 0.235(2.27) 0.231(2.11) 0.181(2.19) 0.137(2.07) 0.113(1.96) 0.083(2.06)
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DSTM, LGCP and SWA, ii) Step1 outperforms LLKS uniformly, iii) Step2 out-
performs Step1 uniformly and iv) the performance of Step1 and Step2 is improved 
when the sample size (m, n) is increased from (36, 50) to (100, 100). The last conclu-
sion is consistent with the consistency results in Lemma 1 and Theorem 1 in Sect. 3. 
The conclusion iii) says that the update from Step1 to Step2 by accommodating the 
estimated variance and covariance functions (cf., (4)–(7)) is helpful for estimating 
the mean function �(t, s) . The conclusion ii) confirms that the block-bootstrap band-
width selection procedure described in Sect. 2.3 is effective, since the major differ-
ence between Step1 and LLKS is that the bandwidths in Step1 are selected by the 
block-bootstrap procedure, while the bandwidths in LLKS are selected by an alter-
native procedure. The conclusion i) confirms the benefits to use the nonparametric 
spatio-temporal modelling methods LLKS, Step1 and Step2, in which the spatio-
temporal data correlation is accommodated, while the related models are kept flex-
ible. As a comparison, the methods DSTM and LGCP both require some restrictive 
model assumptions, and the method SWA ignores the spatio-temporal data correla-
tion completely.

To better perceive the performance improvement of the proposed method 
Step2 in comparison with alternative methods, we also present the percentage of 
improvement in MASE (PIMASE) values in Table 2, where PIMASE of an alter-
native method is defined as

If the value of PIMASE is positive, then Step2 performs better than the alternative 
method in question in terms of MASE. From Table 2, it can be seen that i) Step2 is 
better than all five alternative methods uniformly, ii) PIMASE is uniformly larger 
when the sample size (m, n) is larger, and iii) the improvements of Step2 over the 
five alternative methods are quite substantial in most cases considered.

PIMASE =
MASE of an alternative method − MASE of Step2

MASE of Step2
.

Table 2  The percentage of improvement in MASE (PIMASE) values when comparing the proposed 
method Step2 with five competing methods in cases considered in Table 1

(m,n)=(36,50) (m,n)=(100,100)

(�
t
,�

s
) DSTM LGCP SWA LLKS Step1 DSTM LGCP SWA LLKS Step1

(0.3,1) 354% 390% 394% 13% 4% 650% 677% 670% 37% 13%
(0.3,3) 316% 450% 412% 5% 5% 638% 765% 677% 31% 12%
(0.3,5) 322% 533% 456% 6% 3% 664% 845% 714% 18% 9%
(0.6,1) 209% 213% 210% 52% 12% 396% 409% 391% 102% 36%
(0.6,3) 216% 259% 238% 47% 19% 441% 474% 418% 82% 38%
(0.6,5) 243% 309% 272% 46% 26% 488% 515% 442% 82% 39%
(0.9,1) 48% 54% 43% 19% 11% 95% 89% 84% 50% 25%
(0.9,3) 82% 87% 67% 31% 20% 136% 133% 102% 66% 30%
(0.9,5) 111% 117% 84% 28% 24% 183% 178% 118% 65% 36%
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In the previous simulation examples, the block length b used in the block-boot-
strap procedure described in Sect. 2.3 for determining the bandwidths (ht,0, hs,0) is 
fixed at 5. In this part, we study the impact of b on the performance of the mean 
estimate �̂(t, s) . In the setup of Table 1, let (m, n) = (36, 50) and b change among 1, 
3, 5, 7 and 9. The difference of average squared errors (DASE) of �̂(t, s) when two 
different block sizes are used is defined as

where b1 and b2 are two different block sizes, and ASE (b1) and ASE (b2) are the 
ASE values of �̂(t, s) when block sizes b1 and b2 are used, respectively. To present the 
results in a concise way, we use b = 5 as a baseline case and compare other choices 
of b to this case. Namely, the values of DASE (b1, 5) are computed for b1 = 1, 3, 7 
or 9. The results of DASE (b1, 5) based on 100 replicated simulations are shown 
in Fig. 1 by box plots. From the plots, it can be seen that i) the results would not 
be good if we choose b = 1 , ii) the results are good when b = 3, 5 or 7, and iii) the 
results would not be good if b is chosen too large. The conclusion i) confirms that 
block-bootstrap with block size b > 1 is necessary to accommodate data correlation. 
The conclusions ii) and iii) confirm that b = 5 is a reasonable choice.

As mentioned in Sect. 2.2, the mean estimate �̂(t, s) in (7) by three-step estima-
tion procedure (3)–(7) can actually be further updated in an iterative way. In this 
part, we study whether the performance of the mean estimate can be improved sub-
stantially by using more iterations. More specifically, besides Step1 and Step2 con-
sidered in Table 1, we also consider Step3 and Step4, where Step3 denotes the mean 
estimate obtained by (7) after the estimates of the variance and covariance func-
tions are updated by (5) and (6) with the initial mean estimate �̃(t, s) replaced by the 
mean estimate �̂(t, s) of Step2 when defining the residuals, and Step4 denotes the 
mean estimate after another iteration. As in the previous example, to compare two 
methods, we use the DASE metric, with Step2 as the baseline method (i.e. DASE 
is defined to be ASE of an alternative method minus ASE of Step2). In the setup of 

DASE (b1, b2) = ASE (b1) − ASE (b2),
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Fig. 1  Boxplots of the DASE values DASE (b1, 5) , where block length b2 = 5 is used as the baseline 
for comparing different values of the block size b used in the block-bootstrap procedure described in 
Sect. 2.3, in cases when (m, n) = (36, 50) , �s

= 1, 3 or 5, and �t
= 0.3, 0.6 or 0.9. In each plot, for given 

values of (�t
,�

s
) , the four boxes are for cases when b1 = 1 , 3, 7 and 9, respectively
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Table 1 when (m, n) = (36, 50) , the results based on 100 replicated simulations are 
shown in Fig. 2 by box plots. From the plots of Fig. 2, it can be seen that i) Step2 
is much better than Step1 (i.e. the first iteration is very helpful), and ii) Step3 and 
Step4 improve Step2 only marginally. Because of the computational burden with 
more iterations, we recommend using �̂(t, s) in (7) (i.e. the one obtained after the 
first iteration) as the final estimate of �(t, s).

In all previous examples, the design points {(ti, sij), i = 1,… , n, j = 1,… ,mi} 
are deterministic and regularly spaced in [0, 1] × [0, 1]2 . In this part, we consider 
cases when the spatial locations are generated randomly in [0, 1]2 , to investigate 
whether different types of design points would change the performance of the 
mean estimates. To this end, let us consider the same setup as that of Table 1 when 
(m, n) = (36, 50) , except that the observation locations {sj, j = 1,… ,m} here are 
generated from the two-dimensional uniform distribution in [0, 1]2 . In such cases, 
the calculated MASE values of the six competing methods based on 100 replicated 
simulations are presented in Table 3, along with their standard errors. It can be seen 
that the results are similar to those in Table 1 with a fixed design.

At the end of this section, we would like to point out that the computation 
of the proposed method Step2 is relatively simple because �(t, s) and V(t, t�;s, s�) 
are both estimated by local smoothing procedures in small neighborhoods. More 
specifically, when estimating �(t, s) by (7), only the observations in the neigh-
borhood of (t, s) (i.e. N(t, s) = {y(ti, sij) ∶ |ti − t| ≤ ht,2, dE(sij, s) ≤ hs,2} ) are 
used. Assume that there are N∗ observations in N(t, s) . Then, when we take the 
Moore–Penrose generalized inverse of the matrix Σ̃K , we only need to calcu-
late the inverse of a related small submatrix of Σ̃K with the dimension N∗ × N∗ , 
because all other elements in Σ̃K are 0. Note that the number N∗ would be much 
smaller than the total number of observations mn. In the simulation examples 
when (m, n) = (100, 100) and (�t,�s) = (0.6, 3) , the average computation time 
(ACT) for estimating the mean function �(t, s) at a given time and a given loca-
tion is about 0.08 second using a Mac desktop with a 2.9 GHz Intel Core i5 
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Fig. 2  Boxplots of the DASE values to compare mean estimates obtained after the first several iterations 
of the iterative model estimation of (1) in cases when (m, n) = (36, 50) , �s

= 1, 3 or 5, and �t
= 0.3, 0.6 

or 0.9. For specific values of (�t
,�

s
) in each plot, the three boxes are for comparing Step1, Step3 and 

Step4 with Step2, respectively, with Step2 as a baseline method
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processor, where ACT = {mn}−1
∑n

i=1

∑m

j=1
CTij and CTij is the computation time 

for computing �̂(ti, sij) . To further investigate the impact of (m, n) on ACT, con-
sider cases when m = 36, 64, 100, 225 or 400, n = 50, 100, 200, 300, 400 or 500, 
and (�t,�s) = (0.6, 3) . The computed ACT values are presented in Figure S.1 of 
the supplementary file. From Figure S.1, it can be seen that ACT gets larger when 
m or n becomes larger and it requires about 3.28 seconds to compute the estimate 
�̂(t, s) when (m, n) = (400, 500).

5  Application to a hand, foot and mouth disease dataset

In this section, we present an application of our proposed method to a hand, 
foot and mouth disease (HFMD) dataset that contains weekly incidence rates of 
HFMD in 21 cities of Sichuan Province in China during 2009-2010 (52 weeks). 
To implement the proposed method, the threshold value cn is chosen to be 20, 
the block size b used in the block-bootstrap procedure is chosen to be 5, and the 
parameters ht,01 and ht,02 are chosen to be 0.05 and 0.3, respectively, as in the 
simulation examples. For the parameters hs,01 and hs,02 , we first compute the larg-
est distance between any two different cities and then choose hs,01 and hs,02 to be 
0.05 and 0.3 times of that largest distance. The estimated mean function �̂(t, s) for 
4 cities (Deyang, Luzhou, Neijiang and Ngawa Autonomous Prefecture) is pre-
sented in Fig. 3, along with the observed data.

Besides the mean estimate by Step2, we also consider the five alternative meth-
ods DSTM, LGCP, SWA, LLKS and Step1 that are discussed in Sect. 4. Since the 
true mean function �(t, s) is unknown in real-data applications, the performance 
metric MASE cannot be used in such cases. Instead, we use the following mean 
square prediction error (MSPE), defined as

Table 3  Estimated MASE values and their standard errors (in parentheses) for six spatio-temporal meth-
ods when (m, n) = (36, 50) and all other setups are the same as those in Table 1, except that the spatial 
locations here are generated from a uniform distribution in [0, 1]2 . ∗The standard error numbers in paren-
theses are in the scale of 1 × 10−3 . In each row, the smallest MASE values is in bold

(�
t
,�

s
) DSTM LGCP SWA LLKS Step1 Step2

(0.3,1) 0.220(3.38∗) 0.231(2.30) 0.233(3.41) 0.060(1.76) 0.051(1.71) 0.046(1.77)
(0.3,3) 0.181(1.77) 0.225(1.63) 0.194(1.81) 0.054(0.99) 0.049(0.98) 0.043(1.18)
(0.3,5) 0.160(1.20) 0.218(1.09) 0.167(1.26) 0.041(0.71) 0.041(0.70) 0.040(0.87)
(0.6,1) 0.233(4.55) 0.237(4.24) 0.235(4.52) 0.117(3.38) 0.091(3.05) 0.079(3.12)
(0.6,3) 0.206(2.46) 0.230(2.25) 0.195(2.41) 0.105(1.91) 0.083(1.76) 0.066(1.79)
(0.6,5) 0.190(1.71) 0.224(1.32) 0.168(1.70) 0.100(1.37) 0.076(1.25) 0.061(1.39)
(0.9,1) 0.246(8.60) 0.245(8.42) 0.233(8.57) 0.203(8.36) 0.193(8.19) 0.171(7.86)
(0.9,3) 0.237(5.20) 0.239(4.85) 0.196(5.03) 0.184(5.12) 0.182(4.99) 0.152(4.94)
(0.9,5) 0.231(3.91) 0.228(3.85) 0.172(3.79) 0.183(3.92) 0.169(3.78) 0.139(3.90)
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and the mean absolute prediction error (MAPE), defined as

where �̂−(ij)(ti, sij) is the leave-one-out estimate of �(ti, sij) with the (i, j)th observation 
y(ti, sij) deleted when estimating �(ti, sij) . The calculated values of MSPE of DSTM, 
LGCP, SWA, LLKS, Step1 and Step2 are 6.26 × 10−11 , 4.58 × 10−11 , 4.66 × 10−11 , 
2.87 × 10−11 , 2.24 × 10−11 and 1.91 × 10−11 , respectively, and their MAPE values are 
5.61 × 10−6 , 3.97 × 10−6 , 4.06 × 10−6 , 3.18 × 10−6 , 2.85 × 10−6 and 2.61 × 10−6 . It 
can be seen that Step2 outperforms all 5 alternative methods quite substantially in 
terms of both MSPE and MAPE in this example.

To further investigate the six methods, the maps of the absolute residual values 
for the data in the 20th, 30th and 40th weeks are shown in columns 1–6 of Fig. 4. 
For each city, the residual at a given week is defined to be the absolute difference 
between the observed and estimated incidence rates. From these maps, it can be seen 
that the first four methods have relatively large residuals at some cities, while the 
residuals of Step1 and Step2 are relatively small.

MSPE =
1

n

n∑

i=1

{
1

mi

mi∑

j=1

(
�̂−(ij)(ti, sij) − y(ti, sij)

)2
}

,

MAPE =
1

n

n∑

i=1

{
1

mi

mi∑

j=1

|||�̂−(ij)(ti, sij) − y(ti, sij)
|||

}
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Fig. 3  Observed incidence rates (little circles) of the hand, foot and mouth disease in four cities of 
Sichuan Province in China, and the estimated mean incidence rate functions (solid curves). All incidence 
rates are in the scale of 10−5
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6  Concluding remarks

Spatio-temporal data are common in practice with many applications. Most 
existing methods either impose various restrictive model assumptions or ignore 
partially or completely the spatio-temporal data correlation during data model-
ling and estimation. In the previous several sections, we have presented a new 
three-step local smoothing procedure for jointly estimating the mean and vari-
ance/covariance functions of spatio-temporal data, in which both the mean struc-
ture and the variance/covariance structure are kept flexible. Because the proposed 
method is based on local smoothing, its computation is relatively simple. Effec-
tive bandwidth selection procedures are also developed for implementing the 
proposed method. Both the theoretical arguments and numerical studies have 
confirmed that the proposed method can work well in practice. There are still a 
number of issues that need to be addressed in our future research. For instance, 
bandwidths used in the proposed method are constants across the entire design 
time interval and space. In practice, curvature of the mean function �(t, s) and the 
data variability could be quite different in both time and space. Thus, variable 
bandwidths might be more reasonable to use. Also, there could be covariates (e.g. 
weather conditions) that affect the main response variable y in practice. In such 
cases, these covariates should be taken into account when modelling the observed 
data. To accommodate the covariate effect, the current spatio-temporal model 
could be generalized to a semiparametric model or a generalized additive model. 
Such possible generalizations are not straightforward and will be studied care-
fully in our future research. We will continue to work on these and some other 
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Fig. 4  Maps of the absolute residual values of the method DSTM (1st column), LGCP (2nd column), 
SWA (3rd column), LLKS (4th column), Step1 (5th column) and Step2 (6th column) in 21 cities of 
Sichuan Province in China at the 20th (1st row), 30th (2nd row) and 40th (3rd row) week in the year 
2009
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research problems to make the proposed method more effective and powerful for 
analyzing spatio-temporal data.
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